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Summary 

Anti-vehicular landmines and improvised explosive devices can produce 
catastrophic lower-extremity injuries. As such, lower-extremity injury prevention 
is of high concern but requires a better understanding of high-rate impacts and 
fracture risk. In this study a probabilistic finite-element (FE) model of the tibia and 
talus was developed to produce a fracture risk assessment and was compared with 
experimental cadaveric testing. We developed a high-fidelity statistical shape and 
density model of the tibia to provide a means of generating physiologically 
plausible anatomies to investigate the effect of anatomical variability on the risk of 
injury. Probabilistic descriptions of bone material properties for the tibia were taken 
from literature and internal sources to account for natural variation and uncertainty. 
A 7.5-kN distal-tibia impact simulation was developed following the methodology 
of a previously described framework. This 7.5-kN load corresponds to nearly a 10% 
tibial fracture risk, which was experimentally derived using cadaveric specimens. 
Using the probabilistic descriptions of anatomy and material properties, a Latin 
Hypercube probabilistic FE analysis was performed using the 2nd-percentile strain 
as a failure criterion. The probabilistic analysis resulted in a computed risk of 
fracture of 10% given the 7.5-kN impact force on the distal tibia. Uncertainty and 
variability in the bone failure strain, material properties, and tibia anatomy 
substantially influenced fracture risk. The described probabilistic model 
reproduced experimentally derived fracture risk and can be used as a 
comprehensive surrogate to cadaveric testing for high-rate distal-tibia impacts. This 
model can be used for the design of protective equipment, identification of  
high-risk individuals, and development of novel injury-mitigation strategies. 
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1. Introduction 

Anti-vehicular landmines and improvised explosive devices (IEDs) threaten the 
safety of our service men and women in military conflicts. These explosive devices 
not only produce substantial structural failure to the vehicle, but also create shock 
waves that are transmitted into the vehicle floor plate. The floor plate deflects in a 
span of microseconds, and the energy is transferred into the lower extremities of 
the occupants.1 Recent military conflicts have seen an increased use of IEDs that 
has led to a rising number of severe injuries.2,3 In fact, lower-extremity injuries 
accounted for more than a quarter of all combat injuries, with a third of those 
injuries caused by IEDs.4 As such, lower-extremity injury prevention is of high 
concern but requires an improved understanding of the effect of biological and 
anatomical uncertainty and variability on lower-extremity fracture risk due to  
high-rate impact loading. 

Cadaveric testing has been used in the past to study high-rate loading events but is 
limited by several drawbacks. Low availability of specimens, large variability in 
age, weight, and sex, difficulty in creating the impact, and the destructive nature of 
blast testing all hinder the applicability of cadaveric testing. To overcome these 
limitations, finite-element (FE) modeling has been used as a successful surrogate 
to evaluate injury risk. Numerous studies over the past two decades have 
investigated high-rate loading of the lower extremities using FE modeling. A large 
majority of these studies focused on automotive crashes in which the lower 
extremities experience a lower loading rate than an IED blast loading.5–9 In the  
less common simulations with high loading rates and magnitudes, model 
geometries are generally restricted to dummy models or a single medical image set 
that corresponds to average males or females. For example, Nilakantan and Tabiei 
performed a numerical study investigating lower-extremity positioning during an 
IED blast in 2009 using a HYBRID III anthropomorphic test device (ATD) 
model.10 Suresh et al. used the Wayne State University–validated ATD model in 
201411 as did Dong et al. in 2013.12 Fielding et al. used computed tomography (CT) 
images of a subject representing the 50th-percentile male in their blast simulation.13 
In perhaps two of the most convincing studies, Quenneville et al. developed an FE 
model14 of their tibial impact apparatus15 and validated the contact forces against 
their experimental data. In their experimental work using seven pairs of cadaveric 
tibias, they developed a fracture-risk curve that included a 10% of fracture with 
7.9 kN. However, in their FE study and the previously mentioned studies, 
anatomical variability as well as variability and uncertainty in biological material 
properties have largely been ignored. Significant inter-individual variation limits 
the generalizability of conclusions based on such models. As such, protective 
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equipment design, injury mitigation strategies, and the mechanics of tibial fracture 
can only be assessed on a population average basis. Probabilistic FE modeling 
combined with statistical-shape-modeling representations of human anatomy16–24 
provide a powerful framework to incorporate population-wide uncertainty and 
variation. The aforementioned studies and their major limitations can be improved 
by incorporating probabilistic methodologies. 

In this work we perform a probabilistic analysis of high-rate lower extremity axial 
loading and compute a tibial fracture probability. Our analysis is an extension of 
Quenneville et al.14,15 and an attempt to account for variability and uncertainty in 
bone shape, bone-mineral-density (BMD) distribution, material properties, and the 
inclusion of the talus. By accounting for natural physiological variation, we 
hypothesized that Quennneville et al.’s experimentally derived fracture risk can be 
reproduced in a computational framework. More specifically, we hypothesized that 
an axial contact force of 7.5 kN on the distal tibia in our probabilistic FE model 
will produce a fracture probability similar to the 10% risk associated with 7.9 kN 
of loading.15 This study will provide several unique advantages for the 
advancement of IED blast injury mitigation strategies. Protective equipment and 
injury mitigation strategies can be rationally designed, and the overall reduction in 
population risk can be computed. Furthermore, probabilistic analysis can determine 
inputs to the system that are highly influential on fracture risk. These characteristics 
can be isolated, and individuals exhibiting these traits can be more readily identified 
as injury-prone or injury-resistant. Additionally, the framework described in this 
study allows for a quick and accurate implementation of an individual’s bone 
geometry and density distribution into the probabilistic model. Therefore, injury 
prevention strategies and protective equipment can be designed on an individual 
basis, if warranted, depending on an individual’s anatomical characteristics, and/or 
equipment can be designed to mitigate the most problematic inputs into the 
biomechanical system (low bone stiffness, for example). All of this can be done 
while accounting for uncertainty in the material properties and load magnitude of 
an individual bone, soft tissue, equipment, and so on. This work serves as the first 
study to model high-rate distal-tibia impacts probabilistically and develop a 
comprehensive tool for further research into injury prevention. 
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2. Methods 

2.1 Overall Strategy 

In this study, a statistical shape and density model (SSDM) was developed using 
cadaveric CT scans of the lower limb. The SSDM provided a means of generating 
physiologically plausible anatomies that captured the variation with the training set 
used to develop the model. Random variable descriptions of the material properties 
for the tibia were derived from literature and internal sources to account for the 
observed property variation. A distal-tibia impact simulation was developed 
following the methodology of Quenneville et al. using a tibial impact of 
approximately 7.5 kN, which corresponded to nearly a 10% tibial fracture risk.15 
Using the probabilistic descriptions of anatomy and material properties, a Latin 
Hypercube probabilistic FE analysis was performed to capture the distribution and 
uncertainty in each of the varying inputs. All simulations were performed using  
LS-DYNA (v. 970, Livermore Software Technology Corporation, Livermore, 
California). The methods are further described in the following. 

2.2 Image Acquisition, Segmentation, and Mesh Preparation 

This study is based on the experimental and computational work from Quenneville 
et al.15 In their experimental study, older (41+ years of age) male cadavers were 
used to develop an injury risk curve with probability of fracture as a function of 
impact magnitude. As a means of comparison, the current study used the same 
demographic of individuals. As such, six older male (40+ years of age) cadaveric 
lower-body quantitative CT scans were provided by the Medical College of 
Wisconsin. 

The CT scans were imported into Seg3D (SCI Institute, University of Utah) for 
segmentation.25 A grayscale threshold filter was used to automatically segment the 
cortical boundaries of the tibia and talus, and the remaining unsegmented tibial and 
talus bone was subsequently filled using cavity fill and/or manual segmentation. 
These segmentations were exported in stl format to MeshLab open-source 
software.26 Using MeshLab, each stl mesh (both the tibia and talus) was processed 
by the following: 

1) Laplacian smoothing with three smoothing steps 

2) Screened Poisson surface reconstruction with a reconstruction depth of 8, a 
minimum number of samples of one, and an interpolation weight of 4 

3) Isoparametric remeshing with a sampling rate of 5 



 

4 

This processing sequence resulted in smooth, uniformly distributed surface 
triangular elements with similar mesh densities in each of the six specimens. Facet 
counts were reduced from approximately 200,000 to approximately 10,000 with 
minimal volume loss (Fig. 1). Sharp boundaries, such as the proximal tibial 
eminence, were smoothed slightly but deemed acceptable as a region of noninterest. 

 

Fig. 1 A) Unprocessed exported mesh from Seg3D. B) Processed mesh using Meshlab. 
Minimal volume loss occurred with the processing and feature loss occurred in noninterest 
areas such as the proximal tibial eminence. 

2.3 Mesh Correspondence and FE Meshing 

Developing an SSDM requires that each geometry is represented by the same mesh 
with node-to-node anatomical correspondence.27 This can be accomplished by 
choosing a template mesh and warping that to each of the remaining (five) meshes. 
To this end, a coherent point drift algorithm was implemented using a developed 
python module, pycpd (https://github.com/siavashk/pycpd), which resulted in six 
surface meshes with the same number of nodes and each node corresponding to a 
specific anatomical location (Fig. 2). This results in a high-fidelity parametric 
representation of the tibia anatomy with the nodes as the model parameters. 
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Fig. 2 Coherent point drift algorithm implemented using the python module, pycpd. One 
of the meshes was selected as the template mesh and was warped to each of the remaining five 
meshes with deformable registration. Anatomical correspondence is retained between nodes 
in each warped template mesh. Both the template tibia and talus were warped to each target 
mesh tibia and talus, but only the tibia is shown in this figure. 

To develop FE meshes for each specimen, first the template mesh was imported 
into TrueGrid v3.1.3 (XYZ Scientific Inc, Livermore, California). A hexahedral 
mesh was developed (Fig. 3) by attaching TrueGrid “block-mesh” nodes to specific 
node numbers on the imported surface and then performing a sequence of general 
smoothing and mesh enhancement techniques. When a TrueGrid input file is 
generated, the node numbers are not stored; instead, the nodal coordinates are 
stored as the block-mesh attachment points. Therefore, the nodal numbers were 
noted that corresponded to the coordinates in the template TrueGrid input file. An 
internally developed python script was then used to search the stl ASCII file of each 
remaining mesh and replace the nodal coordinates in the template TrueGrid mesh 
file with the new nodal coordinates that correspond to the respective node number. 
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This provided an efficient method for automatic mesh generation that produced the 
same number of FE nodes and elements in the same anatomical positions across 
each mesh. Finally, Bonemat28 was used to map Hounsfield units to ash densities 
for each FE mesh using their respective CT scan. Hounsfield units were converted 
to ash densities by use of a five-density calibration phantom (Mindways Software, 
Austin, Texas). 

 

Fig. 3 Template volumetric FE mesh produced using TrueGrid. A mesh convergence study 
using the 2nd-percentile strain as the output of interest resulted in a mesh of approximately 
200,000 elements with element edge lengths of 0.3–2.2 mm. The smallest elements were 
localized to the distal tibia. 

2.4 Statistical Shape and Density Model 

The FE mesh and corresponding element bone densities were described by a shape 
and density parameter vector as 

 𝒑𝒑𝑗𝑗 =  (𝑣𝑣1𝑥𝑥, 𝑣𝑣1𝑦𝑦, 𝑣𝑣1𝑧𝑧, … , 𝑣𝑣𝑗𝑗𝑗𝑗,𝑣𝑣𝑗𝑗𝑗𝑗, 𝑣𝑣𝑗𝑗𝑗𝑗, 𝑣𝑣1𝑑𝑑 , … , 𝑣𝑣𝑒𝑒𝑒𝑒) (1) 
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where 𝑣𝑣1(𝑥𝑥𝑥𝑥𝑥𝑥) are the 3-D coordinates of the nodes in the FE mesh (tibia and talus); 
𝑣𝑣𝑒𝑒𝑒𝑒 are the element densities (tibia only); j = 1 …, denotes each node in the FE 
mesh; e = 1, …, denotes each element in the tibia mesh; and i = 1, …, n = 6 denotes 
each tibia/talus pair in the training set. Using these shape and density vectors and 
following the procedures of Nicolella and Bredbenner,27 a parametric probabilistic 
representation of the tibia (shape and bone densities) and talus (shape) was 
developed. Two principal components (PCs) described 85% of the variation in the 
training set, with PC 1 and PC 2 describing 70% and 15% of the variation, 
respectively (Figs. 4 and 5). Statistically plausible anatomies were generated by 
varying the scalar weights (𝑐𝑐𝑗𝑗) of each of the two PCs in Eq. 2:  

 𝒑𝒑𝑣𝑣 = 𝒑𝒑 � + � 𝑐𝑐𝑗𝑗�𝜆𝜆𝑗𝑗
𝑚𝑚

𝑗𝑗=1
𝒒𝒒𝒋𝒋 (2) 

where 𝒑𝒑𝑣𝑣 is a vector containing nodal coordinates and element ash densities for the 
FE mesh, m is the number of eigenvalues (length(λj) = 2), 𝒑𝒑 � is the average shape 
and density vector, 𝑐𝑐𝑗𝑗 is the scalar weighting factor, and 𝒒𝒒𝒋𝒋 are eigenvectors. 

 

Fig. 4 PCs 1 (left) and 2 (right) describe 85% of the shape and density distribution 
variation contained in the six specimens. Shown are ±1 and 2 standard deviations from the 
average tibia/talus configuration (not shown). PC 1 primarily contained length and width 
variation in the tibia, as well as anterior talus size. PC 2 contained medial and lateral bend of 
the tibia, size of the medial malleolus, as well as slight ankle eversion/inversion variation. 
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Fig. 5 Density distribution variation contained in both PCs, although primarily 
represented in PC 1. (top) +1.5 standard deviations of both principal components from the 
average model. (bottom) –1.5 standard deviations of both principal components from the 
average model. 

2.5 Material Properties of the Tibia and Talus 

The tibia-bone-material behavior was modeled as elastic–plastic with linear 
hardening using the LS-DYNA MAT_ELASTIC_PLASTIC,29 which defines an 
elastic modulus and a plastic modulus (postyield behavior). The Cowper–Symonds 
model was implemented into the material definition (Eq. 3), which scales the yield 
stress with strain rate and accounts for marrow in the pores of trabecular bone14,30:  

 𝜎𝜎𝑦𝑦 = �1 + �𝜀̇𝜀
1/𝑃𝑃

𝐶𝐶
�� ∗  𝜎𝜎0 (3) 

where 𝜎𝜎0 is the initial yield stress, 𝜀𝜀̇ is the strain rate, and C and P are the Cowper–
Symonds parameters defined in this study as 360.7 and 4.605, respectively. The 
elastic modulus was defined probabilistically for each element using ash densities 
and data from Keller.31 An example of how the variance in bone experimental data 
is captured statistically can be found in Fig. 6. Once the conversion was made, ash 
densities were scaled to apparent densities by the relationship 𝜌𝜌𝑎𝑎𝑎𝑎𝑎𝑎 =  0.6 ∗ 𝜌𝜌𝑎𝑎𝑎𝑎ℎ. 
Hourglass control was implemented using Flanagan–Belytschko viscous form with 
exact volume integration and a coefficient of 0.1. Cortical bone failure was defined 
probabilistically as a maximum strain adapted from Reilly and Burstein.32 
Maximum strain was used as the failure criteria because of the implementation of 
plasticity in the material definition. Yield strain was defined probabilistically using 
internal unpublished bone-failure data. Finally, the plastic modulus was also 
defined probabilistically as a function of the elastic modulus. A summary of each 
varying input parameter including material properties can be found in Table 1.31–33 
The talus was modeled as rigid since the interest of this study was the risk of tibial 
fracture. 
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Fig. 6 Log–log plot showing experimental data of ash density vs. modulus with red X’s 
adapted from Keller 1994.31 Blue lines show the Axb fit using normally distributed values for 
A and b taken from the same manuscript (Table 1). The majority of the red X’s are contained 
within the normally distributed fits with slight error in the low moduli values given a high ash 
density. 

Table 1 Summary of the varying inputs used in this study, their distribution, and their 
reference, if applicable. Log-normal distributions were used for a majority of the inputs to 
avoid negative values, which are nonphysiological for a majority of the inputs. 

 

2.6 Other Components 

The impactor, distal bracket, and proximal bracket (Fig. 7) were modeled as rigid, 
while the foam was modeled as a low-density foam to increase the contact time 
between the talus and tibia. The material properties of the foam were not fitted to 
any experimental data but instead tuned to achieve the appropriate response that 
closely mimicked the results from Quenneville and Dunning.14  
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Fig. 7 Initial configuration of the simulation with the z-direction shown for reference to the 
listed boundary conditions. The tibia and talus in this example are taken as the average model, 
𝒑𝒑 � . 

2.7 Boundary Conditions 

Starting from the right and moving to the left in Fig. 7, the boundary conditions 
were as follows. The proximal bracket was constrained in all motion except  
z-translation. The proximal tibia was removed to the diaphysis and rigidly tied to 
the proximal bracket. The nonrigidly tied portion of the tibia was free to rotate and 
translate in all 6 degrees of freedom. The talus was constrained in all motion except 
z-translation and was rigidly fixed to the movement of the distal bracket. The distal 
bracket was constrained in all motion except z-translation. The proximal nodes of 
the foam were rigidly tied to the distal bracket and could freely deform. The 
impactor was given an initial velocity in the z-direction, which was tuned to create 
a response that mimicked Quenneville and Dunning14 and Quenneville et al.15 
Surface-to-surface contact was defined between the talus and tibia and also between 
the impactor and foam. In Fig. 8 the distal-tibia contact force as a function of time 
is plotted against experimental data from Quenneville and Dunning. 
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Fig. 8 Contact force on the distal tibia with the experimental study by Quenneville  
et al.14,15 shown in blue, and our FE simulation of the average model shown in orange. The 
foam properties and initial velocity of the impactor were tuned to achieve similar contact 
force–time history. Peak force from our simulation was around 7.5 kN, slightly lower than the 
7.9-kN force corresponding to a 10% fracture risk.15 

2.8 Data Analysis 

NESSUS probabilistic software (Southwest Research Institute, San Antonio, 
Texas) was used to perform the Latin Hypercube sampling of the varying inputs. A 
custom python script was written to access each simulation’s output “elout” file, 
which contained element strains for all cortical bone elements (apparent density  

> 0.75) at each time step. The maximum effective strain, defined as �2
3
𝜀𝜀𝑖𝑖𝑗𝑗𝜀𝜀𝑖𝑖𝑖𝑖 for 

each element, was calculated, and the final output response from each simulation 
was defined as the 2nd-percentile maximum effective strain. In other words, if 2% 
of the elements had maximum effective strain values above a failure threshold, 
failure would occur.34,35 NESSUS generated the probabilistic response distribution 
alongside the failure criteria distribution and determined the probability of failure. 
This can be achieved by calculating the intersecting area of the failure-strain-
criterion distribution with a response probability distribution (Fig. 9). Finally, 
NESSUS calculated the relative sensitivities of each input to the computed 
probabilistic response. 
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Fig. 9 In a probabilistic reliability analysis, the probability of failure is defined as the 
intersecting area between the probability of responses and failure criterion. In this study, the 
response is the 2nd-percentile maximum strain and the failure criterion is ultimate strain. 

3. Results 

All simulations ran to completion. Each simulation ran for about 4 h using two 
cores, and 10 simulations ran simultaneously. The total simulation time was less 
than 2 days.  

In areas of interest, hourglass energy was less than 1% of the internal energy, and 
2nd-percentile maximum effective strains varied from 0.4% to 5% (Fig. 10). Of 
100 simulations, 10 resulted in fracture (10% probability of fracture with 7.5 kN of 
contact force on the distal tibia). 
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Fig. 10 (top row) Likely nonfracture case. (bottom row) Likely fracture case. The bottom 
tibia was longer and more slender but had similar material property mapping coefficients  
(A, b) to the top case. L denotes lateral, and M denotes medial. This case comparison 
demonstrates the importance of anatomical geometry and density distribution in tibial 
fracture risk. 

The probability of fracture was most heavily influenced by the failure strain 
followed by the mapping of ash density to Young’s modulus. Lower material 
properties were associated with a higher risk of fracture. To this end, a lower A 
value was predictive of fracture, while a higher b value was predictive of fracture 
(Axb). PC 1 of the SSDM and yield stress also had a significant effect on the 
computed risk of fracture. Longer, slender bones were more likely to fail than 
shorter, more-robust bones. The plastic modulus and PC 2 had the lowest influence 
on the probability of fracture (Fig. 11). 
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Fig. 11 Relative sensitivities of each of the varying inputs to the 2nd-percentile maximum 
effective strain 

4. Discussion and Conclusion 

In this study, we described and implemented a probabilistic FE modeling workflow 
for high-rate distal-tibia impact that accounts for both uncertainty and variability in 
biological material properties and anatomical variation within a population. We 
have demonstrated that our probabilistic methodology is able to produce the tibial 
fracture risk developed from high-rate-loading experimental studies. This study 
design was an extension of work for a direct comparison of fracture risk prediction, 
although our study included the talus to provide a more physiologic load transfer 
into the tibia. In Quenneville et al.’s experimental work,14,15 an impact force of  
7.9 kN was found to correspond with a 10% risk of fracture. Our probabilistic 
model produced a 10% fracture risk for a similar contact force of 7.5 kN, which is 
in agreement with Quenneville et al. and supports our probabilistic methodology. 
As such, we can investigate the influence of each probabilistic input on the 
computed probability of fracture. 

Probabilistic FE modeling provides a thorough analysis of the sensitivities of the 
output response to the probabilistic inputs. This is important in protective 
equipment design, individual risk assessment, and targeted training/risk-mitigation 
programs. Once identified, risk-mitigation strategies can be focused on those 
variables that most influence the risk of injury. In this study, the most important 
variable that influenced fracture risk was bone failure strain. This is not surprising 
but does reinforce the importance of developing bone failure criteria. Simple 
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measures of stress and strain may be inadequate to describe bone failure. In 
Wolfram and Schwiedrzik’s summary paper of failure properties in cortical bone,36 
dozens of experimental bone failure studies demonstrate the equivocality of bone 
failure. Across all studies,32,33,37–55 failure properties of cortical bone show 
enormous variance based on age of bone, type of loading, modulus estimation 
strategy, and even substantial intravariance within each study. In this study, we 
chose one experimental study based on age of donors and axis of loading.32 

Another unsurprising result from this study was that material stiffness strongly 
predicted bone fracture. Individuals with lower bone stiffness experienced larger 
strains, significantly increasing their risk of fracture. However, interestingly, this 
translates to a lower exponent in the Axb mapping. A higher b value predicting 
fracture can be explained by the large amount of cortical bone elements at the distal 
tibia with BMDs in the range of 0.75–1.0 g/cc. With values less than 1, a higher 
exponent would generate a lower modulus. As such, in the area prone to fracture, 
raising the exponent lowered the material properties using an Axb mapping. 

Comparable to material properties, tibia anatomical geometry and bone density 
distribution had a large effect on fracture risk. Consistent with Jepsen’s findings of 
robust versus slender bones, we found that long, thinner bones were significantly 
associated with fracture, whereas shorter, wider bones were not.56,57 Longer bones 
were associated with higher BMD along the tibial diaphysis, though in this study 
higher BMD did not sufficiently compensate for the larger bending observed in 
these bones at the distal-tibial neck. These results demonstrate that certain 
individuals are more prone to severe injury based on their anatomy alone. Medial 
and lateral tibial bend, as well as slight ankle eversion and inversion captured in  
PC 2 did not have a significant effect on the results of this study. 

Several limitations in this work limit its applicability. Only six CT scans were used 
to generate the SSDM, which limits the anatomical variation captured among the 
population. Moreover, these scans were from older (age 50+) males, thus neither 
reliably represent younger bone’s density distribution nor include the female 
response (both of which would be at risk in a military conflict). Younger bones 
would presumably have higher BMD, which would offer more protection to the 
loading blast and may reduce the fracture risk calculated in this study. Females 
should be modeled in a separate probabilistic study, as many differences exist 
between sexes and are worth separating for fracture risk prediction and mitigation 
strategy. Another limitation is our choice of 2nd-percentile strain as the failure 
criterion. By choosing a higher or lower percentile, the probability of failure was 
changed accordingly. While our choice is based on an empirically determined 
value, there is uncertainty in its general use. The strain percentile as a failure 
criterion could be statistically represented in the same probabilistic manner to 
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account for this uncertainty. This study also did not include many of the anatomical 
features of the lower extremity. Cartilage was not included and neither were the 
fibula, bones of the foot, ligaments, and musculature. These structures would offer 
additional support to the load and would likely reduce the fracture risk. Therefore, 
the 10% fracture risk for a 7.5-kN distal-tibial load produced in this study is likely 
a conservative estimate. Nonetheless, this study was developed as a direct 
comparison with an existing experimental study and, to that end, illustrates the 
capabilities of probabilistic analysis applied to human body modeling. This study 
can be further improved to include the additional anatomical structures and a  
more representative demographic. A more accurate and comprehensive risk of 
injury could be determined with the suggested improvements. 

The major strengths of this study include the close agreement with experimental 
data and the described methodology as a general probabilistic workflow. To the 
authors’ knowledge, no computational model has been developed that can 
comprehensively produce an experimentally derived probability of tibial fracture 
in high-rate loading scenarios. By accounting for natural variation between 
individuals and accurately capturing the probability of injury, our model functions 
as a suitable surrogate to cadaveric testing in the described loading conditions. 
Protective equipment and injury mitigation strategies can be rationally developed 
using this model. Along with the immediate strengths of this model, the workflow 
described herein can be used in many other analyses that have inherent uncertainty 
and variation. 

In conclusion, we developed a probabilistic FE model that accurately captures the 
fracture risk developed from experimental work. We have demonstrated the utility 
of probabilistic methodologies for assessing distal-tibia high-rate-impact events 
such as IED blast loading. This methodology can be used with a demographic that 
represents military personnel that would most likely be in a combat situation. As 
such, that model could be used to develop protective equipment and/or identify  
at-risk individuals. Ultimately, this model and models developed hereafter may 
assist in lowering the incidence rates of severe lower-extremity injuries during 
military conflicts. 
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3-D three-dimensional 
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Axb fracture 

BMD bone mineral density 

CCDC US Army Combat Capabilities Development Command 

CT computed tomography 

FE finite element 

IED improvised explosive device 

PC principal component 

SSDM statistical shape and density model
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