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Abstract

Liquid rockets are prone to large amplitude oscillations, commonly referred to as ther-

moacoustic instability. This phenomenon causes unavoidable developmental setbacks

and poses a stern challenge to accomplish the mission objectives. Thermoacoustic

instability arises due to the complex nonlinear interaction between the acoustic and

the reactive flow subsystems in the combustion chamber. In this report, we adopt

tools from dynamical systems and complex systems theory to understand the dy-

namical transitions from a state of stable operation to thermoacoustic instability in

a self-excited model multi-element rocket combustor at Purdue University based on

an oxidizer rich staged combustion cycle.

We not only study the state of thermoacoustic instability, but also, examine the

dynamical transitions occurring sequentially in a range of high pressure tests. We

observe that the transition to thermoacoustic instability occurs through a sequence

of bursts of large amplitude periodic oscillations. Further, we show that the acoustic

pressure oscillations in the combustor pertain to different dynamical states. In con-

trast to a simple limit cycle oscillation, we show that the system dynamics switches

between period-3 and period-4 oscillations during the state of thermoacoustic insta-

bility. We show several measures based on recurrence quantification analysis and

multifractal theory which can diagnose the dynamical transitions occurring in the

system. We find that these measures are more robust than the existing measures in

distinguishing the dynamical state of a rocket engine. Further, these measures can

be used to validate models and computational fluid dynamics simulations aiming to

characterize the performance and stability of rockets.

In the next part of this report, we study the slow-fast characteristics of the cham-

ber acoustic pressure oscillations with the help of recurrence theory. We construct

recurrence plots and recurrence networks to elucidate the slow-fast features of the

oscillations. We also observe such features in the slow-fast oscillations of heat re-

lease rate in a model gas turbine turbulent combustor at IIT Madras. Further, we

confirm these observations in three well-known models: Van der Pol model, modified

Izhikevich’s spiking neuron model and Hodgkin-Huxley model.

To gain a wholesome understanding of the thermoacoustic system, we need to
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study the spatiotemporal behavior in addition to the temporal behavior. We utilize

the high-speed CH* chemiluminescence images and hydrodynamic data generated

from CFD simulations. In this chapter, we briefly describe our progress in analyzing

the liquid rocket combustor using complex network and synchronization analysis.

We conclude the report with a overview of the future work continuing along these

lines to help understand the problem of thermoacoustic instability in liquid rocket

combustion.
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CHAPTER 1
A BRIEF OVERVIEW ON THE NONLINEAR
PHENOMENA AND COMPLEX NATURE OF
LIQUID ROCKET OSCILLATIONS

Liquid rocket propulsion has become indispensable in aiding mankind for space exploration.

The Apollo space program of U.S.A took a serious setback when the F-1 liquid rocket engine

exhibited instabilities containing oscillations of perilous magnitudes to render the mission

impossible. A special program known as Project First was established and after six more

years of approximately 2000 full-scale tests, these instabilities were mitigated1. Similarly,

these combustion instabilities have come to haunt several other space missions, notably the

Soviet RD-0110 engines and the Ariane space program in Europe2. These instabilities came

to be widely known as combustion instabilities or thermoacoustic instabilities and have

been observed in liquid rocket engines, solid rocket motors, tactical and strategic missiles,

aero-derivative gas turbine engines, power-producing gas turbines, industrial boilers, etc.

Thermoacoustic instability is featured by large perilous oscillations in pressure and heat

release rate arising due to the positive feedback between the acoustic pressure oscillations

in a confinement and the heat release rate oscillations in the flame3. The occurrence of

thermoacoustic instabilities can potentially lead to partial or total mission failure of rockets,

rising costs, increased delays and developmental setbacks. Especially in rockets, they give

rise to large amplitude thrust oscillations compromising manoeuvrability and structural

integrity. As a result, thermoacoustic instability has been studied widely by academia,

various national and private institutions.

Rayleigh criterion3 was one of the earliest measures to assess the stability of combustion

systems4 . This criterion judges the balance between the acoustic driving and damping in the

system. Earlier approaches based on linear stability analysis5–9 assessed the stability of liquid

rocket engines and solid rocket motors for different configurations. Crocco and Cheng10 built

the n−τ model accounting for various time lags pertaining to different processes to assess the

stability of the system. This theory made a great step towards characterizing thermoacoustic

instability in rocket engines of various configurations11. Crocco et al.12 showed that the

time lags of both acoustic pressure and gas velocity need to be used in the n− τ model for

transverse oscillations. A similar approach was followed by Zinn et al.13 to model continuous
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transverse modes in three dimensions, which are more prominent in rockets. However,

linear stability analysis could not conclusively explain the various dynamics observed in

rocket combustors. Crocco and his co-workers have presciently predicted the importance of

nonlinear dynamics10,14,15. Zinn and Powell16 used the n−τ model with Galerkin method to

analyze nonlinear combustion instability in liquid rocket engines. Estimates for limit cycle

amplitude and triggering thresholds were obtained analytically by Mitchell et al.17 for a

longitudinal mode rocket motor with shock waves. We refer interested readers to an excellent

recent review by Sirignano11 for an elaborate discussion on these techniques. Apart from

these brilliant analytical attempts, focus was largely skewed towards identifying the physical

processes behind these combustion instabilities and attenuating these harmful oscillations

with the help of baffles, Helmholtz resonators, and spray and impingement alterations2.

Another section of research in rockets defined stability boundaries for the system for different

configurations2,9,18 and changes in the controllable operating parameters such as injector

spacing inside the combustion chamber, propellant temperature, etc.

Rocket combustion is a highly nonlinear and dynamic process. The nonlinearities9,18,19

may arise out of gas dynamic processes, flame interactions, boundary interactions, high ther-

mal energy density20 (O ∼ 30 GW/m3), and the turbulent base flow. Further, extreme rates

of heat addition in rockets is a major source of nonlinearities in rockets. The magnitudes

of the oscillations of the system variables and acoustic variables approach the order of mag-

nitude of the mean variables. As a consequence, the nonlinearities in the system become

significant and promote the transfer of energy across higher modes. The turbulent base

flow induces wrinkles along the flame boundaries which are smoothed out at different rates

depending on their length scales. The presence of flow separation at sharp edges, rapid flow

expansions and interaction of the acoustic oscillations with the coherent structures21,22 in

the reactive flow-field add upon the nonlinearities in the system. Further, the wave steepen-

ing mechanism causes acoustic waves to turn into shockwaves23–25. The usage of nonlinear

theory correctly predicts the saw-tooth wave profiles in pressure for cases containing shock

discontinuities, while linear theory predicts smooth sinusoidal waveforms11,23,26. On top of

all these, there exist several interactions across various subsystems such as injector hydro-

dynamics and flame dynamics, rendering the system complex7,9,18,22,27,28. Several processes

occurring in rocket engines are artifacts of the nonlinearities in the system9,25. Limit cy-

cle oscillations could arise due to the balance between the acoustic driving and damping
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mechanisms in the system along with other limiting mechanisms like propellant flow.

A stable combustor can be excited with a finite amplitude disturbance to trigger self-

sustained oscillations of considerable amplitudes. This phenomenon is known as triggering

instabilities in rockets. During triggering, the system dynamics transitions to high amplitude

state of oscillations through a finite amplitude perturbation above a threshold amplitude,

called triggering amplitude. When the amplitude of the initial condition is less than the

triggering amplitude, the system behavior decays asymptotically to a stable state. The phe-

nomenon of triggering is observed when the system is operating in the bistable zone. In

rockets, the time history of acoustic pressure oscillations is usually accompanied by a rise in

the mean pressure levels. This phenomenon, known as DC shift25 in rocket propulsion liter-

ature, exposes the rocket to dangerous amplitudes. As a result of these nonlinear behaviors,

it is vital to understand the dynamics exhibited by a rocket combustor from the perspective

of nonlinear dynamics.

Furthermore, much of the research focused on combustion stability assessment of rockets

are based on building accurate models and computational fluid dynamics (CFD) simula-

tions, owing to high costs involved in testing even sub-scale hardware7,9,22,29–31. Most of

the studies have focused solely on understanding the dynamics during thermoacoustic in-

stability. However, to characterize the various dynamics present in the system and build

models that capture the relevant features, we need to characterize the dynamics during the

transition from stable operation to thermoacoustic instability. Many studies exist in rocket

literature32–36 pointing out to the exponential growth of amplitudes of acoustic pressure

oscillations during the transition from stable operation to unstable operation. Recently,

Selvakumaran et al.37 detected the signature of intermittent oscillations in heat release rate

fluctuations of a composite solid propellant. Adopting tools from dynamical systems theory,

Guan et al.38 showed switching between period-2 and period-3 oscillations during the state

of thermoacoustic instability in a full-scale solid rocket motor.

Another challenge faced by the rocket propulsion community is to identify the dynamical

transitions from stable operation to thermoacoustic instability. Conventional measures39,40

such as root mean square of the oscillations, maximum amplitude from the amplitude spec-

trum through Fourier transform etc. cannot be applied universally to all rocket combustors

without apriori knowledge of the oscillation amplitudes. Different rocket combustors vary in

their mean operating pressure, choice of propellants, geometry etc. Given the widely differ-
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ent operating conditions and amplitudes observed for different rocket combustors, a measure

which is bounded within a certain range of values for different rocket combustors would be

a better candidate than the conventional measures to track the transition. Recently, Orth

et al.41 used the maximum of cross-correlation which is bounded between -1 and 1 to distin-

guish the stable operation from thermoacoustic instability. However, this measure cannot

isolate intermittency from thermoacoustic instability. Further, it requires careful selection

of the two signals to be cross-correlated. In spite of several advances, the rocket propulsion

community is still in need of robust measures from dynamical systems theory to characterize

and also to detect the transition from stable operation to thermoacoustic instability.

Adopting the framework of dynamical systems and complex systems, recent studies in gas

turbine literature have shown immense progress towards understanding several dynamical

states of combustor operation such as chaos, period-n limit cycle, and quasiperiodicity42–44.

Several measures such as Hurst exponent45, recurrence quantification measures46–50, and

measures from complex network analysis51–53 have been deployed to detect the proximity to

the onset of thermoacoustic instability. Further, synchronization theory has been exploited

to study the coupling between the acoustic and the heat release rate oscillations54–56. In

light of these advancements, it would be interesting to analyze the dynamics of a liquid

rocket combustor using tools from complex systems and dynamical systems.
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CHAPTER 2
TIME SERIES ANALYSIS OF CHAMBER
ACOUSTIC PRESSURE OSCILLATIONS IN A
MODEL LIQUID ROCKET COMBUSTOR DATA

In this chapter, by adopting various tools from nonlinear time series analysis, we detect

the different dynamical states and also characterize the dynamical transitions observed in

acoustic pressure oscillations of a liquid rocket combustor. We observe that the transition

from stable operation to thermoacoustic instability occurs via intermittency, a state consist-

ing of alternate occurrence of bursts of periodic oscillations amongst epochs of low amplitude

aperiodic oscillations. Through the use of first return map, we unravel intricate features of

thermoacoustic instability where the periodic dynamics alternates between period-3 and

period-4 oscillations. We show that the measures based on recurrence quantification analy-

sis and multifractal analysis can aid in detecting the dynamical transitions in the acoustic

pressure oscillations, which is not possible through conventional measures.

I. METHODOLOGY OF NONLINEAR TIME SERIES ANALYSIS

In this section, we briefly describe the methodology used to perform the nonlinear time

series analysis throughout the rest of the paper.

A. Phase space reconstruction

In practical applications, such as thermoacoustic instability in the combustion chamber

of a rocket, it is difficult to obtain data of all the independent variables that govern the

dynamics of the system. In such situations, usually only a handful of system variables (in the

limiting case, at least one) are available to be acquired by an experimentalist. The dynamics

of a liquid rocket combustor in the higher dimensional phase space can be reconstructed from

a state variable (for example, acoustic pressure: p′) by Takens’ delay embedding theorem57.

Such a reconstruction involves converting the univariate time series data into a set of delayed

vectors from the appropriate choices of time delay (τ) and embedding dimension (d). We

construct the vectors x′(d) = (p′(t), p′(t+τ), p′(t+2τ), . . . , p′(t+(d−1)τ)) from the measured

pressure signal, p′(t). Here, t is varied from 1 to n− (d− 1)τ , where n is the total number

of data points in the signal. Each delay vector corresponds to a state point in the phase
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space and the combination of all these vectors constitute a phase space trajectory. To

perform an appropriate phase space reconstruction for a particular state of the system,

we need to obtain the optimum time delay (τ) and the minimum embedding dimension

(d) for the given signal. Here, τ can be estimated using average mutual information58 or

autocorrelation function59. The minimum embedding dimension (d) can be obtained using

false nearest neighbor method59 or alternately Cao’s method60, which we use in this study.

B. Recurrence analysis

Recurrence of state points in the phase space is a fundamental property of deterministic

dynamical systems. Recurrence plots are used to visually identify the time instants at which

the phase-space trajectory of the system re-visits roughly the same area in the phase space61.

The patterns present in a recurrence plot allow us to characterize the features of the signal

embedded in the d-dimensional phase space. The construction of the recurrence plot requires

a prior knowledge of the optimum time delay (τ) and minimum embedding dimension (d).

The recurrence plot of any time series signal is constructed by computing the pairwise

distances between the state points of the reconstructed phase space. For a time series of

length n, the recurrence matrix is given by the following equation,

Rij = Θ(ε−
∥∥x′i − x′j∥∥) i, j = 1, 2, . . . , n− (d− 1)τ (1)

where Θ is the Heaviside step function and ε is a threshold to define the neighbourhood of

a state point in the reconstructed phase space.
∥∥x′i − x′j∥∥ is the Euclidean distance between

any two state points, i and j, on the reconstructed phase space. Whenever a state point

in the phase space recurs in the predefined threshold, it is marked as a black point. Non-

recurring points are marked as white points in the recurrence plot. Rij is one for a black

point and zero for a white point. Thus, a recurrence plot is a two-dimensional arrangement

of black and white points that exhibits different patterns characterizing different dynamics

of the signal.

Several statistical measures can be derived from the organization of such black and white

points in the recurrence plots. Such an analysis is known as the recurrence quantification

analysis of a measured signal. Measures such as determinism, recurrence rate, trapping time,

entropy, laminarity, average diagonal length can be used to study the recurrence behaviour
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of the phase space trajectory62,63. These measures could further be used to distinguish

between the various dynamical states exhibited by the system. Here, we discuss the usage of

determinism (DET ), recurrence rate (RR), and the ratio between these quantities (RATIO)

in the analysis of acoustic pressure data obtained experimentally from the model liquid rocket

combustor.

Recurrence rate measures the density of black points in a recurrence plot and can be

obtained as:

RR =
1

N2

N∑
i,j=1

Rij (2)

where N = n− (d− 1)τ is the number of state vectors in the reconstructed phase space.

Determinism measures the percentage of black points in a recurrence matrix which form

diagonal lines of minimum length lmin.

DET =

∑N
l=lmin

lP (l)∑N
l=1 lP (l)

(3)

where, P (l) is the probability distribution of diagonal lines having length l and lmin = 2.

The ratio of determinism and recurrence rate (RATIO = DET/RR) has been introduced

by Webber and Zbilut64 to discover transitions in physiological systems.

C. Multifractal analysis

Classical Euclidean geometry deals with smooth objects which have an integer dimen-

sion. However, many things in nature contain wrinkles when observed at different levels of

magnification. Such objects or signals are classified as fractals and they exhibit self-similar

features at various observational scales65. Measures such as length, area and volume for such

objects are dependent on the scale at which the measurements are performed. The loga-

rithmic plot of the measure of the object versus the scale at which the object is measured

would give a straight line with an inverse power law65. The absolute value of the slope of

this line is known as fractal dimension (D). The framework of fractal theory can be used

to describe a fractal time series which exhibits self-similarity at various timescales66. For a

fractal time series, H quantifies the amount of correlation in the signal and is related to the

fractal dimension67 of the time series as D = 2 − H. If p(t) is a fractal time signal whose

Hurst exponent is H, then p(ct) = p(t)/cH is another fractal signal preserving the same

statistics45.
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Certain complex signals cannot be described using a single fractal dimension. These

signals can be described with a range of fractal dimensions and such signals are classified as

multifractals. In this study, we use multifractal detrended fluctuation analysis (MFDFA)68

to study the multifractal characteristics of the time series of acoustic pressure oscillations.

To estimate the Hurst exponent, the time series (p(t)) is mean (〈p(t)〉) adjusted to get a

cumulative deviate series yi as:

yi =
i∑
t=1

(p(t)− 〈p(t)〉) i = 1, 2, . . . , n (4)

〈p(t)〉 =

∑n
t=1 p(t)

n
. (5)

The deviate series is then separated into an integer number nw non-overlapping segments

of equal span w. To look for trends in the segments, a local polynomial fit (yi) is made to

the deviate series yi and the fluctuations about the trend are obtained by subtracting the

polynomial fit from the deviate series. Next, a quantity known as structure function (F q
w)

of order q and span w, can then be obtained from the fluctuations for q 6= 0 as:

F q
w =

 1

nw

nw∑
i=1

√√√√ 1

w

w∑
t=1

(yi(t)− yi)
2

q1/q

. (6)

For q = 0, we have

F q
w = exp

[
1

2nw

nw∑
i=1

log

(
1

w

w∑
t=1

(yi(t)− yi)
2

)]
. (7)

The generalized Hurst exponents (H(q)) is then obtained from the slope69 of the linear

regime in a log-log plot of F q
w, for a range of span sizes, w. In this study, we obtain this

linear regime for 2-10 cycles70 of the acoustic oscillations observed with a frequency of 2650

Hz during thermoacoustic instability. Thenceforth, the generalized Hurst exponents can be

represented as a spectrum of singularities, f(α), via a Legendre transform71.

τq = qHq − 1 (8)

α =
∂τq
∂q

(9)

f(α) = qα− τq. (10)
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This spectrum, represented as a plot of f(α) against α, is known as the multifractal

spectrum. The multifractal spectrum provides information on the fractal characteristics of

the data. Further details regarding MFDFA can be found in the work of Kandelhart68 and

Ihlen69.

In literature, the generalized Hurst exponent H(q) for q = 2 is popularly known as the

Hurst exponent (H). For q = 2, H becomes the scaling of the root mean square of the

standard deviation of the fluctuations with the window size. Since its introduction, H has

been used for various applications72,73. In thermoacoustics, Nair & Sujith45 have used H to

capture the transition from stable operation to thermoacoustic instability via intermittency

in a laboratory-scale turbulent combustor. Also, Unni & Sujith47 have used H as a precursor

to detect blowout in a turbulent combustor.

II. EXPERIMENTAL SETUP

A schematic diagram of the multi-element model liquid rocket combustor is presented in

Fig. 1a,b. A detailed description of the flow conditions and the experimental hardware can

be found in Orth et al.41 and are only briefly summarized here. The oxidizer is supplied

by an oxidizer rich pre-burner that uses hydrogen as the fuel and is located upstream of an

oxidizer manifold. The preburner provides oxygen with 4%-5% mass fraction of water vapor

to the experiment at a mean chamber pressure of 6.55 MPa, and mean temperature of 635 K.

The oxidizer manifold is sized to minimize dynamic pressure losses and provide uniform flow

to each of the injection elements downstream of it. Each injector has a choke plate upstream

of it to decouple any feed system dynamics from the experiment and vice versa. Methane

is injected through shear coaxial injector elements at the downstream end of the oxidizer

posts through a manifold with a choked inlet. The mean Mach number in the oxidizer posts

is 0.25 at nominal operating conditions. A centerline-centerline injector spacing of 25.7 mm

is used in the test case presented in this study. The injector exit diameter is 15.8 mm. The

exit nozzle has the same aspect ratio as the combustion chamber and is designed to obtain

a mean chamber pressure of approximately 1140 kPa during the test. The chamber width is

chosen to drive self-excited transverse mode dynamics at a frequency of 2.65 kHz at nominal

test conditions. The length of the chamber is designed for a fundamental longitudinal (1L)

mode of 3475 Hz so that the transverse mode harmonic frequency does not coincide with
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(a)

(c)

(b)

FIG. 1. (a) The side view of the experimental setup used to excite transverse instabilities in

the laboratory scale multi-element liquid rocket combustor. (b) A detailed view of the main

combustor is shown. The entire experiment lasts for 6 seconds. (c) A representative time series

of acoustic pressure oscillations obtained from the pressure transducer located at right side wall of

the combustor during Test - C. The dashed lines demarcate the test time interval (i.e. region-II)

from the engine startup and shutdown durations.

the 1L mode or its harmonics.

The combustion chamber is instrumented densely with high frequency pressure transduc-

ers and K-Type thermocouples. Piezoresistive Kulite WCT-312M sensors sampled at 250

kHz are used to measure the pressure in the propellant manifolds, oxidizer post, and the
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combustion chamber. The sensors are mounted in a recess cavity to avoid thermal saturation

effects. The cavity is designed as a Helmholtz resonator with a resonance frequency of 22.4

kHz. The location of the pressure transducers used for the analysis are labeled in Fig. 1b.

A representative time series of acoustic pressure oscillations obtained from the pressure

transducer located at the right side wall of the combustor is shown in Fig. 1c. The time

interval in region I corresponds to starting of the preburner and the ignition of the main

chamber. The first jump in the pressure signal close to 1 s corresponds to the start of the

preburner and the second jump at 2.5 s corresponds to the ignition of the main chamber.

Region III pertains to the shutdown of the engine. The acoustic pressure oscillations in

region II are of prime interest in this study, as this interval of the signal represents the actual

dynamical transitions from stable operation to thermoacoustic instability in the liquid rocket

combustor.

III. RESULTS AND DISCUSSIONS

In this section, we characterize the temporal behavior of acoustic pressure oscillations

observed during the onset of thermoacoustic instability in the liquid rocket combustor. To-

wards this purpose, we examine the time series of the chamber acoustic pressure oscillations,

as shown in Fig. 2, acquired for the same operating conditions (working fluids, flow rates,

upstream pressures and temperatures) and the injector configurations. However, we notice

that although the operating conditions are the same during experiments, the dynamics aris-

ing out of the combustor is different during each trial. The data-sets chosen for the analysis

along with the dynamical transitions observed are summarized in Table. I.

A. Classification of dynamical states

For Test - A (Fig. 2a), we observe that the time series is entirely composed of stable

operation, exhibiting low amplitude aperiodic oscillations. For Test - B (Fig. 2b), we observe

small epochs of marginally large amplitude periodic oscillations interspersed within the

aperiodic oscillations of the signal. We refer to this dynamical state as intermittency. In

general, intermittency refers to a dynamical state composed of high amplitude bursts of

periodic oscillations amidst epochs of low amplitude aperiodic oscillations in an apparently
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Data-set Dynamical transitions observed

Test - A Stable operation

Test - B Intermittency

Test - C Stable operation ⇒ Intermittency ⇒ Thermoacoustic instability

Test - D Intermittency ⇒ Thermoacoustic instability

Test - E Intermittency ⇒ Thermoacoustic instability

TABLE I. The list of data-sets chosen for analysis and the corresponding dynamical transitions

observed in each test.

random manner46. Next, we obtain a transition from stable operation to thermoacoustic

instability via intermittency for Test - C (Fig. 2c). Here, thermoacoustic instability is

comprised of large amplitude periodic oscillations. For Test - D (Fig. 2d) and Test - E

(Fig. 2e), we detect only two dynamical states: intermittency followed by thermoacoustic

instability without the occurrence of a stable combustor operation. However, the time spent

in the periodic epoch of intermittency is higher during Test - E than that for Test - D. The

reasons behind such a difference in the dynamics of the combustor behaviour for the same

operating conditions remain unanswered.

A careful observation of the dynamics of the liquid rocket combustor shows the existence

of three primary dynamical states in the acoustic pressure oscillations. These states are sta-

ble operation (low amplitude aperiodicity), intermittency (epochs of periodicity interspersed

between epochs of aperiodicity in an apparently random manner), and thermoacoustic in-

stability (epochs of sustained periodicity). During the periodic epochs of intermittency and

thermoacoustic instability, we observe that the periodic waveform nearly takes the shape

of a saw tooth wave profile. Further, we notice that the state of intermittency always pre-

cedes the onset of thermoacoustic instability. Such an observation is different from previous

descriptions of the onset of thermoacoustic instability where the transition from small am-

plitudes to large amplitudes is reported through an exponential growth32–36. Recently, Orth

et al.41 band-pass filtered the time series of acoustic pressure oscillations in the same model

multi-element combustor, used in the present study. When the frequencies pertaining to the

fundamental mode are band-passed, they observed the presence of an exponential growth

rate in the amplitude of oscillations. They also observed a similar exponential growth rate
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FIG. 2. Time series of acoustic pressure fluctuations acquired at the right side wall of the com-

bustion chamber in the interval of interest marked II in Fig. 1c for tests: (a) Test - A (stable

operation), (b) Test - B (intermittency), (c) Test - C (stable operation - intermittency - ther-

moacoustic instability), (d) Test - D (intermittency - thermoacoustic instability), and (e) Test -

E (intermittency - thermoacoustic instability). The representative portions of the various dynam-

ical states are zoomed and shown in the insets: (i) stable operation, (ii) intermittency and (iii)

thermoacoustic instability.

when the harmonic frequencies are band-passed. However, in the present study, we analyze

the time series with its entire frequency content preserved. In this study, we characterize

the dynamical features of the representative portions of the time series pertaining to these

three dynamical states observed during different trials of experiments. We choose stable

operation of Test - A, intermittency from Test - E, and thermoacoustic instability from Test

- E. Next, we will look into the frequency content present in these three dynamical states.

The amplitude spectrum with a frequency resolution of 12 Hz generated out of the fast

Fourier Transform (FFT) algorithm is plotted in Fig. 3. For stable operation (Fig. 3a),

14Distribution A Distribution Approved for Public Release: Distribution Unlimited 



FIG. 3. The amplitude spectrum obtained through fast Fourier transform (FFT) with a frequency

resolution of 12 Hz for (a) stable state of Test - A, (b) intermittency in Test - E, and (c) ther-

moacoustic instability in Test - E. The zoomed insets are shown for (a) stable operation and (b)

intermittency.

we observe that the amplitude spectrum is broadband containing a wide range of frequen-

cies. During intermittency (Fig. 3b), we observe a dominant peak emerging around 2500 Hz

amidst the neighbouring band of frequencies. During thermoacoustic instability (Fig. 3c),

we obtain a sharp peak at f1 = 2650 Hz along with several of its harmonics (nf1) of con-

siderable amplitudes. We have marked only the first ten harmonics (f2 = 2f1 to f10 =

10f1) for conciseness. The presence of several harmonics of considerable amplitudes during

thermoacoustic instability is due to the spiky nature of the signal caused by the steepening

of the compression wave front into a shock wave25,26. The shift in the dominant frequency

in time is attributed to the increase in mean temperature during the transition.

B. Phase space reconstruction

To probe the hidden features of the dynamics during each state, we reconstruct the phase

space traced by the acoustic pressure oscillations. For this purpose, we need to evaluate the

optimum time delay and minimum embedding dimension for each state. Further, to estimate

the optimum time delay, we plot the average mutual information (AMI) for different time

lags58 as shown in the first column of Fig. 4. AMI measures the mutual dependence of the

signal and its delayed version at two different time instants. The first minima of the AMI

can be used as the optimum time delay for the construction of the phase space. However,
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FIG. 4. (a-c) Average mutual information (AMI) and (d-f) autocorrelation function (ACF) are

evaluated to estimate the optimum time delay required for the construction of phase portrait during

(a, d) stable operation of Test - A, (b, e) intermittency in Test - E, and (c, f) thermoacoustic

instability of Test - E.

we observe that the optimum time delay cannot be unambiguously determined using AMI

(Fig. 4a-c), due to the difficulty in clearly identifying the first local minima, especially in

Fig. 4b,c. Hence, we turn to the autocorrelation function (ACF) to estimate the optimum

time delays59.

Autocorrelation function (ACF) calculates the linear correlation between a time series

and its delayed copy of the same time series. The value of ACF ranges between -1 to 1.

The optimum time delays obtained from ACF corresponds to the first zero crossing in the

plot, which are denoted by dashed lines in (Fig. 4d-f). The corresponding optimum time

delays for stable operation, intermittency, and thermoacoustic instability are 0.04 ms, 0.136

ms and 0.084 ms, respectively.

Further, we need to estimate the minimum embedding dimension required for the phase

space reconstruction. We rely on Cao’s method60 to identify the minimum embedding dimen-

sion. The two parameters: E1 and E2 are evaluated for a range of embedding dimensions

from 1 to 20. E1 measures the ratio of mean distances between two points in the phase

space in two successive embedding dimensions. When the sufficient embedding dimension
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FIG. 5. (a-c) The optimum embedding dimension required for phase space reconstruction is ob-

tained by Cao’s method, evaluating quantities, E1 (black) and E2 (blue), during (a) stable op-

eration of Test - A, (b)intermittency in Test - E, and (c) thermoacoustic instability for Test - E,

respectively. The optimum embedding dimension are denoted by dashed lines.

is attained, E1 attains a value close to 1 and remains constant for further increments in

embedding dimension. E2 is a quantity which can distinguish between deterministic and

stochastic signals. For a completely random signal, E2 remains nearly unity for any embed-

ding dimension60. For deterministic signals, E2 varies for lower embedding dimensions and

saturates beyond a certain embedding dimension.

The optimum embedding dimension is the dimension, denoted by dashed lines in Fig. 5a-

c, for which E1 and E2 starts to become invariant with further increase in dimension (d). In

addition, we observe that E2 is not unity for some embedding dimensions, denoting that the

dynamics during stable operation are not completely stochastic. The minimum embedding

dimension chosen is 13 for stable operation (Fig. 5a), and 10 for both intermittency (Fig. 5b)

and thermoacoustic instability (Fig. 5c).

With the optimum time delays obtained for each state, we plot the three-dimensional

phase portraits for stable operation, intermittency, and thermoacoustic instability in Fig. 6a-

c. We observe that the phase portraits during stable operation in Fig. 6a is cluttered and

has no distinct repeating pattern corresponding to the low amplitude aperiodic oscillations.

However, during thermoacoustic instability in Fig. 6c, we obtain a pattern (marked 1-7 in

order) which repeats at equal intervals of time. The phase portrait of this state shows a

stretched trefoil-knot like structure, similar to that observed in gas phase detonations74.

This structure is radically different from the phase portrait of thermoacoustic instability

observed for gas turbine combustors, which mostly trace out a ring or elliptical orbit42,54.
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FIG. 6. The phase portraits visualized using the estimated optimum time delays and embedding

dimensions in Fig. 4 & 5 for (a) stable state of Test - A, (b) intermittency in Test - E, and (c) ther-

moacoustic instability in Test - E. The phase portraits are reconstructed using the corresponding

time interval depicted for each dynamical state. The trajectory traced out by the phase portrait

for one cycle of oscillation during thermoacoustic instability is marked 1-7 in the corresponding

waveform shown in the inset.

During thermoacoustic instability in this rocket combustor, due to an increase in the speed

of sound because of rising temperature and convective effects in the compression phase, the

waveform tends to catch up with the expansion front23,24. This leads to the steepening of the

compression wave front into a shock wave. As a result, the pressure wave front has a faster

growth in the amplitude during the compression phase compared to the slow decay of the

oscillation in the expansion phase. This characteristic behavior is captured faithfully in the

corresponding phase portrait wherein the phase space trajectory spends relatively shorter

times during the compression phase (points 1-2 in Fig. 6c) compared to the expansion phase

(points 2-7 in Fig. 6c) of the signal. During intermittency in Fig. 6b, we obtain a phase por-

trait bearing some resemblance to the phase portrait during thermoacoustic instability. The

presence of amplitude modulation during periodic oscillations and the aperiodic oscillations

corrugates the phase portrait of intermittency.
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FIG. 7. Poincare sections or first return maps of the acoustic pressure oscillations during (a) stable

operation in Test - A, (b) aperiodic portion of intermittency in Test - D, (c) periodic portion of

intermittency in Test - E, and (d) thermoacoustic instability of Test - E.

C. Return maps

A Poincare map or first return map preserves many properties of periodic, quasi-periodic

and chaotic orbits59. Hence, we use a return map, tracking the successive local maxima of

the signal, to probe the dynamics. In Fig. 7, the first return map tracking the local maxima

of the acoustic pressure oscillations during stable operation, intermittency: aperiodic and

periodic epochs, and thermoacoustic instability are plotted.

The trajectory traced by the return map helps us in identifying the precise dynamical

state which is sometimes not apparent from the visual inspection of the three dimensional

phase portrait. In a first return map, a point is observed for limit cycle oscillations with

period-1, a ring is observed for the quasiperiodic oscillations, and a clutter of points for a

chaotic signal75. Also, if the consecutive dots traced in the return map of period-n oscillations

are joined, it results in the trajectory of a n-sided polygon.

The aperiodic oscillations (see Fig. 7a,b) during stable operation and intermittency show
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a clutter of trajectories without exhibiting any specific pattern. However, for periodic oscil-

lations (Fig. 7c,d) during both intermittency and thermoacoustic instability, we observe the

random occurrence of period-3 and period-4 oscillations as shown by triangles (I-II-III) and

quadrilaterals (1-2-3-4), respectively, in their first return maps. This further suggests that

the state of thermoacoustic instability is non-trivial and is not the same as the period-1 limit

cycle oscillations which is usually observed for gas turbine engines. It is particularly inter-

esting to note that a similar switching between period-2 and period-3 limit cycle dynamics

have been reported recently for a full-scale solid rocket motor38. At this juncture, we must

note that caution must be exercised while applying tools designed to detect conventional

period-1 limit cycle oscillations as they might fail for such complex period-3 and period-4

oscillations.

D. Recurrence plots

The phase portraits of high-dimensional attractors are usually visualized by projecting

them into the lower dimensions. However, a lot of information will be lost when the phase

space is condensed into lower dimenisons. Eckmann et al.61 proposed a visual representation

tool, known as recurrence plot that enables us to investigate the behavior of n-dimensional

phase space trajectory through a two-dimensional representation of its recurrences. The

recurrence plot contains unique patterns for each kind of oscillation. For example, periodic

oscillations are represented by continuous diagonal lines, because the trajectory of such

signals revisits roughly the same region of phase space in equal intervals of time. For

random signals, we obtain a grainy structure in the recurrence plot. For chaotic signals,

unlike random signal, one would obtain isolated short lines parallel to the main diagonal

line76. For a detailed description on recurrence plots, we encourage the reader to see Marwan

et al.77.

Recurrence plots (RP) for the acoustic pressure oscillations during the stable opera-

tion, intermittency (both aperiodic and periodic epochs), and thermoacoustic instability

are shown in Fig. 8. The black patches during the occurrence of aperiodic oscillations in

Fig. 8a,b correspond to the trajectory trapped within a small region in the phase space.

The short (or broken) lengths of diagonal lines in RP (see zoomed inset in Fig. 8a,b) during

both stable operation and aperiodic region of intermittency imply deterministic behavior,
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FIG. 8. Recurrence plots (RP) for the dynamics of (a) stable operation (along with a zoomed

inset) in Test - A, (b) aperiodic epoch of intermittency (along with its zoomed inset) in Test -

D, (c) periodic epoch of intermittency in Test - E, and (d) thermoacoustic instability of Test - E.

The recurrence plots are obtained for the corresponding time interval depicted for each dynamical

state (a-d) to appropriately detect the patterns. A threshold of 20% of the maximum size of the

corresponding attractor is utilized. The parameters such as time delay and embedding dimension

are the same as that discussed in Section IVB.

and could possibly suggest chaotic dynamics for the aperiodic oscillations. However, dedi-

cated tests have to be performed before confirming chaotic dynamics. The recurrence plots

during periodic oscillations of intermittency (Fig. 8c) and that of thermoacoustic instability

(Fig. 8d) show continuous diagonal lines, indicating strong deterministic characteristics in

the dynamics. However, during the periodic portion of intermittency, the diagonal lines are
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relatively broken due to the gradual decrease in the amplitude of the signal.

E. Multifractal analysis

Many complex signals exhibiting aperiodic oscillations contain certain structural charac-

teristics, which are difficult to be captured by various tools discussed so far. Fractal theory

can be used to describe such complex signals that are composed of multiple time scales. By

applying fractal analysis to thermoacoustic systems, Nair and Sujith45 showed that the sta-

ble operation (i.e., a state of combustion noise) in a turbulent combustor has multifractal

features and these multifractal signatures vanish at the onset of thermoacoustic instabil-

ity. By following their approach, we study the multifractal behavior of acoustic pressure

oscillations observed in the model liquid rocket combustor.

In Fig. 9a, we plot the variation of generalized Hurst exponents with the variation in the

order-q for different dynamical states observed during the onset of thermoacoustic instability.

We notice that, during stable operation and intermittency, the large scale fluctuations and

small scale fluctuations scale differently as the variation of H(q) shows a different trend for

both the states. Contrary to this, H(q) shows a negligible change with variation in q during

thermoacoustic instability, indicating the existence of single scale during thermoacoustic

instability.

Further, we observe a nonlinear variation of the mass exponents, τ(q), with scaling order

q in Fig. 9b for all the states except thermoacoustic instability. Generally, a linear and

nonlinear variation of τ(q) represents monofractal and multifractal behavior of the signal,

respectively69. This indicates that the states of stable operation and intermittency exhibit

multifractal behavior which reduces to a monofractal-like behavior during thermoacoustic

instability. Also, the resulting multifractal spectra shown in Fig. 9c for stable operation and

intermittency exhibits a wide spectrum spanning several values of singularity exponents (α).

Thus, the variation of generalized Hurst exponents, mass exponents, and the multifractal

spectrum strongly point out to the presence of multifractal nature in these oscillations.

During thermoacoustic instability, this multifractality is lost. This loss of multifractality

is evident from the invariant nature of H(q), the linear variation of τ(q) with q, and the

collapse of the multifractal spectrum to a shorter arc centred around a non-zero α. This non-

zero value of α, and the non-integer value of the H(q) further confirms the monofractal-like
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FIG. 9. Multifractal analysis is performed on the stable operation (black) in Test - A, intermittency

(blue) in Test - E, and thermoacoustic instability (red) of Test - E. (a) Generalized Hurst exponents,

(b) mass exponents, and (c) multifractal spectrum are plotted to characterize the multifractal

features of the various dynamics observed in the rocket combustor. The MFDFA method of a third

order polynomial fit and a q range of -5 to 5 is used. The window size of 2 - 10 cycles of 2650 Hz

oscillations is used, as described in Section IIC.

behavior of acoustic pressure signals during thermoacoustic instability. Such a monofractal

behavior for periodic signals have been shown for plasma signals78.

Additionally, the multifractal spectra during stable operation and intermittency display a

right skewed behavior (Fig. 9c). This right skewness suggests that the multifractal dynamics

of the pressure oscillations is determined predominantly by the small scale fluctuations. It

is also reflected in the reduction in the slope of generalized Hurst exponents for positive

order q, indicating that the qth-order root mean square values are insensitive to the local

fluctuations with large magnitudes69. Having studied the dynamical features of acoustic

pressure oscillations during the onset of thermoacoustic instability, now we proceed to quan-

titatively characterize the dynamical transitions observed in the system dynamics of liquid

rocket combustor.

F. Measures to distinguish different dynamical states

We have shown that a thermoacoustic system can exhibit different dynamical states such

as stable operation, intermittency, and thermoacoustic instability. A measure which can

distinguish between these different dynamical states would be an ideal tool for engineers

and simulators to help in assessing the stability of a rocket combustor.

23Distribution A Distribution Approved for Public Release: Distribution Unlimited 



In Fig. 10, we show several measures which exhibit a quantitative change during the

transition from stable operation to thermoacoustic instability. In Fig. 10a, we plot the time

series of acoustic pressure without removing the mean pressure, during Test - C containing

the transition from stable operation to thermoacoustic instability via intermittency, for which

the measures are evaluated. The variation of conventional measures employed to detect the

transition to thermoacoustic instability such as root mean square value (Fig. 10b), the

variance of the oscillations (Fig. 10c), and magnitude of the dominant frequency from the

amplitude spectrum (Fig. 10d) are plotted. The entire time series is split into 100 segments

of 6 ms interval each for plotting Fig. 10b and Fig. 10c. Due to the compromise in the

frequency resolution with shorter window size, we use a relatively larger window interval of

55.6 ms, which resulted in 8 segments of the actual time series, for plotting Fig. 10d.

The variation of both root mean square and variance of the acoustic pressure oscillations

increases progressively as the system dynamics approaches thermoacoustic instability. The

non-monotonic trend in the variation of these measures prior to thermoacoustic instability

is due to the presence of intermittency. The magnitude of the dominant frequency in the

amplitude spectrum calculated with a frequency resolution of 18 Hz exhibits a gradual vari-

ation from stable operation to thermoacoustic instability. However, to determine the onset

of thermoacoustic instability from these measures, an apriori knowledge of the expected

amplitude levels out of the combustor is required. Armed with the knowledge of the ampli-

tude levels during the onset of thermoacoustic instability in a combustor, one can determine

whether thermoacoustic instability is attained or not. However, in most scenarios, the am-

plitude levels in a combustor are difficult to predict as they depend highly on the operating

conditions, working fluids etc. Even if this is overlooked, using these measures, we cannot

robustly distinguish the transition between the states of stable operation, intermittency, and

thermoacoustic instability.

In an attempt to overcome the shortcomings of these conventional measures, Orth et

al.41 introduced the maximum of cross correlation (CCmax) as a measure to distinguish

between stable operation and thermoacoustic instability. CCmax, bounded between -1 to 1,

captures the highest similarity between two time series. In Fig. 10e, we show the variation of

the maximum value of the cross correlation (CCmax) between the acoustic pressure signals

acquired at two different locations in the combustor (labelled as ‘Fuel Manifold Pressure’

and ‘Right Wall Pressure’ in Fig. 10b). In this study, we find that CCmax is unable to
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FIG. 10. (a) The time series of acoustic pressure (p) during Test - C containing the transition

from stable operation to thermoacoustic instability via intermittency. The variation of (b) root

mean square value (p′rms), (c) the variance of the oscillations (p′var), (d) the magnitude of the

dominant frequency from the amplitude spectrum (|Amax|), (e) maximum of cross correlation

(CCmax), (f) ratio of determinism to recurrence rate (RATIO), (g) Hurst exponent (H), and

(h) multifractal spectrum width (α2 − α1) are plotted to distinguish the dynamical transitions

across stable operation, intermittency, and thermoacoustic instability. The dashed vertical lines

demarcating the three dynamical states are marked by visual inspection.

distinguish between intermittency and thermoacoustic instability as the values of CCmax

are nearly the same during intermittency and thermoacoustic instability. Next, we show

the variation in the recurrence based measure: the ratio of determinism to recurrence rate
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(RATIO) in Fig. 10f. We note that the value of RATIO starts decreasing with the onset

of intermittency and decays to almost zero during thermoacoustic instability. CCmax and

RATIO are plotted for a window size of 7.5 ms corresponding to 20 cycles of oscillations.

Finally, the variation of fractal measures, Hurst exponent (H) in Fig. 10g and multifractal

spectrum width (α2 - α1) in Fig. 10h are plotted to distinguish the dynamical transitions

across stable operation, intermittency, and thermoacoustic instability. Here, α2 and α1 are

the extreme values of the singularity exponents covered by the multifractal spectrum. The

multifractal spectrum width (α2 - α1) is calculated by measuring the range of singularity

exponents covered by the spectrum. For the multifractal measures, a window size of 37.6

ms corresponding to 100 cycles of oscillations with an overlap of 90 cycles is used. The

multifractal spectrum width drops from near 0.4 to lower than 0.02 during the onset of ther-

moacoustic instability. However, the presence of intermittency cannot be detected by this

measure. The value of Hurst exponent (H) varies from around 0.5 during stable operation

to less than 0.1 during the onset of thermoacoustic instability. During intermittency, if the

value of H drops below 0.1, this model rocket combustor can be considered to be in the

proximity of an impending thermoacoustic instability. However, the critical Hurst expo-

nent below which thermoacoustic instability is imminent may vary from system to system.

Hence, RATIO, Hurst exponent, and multifractal spectrum width collectively can be used

to distinguish the combustor operation across all three states for a rocket combustor, as they

possess fixed values for a particular type of dynamics, unlike traditional measures such as

rms value, amplitude of frequency peaks, and variance of the oscillations.

Next, in Fig. 11, we show that the same measure RATIO can also be used to detect the

transitions from aperiodic to periodic oscillations, and vice versa, in a signal (see Fig. 11a).

We compare the efficacy of RATIO as compared to CCmax in detecting such transitions.

We also show the variation of DET and RR in Fig. 11c,d, respectively. We observe that

through a windowed variation of CCmax (Fig. 11b) and RATIO (Fig. 11e), we can detect

the switching between periodic and aperiodic behavior during intermittency. Here, CCmax is

obtained by cross correlating the same two pressure signals used to calculate CCmax plotted

in Fig. 10. Zoomed views of the normalized pressure time series of the two signals (p′n,fuel and

p′n) are plotted for an aperiodic epoch of intermittency, a periodic epoch of intermittency,

and thermoacoustic instability in Fig. 11i-iii. A window size of 2.3 ms corresponding to

two hundred slices of the actual time series is used to calculate all measures in Fig. 11. A
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FIG. 11. The time series of (a) acoustic pressure (p) is plotted during the transition from intermit-

tency to thermoacoustic instability for Test - E. The variation of (b) maximum of cross correlation

(CCmax), (c) determisim (DET ), (d) recurrence rate (RR), and (e) ratio of determinism and re-

currence rate (RATIO) to detect the aperiodic to periodic transitions, and vice versa. The blue

shaded region corresponds to the long aperiodic epoch of intermittency, the greeen shaded region

corresponds to the periodic epoch of intermittency, and the red shaded region corresponds to the

epoch of thermoacoustic instability. Zoomed views of normalized pressure signals at the right wall

(p′n) and fuel manifold (p′n,fuel) locations are shown for (i) aperiodic epoch of intermittency, (ii)

periodic epoch of intermittency, and (iii) thermoacoustic instability, respectively.

smaller window size is necessary to detect the aperiodic-periodic transitions. DET , RR and

subsequently, RATIO are obtained by calculating the recurrences of the phase trajectories

within a threshold of 20% of maximum size of the corresponding attractor. The time delay

and embedding dimension are calculated for the entire time series and are found to be 0.196
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ms and 10, respectively.

We observe an uncharacteristically higher value of DET for the aperiodic oscillations,

compared to other combustors79. The value of DET for both aperiodic and periodic dynam-

ics in this data (see Fig. 11c) remains nearly the same. The value of DET ∼ 1 suggests the

possibility of high deterministic features77 in the aperiodic oscillations of the rocket combus-

tor dynamics. This high determinism value could be a result of the dynamics of the flame

front, arising from the globally unstable hydrodynamic field.

On the other hand, the value of RR exhibits a significant increase during the transition

from aperiodic to periodic oscillations (see Fig. 11d). Hence, RATIO exhibits a higher value

for aperiodic oscillations and lower value for periodic oscillations. On the other hand, for

CCmax, we expect a value close to 0 for aperiodic oscillations with low similarity and a higher

value close to 1 for periodic oscillations with large similarity. The blue and green shaded

regions in Fig. 11a-e represents an aperiodic epoch and a periodic epoch, respectively during

intermittency. During the aperiodic epoch, we observe that CCmax shows lower values while

RATIO exhibits larger values. We observe the opposite behavior in both RATIO and

CCmax during the periodic epoch of intermittency. During thermoacoustic instability (see

red shaded region in Fig. 11a-e), the values of both these measures are largely invariant,

denoting sustained periodic behavior in the system. For this state, we observe that the

values of both CCmax and RATIO are low. The lower value of CCmax is unexpected during

thermoacoustic instability as the dynamics during this state is periodic.

The reason behind the lower value of CCmax for both periodic and aperiodic oscillations

can be understood from the overlapped plot of the two pressure signals used for the calcu-

lation of CCmax (see Fig. 11i-iii). To aid us in detecting the similarity, the two time series

(p′n,fuel and p′n) are normalized. For the aperiodic epoch of intermittency, we do not observe

any similarity between the two signals (Fig. 11i). During the periodic epoch of intermittency

(Fig. 11ii), we observe that the two signals follow a nearly similar trend at a finite non-zero

time lag, leading to higher values in CCmax. On the contrary, during the state of thermoa-

coustic instability (Fig. 11iii), we notice that the time series of p′n,fuel contains significantly

higher frequencies, whereas that of p′n contains lower frequency corresponding to fundamen-

tal mode of the combustor (2650 Hz). This difference in the oscillations of acoustic pressure

at different locations contribute to lower the value of CCmax. Unlike CCmax, we observe that

the lower values of RATIO correctly captures the periodic oscillations during thermoacous-
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tic instability as well as during intermittency. This suggests that using RATIO is better

than CCmax to unambiguously determine the periodic-aperiodic-periodic transitions in the

acoustic pressure signal observed during the onset of thermoacoustic instability. We also

remark that RR can be a good candidate to distinguish the aperiodic-periodic transitions if

there is a significant variation in RR during the aperiodic-periodic transitions.

IV. SUMMARY

The dynamics of acoustics pressure oscillations during the transition from stable opera-

tion to thermoacoustic instability in a model multi-element rocket combustor is analyzed.

We observe that the transition from small amplitude stable operation to large amplitude

thermoacoustic instability occurs through intermittency. Intermittency is a dynamical state

wherein bursts of high amplitude periodic oscillations exist amidst epochs of low amplitude

aperiodic oscillations, distributed in a seemingly random manner. The waveform during

thermoacoustic instability is highly nonlinear, consisting of typically steepened pressure

wavefronts leading to the formation of shock waves, and is significantly different from the

sinusoidal limit cycle oscillations typically seen in gas turbine combustors. As a result,

we obtain a characteristic trefoil knot like shape of the phase space attractor during ther-

moacoustic instability. Further, we detect the dynamical switching between period-3 and

period-4 oscillations in an apparently random manner during thermoacoustic instability and

the periodic epochs of intermittency. Such complex limit cycle dynamics are seldom seen in

gas turbine combustors.

Through a suitable multifractal analysis, we detect the collapse of multifractality during

the onset of thermoacoustic instability. We present a recurrence based measure (RATIO)

and two fractal based measures (multifractal spectrum width and the Hurst exponent), that

can be used to distinguish between different states of combustor operation. We found that

these measures are more robust than the existing measures such as root mean square of the

oscillations, amplitude, maximum of cross correlation etc. in distinguishing the dynamical

state of a rocket engine. The measures illustrated in this study can be used to validate the

CFD multi-fidelity simulations used for optimizing the stability and performance metrics of

the rocket combustor. Such an approach can reduce the developmental timescales of a rocket

engine. Summarizing, the signals pertaining to rocket combustors are different from their
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gas turbine counterparts and other derived laboratory combustors due to the significant con-

tribution of nonlinearities in the rocket combustor. Hence, extreme care must be exercised

while extending the results obtained for gas turbine combustors to rocket combustors.
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CHAPTER 3
RECURRENCE ANALYSIS OF ACOUSTIC
PRESSURE OSCILLATIONS

I. INTRODUCTION

Rhythmic beating of heart80, periodic firing of neurons81, spontaneous oscillations of

chemical reactions82, dangerous self-excited oscillations in suspension bridges83 and aircraft

engines84 are a few examples of the countless periodic phenomena we come across in our lives.

Most of these phenomena exhibit oscillations at a preferred timescale, known as the time

period of the oscillation. However, certain periodic phenomena are inherently made up of

more than one timescale in an oscillation85. Such periodic phenomena are popularly classified

as slow-fast oscillations85. Such systems are found across a wide range of applications ranging

from medicine86, economics87, physical sciences88 to engineering89–91.

For an example, let us consider the electrocardiogram (ECG) signal wherein the electrical

activity in the heart is recorded using a set of electrodes. A typical cycle of ECG signal is

defined by different processes such as atrial depolarization, ventricular depolarization, and

ventricular repolarization92. Each of these processes (designated as P wave, QRS complex,

and T wave in one cycle of the ECG signal) have an intrinsic timescale. Using multifractal

analysis on ECG signals, physiologists have successfully distinguished between healthy and

unhealthy individuals93. A characteristic feature of slow-fast systems is that their periodic

waveforms are radically different from those of harmonic oscillators. For the most simple

case of a slow-fast system containing two timescales, a slow growth/decay is accompanied by

a fast decay/growth. As a result, a slow-fast system could spend more time in the growth or

decay phase. To present an example in electrical engineering, the charge and discharge of a

capacitor94 is characterized by a slow and fast timescale, respectively. In a similar manner,

the periodic stick-slip motion of a bowed violin string exhibits more than one timescale95.

In nonlinear dynamics literature, the nomenclature of slow-fast systems have also been

used to describe the multiple timescales that cause periodic amplitude modulation, bursting

oscillations, and mixed-mode oscillations96. Periodically modulated waves are crafted by

a slow periodic amplitude modulation over a fast oscillating signal. On the other hand,

mixed-mode oscillations are periodic oscillations which exhibit amplitude switching between
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two or more amplitude states. Bursting oscillations are characterized by epochs of large

amplitude periodic oscillations followed by quiescence97. In these type of slow-fast systems,

the slow timescale corresponds to the modulation of the envelope of the signal while the

fast timescale pertains to the high frequency oscillation in the signal. However, unlike all

these types of periodic oscillations where the rate of evolution of the signal over one time

period remains the same, the slow-fast systems described in this study contain all the slow

and fast timescales within one period of the oscillation. Such slow-fast systems have been

long studied under the guise of relaxation oscillators. These oscillators are a class of limit

cycle oscillators, that are characterized by a non-sinusoidal periodic waveform98. Relaxation

oscillations have been modelled using several models such as the Van der Pol oscillator98,

Fitz-Hugh-Nagumo oscillator99, and LEGION100.

Traditionally, slow-fast systems with a pre-established set of governing equations have

been solved using conventional methods from linear theory. A classical technique is to re-

duce the set of governing equations to the weak or the strong nonlinear limit101, whenever

the two timescales are widely separated. Then, the system of equations is solved to ob-

tain the resultant amplitudes and phases of the signal. Apart from this method, various

other techniques such as perturbation theory, method of multiple timescales, and averaging

exists59. However, experimental and other real-world signals rarely have any well-defined

functional forms, which can be solved using these methods. Moreover, the timescales in

practical systems are seldom widely separated. All these obstacles render the analysis of

such signals intractable. At this juncture, the framework of dynamical systems theory and

complex systems theory offers a promising way to understand and characterize the dynamics

of complex systems in man-made systems as well as nature102,103.

In this study, we characterize the dynamics of slow-fast oscillations observed in syn-

thetic periodic slow-fast signals obtained from well-established models, i.e., Van der Pol,

a modified form of Izhikevich model, and the Hodgkin-Huxley model. We use methods

based on recurrence analysis of the phase space trajectory such as recurrence plot (RP)

and recurrence network (RN) to distinguish the properties of these signals. The periodic

nature of the signals attributes a closed loop structure to the RN and a continuous diagonal

line in the RP. In addition to this, we observe additional features such as clustering and

protrusions on the topology of RN for slow-fast systems. These structures exhibit a clear

departure from the ring topology in the RN for regular sinusoidal signals. Thus, we argue
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that these clustering and protrusion effects in RN arise due to the presence of the multiple

timescales in an oscillation of the signal. Furthermore, in the RP of these signals, we detect

the existence of characteristic micro-patterns along the diagonal lines. Following the same

methodology, we analyze two high-dimensional periodic slow-fast signals of thermoacoustic

oscillations from experiments: the time series of heat release rate signal from a model gas

turbine combustor104, and the acoustic pressure signal obtained from a model liquid rocket

combustor41.

The rest of the paper is outlined as follows. The methodology used in this study is briefly

described in Section II. Here, we concisely detail the RP and RN construction technique

adopted in this study. Next, in Section III, we begin by analyzing low-dimensional systems

and comparing with a single timescale signal (sine wave). Later, we extend the analysis for

probing slow-fast dynamics in high-dimensional real-world signals. Finally, we summarize

the key findings in Section IV.

II. METHODOLOGY

Many real-world signals exhibit different dynamics such as limit cycle, chaos, mode-

locking, quasiperiodicity, and amplitude switching, which can be explained from their non-

linear behavior. Using tools from dynamical systems theory, the occurrence of such behaviors

across a wide range of systems have been understood101. The dynamics of such nonlinear

systems can be visualized by plotting the corresponding phase space57. Each point on the

phase space trajectory is described as a unique combination of system variables. However,

for physical systems and in experiments, it is almost impossible to acquire all the pertinent

system variables to construct the phase space trajectory.

To circumvent this problem, Takens introduced the method of phase space reconstruction

by time delay embedding57. In this method, the phase space is realized by plotting the time

series against its delayed versions in an appropriate dimensional space. The optimum time

delay and the embedding dimension need to be selected prior to phase space reconstruction.

The time delay (τ) is selected such that the delayed vectors are independent of each other.

Using autocorrelation function59 (ACF), we can estimate τ . Then, we can use the modi-

fied false nearest neighbor method developed by Cao60 to obtain the optimum embedding

dimension (d).
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Using this method of phase space reconstruction, we can visually unravel the dynamics

of nonlinear systems from its phase space attractor only in low dimensions (d ≤ 3). How-

ever, a vast number of real-world signals usually tend to have higher optimum embedding

dimensions (d > 3). As a result, the fundamental property of recurrence of phase space

trajectory is exploited to understand the underlying hidden features of high-dimensional

nonlinear systems61,77.

A. Recurrence plots

Recurrence of phase space trajectory is a fundamental property of deterministic signals.

Recurrence plots (RP), introduced by Eckmann et al.61, allows us to identify the time in-

stants at which the trajectory of a system roughly revisits the same area in a d-dimensional

phase space. To appropriately construct a RP, we need to estimate the optimum time delay

(τ) and the embedding dimension (d), beforehand.

For a time series x(t) of length n, the pairwise distances between state points in the

reconstructed phase space can be contained in a distance matrix (Dij), as formulated below.

Dij = ‖xi − xj‖ i, j = 1, 2, . . . , n− (d− 1)τ. (11)

Here, ‖xi − xj‖ is the Euclidean distance between the two state points, i and j, on the

reconstructed phase space trajectory. Next, the distance matrix is binarized by defining a

threshold (ε) to obtain the recurrence matrix105 (Rij).

Rij = Θ(ε−Dij), (12)

where, Θ is the Heaviside step function and ε is the threshold defining the neighborhood

around the state point. One of the method to select a recurrence threshold is to fix a

recurrence rate77 (RR). RR is defined as the percentage of recurring points in a RP. We

observe that a value lower than the optimum RR fails to completely capture the periodicity

in the signal and is reflected as broken diagonal lines in the RP. A value higher than the

optimum value results in superfluous connections in the RN, distorting the phase space

topology. In this study, an optimum value of RR is selected after careful consideration for

each slow-fast system.
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Whenever the phase space trajectory recurs within the region defined by the ε-size ball,

it is marked as a black point while non-recurring points are marked as white points in the

RP. In the recurrence matrix, one and zero are designated for black point and white point,

respectively. Thus, a RP is a two-dimensional arrangement of black and white points that

exhibits different patterns characterizing different dynamics of the signal. Patterns in RPs

have garnered the attention of physicists in many instances106–108. However, understanding

such patterns in the RPs of slow-fast systems have not yet been probed, to the best our

knowledge.

RPs have found application in life sciences, engineering, earth sciences, physics, eco-

nomics, social sciences, and sports science77,109,110. From the patterns in the RPs constructed

for a time series of heartbeat interval signal, cardiologists have been able to distinguish life

threatening arrhythmia from less severe cardiac disorders105. Similarly, RPs constructed

for the time series of acoustic pressure oscillations have been used to distinguish between

safe and dangerous operational modes in fluid mechanical systems46,111–113. The method

of RPs have been extended to cross recurrence plots to explain synchronization between

oscillators114. Further, statistical measures can be derived from the organization of such

black and white points in the RPs. Such an analysis is known as the recurrence quantifica-

tion analysis. For a detailed review on recurrence methods, we refer the readers to Webber

& Marwan63.

B. Recurrence networks

In nature as well as engineering examples, there exist many instances where a system is a

collection of several interconnected subsystems, necessitating the entire system to be studied

as a whole rather than a sum of its parts. Such systems are classified as complex systems115.

The interaction between the various subsystems in the complex system leads to an emergence

of collective behavior, self-organization etc. The framework of complex networks allows

one to account for the nonlinear interaction between the different subsystems in a complex

system. A complex network is comprised of nodes representing the components of the system

and edges which represent the interaction between the components. Recurrence networks116

are a class of complex networks through which high-dimensional systems can be understood.

Similar to the RPs, we can create a ε-RN116, where ε is the threshold. The phase space of
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the high-dimensional nonlinear system is preserved in the topology of the RN52.

To construct a RN from the time series, we require an adjacency matrix A, to be computed

from the recurrence matrix R for an ε-threshold.

Aij = Rij − δij (13)

where δ is the identity matrix of same size as R. The adjacency matrix A provides informa-

tion about the nodes which are connected in the RN. For Aij = 1, the nodes are connected

only when the state space vector is within the ε-threshold. If Aij = 0, the nodes remain dis-

connected. Unlike the RP, several network measures quantifying the geometrical structure

of the phase space attractor can be computed from a RN116,117.

Using the network properties obtained from the RN, a number of studies have used RN to

study diverse systems. Gao et al.118 distinguished the dynamical behavior of stratified flows.

Using a suitable RN for a thermoacoustic system, Godavarthi et al.52 captured the topolog-

ical differences in RN as the system undergoes various dynamical transitions. The measures

derived from RN have the capability to indicate early warning of oscillatory instability48,52

and detecting synchronization properties of coupled oscillations53. Gotoda et al.119 showed

the presence of small-world nature in the ε-threshold RN in a turbulent combustor close

to flame blowout. Using measures from RN, Ávila et al.120 predicted the occurrence of

preeclampsia, a pregnancy-specific disorder. George et al.121 classified binary stars based on

the measures such as characteristic path length and average clustering coefficient, computed

from the corresponding RN.

In this study, we reconstruct the phase space by time delay embedding, and compute the

RPs, and the RNs based on an optimum value of RR as recurrence threshold to analyze the

dynamics of different slow-fast systems.

Each node in the RN is color coded based on a network property known as degree122.

Degree refers to the number of connections a node has to other nodes in the network. Degree

(D) of a node i is calculated as,

Di =
N∑
j=1

Aij (14)

where NxN is the size of Aij. Finally, we visualize the RN using the open-source network

analysis platform, Gephi123.
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III. RESULTS AND DISCUSSIONS

We progressively investigate the recurrence properties of slow-fast system from low-

dimensional systems to high-dimensional systems. For the low-dimensional system, we

consider the Van der Pol oscillator, a modified signal derived out of Izhikevich’s spiking

neuron model124 and the Hodgkin-Huxley model81,125. We, then, analyze the time series of

heat release rate oscillations obtained from experiments in a gas turbine type laboratory-

scale turbulent combustor104 and the acoustic pressure signal from a laboratory-scale model

multi-element liquid rocket combustor41, during the state of thermoacoustic instability, to

understand the recurrence dynamics of slow-fast systems in higher dimensions.

A. Recurrence analysis of low-dimensional models

Prior to understanding slow-fast systems, we analyze a harmonic signal, namely a sine

wave of amplitude unity and frequency 1
2π

Hz (see Fig. 1a), which is a definite single timescale

system in its phase space. In Fig. 1b, we observe that the phase space of the sine wave is

a circular loop structure wherein the phase space trajectory evolves at a uniform speed.

Here, uniform speed of the phase trajectory is attributed to successive state points on the

trajectory separated by equal distances in the phase space. In the corresponding RP (see

Fig. 1c), we observe only equally spaced diagonal lines corresponding to the time period

of the oscillation. The corresponding RN topology of the sine wave (see Fig. 1d) shows a

circular loop filled up with same degree nodes.

Now, we start analyzing slow-fast systems where we first consider the Van der Pol

system98, which is perhaps the most studied slow-fast system. The governing equations

of the Van der Pol system are given below.

ẋ = µ(y + x− x3

3
),

ẏ = − 1
µ
x,

(15)

where, µ is referred to as the nonlinearity parameter used to get relaxation type oscilla-

tions. We fix the value of µ = 2 for the current analysis. The time series of variables, x(t)

and y(t) of the Van der Pol system are plotted over one another in Fig. 2a. The correspond-

ing phase portrait, shown in Fig. 2b, exhibits a closed loop confirming the periodicity of the

time series. However, unlike the phase space of the harmonic signal in Fig. 1b, we observe
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FIG. 1. (a) The time series of sine wave of unit amplitude and time period 2π seconds and

amplitude 1 unit, sampled at 100 samples per second. (b)-(d) The corresponding reconstructed

phase space calculated for τ = 157, RP along with a zoomed view, and RN, respectively.

that the phase space evolves at different speeds, giving rise to the slow and fast timescales in

the evolution of the phase space trajectory. The separation between successive phase space

points during the fast epoch is large as compared to that of the slow epoch. As a result,

the fast epoch can be visually discriminated from the slow epoch in the phase space. For

the Van der Pol system, we observe two epochs of slow oscillations (marked as S) and two

epochs of fast oscillations (marked as F ) within a cycle in the original phase space (i.e. a

plot between the variables x and y of the system).

In Fig. 2c, we show the time series of variable x(t) and its delayed copy x(t+τ), as required

for the reconstructed phase space determined by Takens’ delay embedding theorem. Here,

the delay τ is obtained by the first zero crossing in the autocorrelation function (ACF). Unlike

the original phase space shown in Fig. 2b, in the reconstructed phase space of x by time

delay embedding (see Fig. 2d), we obtain four epochs of slow and fast oscillations (marked

as S and F , respectively) within a cycle of oscillation. This exercise shows that systems

containing slow-fast timescales need to be interpreted carefully based on the technique of

phase space reconstruction since the number of slow/fast regions could be exaggerated than
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FIG. 2. (a) The time series of x and y of the Van der Pol system for µ = 2. (b) The original

phase space between x and y. (c) The time series of x and its delayed copy, x(t + τ). (d) The

reconstructed phase space of x using Takens’ delay embedding theorem. S and F indicate the slow

and fast motion in the phase space, respectively.

that is present in the original phase space. The reconstructed phase space of y(t) evolves at

a single timescale (not shown here) and hence, does not exhibit slow-fast features.

Further, we plot the RP and the corresponding RN for the Van der Pol system in the

original phase space and in the reconstructed phase space (see Fig. 3). The recurrence

matrix is built by fixing RR = 0.05. For both the RPs, (shown in Fig. 3a,c), we observe

only diagonal lines, indicating periodic behavior of the system. In the corresponding zoomed

view of the RP in Fig. 3(a,c), we observe the presence of momentary thick regions along the

diagonal lines of a RP. We attribute these thick regions to slow epochs while the thin regions

to the fast epochs in the evolution of the phase space trajectory. We refer to the presence

of such distinct black patterns on the diagonal lines in a RP of the periodic signal as micro-

patterns of RP. Thus, with the identification of such micro-patterns, we can distinguish the

time instances corresponding to slow regions from the fast regions in the signal.

The reason behind the occurrence of such a micro-pattern in the RP can be understood

from the evolution of the phase space at slow and fast timescales. When the phase space
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trajectory evolves at a slower rate in the phase space, it spends relatively more time within

the ε-threshold as compared to the phase space trajectory for the fast motion. This leads to

the thickening of the diagonal lines in the RP. A similar argument can be given to explain

the thinning of the diagonal lines whenever the phase space trajectory exhibits fast motion.

We observe that the network topologies of both the original and reconstructed Van der

Pol system are similar to the corresponding phase space observed in Fig. 2(b,d). In the

corresponding RNs (see Fig. 3(b,d)), we observe distinct regions which exhibit clustering of

high degree (red) nodes amongst the almost uniform distribution of low degree (blue) nodes.

The clusters of high degree nodes within a cycle represent the region in which the trajectory

moves slowly in the phase space, resulting in more number of connections in the RN. There

are two such regions in the RN constructed from the original phase space (see Fig. 3b) and

four slow regions in the RN from the reconstructed phase space (Fig. 3d); exactly matching

their respective phase spaces in Fig. 2(b,d). Thus. as expected, RN conserves the topology

of the original phase space of the signal126.

Next, we consider another synthetic periodic slow-fast signal (see Fig. 4a) obtained by

modifying the time series of variable x obtained from Izhikevich’s spiking neuron model124.

First, we solve for the variable x in the set of equations, shown in Eq. 16. The parameters

a = 0.1, b = 0.2, c = -60, d = 8, and I = 110 are used to obtain spiking behavior in x(t).

Then, the resulting time series is modified, so that enough number of points are present

both during the growth and decay phase of the oscillations, to get a connected RN.

ẋ = 0.04x2 + 5x+ 140− y + I

ẏ = a(bx− y)
(16)

We observe that one oscillation in this signal is almost symmetric about the growth and

the decay phase (Fig. 4a). The reconstructed phase space using τ = 102 data points (ob-

tained from ACF) for this synthetic signal is plotted in Fig. 4b. We observe that the

three-dimensional phase space attractor is stretched along the three axes, while maintaining

a closed loop structure in the evolution of the phase space trajectory for one oscillation of

the periodic signal.

The RP for this synthetic signal is plotted in Fig. 4c. We observe that the RP exhibits

continuous equispaced diagonal lines, signifying the periodic dynamics of the signal. On top

of this, the micro-patterns in the RP exhibit intricate features unique to slow-fast systems.

Similar to the Van der Pol system, the thickened portions of the diagonal line (see Fig. 4c)
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FIG. 3. (a) RP along with its zoomed view and (b) the corresponding RN constructed using the

original variables x and y of the Van der Pol oscillator, shown in Fig. 2. (c,d) The same plots are

shown for the phase space reconstructed using time delay embedding for the variables x(t) and

x(t+ τ). The nodes in RN are color coded based on their degree. A recurrence threshold of RR =

0.05, d=2, and τ=39 are used.

correspond to the slow motion in the phase space. In addition, the line segments perpendic-

ular to the diagonal line in the RP pertain to the fast motion of the phase space trajectory.

A perpendicular line segment occurs amidst two thickened regions along the diagonal line

in the RP whenever the phase space trajectories traversing in opposite directions are spaced

within the ε-threshold. This is also confirmed by the fast motions of the phase space tra-

jectory at the extremities (or) corners of the phase space in Fig. 4b, where the phase space

trajectory reverses direction abruptly. Hence, the small line segments perpendicular to the

main diagonal line pertain to the fast motion in the phase space. Here, we remark that there

is no such occurrence of two close phase space trajectories traversing in opposite directions

in the Van der Pol system (see Fig. 2c,d). As a result, we do not obtain any perpendicular

lines in the RP of the Van der Pol system.

In Fig. 4d, the RN for this synthetic signal is plotted. Within one cycle, the trajectory
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FIG. 4. (a) A synthetic periodic spiky signal is constructed after modifying the output of Izhike-

vich’s neuron spiking model. The values used in the model are a = 0.1, b = 0.2, c = -60, d = 8,

and I = 110. ((b)-(d) The reconstructed phase space, RP along with its zoomed view portion, and

RN, respectively, for signal shown in (a). The parameters fixed for plotting (b)-(d) are τ = 102, d

= 10, and RR = 0.05. The color code in plotting RN is based on degree of nodes.

is predominantly slow with many nodes having very high number of connections (red and

green color). The fast regions in the phase space are present in the protrusions comprising

nodes with low degree (blue). In contrast to the RN of Van der Pol system, we observe

that only nodes with high and medium degree (red and green colour, respectively) occupy

the ring structure. However, the protrusions on the ring structure in the RN are crowded

by the nodes with low degree (blue colour). This characteristic behavior must arise out of

some fundamental difference in these two slow-fast systems, which is being reflected on their

respective recurrence properties. Also, we identify that the micro-patterns in the RP and

the RN are different from the ones obtained for the Van der Pol system.

We also analyze the recurrence properties of the well-known Hodgkin-Huxley model which

exhibits slow-fast oscillations81,125. The Hodgkin-Huxley model is represented by the follow-
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ing equations described below.

V̇ = 1
Cm

[I − gNam3h(V − ENa)− gKn4(V − EK)− gL(V − EL)]

ṁ = αm(V )(1−m)− βm(V )m

ṅ = αn(V )(1− n)− βn(V )n

ḣ = αh(V )(1− h)− βh(V )h.

(17)

Here, v is the the potential, I is current per unit area, and gi is the maximum value of

conductance where i corresponds to either one of potassium (K), sodium (Na) or leak

channel (L). Variables: m, n, and h are non-dimensional quantities with values between 0

to 1 and are associated with the potassium channel activation, sodium channel activation,

and sodium channel inactivation, respectively. In Eq. 17, the constant parameters used are:

ENa = 115 mV; EK = -12 mV; EL = 10.6 mV; gNa = 120 mS/cm2; gK = 36 mS/cm2;

gL = 0.3 mS/cm2; Cm = 1 µF/cm2. The corresponding steady state values for the gating

variables, α and β, are related to the potential V , as described in the support equations

(Eq. 18). The set of equations are solved using Euler’s method.

αh = 0.07 exp
[
−(V+65)

20

]
, βh = 1

1+exp[−(V +35)
10 ]

,

αm = 0.1 V+40

1−exp[−(V +40)
10 ]

, βm = 4 exp
[
−(V+65)

18

]
,

αn = 0.01 V+55

1−exp[−(V +55)
10 ]

, βn = 0.125 exp
[
−(V+65)

80

]
.

(18)

In Fig. 5a, we plot the time series of the membrane potential, V , obtained for I = 10 in

Eq. 17. We observe that V exhibits limit cycle behavior with slow-fast timescales. In the

corresponding three-dimensional phase portrait in Fig. 5b, we observe that certain regions

are slow (marked S) while other regions are fast (marked F ). The corresponding RP also

exhibits unique micro-structures on top of the diagonal lines (see Fig. 5c). The sword-like

structure occurs for similar reasons as the perpendicular lines observed in the RP of the

synthetic spiky signal in Fig. 4c. The corresponding RN in Fig. 5d exhibits a protrusion

made up of high degree nodes, and several clusters built of medium degree nodes on top of

a ring of low degree nodes. Thus, the RN of the Hodgkin-Huxley model discussed contain

both the features seen in Fig. 3b,d and Fig. 4d.

After analyzing the phase space dynamics and recurrence properties of these three syn-

thetic periodic slow-fast signals along with a sine wave, we understood that slow-fast systems

exhibit characteristic features on top of the closed loop structure in the RN. Moreover, the

43Distribution A Distribution Approved for Public Release: Distribution Unlimited 



FIG. 5. (a) Time series of membrane potential (V) obtained from Hodgkin-Huxley model for

I=10. (b)-(d) The reconstructed phase space, RP along with its zoomed view portion, and RN,

respectively, for signal shown in (a). The parameter fixed for plotting (b)-(d) are d = 7, τ = 66,

and RR = 0.05. The color code in plotting RN is based on degree of nodes.

RP of such systems is manifested by unique micro-patterns pertaining to slow-fast dynamics

over the diagonal lines.

B. Recurrence analysis of high-dimensional experimental systems

In order to confirm the aforementioned observations in the slow-fast dynamics of real-

world data, we present the results of the investigation of two different time series acquired

from experiments in a laboratory scale gas turbine-type turbulent combustor and a model

liquid rocket combustor during the state of an oscillatory instability, known as thermoa-

coustic instability44. Here, thermoacoustic instability is a dynamical state featured by large

amplitude, self-sustained periodic oscillations in the acoustic pressure, p′(t), and heat release

rate, q̇′(t), of the system. The occurrence of such phenomenon overwhelms the thermal pro-

tection systems, compromises the control and structural stability of gas turbine and rocket

engines19,44.
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FIG. 6. (a) Time series of heat release rate fluctuations (q̇’) during thermoacoustic instability

acquired from a laboratory scale turbulent combustor. (b)-(d) The reconstructed phase space, RP

along with its zoomed view portion, and RN, respectively, plotted for the signal shown in (a). The

parameter fixed for plotting (b)-(d) are d = 12, tau= 20, and RR = 0.1.

First, in Fig. 6a,b, we consider the time series of heat release rate fluctuations (q̇(t)) and

the corresponding reconstructed phase space obtained during the state of thermoacoustic

instability for the gas turbine type turbulent combustor. We observe that the time series

is spiky104, exhibiting a clear departure from sinusoidal signals. The spikiness in the signal

(see Fig. 6a) is attributed to the instantaneous heat release as a result of the impingement

of the large scale coherent vortex structure carrying fuel-air mixture against the walls of the

combustor127.

In the corresponding phase space of the heat release rate signal in Fig. 6b, we observe a

distorted closed loop structure, indicative of the non-uniform evolution of consecutive state

points due to the presence of slow and fast timescales. However, such slow and fast timescales

are not too separated when compared to the earlier phase space of synthetic signals. In the

RP of this signal (see Fig. 6c), we see the presence of continuous diagonal lines, indicating

sustained periodicity in the oscillations. The corrugations along the diagonal lines arise due

to the presence of the slow and fast timescales in the phase space. The RN for this signal
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FIG. 7. (a) Time series of acoustic pressure fluctuations ((p′) during thermoacoustic instability

acquired from a multi-element model liquid rocket combustor. (b)-(d) The reconstructed phase

space, RP along with its zoomed view portion, and RN, respectively, for the signal shown in (a).

The parameter fixed for plotting (b)-(d) are d = 10, τ = 21, and RR = 0.05.

(see Fig. 6d) looks similar to that of Van der Pol as there are clusters of high degree nodes

(red colour) on the ring of medium degree (green colour) nodes. The clusters pertain to the

slow regions in the phase space.

Finally, we investigate the time series of acoustic pressure oscillations (p′(t)) in a multi-

element model liquid rocket combustor during the state of thermoacoustic instability41 (see

Fig. 7a). We observe that a major portion of the cycle is spent in the slow relaxation phase

with a momentary jump in the pressure due to the fast compression phase of the signal.

Physically, due to an increase in the speed of sound during the compression phase, the

compression side catches up with the expansion side of the pressure wave. This phenomena

known as wave steepening results in an abrupt increase in the amplitude of the pressure

oscillation23. Under favorable conditions, the steepened wave manifests as a shock wave in

the flow-field. Such wave steepened shock waves are commonly observed in the pressure

oscillations of a rocket combustor.

The reconstructed phase space of this pressure signal, shown in Fig. 7b, is similar to the
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phase portrait shown in Figs. 4b & 5b, wherein the trajectory moves along the three axes

to complete one oscillation cycle. Unlike the usual closed loop structure of the phase space

trajectory of periodic signals observe in the previous slow-fast systems, the phase space of

pressure signal exhibits a peculiar shape. We attribute this geometrical difference of the

phase space attractor to the vast divergence in the slow and fast timescales in the rocket

system.

The RP and the RN for the pressure oscillations are plotted in Fig. 7c,d, respectively.

The RP of the pressure signal contains a unique micro-structure arising due to the presence

of slow-fast timescales. On top of the diagonal line indicating periodicity of the signal, we

observe thick regions divided by a thin region. The thick regions emerge due to the increased

trapping of the phase space trajectory in slow timescale while the thin regions correspond

to the fast timescale. The RN of this signal looks similar to Fig. 4d based on its topological

similarity. The protrusions in the RN in Fig. 7d are made up of high degree (red) nodes,

unlike the RN in Fig. 4d where the protrusions are made up of low degree (blue) nodes.

With the understanding gained from analyzing the various synthetic and experimental

systems in this study, we noticed that the dynamics of slow-fast systems can be understood

based on their recurrence properties. From the RNs, we observed that some slow-fast systems

exhibit protrusions, while other systems display clustering. Each slow-fast system imparts

a signature micro-structure over the diagonal lines in their corresponding RP. It is also

interesting to note that even though both the real-world systems (discussed in this study)

operate in the state of thermoacoustic instability, both the systems exhibit different RN

topology due to a difference in their underlying mechanisms that generate such oscillations.

C. Recurrence network measures

Next, we exclusively study the transition from stable operation to thermoacoustic insta-

bility in the chamber acoustic pressure oscillations of the model liquid rocket combustor

using network measures. In Fig. 8, we show the time series displaying the transition from

stable operation to thermoacoustic instability via intermittency. We partition the time series

into 100 segments, each of size of around 16 cycles of the dominant frequency (2650 Hz). A

recurrence network is constructed for each of these slices. Then, we obtain the corresponding

adjacency matrices.
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FIG. 8. The time series of the model liquid rocket combustor exhibiting the transition from stable

operation to thermoacoustic instability via intermittency. The variation of network measures (b)

Degree, (c) Link density, (d) Mean clustering coefficient, (e) Mean betweenness centrality, and (f)

Mean closeness centrality are plotted. The parameter fixed for plotting (b)-(f) are d = 10, τ = 21,

and RR = 0.05. A window size of around 16 cycles of the dominant frequency (2650 Hz) is used.

Then, we calculate the network measures: average degree (Degree), mean link density

(ρ), mean clustering coefficient (CC), mean betweenness centrality (BC), and mean close-

ness centrality (Closeness). We observe that there is a discernible trend in the variation

of mean clustering coefficient (CC). The value of CC increases from around 0.4 during
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stable operation to 0.8 during thermoacoustic instability with intermediate values during

intermittency. For the other measures, we do not observe any distinguishable trend. For

Closeness, we detect the decreasing trend. However, the variation in the measure is very

low.

IV. SUMMARY

In this study, for the first time, the recurrence properties of slow-fast systems are stud-

ied with the aid of recurrence plots and recurrence networks. A systematic approach is

adopted by first performing the analysis on low-dimensional synthetic signals before under-

standing high-dimensional experimental time series. We discovered that slow-fast systems

exhibit different recurrence properties compared to periodic systems which operate on a sin-

gle timescale. We observe that unique features about the slow-fast system can be obtained

from the micro-patterns along the diagonal line in the RPs, unlike straight lines for har-

monic signals. Further, we identify characteristic features on the corresponding RN topolo-

gies for slow-fast systems. In addition to the closed ring structure, we observe protrusions

and clustering in the RN. We believe that this study will have wide ranging applications

to understand the dynamics of various diverse systems across natural sciences, medicine,

econometrics and engineering.
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CHAPTER 4
PREPARATION OF TOOLS FOR
SPATIO-TEMPORAL ANALYSIS

Network theory is one of the more popular way to investigate spatiotemporal analysis of

complex systems such as brain, climate, epidemics and turbulent flows. We enlist three

major types of network construction to investigate the spatiotemporal dynamics during the

transition to thermoacoustic instability from a state of stable combustor operation.

I. SPATIAL NETWORK ANALYSIS

In this methodology, we construct spatial correlation networks from velocity and heat

release field. For example, let us examine the construction of spatial correlation networks

from the heat release field. We consider the pixels in the high-speed chemiluminescence

images as nodes of the network. Any pair of nodes (i and j) are connected if the Pearsons

correlation coefficient (Rij) between the time series of heat release rate at the two nodes

are above a threshold (say Rij=0.5). Next, we examine the network properties such as

degree, local clustering coefficient, betweenness centrality and closeness centrality. These

network measures help us to identify the critical regions in the flow field that control the

spatiotemporal dynamics during a particular state of combustor operation. A very high

value of degree and local clustering coefficient for a region implies that the heat release rate

fluctuations at the nodes in the region are highly correlated amongst themselves. Such a

region could be responsible for the coherent heat release occurring during thermoacoustic

instability.

As an example, we constructed an unweighted spatial correlation network constructed

from the heat release rate oscillations for intermittency and thermoacoustic instability. We

use the CH* chemiluminescence images acquired at a rate of 100 kHz for this analysis. The

imaging is performed on the optically accessible window located at the edge of the rectan-

gular combustor. We plot the network measures for both intermittency and thermoacoustic

instability in Fig. 1. We observe a distinct spatial feature which is preserved in all the

network measures considered.

In Fig. 1, the degree quantifies the amount of interaction each spatial location has with
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FIG. 1. Spatial variation of the network measures: degree, local clustering coefficient, betweenness

centrality and closeness centrality, in the spatial network of heat release rate oscillations during the

dynamical states of intermittency (left) and thermoacoustic instability (right) in the model multi-

element liquid rocket combustor. The The networks are unweighted (i.e. links are binarized) and

constructed individually for the dynamical states of intermittency and thermoacoustic instability

using a linear correlation coefficient of 0.5. The networks are built from the high-speed CH*

chemiluminescence images acquired at rate of 100 kHz at the optically accessible window located

at the edge of the rectangular combustor.

the all the other spatial nodes in the networks. We observe that degree increases signifi-

cantly in a number of spatial locations during the onset of thermoacoustic instability. This

signifies that the number of interactions are enhanced during the state of thermoacoustic

instability as compared to intermittency. The measure local clustering coefficient quantifies

the extent to which two neighbors of a given spatial node are connected to each other. As

observed during the state of thermoacoustic instability, we obtain high values in the local

clustering coefficient, promoting the formation of clusters of acoustic power production in

the combustor. The measure betweenness centrality highlights the most critical spatial nodes
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in the number through which the cluster of nodes can be spanned. The measure closeness

quantitatively estimates the proximity of a spatial location to all other nodes in the net-

work. Higher values of closeness of a node translates to a spatial location more suited for

quick information transfer from the selected node to all other nodes in the network. During

thermoacoustic instability, we observe high values of closeness signifies the well connected

close group of nodes in the network. Such patterns and interactions in the spatiotemporal

domain can be characterized by the framework of complex networks.

We could construct weighted spatial correlation networks instead of unweighted ones. In

weighted network analysis, we assign a ‘weight’ to the link between the nodes. For our

study, the weight could be Pearsons correlation coefficients. Unlike the unweighted network

analysis, weighted network analysis gives the strength of the interaction between the nodes.

However, this advantage comes with a cost. Weighted network analysis is much more difficult

and computationally very costly.

II. TIME VARYING SPATIAL NETWORK ANALYSIS

The real world complex systems inherently evolve over time. Time-varying network anal-

ysis accounts for this dynamical nature of connectivity128. Time-varying spatial network

analysis is used extensively in the area of brain research to analyze the dynamical functional

connectivity of the brain network129,130. Recently, Krishnan et al.131 used time-varying local

acoustic power networks to investigate the emergence of large clusters of acoustic power

sources at the onset of thermoaocuticinstability in a turbulent bluff body stabilized combus-

tor. A similar approach can be adopted in the current study to investigate the spatiotemporal

evolution of acoustic power sources during the transition to thermoaocustic instability. To

this end, we need to perform simultaneous acoustic pressure measurements and high-speed

chemiluminescence imaging during the trnasition to thermoaocustic instability. As discussed

above, we consider each pixel of high-speed flame image as a node of the network. As we

have a transverse mode thermoacoustic instability in our model rocket engine, we can con-

sider the domiant transverse acoustic mode for the pressure variation across the width of

the combustor. With this information, we can multiply at each instant of time, the heat

release rate at each pixel (q̇′) with the corresponding acoustic pressure (p′). For constructing

the local acoustic power networks131, we consider only those nodes where p′q̇′ > 0. While
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establishing the link between the nodes, we consider only the nearest neighbours of a node.

Thus, we shall be able to examine the spatiotemporal evolution of clusters of acoustic power

sources during the transition to thermoaocustic instability.

We can consturct time varying turbulence network from the vorticity field obtained from

either (1) CFD simulation or (2) experimental data. Using the appraoch followed by Taira

et al.132, we shall investigate the topology of the networks during the transition to ther-

moaocustic instability in the model rocket combustor. The presence of hubs in the network

will pave for devising efficient control strategies. However, time-varying network analyisis is

computationally very time-consuming. We need to incorporate parallel computing and need

to run the codes in high-performance workstations to obtain the results on time.

III. MULTILAYER NETWORK ANALYSIS

We know that the dynamics of a liquid rocket combustor is influenced by the hydrody-

namic flow-field, acoustics and heat release rate field sustained by combustion reactions.

All these subsystems interact in a complex manner to generate thermoacoustic instability.

Hence, a complex network approach studying only the dynamics of either heat release rate

field or the velocity field in isolation would not unearth the spatiotemporal coupled behavior.

Hence, we need to adopt the framework of multilayer networks wherein, a layered approach

of network construction is adopted. Each layer can represent a subsystem with links running

both within each layer (captures interactions within subsystem) and across layer (captures

interactions across subsystems). Such a network framework would allow us to characterize

the conditions and identify the spatiotemporal coupling behaviors.

Further, the multilayer network framework can be modified to study spatial networks

(time averaged) as well as spatiotemporal networks (space as well as time varies). For the

liquid rocket combustor, we shall construct spatial correlation networks from heat release

field and velocity field and investigate the spatiotemporal coupling between these two fields

during the different stages of combutor operation using various network measures. Such an

approach is unprecedented in thermoacoustics literature.

53Distribution A Distribution Approved for Public Release: Distribution Unlimited 



CHAPTER 5
CONCLUSIONS

The dynamics of acoustics pressure oscillations during the transition from stable opera-

tion to thermoacoustic instability in a model multi-element rocket combustor is analyzed.

The combustor was operated under a preheated high pressure turbulent flow rig in a fuel rich

condition, to better simulate the operational conditions in a real rocket engine (or motor).

We observe that the transition from small amplitude stable operation to large amplitude

thermoacoustic instability occurs through intermittency. The waveform during thermoa-

coustic instability is highly nonlinear, consisting of typically steepened pressure wavefronts

leading to the formation of shock waves, and is significantly different from the sinusoidal

limit cycle oscillations typically seen in gas turbine combustors. Further, we detect the

dynamical switching between period-3 and period-4 oscillations in an apparently random

manner during thermoacoustic instability and the periodic epochs of intermittency. Such

complex limit cycle dynamics are seldom seen in gas turbine combustors.

To demonstrate the efficacy of measures based on dynamical systems and complex system

theory, we present a recurrence based measure (RATIO) and two fractal based measures

(multifractal spectrum width and the Hurst exponent), that can be used to distinguish

different states of combustor operation. We found that these measures are more robust than

the existing measures such as root mean square of the oscillations, amplitude, maximum of

cross correlation etc. in distinguishing the dynamical state of a rocket engine.

Subsequently, using the method of recurrence analysis, we established that the chamber

acoustic pressure oscillations during thermoacoustic instability in the model liquid rocket

combustor behaves like a slow-fast system. The unique features of the oscillations are cap-

tured in the recurrence plot and the recurrence network. We also established the presence

of such features in the oscillations of heat release rate in a model gas turbine type turbulent

combustor and several well-known models such as Van der Pol system, a modified form of

Izhikevich’s neuron spiking model and Hodgkin-Huxley model.

Through this work, we have successfully translated modern tools from nonlinear time

series analysis to understand the complex oscillations arising in liquid rocket engines. In

the process, we showed that the signals in a rocket combustor can be better understood and

modelled utilizing such an approach. The measures illustrated in this study can be used to
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validate the CFD multi-fidelity simulations used for optimizing the stability and performance

metrics of the rocket combustor. Such an approach can reduce the developmental timescales

of a rocket engine and also aid engineers in testing the rockets subjected to design and

operational envelope modifications.
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CHAPTER 6
FUTURE WORK

I. SYNCHRONIZATION

Synchronization theory has been used recently in understanding the phenomenon of the

onset of thermoacoustic instability (Pawar et al.104;Guan et al.133; Mondal et al.55,56 and also

providing several active control strategies for the mitigation of such instability (Thomas et

al.134,135; Mondal et al.136). This theory primarily deals with the understanding of the

instantaneous coupling between two or more oscillators. Pawar et al.104 showed that the

onset of thermoacoustic instability is a synchronization phenomenon of the acoustic field and

unsteady heat release rate field in the combustor. Moreover, synchronization of oscillators

leads to an emergence of spatiotemporal order in the reaction field during the state of

thermoacoustic instability from a disordered state observed during stable operation of the

combustor55. The application of synchronization theory to data from liquid rocket combustor

at different operating conditions would help in gaining the insights in temporal coupling of

acoustic and turbulent reaction fields of the combustor. Simultaneous analysis of flames from

multiple injectors with the acoustic field would improve understanding of the phenomenon of

the onset of thermoacoustic instability in such liquid rocket combustor. A phenomenological

model based on the array of coupled Stuart Landau oscillators or a network of Rossler

oscillators coupled with Van der Pol oscillator can be developed. Such a type of modeling

would help in understanding the emergent behaviour of the spatial field of the liquid rocket

combustor and also infer the dominant coupling mechanisms existing in the system.

II. COMPLEX NETWORK

Complex systems approach is a new approach to the science of studying how the in-

teraction among the constituent parts gives rise to the collective behavior of a system137.

This science is providing a new perspective on the understanding of the physical, biological,

ecological and social universe. One of the popular tools to study such complex systems is

complex networks138. In complex network approach, the components of a complex system

are considered as nodes and the interactions between the nodes are represented as links.

Complex networks have emerged as one of the most efficient tools in the analysis of di-
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verse fields such as brain, epidemics, climate modelling, sociology, economics, physiology,

computer science and transport engineering138.

A turbulent flow induces a large number of degrees of freedom to the thermoacoustic

system. The thermoacoustic system in a turbulent combustor involves the interplay of a

number of processes such as molecular mixing, turbulent transport, chemical kinetics and

acoustic waves operating over a range of length and time scales. The complex interaction of

these processes over such large number of degrees of freedom gives rise to a rich spatiotempo-

ral dynamics with the emergence of order at the onset of thermoacoustic instability139. This

prompts us to consider the thermoacoustic system in a turbulent liquid rocket combustor as

a complex system.

Most of the real world complex systems have nodes and edges embedded in space. Trans-

portation networks, internet, social and contact networks, power grids and neural networks

are all examples where space is relevant and just studying the network topology without

taking into consideration the spatial information of the nodes gives incomplete and some-

times misleading results140. Characterizing and understanding the structure and dynamics

of spatial networks is thus vital in obtaining deeper insights in the study of complex systems.

Spatial network analysis is also used in the study of fluid mechanical systems. In cli-

matology, researchers explored the statistical interdependence between the time series of

an observable, such as precipitation, at two different locations (spatially embedded nodes)

to construct spatial networks141,142. Scarsoglio, Iacobello and Ridolfi143 identified coherent

structures in the flow field using correlation network based on the time series of the kinetic

energy of a three dimensional forced isotropic turbulent flow field obtained from direct nu-

merical simulation. Recently, Unni et al.144 performed spatial network analysis, in a model

gas turbine type turbulent combustor with bluff body stabilized flame, based on the cor-

relation between the time series of local velocity obtained from particle image velocimetry

(PIV). The authors identified the critical regions in the flow field using network centrality

measures for each dynamical state. They hypothesized that the critical region is the optimal

location for implementing passive control strategies.

As a future study, we can employ spatial correlation network analysis to investigate

flame dynamics from the high-speed chemiluminescence imaging. The network centrality

measures calculated from the correlation networks would enable us to identify the critical

region during the transition to thermoacoustic instability.
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Recently, Taira, Nair and Brunton132 characterized a two dimensional decaying isotropic

turbulent flow field, obtained from direct numerical simulation, based on the vortical inter-

action between the fluid elements at different grid points. They constructed time-varying

spatial networks from the velocity field. They discovered that the vorticity interaction is

characterized by an inverse power-law. As a future study, we can investigate the velocity

field, obtained either from (1) CFD simulation or (2) experiments, during the transition to

thermoacoustic instability by constructing time-varying spatial networks using Biot-Savart

law. This study would shed light into the structure of the vorticity interaction during the

different dynamical regimes of rocket engine operation.

So far, researchers have examined the local acoustic power (p′q̇′) field and the velocity

field separately during the different states of the combustor operation. Multilayer network

analysis145 is one promising approach that can provide insight into the interaction of these

two fields as the combustor dynamics transitions from the state of combustion noise to

thermoacoustic instability via intermittency.

These studies, however, are computationally very intensive and hence time-consuming.

Also, there exists no universal framework to construct relevant complex networks. As a

result, the complex network construction has to be driven by the problem we are trying to

solve. Once the complex networks are constructed, suitable measures have to be formulated

which can help us unravel previously unknown phenomena and shed light on the critical

locations in the system.

III. BASIN STABILITY FUNCTION

One of the major problems faced by the rocket industry is to discriminate between the

data-sets which exhibit transition to thermoacoustic instability and those data-sets which

stay within stable amplitude levels, for the same set of control parameters. Measures based

on basin stability function backed approaches146 could potentially accomplish this task.

Given that the framework of basin stability functions is in its infancy, it would take a

significant amount of time and insight to achieve this task. Also, the data requirements for

such an approach involves stringent constraints such as data length, high resolution, sampling

etc.. To the best knowledge of the authors’, there exists no proper framework where basin

stability function has been used on experimental results at the time of this writing. As a
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result, a significant amount of time needs to be invested, working with collaborators who

have championed this methodology. Therefore, a thorough literature survey on the topic

to adopt a relevant framework is necessary prior to application of this approach to classify

time series of chamber acoustic pressure oscillations in liquid rockets.
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RESEARCH OUTPUT

I. JOURNAL PAPERS

(1) Kasthuri, P., Pavithran, I., Pawar, S.A., Sujith, R.I., Gejji, R., and Anderson, W.,

2019. Dynamical transitions in a liquid rocket combustor. Chaos: An Interdisciplinary

Journal of Nonlinear Science (Under review).

(2) Kasthuri, P., Pavithran, I., Krishnan, A., Pawar, S.A., Sujith, R.I., Gejji, R., and An-

derson, W., Marwan, N., Kurths, J., 2019. Recurrence properties of slow-fast systems.

Chaos: An Interdisciplinary Journal of Nonlinear Science (Under preparation).

II. CONFERENCE

(1) Pavithran, I., Kasthuri, P., Krishnan, A., Pawar, S.A., Sujith, R.I., Gejji, R., and

Anderson, W., Marwan, N., Kurths, J., 2019. Eighth International Symposium on

Recurrence Plots, August 21-23, 2019,Zhenjiang, China.
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