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1 INTRODUCTION 

Due to the high costs of maintaining facilities for deeply scaled integrated-circuit manufacturing, 
semiconductor companies outsource fabrication to consolidated fabs. This has raised serious 
concerns regarding malicious modification of designs and reverse-engineering leading to 
intellectual property (IP) theft. Logic locking thwarts these threats by adding programmability to 
the design, so that the integrated circuit (IC) will not be operational unless configured correctly 
post-fabrication by a secret key. Split-manufacturing is based on simply fabricating upper layers 
with larger feature sizes in a trusted facility. IC camouflaging is based on inserting nano-device 
structures in the fabricated IC that are difficult to reverse engineer by end-users. 

While implementing these schemes requires different technologies and design/manufacturing 
flows, from an attacker’s perspective, all these schemes (more true for locking/camouflaging) 
can be modeled with somewhat similar mathematics: as transforming a circuit ( ) to ( , ) 
by adding  additional inputs/variables  called key-inputs which model the netlist’s 
ambiguity to the attacker. Given this, the goal of the attacker is to recover  given . An 
oracle-guided attacker is one that in addition to  has black-box access to . In practice this 
means that the attacker has an operational IC that he/she can use to test chosen input patterns and 
observe outputs. Security of an obfuscation scheme heavily depends on the observability that the 
attacker has on the circuit. For example, without full scan-chain access, an oracle-guided attacker 
will have to reason about sequential behavior which is a much more complex computational task. 

The development of better and better obfuscation schemes has been followed by the invention of 
more and more powerful attacks. Access to high-performance obfuscation and deobfuscation 
software is critical to research in these areas as it removes the need to build existing algorithms 
from scratch. With this in mind, this report presents a 25K-lines-of-code C++ object-oriented 
framework that implements a myriad of existing (de)obfuscation algorithms, along with an easy-
to-use and extendable application programming interface (API) that is discussed herein. 
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2 NETLIST REPRESENTATION 

The first step of developing any netlist-based software tool is representing the netlist itself. 
NEOS supports two main objects/classes circuit and an and-inverter graph (AIG) for storing 
netlists. Both use a custom C++ container to keep nodes that are accessed by unique IDs. The 
custom data-structure allows for dynamic removal of nodes while supporting array-like fast 
indexing. Circuit supports hierarchical designs with primitive gates (and/nand/xor/xnor/...) and 
instances from a standard-cell library. Netlists in circuit are represented by an array of gate and 
wire objects that link to each other with fanout and fanin sets. Circuit supports reading-in designs 
from a gate-level Verilog (supporting ranged/indexed net definitions) and bench files. The read-
in is based on parsers written in Flex/Bison. Key inputs are specified by starting the wire-name 
with key input. 

Circuit objects can be converted to AIG objects which store structurally-hashed [1]. AIGs, 
which are used in almost all modern verification/circuit-reasoning engines, are a great way to 
represent the circuit in a library-free manner with uniform nodes. AIGs allow for various 
simplification algorithms due to their semi-canonical nature. NEOS implements several of 
these including one-level hashing, k-cut-sweeping and directed acyclic graph (DAG)-aware 
rewriting [1]. 

NEOS supports various graph algorithms for AIGs and circuits. DAG algorithms including 
local/global- topological-sorting, feedback-arc-set, transitive-fanin/fanout are necessary to 
many (de)obfuscation algorithms which both objects support. These objects support editing 
operations such as removing and adding individual nodes as well as adding/inserting other 
objects of the same type (compounding). Another important category of DAG algorithms is 
partitioning. NEOS supports k-cut enumeration/detection which finds (fanout-free) logic cones 
in the circuit for both circuit and AIG objects. This is crucial in an array of obfuscation schemes 
such as look up table (LUT)-insertion since in LUT-insertion any k-cut can be replaced with a 
k-input LUT. In addition, NEOS supports equal-partitioning which will try to partition the
circuit into similarly-sized sub-graphs. This is a great tool for performing density-minimizing
obfuscation.

The netlist classes also include other important member functions such as 
combinational/sequential pattern simulation and error-checking. 
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3 OBFUSCATION ALGORITHMS 

Given the above netlist representation and graph algorithms, it is possible to build the majority of 
obfuscation schemes. Obfuscation algorithms are significantly less complicated than 
deobfuscation algorithms. It is possible to divide obfuscation algorithms to those studied before 
the invention of the oracle-guided satisfiability (SAT) attack (traditional) and those that followed 
the SAT attack and try to specifically mitigate it (SAT-resilient). 

The majority of traditional schemes are based on throwing various key-controlled/ambiguous 
elements into the circuit. Many various flavors of these schemes can be built using the netlist 
representation and the supported DAG algorithms, plus pattern simulation. NEOS implements an 
array of such traditional schemes including, random- X(N)OR/MUX/LUT insertion [2], insertion 
driven by error-rate cost-functions with hill-climbing, insertion in locations with maximum 
hamming-distance [3], and insertion of parity units (parity functions are hard to learn with 
shallow learners per computational learning theory). The hill-climbing obfuscation algorithm is a 
very important module as it can be used to optimize any given metric. This scheme is hence 
given its own object with a cost-function that can be replaced any C++ function which allows for 
easy extension. 

A major part of the obfuscation-suite is dedicated to interconnect locking by inserting 
multiplexer (MUX) and tri-state buffers. The interconnect locking suite supports cross-
bar/MUX-network insertion [4] with different site- selection strategies (random, cost-function 
driven, k-cut, ...). The interconnect locking suite also includes a hill- climbing strategy which 
can be designed to maximize metrics such as feedback-arc-set size, graph density, minimum 
density for equal coverage of the netlist and so on [5]. 

Almost all SAT-resilient schemes rely on point-functions which are able to hide a small number 
of points in the circuit’s truth-table from the attacker. These schemes try to achieve the Exact-
Functional-Secrecy (EFS) notion of security per [6]. EFS security is defined loosely as: “the 
attacker should not be able to learn the precise functionality of the circuit in time t”. This notion 
is stronger than key-recovery: “the attacker should not be able to recover the correct key in time 
less than t”. It also allows for the attacker to approximate the circuit with exponentially good 
accuracy and is hence not suited for designs where approximation by attackers is a concern. As 
for EFS obfuscation, NEOS supports numerous schemes. Anti-SAT [7] with functional/structural 
obfuscation, diversified tree logic (DTL) [8] with various insertion strategies, and corrupt-and-
correct schemes [9]. 

While the above mentioned schemes are part of the body of research on obfuscation, we now 
know that the most secure form of EFS schemes is ones in which an existing (multi)-point-
function in the circuit is detected and replaced with a look-up-table which NEOS supports [10]. 
These approaches are more secure since the reductive nature means that the attacker cannot 
simply remove added structures. One particular scheme that NEOS implements is based on using 
SAT-calls to identify all the input patterns that activate a particular net and if the number is 
smaller than a given size, then it is replaced with a look-up-table. In addition, NEOS supports the 
“larger-than-z” look-up-table from [6] which tricks the attacker into thinking that there are 
additional hidden patterns that need to be found by querying the entire input space. 
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4 DEOBFUSCATION ALGORITHMS 

NEOS implements deobfuscation algorithms in an object-oriented and polymorphic way. The 
simplest (top in the class hierarchy) deobfuscation object is an oracle-less class which includes 
only the obfuscated circuit . The object upon execution of the attack will return a correct key 
or a key hypothesis with probability values attached to the guessed key-bits. An oracle-guided 
attack object which derives from this topmost class has an additional oracle object . This class 
will take care of linking the input-outputs of  and  and error-checking.  and  can be 
sequential for which a different class is used. 

The interface of the attacks (obfuscated/oracle circuit as the input and key-hypothesis as the 
output) allows for chaining together various attacks. This is particularly useful in attacks that can 
guarantee the correctness of some key bits which allow for simplifying the circuit and continuing 
with another or the same attack. The key-hypotheses can also be chained by weighted adding of 
probability values attached to keys. 

4.1 Combinational Deobfuscation 

In combinational deobfuscation the circuit  and  are both stateless. Oracle-guided attacks in 
literature have mostly focused on this case with the SAT-attack being the most prominent. The 
SAT attack has the unique ability to guarantee the recovery of a correct key if the original 
hypothesis model is expressive enough to include the original circuit (there exists  for which ( , ) agrees with ( ) on all input patterns). 

SAT attacks use SAT queries to guide the deobfuscation process. Similar to SAT-based 
verification or equivalence checking, in SAT attacks circuits are built to represent a specific 
condition and then converted to Conjunctive Normal Form (CNF) formula. In the baseline SAT 
attack a mitter condition is formed by building the circuit ( ( , ) ( , ). If this 
circuit is converted to CNF and satisfied with a SAT solver, the  that is returned by the solver is 
called a discriminating input pattern (DIP). This input pattern if queried on the oracle, is 
guaranteed to trim the hypothesis key-space by at least one wrong key. Then the correct input-
output observation condition is built as ( ( , ) = ( )) which will be a new circuit and its 
output must be ANDed with  and the process is repeated. 

NEOS implements various transforms for building and compounding such circuits/conditions. 
NEOS implements an API for converting circuits to SAT formula. This conversion happens to 
have a relatively significant impact on the performance of SAT solving. Currently NEOS 
supports the baseline Tseitin transform in addition to the technology-mapping algorithm from 
[11]. Both techniques will add a set of clauses to a solver and producing a mapping between 
wires in the circuit and variables in the solver. An important feature which is very important for 
incrementally building and solving SAT problems is that the CNF conversion can take as input a 
set of pre-existing variables/wires, in which case the conversion will not create new variables for 
these nets. This for instance can be used to stitch a new copy of the circuit to an earlier CNF, 
connecting the input variables rather than duplicating them. 
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Currently NEOS interfaces to three SAT solvers Glucouse, MiniSAT, and CryptoMiniSAT with 
Glucouse being the default and preferred choice due to solver simplification and the support for 
copying solvers. Copying solvers is critical to many advanced deobfuscation routines which will 
fail until we add copy support to other solvers. The solvers are wrapped with a parent class 
which has a unified interface. This allows developers to add other solvers by simply replicating 
and implementing the solver API. 

NEOS implements almost all existing SAT based deobfuscation attacks. In addition to the 
baseline SAT attack [12] NEOS implements AppSAT [8] which is a SAT based attack that is 
aware of the error rate of the hypothesis key and can hence be terminated earlier in cases where 
approximation is sufficient. It also implements (t)-DDIP and AppSAT termination conditions [8] 
which allow for early termination in certain cases. For instance, these termination conditions can 
signal termination when the error rate of an l-bit key is less than a small t. 

The SAT based attacks are also implemented in an object-oriented manner with many 
optimization techniques that can be applied to any of the attacks. For instance various subkey 
extraction schemes are supported. First is the simple backbone-analysis [12] which given a 
condition on the key ( ), will perform a SAT solver query on each key bit and determine if 
given ( ) a particular key bit is resolved. A stronger subkey extraction routine is the wire-
disagreement analysis which can find multiple settled key-bits if they fall in the fanin cone of the 
same internal net in the circuit [8]. 

The synergy between circuits and Boolean conditions and CNF formula means that simplifying 
circuits will result in simpler formulae and faster SAT solving. An opt module is included in 
NEOS which supports various simplification routines for both circuit and AIG classes. AIG 
simplification routines are faster due to the AIG-specific sweeping algorithms. NEOS currently 
supports SAT-sweeping which uses SAT solver calls to find equivalent nodes in the circuit and 
merges them. The AIG class supports the fast Fraig SAT-sweeping algorithm [13] which is 
orders of magnitude faster than the circuit class’s SAT-sweep which uses the baseline counter-
example driven algorithm. Both netlist representations support binary decision diagram (BDD) 
sweeping which derives the BDD of internal nets up to a given BDD size bound and finds 
equivalent nodes. Note that only SAT-based simplification can use external conditions which are 
needed when simplifying circuits further given current input-output pairs observed in the attack. 
Simplifying key-conditions called key-condition-crunching (KC2) [14] can be applied to various 
attacks as well. Note that all sweeping techniques (equivalent node detection) are derived from 
the class Sweep. A separate analysis and commit stage allows for finding nodes but not merging 
them which is useful in many instances. 

Cyclic SAT attacks are implemented in NEOS as well. These are attacks that can deobfuscate 
circuits that include intentional combinational cycles [15]. The IcySAT attacks [16] are the most 
recent and strongest algorithms for cyclic deobfuscation which are implemented in NEOS. 
Furthermore, the analysis step in the Sweep class can be used to find equivalent nodes and then 
merging them in reverse-topological order can create cyclic-yet-combinational circuits which are 
much harder to deobfuscate. 
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NEOS implements statistical attacks as well in the stat module. Most importantly the hill-
climbing attack [17] which uses a simulated-annealing algorithm to optimize a key. The listing 
below shows a code snippet for reading in, obfuscating and deobfuscating the c432 benchmark. 

circuit co; co.read_bench("./bench/c432.bench"); 
circuit ce = co; 
enc::enc_xor_rand(ce, random_boolvec(32)); 
dec::sat_dec_exact(co, ce, iteration_limit); 

4.2 Sequential Deobfuscation 

In sequential deobfuscation  and  are sequential circuits. Sequential deobfuscation is a rather 
overlooked area with little tool support due to the increased complexity of the algorithms. In 
SAT-based sequential deobfuscation, the SAT query that searches for DIPs is replaced with a 
model-checking query that searches for a sequence of DIPs called DISs. NEOS supports 
sequential attacks using an external model-checker i.e. nuXmv. nuXmv implements state-of-the-
art model-checking routines that can be tweaked to improve the attack. 

Having an instance of a model-checker inside the framework so that it can be queried repeatedly 
without destroying the SAT-solvers can speed up sequential attacks by 100X [14]. NEOS hence 
implements several state-of- the-art model-checking routines through the polymorphic objects 
without the need for an external checker. The bounded-model-checking (BMC) class implements 
BMC by unrolling and optional simplification at the circuit/AIG/SAT-solver level. Per Figure 1, 
KC2 [14] techniques are integrated with sequential deobfuscation by keeping simplified versions 
of the unrolled circuit and further simplifying them as the condition on the key gets more 
constrained throughout the attack. Condition simplification is significantly more important in the 
problem of sequential deobfuscation, as sequential deobfuscation SAT formulae sizes grow at 
much higher rates. This is because as the discriminating input sequences get deeper, larger and 
larger circuit conditions need to be added to the solver. However, the added conditions have lots 
of redundancy due to the unrolling. 

NEOS implements a sequential version of the hill-climbing attack which is surprisingly 
successful in approximating the functionality of large sequential circuits with user-provided 
parameters such as number of random patterns to query and maximum depth of exploration. 
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Figure 1: Sequential SAT Attack on the s400 Benchmark with 36 Key-bits with and 
without KC2 

KC2 enables reaching further into the state-space with low clause count. 
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5 MISCELLANEOUS 

NEOS implements a simple flow for oracle-less analysis. This involves a module for keeping 
track of how key- logic transforms with resynthesis. NEOS has an interface to ABC which is 
used for various tasks including model-checking, equivalence checking and simplification. 
ABC’s routines for circuit simplification are a result of a decade of development at Berkeley and 
are the fastest when it comes to circuit compression. 

NEOS interfaces to the Colorado University Decision Diagram (CUDD) BDD package which is 
used to translate circuits/AIGs into BDDs. This can be used to implement BDD based 
(de)obfuscation as well. The BDD package is also used to perform cube operations used in 
several aspects of obfuscation. 

NEOS has a SAT-based implementation of REFSM [18] that uses an All-SAT routine to mine 
for states given a set of state-registers which can be used to deobfuscate finite state machine 
(FSM)-based obfuscation. NEOS supports drawing circuits to a .dot graph format for 
visualization per Figure 2.

Figure 2: Original s27 Circuit (Left) and NEOS Obfuscated Circuit Obfuscated (Right) 
Green inputs are added keys and black-boxes are latches. 
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6 CONCLUSION 

In this report we described NEOS a C++ framework for netlist-level circuit 
obfuscation/deobfuscation. Deobfuscation attacks are complicated algorithms for which fast 
available implementations are rare. NEOS promises to fill this gap by providing an array of 
existing attacks and defenses for better understanding the problem of netlist locking/unlocking. 
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LIST OF ABBREVIATIONS, ACRONYMS, AND SYMBOLS 

ACRONYM DESCRIPTION 
AIG And-Inverter Graph
API Application Programming Interface
BBD Binary Decision Diagram 
BMC Bounded-Model-Checking
CNF Conjunctive Normal Form 
CUDD Colorado University Decision Diagram 
DAG Directed Acyclic Graph 
DIP Discriminating Input Pattern
DTL Diversified Tree Logic
EFS Exact-Functional-Secrecy
FSM Finite State Machine 
IC Integrated Circuit
IP Intellectual Property
KC2 Key-Condition-Crunching
LUT Look Up Table 
MUX Multiplexer
SAT Satisfiability


