
AFRL-RY-WP-TR-2020-0250

QUANTITATIVE METRIC AND AUTOMATED
TOOLSET FOR OBFUSCATED LOGIC SECURITY
EVALUATION
Yier Jin
University of Florida

David Pan
University of Texas at Austin

SEPTEMBER 2020
Final Report

Approved for public release; distribution is unlimited.

See additional restrictions described on inside pages

STINFO COPY

AIR FORCE RESEARCH LABORATORY
SENSORS DIRECTORATE

WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7320
AIR FORCE MATERIEL COMMAND

UNITED STATES AIR FORCE

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any
purpose other than Government procurement does not in any way obligate the U.S. Government.
The fact that the Government formulated or supplied the drawings, specifications, or other data
does not license the holder or any other person or corporation; or convey any rights or permission to
manufacture, use, or sell any patented invention that may relate to them.

This report is the result of contracted fundamental research deemed exempt from public affairs
security and policy review in accordance with The Under Secretary of Defense memorandum dated
24 May 2010 and AFRL/DSO policy clarification email dated 13 January 2020. This report is
available to the general public, including foreign nationals.

Copies may be obtained from the Defense Technical Information Center (DTIC)
(http://www.dtic.mil).

AFRL-RY-WP-TR-2020-0250 HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

POMPEI L. ORLANDO MARY E. LOCKHART, Chief
Program Manager Trusted Electronics Branch
Trusted Electronics Branch Aerospace Components & Subsystems Division
Aerospace Components & Subsystems Division

ADAM L. BROOKS, Lt Col, USAF
Deputy
Aerospace Components & Subsystems Division
Sensors Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

ORLANDO.POM
PEI.L.III.1085949
701

Digitally signed by
ORLANDO.POMPEI.L.III.108
5949701
Date: 2020.09.17 10:45:07
-04'00'

LOCKHART.M
ARY.E.13807
92784

Digitally signed by
LOCKHART.MARY.E.13
80792784
Date: 2020.09.22
10:40:42 -04'00'

BROOKS.ADAM
.L.1270115205

Digitally signed by
BROOKS.ADAM.L.1270115
205
Date: 2020.09.28 08:23:20
-04'00'

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a
collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YY) 2. REPORT TYPE 3. DATES COVERED (From - To)
September 2020 Final 21 February 2018 – 30 December 2019

4. TITLE AND SUBTITLE
QUANTITATIVE METRIC AND AUTOMATED TOOLSET FOR
OBFUSCATED LOGIC SECURITY EVALUATION

5a. CONTRACT NUMBER
FA8650-18-1-7822

5b. GRANT NUMBER
5c. PROGRAM ELEMENT NUMBER

62716E
6. AUTHOR(S)

Yier Jin (University of Florida)
David Pan (University of Texas at Austin)

5d. PROJECT NUMBER
N/A

5e. TASK NUMBER
N/A

5f. WORK UNIT NUMBER
Y1R1

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

University of Florida
Gainesville, FL 32611

University of Texas at Austin
Austin, TX 78712

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY ACRONYM(S)

Air Force Research Laboratory
Sensors Directorate
Wright-Patterson Air Force Base, OH 45433-7320
Air Force Materiel Command
United States Air Force

Defense Advanced Projects
Agency
DARPA/MTO
675 North Randolph Street
Arlington, VA 22203

AFRL/RYDT
11. SPONSORING/MONITORING

AGENCY REPORT NUMBER(S)
AFRL-RY-WP-TR-2020-0250

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES
This report is the result of contracted fundamental research deemed exempt from public affairs security and policy review in accordance
with The Under Secretary of Defense memorandum dated 24 May 2010 and AFRL/DSO policy clarification email dated 13 January 2020.
This material is based on research sponsored by the Air Force Research Lab (AFRL) and the Defense Advanced Research Agency
(DARPA) under agreement number FA8650-18-2-7833. The U.S. Government is authorized to reproduce and distribute reprints for
Governmental purposes not withstanding any copyright notation thereon. The views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of AFRL
and DARPA or the U.S. Government. Report contains color.

14. ABSTRACT
In this report we describe NEOS a C++ framework for netlist-level circuit obfuscation/deobfuscation.
Deobfuscation attacks are complicated algorithms for which fast available implementations are rare. NEOS
promises to fill this gap by providing an array of existing attacks and defenses for better understanding the
problem of netlist locking/unlocking.

15. SUBJECT TERMS
obfuscation, deobfuscation, algorithms, automated toolset

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT:

SAR

18. NUMBER OF
PAGES
 17

19a. NAME OF RESPONSIBLE PERSON (Monitor)
a. REPORT
Unclassified

b. ABSTRACT
Unclassified

c. THIS PAGE
Unclassified

Pompei Orlando
19b. TELEPHONE NUMBER (Include Area Code)

N/A
Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

i
Approved for public release. Distribution is unlimited.

Table of Contents

Section Page

List of Figures ... ii
1 INTRODUCTION .. 1
2 NETLIST REPRESENTATION .. 2
3 OBFUSCATION ALGORITHMS ... 3
4 DEOBFUSCATION ALGORITHMS .. 4

4.1 Combinational Deobfuscation .. 4
4.2 Sequential Deobfuscation ... 6

5 MISCELLANEOUS ... 8
6 CONCLUSION ... 9
7 REFERENCES ... 10
LIST OF ABBREVIATIONS, ACRONYMS, AND SYMBOLS ... 12

ii
Approved for public release. Distribution is unlimited.

List of Figures

Figure Page

Figure 1: Sequential SAT Attack on the s400 Benchmark with 36 Key-bits with and
without KC2 .. 7
Figure 2: NEOS Obfuscating the s27 Circuit .. 8

1
Approved for public release. Distribution is unlimited.

1 INTRODUCTION

Due to the high costs of maintaining facilities for deeply scaled integrated-circuit manufacturing,
semiconductor companies outsource fabrication to consolidated fabs. This has raised serious
concerns regarding malicious modification of designs and reverse-engineering leading to
intellectual property (IP) theft. Logic locking thwarts these threats by adding programmability to
the design, so that the integrated circuit (IC) will not be operational unless configured correctly
post-fabrication by a secret key. Split-manufacturing is based on simply fabricating upper layers
with larger feature sizes in a trusted facility. IC camouflaging is based on inserting nano-device
structures in the fabricated IC that are difficult to reverse engineer by end-users.

While implementing these schemes requires different technologies and design/manufacturing
flows, from an attacker’s perspective, all these schemes (more true for locking/camouflaging)
can be modeled with somewhat similar mathematics: as transforming a circuit () to (,)
by adding additional inputs/variables called key-inputs which model the netlist’s
ambiguity to the attacker. Given this, the goal of the attacker is to recover given . An
oracle-guided attacker is one that in addition to has black-box access to . In practice this
means that the attacker has an operational IC that he/she can use to test chosen input patterns and
observe outputs. Security of an obfuscation scheme heavily depends on the observability that the
attacker has on the circuit. For example, without full scan-chain access, an oracle-guided attacker
will have to reason about sequential behavior which is a much more complex computational task.

The development of better and better obfuscation schemes has been followed by the invention of
more and more powerful attacks. Access to high-performance obfuscation and deobfuscation
software is critical to research in these areas as it removes the need to build existing algorithms
from scratch. With this in mind, this report presents a 25K-lines-of-code C++ object-oriented
framework that implements a myriad of existing (de)obfuscation algorithms, along with an easy-
to-use and extendable application programming interface (API) that is discussed herein.

2
Approved for public release. Distribution is unlimited.

2 NETLIST REPRESENTATION

The first step of developing any netlist-based software tool is representing the netlist itself.
NEOS supports two main objects/classes circuit and an and-inverter graph (AIG) for storing
netlists. Both use a custom C++ container to keep nodes that are accessed by unique IDs. The
custom data-structure allows for dynamic removal of nodes while supporting array-like fast
indexing. Circuit supports hierarchical designs with primitive gates (and/nand/xor/xnor/...) and
instances from a standard-cell library. Netlists in circuit are represented by an array of gate and
wire objects that link to each other with fanout and fanin sets. Circuit supports reading-in designs
from a gate-level Verilog (supporting ranged/indexed net definitions) and bench files. The read-
in is based on parsers written in Flex/Bison. Key inputs are specified by starting the wire-name
with key input.

Circuit objects can be converted to AIG objects which store structurally-hashed [1]. AIGs,
which are used in almost all modern verification/circuit-reasoning engines, are a great way to
represent the circuit in a library-free manner with uniform nodes. AIGs allow for various
simplification algorithms due to their semi-canonical nature. NEOS implements several of
these including one-level hashing, k-cut-sweeping and directed acyclic graph (DAG)-aware
rewriting [1].

NEOS supports various graph algorithms for AIGs and circuits. DAG algorithms including
local/global- topological-sorting, feedback-arc-set, transitive-fanin/fanout are necessary to
many (de)obfuscation algorithms which both objects support. These objects support editing
operations such as removing and adding individual nodes as well as adding/inserting other
objects of the same type (compounding). Another important category of DAG algorithms is
partitioning. NEOS supports k-cut enumeration/detection which finds (fanout-free) logic cones
in the circuit for both circuit and AIG objects. This is crucial in an array of obfuscation schemes
such as look up table (LUT)-insertion since in LUT-insertion any k-cut can be replaced with a
k-input LUT. In addition, NEOS supports equal-partitioning which will try to partition the
circuit into similarly-sized sub-graphs. This is a great tool for performing density-minimizing
obfuscation.

The netlist classes also include other important member functions such as
combinational/sequential pattern simulation and error-checking.

3
Approved for public release. Distribution is unlimited.

3 OBFUSCATION ALGORITHMS

Given the above netlist representation and graph algorithms, it is possible to build the majority of
obfuscation schemes. Obfuscation algorithms are significantly less complicated than
deobfuscation algorithms. It is possible to divide obfuscation algorithms to those studied before
the invention of the oracle-guided satisfiability (SAT) attack (traditional) and those that followed
the SAT attack and try to specifically mitigate it (SAT-resilient).

The majority of traditional schemes are based on throwing various key-controlled/ambiguous
elements into the circuit. Many various flavors of these schemes can be built using the netlist
representation and the supported DAG algorithms, plus pattern simulation. NEOS implements an
array of such traditional schemes including, random- X(N)OR/MUX/LUT insertion [2], insertion
driven by error-rate cost-functions with hill-climbing, insertion in locations with maximum
hamming-distance [3], and insertion of parity units (parity functions are hard to learn with
shallow learners per computational learning theory). The hill-climbing obfuscation algorithm is a
very important module as it can be used to optimize any given metric. This scheme is hence
given its own object with a cost-function that can be replaced any C++ function which allows for
easy extension.

A major part of the obfuscation-suite is dedicated to interconnect locking by inserting
multiplexer (MUX) and tri-state buffers. The interconnect locking suite supports cross-
bar/MUX-network insertion [4] with different site- selection strategies (random, cost-function
driven, k-cut, ...). The interconnect locking suite also includes a hill- climbing strategy which
can be designed to maximize metrics such as feedback-arc-set size, graph density, minimum
density for equal coverage of the netlist and so on [5].

Almost all SAT-resilient schemes rely on point-functions which are able to hide a small number
of points in the circuit’s truth-table from the attacker. These schemes try to achieve the Exact-
Functional-Secrecy (EFS) notion of security per [6]. EFS security is defined loosely as: “the
attacker should not be able to learn the precise functionality of the circuit in time t”. This notion
is stronger than key-recovery: “the attacker should not be able to recover the correct key in time
less than t”. It also allows for the attacker to approximate the circuit with exponentially good
accuracy and is hence not suited for designs where approximation by attackers is a concern. As
for EFS obfuscation, NEOS supports numerous schemes. Anti-SAT [7] with functional/structural
obfuscation, diversified tree logic (DTL) [8] with various insertion strategies, and corrupt-and-
correct schemes [9].

While the above mentioned schemes are part of the body of research on obfuscation, we now
know that the most secure form of EFS schemes is ones in which an existing (multi)-point-
function in the circuit is detected and replaced with a look-up-table which NEOS supports [10].
These approaches are more secure since the reductive nature means that the attacker cannot
simply remove added structures. One particular scheme that NEOS implements is based on using
SAT-calls to identify all the input patterns that activate a particular net and if the number is
smaller than a given size, then it is replaced with a look-up-table. In addition, NEOS supports the
“larger-than-z” look-up-table from [6] which tricks the attacker into thinking that there are
additional hidden patterns that need to be found by querying the entire input space.

4
Approved for public release. Distribution is unlimited.

4 DEOBFUSCATION ALGORITHMS

NEOS implements deobfuscation algorithms in an object-oriented and polymorphic way. The
simplest (top in the class hierarchy) deobfuscation object is an oracle-less class which includes
only the obfuscated circuit . The object upon execution of the attack will return a correct key
or a key hypothesis with probability values attached to the guessed key-bits. An oracle-guided
attack object which derives from this topmost class has an additional oracle object . This class
will take care of linking the input-outputs of and and error-checking. and can be
sequential for which a different class is used.

The interface of the attacks (obfuscated/oracle circuit as the input and key-hypothesis as the
output) allows for chaining together various attacks. This is particularly useful in attacks that can
guarantee the correctness of some key bits which allow for simplifying the circuit and continuing
with another or the same attack. The key-hypotheses can also be chained by weighted adding of
probability values attached to keys.

4.1 Combinational Deobfuscation

In combinational deobfuscation the circuit and are both stateless. Oracle-guided attacks in
literature have mostly focused on this case with the SAT-attack being the most prominent. The
SAT attack has the unique ability to guarantee the recovery of a correct key if the original
hypothesis model is expressive enough to include the original circuit (there exists for which (,) agrees with () on all input patterns).

SAT attacks use SAT queries to guide the deobfuscation process. Similar to SAT-based
verification or equivalence checking, in SAT attacks circuits are built to represent a specific
condition and then converted to Conjunctive Normal Form (CNF) formula. In the baseline SAT
attack a mitter condition is formed by building the circuit ((,) (,). If this
circuit is converted to CNF and satisfied with a SAT solver, the that is returned by the solver is
called a discriminating input pattern (DIP). This input pattern if queried on the oracle, is
guaranteed to trim the hypothesis key-space by at least one wrong key. Then the correct input-
output observation condition is built as ((,) = ()) which will be a new circuit and its
output must be ANDed with and the process is repeated.

NEOS implements various transforms for building and compounding such circuits/conditions.
NEOS implements an API for converting circuits to SAT formula. This conversion happens to
have a relatively significant impact on the performance of SAT solving. Currently NEOS
supports the baseline Tseitin transform in addition to the technology-mapping algorithm from
[11]. Both techniques will add a set of clauses to a solver and producing a mapping between
wires in the circuit and variables in the solver. An important feature which is very important for
incrementally building and solving SAT problems is that the CNF conversion can take as input a
set of pre-existing variables/wires, in which case the conversion will not create new variables for
these nets. This for instance can be used to stitch a new copy of the circuit to an earlier CNF,
connecting the input variables rather than duplicating them.

5
Approved for public release. Distribution is unlimited.

Currently NEOS interfaces to three SAT solvers Glucouse, MiniSAT, and CryptoMiniSAT with
Glucouse being the default and preferred choice due to solver simplification and the support for
copying solvers. Copying solvers is critical to many advanced deobfuscation routines which will
fail until we add copy support to other solvers. The solvers are wrapped with a parent class
which has a unified interface. This allows developers to add other solvers by simply replicating
and implementing the solver API.

NEOS implements almost all existing SAT based deobfuscation attacks. In addition to the
baseline SAT attack [12] NEOS implements AppSAT [8] which is a SAT based attack that is
aware of the error rate of the hypothesis key and can hence be terminated earlier in cases where
approximation is sufficient. It also implements (t)-DDIP and AppSAT termination conditions [8]
which allow for early termination in certain cases. For instance, these termination conditions can
signal termination when the error rate of an l-bit key is less than a small t.

The SAT based attacks are also implemented in an object-oriented manner with many
optimization techniques that can be applied to any of the attacks. For instance various subkey
extraction schemes are supported. First is the simple backbone-analysis [12] which given a
condition on the key (), will perform a SAT solver query on each key bit and determine if
given () a particular key bit is resolved. A stronger subkey extraction routine is the wire-
disagreement analysis which can find multiple settled key-bits if they fall in the fanin cone of the
same internal net in the circuit [8].

The synergy between circuits and Boolean conditions and CNF formula means that simplifying
circuits will result in simpler formulae and faster SAT solving. An opt module is included in
NEOS which supports various simplification routines for both circuit and AIG classes. AIG
simplification routines are faster due to the AIG-specific sweeping algorithms. NEOS currently
supports SAT-sweeping which uses SAT solver calls to find equivalent nodes in the circuit and
merges them. The AIG class supports the fast Fraig SAT-sweeping algorithm [13] which is
orders of magnitude faster than the circuit class’s SAT-sweep which uses the baseline counter-
example driven algorithm. Both netlist representations support binary decision diagram (BDD)
sweeping which derives the BDD of internal nets up to a given BDD size bound and finds
equivalent nodes. Note that only SAT-based simplification can use external conditions which are
needed when simplifying circuits further given current input-output pairs observed in the attack.
Simplifying key-conditions called key-condition-crunching (KC2) [14] can be applied to various
attacks as well. Note that all sweeping techniques (equivalent node detection) are derived from
the class Sweep. A separate analysis and commit stage allows for finding nodes but not merging
them which is useful in many instances.

Cyclic SAT attacks are implemented in NEOS as well. These are attacks that can deobfuscate
circuits that include intentional combinational cycles [15]. The IcySAT attacks [16] are the most
recent and strongest algorithms for cyclic deobfuscation which are implemented in NEOS.
Furthermore, the analysis step in the Sweep class can be used to find equivalent nodes and then
merging them in reverse-topological order can create cyclic-yet-combinational circuits which are
much harder to deobfuscate.

6
Approved for public release. Distribution is unlimited.

NEOS implements statistical attacks as well in the stat module. Most importantly the hill-
climbing attack [17] which uses a simulated-annealing algorithm to optimize a key. The listing
below shows a code snippet for reading in, obfuscating and deobfuscating the c432 benchmark.

circuit co; co.read_bench("./bench/c432.bench");
circuit ce = co;
enc::enc_xor_rand(ce, random_boolvec(32));
dec::sat_dec_exact(co, ce, iteration_limit);

4.2 Sequential Deobfuscation

In sequential deobfuscation and are sequential circuits. Sequential deobfuscation is a rather
overlooked area with little tool support due to the increased complexity of the algorithms. In
SAT-based sequential deobfuscation, the SAT query that searches for DIPs is replaced with a
model-checking query that searches for a sequence of DIPs called DISs. NEOS supports
sequential attacks using an external model-checker i.e. nuXmv. nuXmv implements state-of-the-
art model-checking routines that can be tweaked to improve the attack.

Having an instance of a model-checker inside the framework so that it can be queried repeatedly
without destroying the SAT-solvers can speed up sequential attacks by 100X [14]. NEOS hence
implements several state-of- the-art model-checking routines through the polymorphic objects
without the need for an external checker. The bounded-model-checking (BMC) class implements
BMC by unrolling and optional simplification at the circuit/AIG/SAT-solver level. Per Figure 1,
KC2 [14] techniques are integrated with sequential deobfuscation by keeping simplified versions
of the unrolled circuit and further simplifying them as the condition on the key gets more
constrained throughout the attack. Condition simplification is significantly more important in the
problem of sequential deobfuscation, as sequential deobfuscation SAT formulae sizes grow at
much higher rates. This is because as the discriminating input sequences get deeper, larger and
larger circuit conditions need to be added to the solver. However, the added conditions have lots
of redundancy due to the unrolling.

NEOS implements a sequential version of the hill-climbing attack which is surprisingly
successful in approximating the functionality of large sequential circuits with user-provided
parameters such as number of random patterns to query and maximum depth of exploration.

7
Approved for public release. Distribution is unlimited.

Figure 1: Sequential SAT Attack on the s400 Benchmark with 36 Key-bits with and
without KC2

KC2 enables reaching further into the state-space with low clause count.

8
Approved for public release. Distribution is unlimited.

5 MISCELLANEOUS

NEOS implements a simple flow for oracle-less analysis. This involves a module for keeping
track of how key- logic transforms with resynthesis. NEOS has an interface to ABC which is
used for various tasks including model-checking, equivalence checking and simplification.
ABC’s routines for circuit simplification are a result of a decade of development at Berkeley and
are the fastest when it comes to circuit compression.

NEOS interfaces to the Colorado University Decision Diagram (CUDD) BDD package which is
used to translate circuits/AIGs into BDDs. This can be used to implement BDD based
(de)obfuscation as well. The BDD package is also used to perform cube operations used in
several aspects of obfuscation.

NEOS has a SAT-based implementation of REFSM [18] that uses an All-SAT routine to mine
for states given a set of state-registers which can be used to deobfuscate finite state machine
(FSM)-based obfuscation. NEOS supports drawing circuits to a .dot graph format for
visualization per Figure 2.

Figure 2: Original s27 Circuit (Left) and NEOS Obfuscated Circuit Obfuscated (Right)
Green inputs are added keys and black-boxes are latches.

0
or

2
not

nor

nor

and

and

4

and
or

nor

nor

3

1

0
or

2

not

nor

and

not 5

nor

not

and

or
nor

4

8

3

1
and

and

nor

and

6

7

9
Approved for public release. Distribution is unlimited.

6 CONCLUSION

In this report we described NEOS a C++ framework for netlist-level circuit
obfuscation/deobfuscation. Deobfuscation attacks are complicated algorithms for which fast
available implementations are rare. NEOS promises to fill this gap by providing an array of
existing attacks and defenses for better understanding the problem of netlist locking/unlocking.

10
Approved for public release. Distribution is unlimited.

7 REFERENCES

[1] Alan Mishchenko, Satrajit Chatterjee, and Robert Brayton, “Dag-aware AIG rewriting a
fresh look at combinational logic synthesis,” in Proceedings of the 43rd annual Design
Automation Conference. ACM, 2006, pp. 532–535.

[2] J. A. Roy, F. Koushanfar, and I. L. Markov, “EPIC: Ending piracy of integrated circuits,”
in Proc. Design, Automation and Test in Europe, 2008, pp. 1069–1074.

[3] Jeyavijayan Rajendran, Huan Zhang, Chi Zhang, Garrett S Rose, Youngok Pino,
Ozgur Sinanoglu, and Ramesh Karri, “Fault analysis-based logic encryption,” vol. 64, no.
2, pp. 410–424, 2015.

[4] Kaveh Shamsi, Meng Li, David Pan, and Yier Jin, “Cross-lock: Dense layout-level
interconnect locking using cross-bar architectures,” in GLSVLSI, 2018.

[5] Kaveh Shamsi, Meng Li, Travis Meade, Zheng Zhao, David Z. Pan, and Yier Jin, “Cyclic
obfuscation for creating sat-unresolvable circuits,” in GLSVLSI, 2017, pp. 173–178.

[6] Kaveh Shamsi, David Z Pan, and Yier Jin, “On the impossibility of approximation-resilient
circuit locking,” in 2019 IEEE International Symposium on Hardware Oriented Security and
Trust (HOST), 2019, pp. 161–170.

[7] Yang Xie and Ankur Srivastava, “Anti-sat: Mitigating sat attack on logic locking,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 38, no. 2, pp.
199–207, 2018.

[8] Kaveh Shamsi, Travis Meade, Meng Li, David Pan, and Yier Jin, “On the approximation
resiliency of logic locking and IC camouflaging schemes,” IEEE Transactions on Information
Forensics and Security (TIFS), vol. 14, no. 2, pp. 347–359, 2019.

[9] Muhammad Yasin, Abhrajit Sengupta, Mohammed Thari Nabeel, Mohammed Ashraf,
Jeyavijayan JV Rajendran, and Ozgur Sinanoglu, “Provably-secure logic locking: From theory
to practice,” in Proc. ACM Conf. on Computer & Communications Security. ACM, 2017, pp.
1601–1618.

[10] Meng Li, Kaveh Shamsi, Travis Meade, Zheng Zhao, Bei Yu, Yier Jin, and David Z. Pan,
“Provably secure camouflaging strategy for ic protection,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems (TCAD), 2018.

[11] Niklas Een, Alan Mishchenko, and Niklas So¨rensson, “Applying logic synthesis for
speeding up sat,” in International Conference on Theory and Applications of Satisfiability
Testing. Springer, 2007, pp. 272–286.

11
Approved for public release. Distribution is unlimited.

[12] Pramod Subramanyan, Sayak Ray, and Sharad Malik, “Evaluating the security of logic
encryption algorithms,” in Proc. IEEE Int.Symp. Hardware Oriented Security and Trust, 2015,
pp. 137–143.

[13] Alan Mishchenko, Satrajit Chatterjee, Roland Jiang, and Robert K Brayton, “Fraigs: A
unifying representation for logic synthesis and verification,” Tech. Rep., ERL Technical Report,
2005.

[14] Kaveh Shamsi, Meng Li, David Z Pan, and Yier Jin, “KC2: Key-condition crunching for
fast sequential circuit deobfuscation,” in 2019 Design, Automation & Test in Europe Conference
& Exhibition (DATE). IEEE, 2019, pp. 534–539.

[15] Yuanqi Shen, You Li, Amin Rezaei, Shuyu Kong, David Dlott, and Hai Zhou, “BESAT:
Behavioral Sat-Based Attack on Cyclic Logic Encryption,” in Proceedings of the 24th Asia and
South Pacific Design Automation Conference. ACM, 2019, pp. 657–662.

[16] Kaveh Shamsi, David Z Pan, and Yier Jin, “Icysat: Improved sat-based attacks on cyclic
locked circuits,” in 2019 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD). IEEE, 2019, pp. 1–7.

[17] Stephen M Plaza and Igor L Markov, “Solving the third-shift problem in ic piracy with
test-aware logic locking,” IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 34, no. 6, pp. 961–971, 2015.

[18] Travis Meade, Zheng Zhao, Shaojie Zhang, David Z. Pan, and Yier Jin, “Revisit
sequential logic obfuscation: Attacks and defenses,” in The IEEE International Symposium on
Circuits and Systems (ISCAS), 2017.

12
Approved for public release. Distribution is unlimited.

LIST OF ABBREVIATIONS, ACRONYMS, AND SYMBOLS

ACRONYM DESCRIPTION
AIG And-Inverter Graph
API Application Programming Interface
BBD Binary Decision Diagram
BMC Bounded-Model-Checking
CNF Conjunctive Normal Form
CUDD Colorado University Decision Diagram
DAG Directed Acyclic Graph
DIP Discriminating Input Pattern
DTL Diversified Tree Logic
EFS Exact-Functional-Secrecy
FSM Finite State Machine
IC Integrated Circuit
IP Intellectual Property
KC2 Key-Condition-Crunching
LUT Look Up Table
MUX Multiplexer
SAT Satisfiability

