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EXECUTIVE SUMMARY 

The overall focus of this investigation was on the modeling and management of 
uncertainties, both epistemic and aleatoric, in reduced order models for the nonlinear 
geometric response of heated structures. This effort was motivated by and in strong support 
of the design and operation of the future hypersonic vehicles envisioned by the Air Force. 
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The prediction of the structural response, temperature distribution, and aeroelastic 
behavior of these vehicles will require fully coupled structural-thermal-aerodynamic 
analyses, at least, with the possible addition of material and servo/control analyses. The high 
temperature and large aerodynamic loads that are expected on these vehicles will induce 
“large” structural deformations that require the inclusion of nonlinear geometric effects so 
that all 3 fields (structural, thermal, aerodynamic) will involve nonlinear solutions. While the 
combination of finite element and computational fluid dynamic (CFD) solution methods can 
be used to tackle this multi-physics problem, the expected computational effort will be very 
large and will be unsuitable at the design phase and/or for the large time span computations 
that are required for mission analyses and fatigue life prediction. Accordingly, it is well 
expected that reduced order and surrogate models will play an important role for these more 
demanding situations. Of particular interest here are the structural-thermal reduced order 
models that the PI’s group has spearheaded over the last 17 years. 

Uncertainties will also be present when analyzing hypersonic vehicles and should be 
accounted for in the design and thus in the reduced order modeling strategy. The uncertainties 
will certainly originate from variations from vehicle to vehicle and also over time for the same 
vehicle, owing to the appearance and progression of damage and material changes. Besides 
these aleatoric uncertainties, there will also be epistemic ones originating from 
aerodynamic/structural modeling assumptions as well as from the approximation of the 
corresponding full order models by reduced order ones. 

In the context of the present effort, uncertainty management is the recognition that it is 
not efficient to carry out all computations with minimal epistemic uncertainty (i.e., the most 
accurate computational models) when aleatoric uncertainty is present (e.g., vehicle-to-vehicle 
variability). Rather, it is computationally advantageous to reduce somewhat the model 
complexity, i.e., allow epistemic uncertainty to increase until it becomes measurable with 
respect to its aleatoric counterpart. 

Following the proposal, this investigation was divided into the three thrusts stated below 
and the work carried out under each thrust will be summarized. The technical details of the 
work are presented in the Appendices which contain the work of [J1]-[J3], [C1]-[C8], [T1]-
[T2], and [A1]. A brief summary of the reduced order modeling strategy is first included to 
clarify the issues and contributions of the various thrusts. 

 
Reduced Order Modeling Background 

The reduced order models used in this research are based on a representation of the vectors 
of structural displacements u and temperature T on underlying finite element meshes as 
expansions – one for displacements and one for temperature - on fixed basis functions but with 
time/loading varying generalized coordinates. That is, 
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where )(n  and )(n  are the time-independent thermal and structural basis functions, or 

modes, while  tn  and  tqn  are the time-dependent thermal and structural generalized 
coordinates. 

The governing equations for these coordinates can be derived from finite deformation 
thermoelasticity as  
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In Eq. (2), ijM  and ijD  denote mass and damping terms while )1(
ijK , )2(

ijlK , )3(
ijlpK  are 

temperature-dependent linear, quadratic, and cubic stiffness coefficients and iF  are the modal 
forces involving both purely mechanical/aerodynamic loads and thermally induced ones. In Eq. 
(3), ijB  and ijK

~  are capacitance and conductance coefficients, which are generally dependent 

on temperature. Finally, the source term iP  represents the combined effects of an applied flux, 
non-zero homogenous boundary conditions, radiation, latency, etc., as applicable. 

When the material properties are independent of temperature, all parameters in Eqs (2) and 
(3) are constant except for the linear stiffnesses )1(

ijK  and modal forces iF  which are linearly 

dependent on the thermal generalized coordinates  tn . If the Young’s modulus and coefficient 
of thermal expansion are linearly dependent on temperature, then the linear stiffness and modal 
forces become cubic polynomial of the  tn  while the quadratic and cubic stiffnesses depend 
linearly on them. 

The reduced order modeling strategy used here is based on underlying finite element models 
developed in commercial software and thus all components of it, i.e., basis functions and 
parameters, must determined from them through standard outputs of these codes. In this light, 
one key aspect of the structural reduced order model of Eqs (1) and (2) is the number of stiffness 
parameters that it involves which is of order M 4/6 in the absence of thermal effects but rises to 
(M 4/6 +3 M 2/6 when linear variations of the properties with temperature are included.  

The best approach currently available to identify these parameters from the underlying finite 
element model is through the outputting of the tangent stiffness matrix of static solutions. Thus, 
for each finite element static solution, a maximum of M (M +1)/2 equations can be derived. The 
number of such static solutions is then at best M 2/3 in the absence of thermal effects but rises 
to (M 2/3 +3 /3 with linear dependence on temperature. 

To provide perspective for this identification effort, note that the largest model considered 
to date involved M = 85 modes for a structural-only problem (i.e. =0) leading to approximately 
8.7 106 coefficients and requiring 3655 static solutions for the identification of the linear and 
nonlinear stiffnesses. With temperature effects, the largest model considered is M = 44 and  = 
42 leading to 5.08 107 coefficients and requiring over 50,000 static solutions for the 
identification of the linear and nonlinear stiffnesses. It is concluded that the stiffness coefficients 
identification is a computationally important effort for ROMs with large bases. 

A final important point regarding the stiffness coefficients is that Eq. (2) is exact under a 
particular constitutive law, i.e., for a Kirchhoff – St Venant material. However, this is typically 
not the stress-strain relation adopted in most commercial finite element codes for beam and 
plate models in large deformations (details are not available as proprietary). In that sense, Eq. 
(2) is only an approximation of the finite element results and thus the identification of the 
stiffness coefficients exhibits computational inaccuracies. 
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Research Thrust #1: Modeling of Aleatoric and Epistemic Uncertainties within Multi-Physics 
ROMs 

Since the present reduced order modeling formulation is based on underlying finite element 
models, it could be envisioned that the uncertainty would be modeled directly at the finite 
element level using standard approaches. Then, finite element samples would be generated and 
the corresponding samples of the reduced order model would be obtained one at a time using 
the identification procedure developed for the mean model. This approach may be acceptable 
for ROMs with small bases corresponding to simple structures but not for the realistic 
structures/large bases considered here as the identification effort of all ROM samples would be 
daunting. It was thus critical to develop a strategy to model the uncertainty directly at the ROM 
level, i.e., in which the ROM samples would be directly generated from the mean ROM. 

Such a strategy was proposed by the PI and a co-author several years ago [1] and was 
successfully validated but only for a simple straight clamped-clamped beam. More complex 
validations were later found to be very difficult to achieve owing to (i) an indeterminacy and 
(ii) numerical issues induced by the inaccuracies of the stiffness coefficients discussed above. 
These issues led to the key matrix not being positive definite as expected using the ROM 
formulation. For the beam example of [1], the indeterminacy could be resolved and the 
numerical issues were mild and the matrix could be made positive semi definite without 
affecting the ROM accuracy. 

In this light, the first key contribution to the Thrust #1 is the paper [J1] and [C8], see 
Appendix A, in which we resolved both the indeterminacy – through an optimization process – 
and the numerical issues – through various small modifications of the methodology - and 
successfully applied the approach to several ROMs of complex structures. 

Relying on the success of [J1], the introduction of uncertainty in structural and thermal 
ROMs was next investigated and resolved, see journal paper [J2] and Appendix B. These two 
efforts provided the core methodology for the uncertainty modeling and management used in 
the rest of the project. 

In parallel to the above efforts, two aspects of the mean model ROM construction were also 
addressed to prepare for the Thrust #2 work. The first of these aspects focused on better defining 
a set of “enrichments”, i.e., structural basis functions the role of which is to allow a good 
prediction of the structural response under thermal loading. These enrichments are necessary 
because the rest of the structural basis relies on low frequency linear modes and related 
nonlinear deformations (referred to as dual modes) which capture well the response to 
transverse mechanical loads. However, heating of the structure induces different, mostly in 
plane displacements and thus a separate set of basis functions is necessary. This study, published 
in [C2] (see Appendix C), clarified several construction procedures of these enrichments. 
Among the structures considered to exemplify these concepts is a beam subjected to a uniform 
temperature over a limited spatial domain of the beam. Interestingly, this structure is 
mathematically equivalent to a simple model of an energy harvester demonstrating that the 
current work has far ranging applications, well beyond hypersonic vehicles panels. 

The second aspect of the mean ROM construction considered under Thrust #1 is the 
identification of the stiffness coefficients. As discussed in the ROM background section, these 
coefficients may be subject to inaccuracies due to constitutive law differences between the finite 
element formulation and the one of the ROM. To address this issue, a novel identification 
approach was defined in [C6], see Appendix D, that relies on multiple static solutions at 
different response levels to obtain improved estimates of the coefficients. This approach was 
accordingly referred to as “multi level” and has since been used very successfully in connection 
with other structures considered here and in two other contracts. 
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The inaccuracies of the stiffness coefficients which can be quantified in the multi level 
identification approach were considered as uncertainties in the ensuing study [C1], see 
Appendix E, and it was demonstrated there that the uncertainty model of [J1] is fully applicable 
to this situation. This study provides, to the PI’s knowledge, the first assessment of epistemic 
uncertainty and its modeling in nonlinear ROMs. 

The final effort carried out under Thrust #1 focused on extending the energy harvester 
application of the current ROMs which came to light in [C2]. More specifically, it was desired 
to assess the effects of uncertainty, modeled as in [J2], on the benefits of the harvester. That 
effort was initiated by considering first the linear regime which had received only scant 
consideration. This preliminary work was published as [J3], See Appendix F. It is hoped that 
this study will be continued in the near future with the application of the methodology of [J2] 
in the nonlinear regime. 

 
Research Thrust 2: Uncertainty Management in Structural/Thermal ROM Governing 

Equations – Sparse Uncertain ROMs 
 This second research thrust relied heavily on the first one and more specifically on the 

uncertainty modeling approaches of [J1] and [J2] to address the epistemic uncertainty that 
results from (i) incomplete bases and (ii) “sparse” sets of stiffnesses. 

The construction of the structural and thermal bases are key steps of the mean ROM but are 
not always straightforward. Two of the challenges that may be encountered are that: 

(i) the basis necessary to achieve a specific error level in the predicted 
displacements/temperatures is large with many of the basis functions contributing little to the 
improvement in prediction, and/or 

(ii) the processes in place for the basis construction do not lead to predictions that satisfy 
the desired error levels. 

Note that the first case can in fact reduce to the second one if it is decided, for computational 
efficiency, to not take all the basis functions but rather only those that provide significant error 
reduction. In such cases, the basis is incomplete and there exists an epistemic uncertainty. The 
work carried out in [A1], see Appendix G, addresses this issue and demonstrates that this 
epistemic uncertainty can be modeled as done in [J1] and [J2] whether the basis is incomplete 
in enrichments, thermal basis functions, or dual modes. 

The second component of Thrust #2 focused on addressing the computational challenge 
associated with the very large number of stiffness coefficients, especially when temperature 
variations exist, as discussed in the ROM background section. One approach to resolve this 
issue is to optimize the basis functions so that the corresponding ROM achieves a specific 
accuracy with a minimum number of basis functions. This issue has been successfully 
investigated in [C5], [C7], and [T2], see Appendix H. 

Another approach to address the above computational challenge is to use “sparse” ROMs, 
i.e., ROMs in which a series of stiffness coefficients are neglected. As discussed in [C3] and 
[2], this strategy can be extremely efficient as a very large number of nonlinear stiffness 
coefficients have very little effect on the response. Formally though, this approach induces 
epistemic uncertainty and it was thus desired to be able to quantify and model this uncertainty. 
This was achieved successfully using once again the modeling of [J1] and [J2], see [C3] and 
Appendix I. 

 
Research Thrust 3: Uncertain Aero-Structure Interface Modeling         

While the research thrusts 1 and 2 are structure-focused, the aerodynamics is nevertheless 
strongly present providing both forces and heat flux. What is really needed from 
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aerodynamics is to relate the surface displacements, velocities, and temperatures to the 
aerodynamic forces and heat flux. Such relations can be obtained analytically assuming a 
linear aerodynamic model, either using piston theory or a linearized solver. At the opposite 
end of the computational complexity spectrum are full Navier-Stokes CFD computations 
which require very fine grids and much smaller time steps than those used for the structural 
response and temperature computations, thereby rendering the aerodynamic solution as the 
computational bottleneck. The high relative cost of the aerodynamic computations is 
especially true when using the thermo-structural ROM from Eqs. (2)-(3) which are notably 
less computationally intensive than their finite elements counterparts. 

To address the aerodynamic computational bottleneck, it was proposed here to investigate 
the modeling of the epistemic uncertainty on the structural loads that is induced by the 
adoption of a lower fidelity aerodynamic model. The availability of such a representation 
would permit the designer to adapt the choice of the aerodynamic model to the level of 
structural uncertainty present. 

This effort was achieved in [C4] and [T1] by starting from piston theory aerodynamics 
and enriching it with terms that model the downstream propagation of upstream structural 
deformations. The surrogates formed in this process provided a good approximation of the 
pressure distributions obtained by CFD on a simple deforming panel. Then, the epistemic 
uncertainty was modeled within the surrogates leading to a stochastic model of the 
aerodynamic forces that can be used in conjunction with uncertain ROMs to obtain, in a 
computationally very efficient way, the fully coupled structural-thermal-aerodynamic 
response. 
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A B S T R A C T

The focus of the present investigation is on the introduction of uncertainty directly in reduced order models
of the nonlinear geometric response of structures following maximum entropy concepts. While the approach
was formulated and preliminary validated in an earlier paper, its broad application to a variety of structures
based on their finite element models from commercial software was impeded by two key challenges. The first
of these involves an indeterminacy in the mapping of the nonlinear stiffness coefficients identified from the
finite element model to those of the reduced order model form that is suitable for the uncertainty analysis. The
second challenge is that a key matrix in the uncertainty modeling was expected to be positive definite but was
numerically observed not to be. This latter issue is shown here to be rooted in differences in nonlinear finite
element modeling between the commercial software and the theoretical developments. Both of these challenges
are successfully resolved and applications examples are presented that confirm the broad applicability of the
methodology.

1. Introduction

Over the last two decades, maximum entropy concepts have been
broadly and very successfully used to model uncertainties in structures
directly at the level of reduced order models (ROMs) constructed from
the finite element model of the mean structure, see [1,2] for reviews. In
addition to its capability to account for some epistemic uncertainty, this
approach is computationally much more expedient than its alternative,
which is to first introduce uncertainty in the finite element model then
construct a ROM for each sample of the random structure. The com-
putational saving is particularly significant for large size linear finite
element models but also for nonlinear geometric problems where the
ROMs include a large number of linear, quadratic, and cubic stiffness
coefficients, see [3] for an overview. These coefficients must either
be identified from a standard (e.g., commercial) finite element model
using nonintrusive techniques [3–5] or computed using a dedicated
finite element formulation [6–9] based on the reduced order modeling
results of [10]. The latter of these two approaches lends itself naturally
to the introduction of uncertainty at the ROM level using the maximum
entropy concepts as originally discussed in [10]. The application of this
strategy to the ROMs identified nonintrusively [3–5] from a commercial
finite element code has been exemplified in [10] on a simple flat
beam structure. More complex applications of this approach have been
impeded by two key challenges, of decomposition and non-positive def-
initeness, in transforming the identified ROM into one that is suitable

∗ Corresponding author.
E-mail addresses: xiaoquan.wang.1@asu.edu (X.Q. Wang), marc.mignolet@asu.edu (M.P. Mignolet), christian.soize@univ-eiffel.fr (C. Soize).

for the uncertainty analysis. The focus of the present investigation is
on efficiently resolving these two challenges and applying them to a
representative set of structures in the nonlinear geometric regime.

2. Reduced order models of nonlinear geometric structural re-
sponse

The reduced order models considered in the present study are based
on a representation of the nonlinear geometric response of the structure
in the form

𝒖 (𝑡) =
𝑀
∑

𝑛=1
𝑞𝑛 (𝑡) 𝑼 (𝑛) (1)

where 𝒖 (𝑡) denotes the vector of displacements of the finite element
degrees of freedom, 𝑼 (𝑛) are basis functions (modes) of the ROM
specified in the spatial domain of the finite element mesh, and 𝑞𝑛 (𝑡)
are the time dependent generalized coordinates.

To obtain a set of nonlinear ordinary differential equations for
the generalized coordinates 𝑞𝑛 (𝑡), it is convenient to consider the
continuum equivalent of Eq. (1), i.e.,

𝑢𝑖 (𝑿, 𝑡) =
𝑀
∑

𝑛=1
𝑞𝑛 (𝑡) 𝑈 (𝑛)

𝑖 (𝑿) , 𝑖 = 1, 2, 3, (2)
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where X denotes an arbitrary point of the structure in its undeformed
configuration. Then, introducing Eq. (2) in the equations of finite defor-
mation elasticity and proceeding with a Galerkin approach provides the
desired equations. This process was accomplished in [10] considering a
Kirchhoff–Saint Venant type material in which the 2nd Piola–Kirchhoff
stress tensor S is linearly related to the Green strain tensor E by

𝑆𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙 𝐸𝑘𝑙 (3)

where C denotes the deformation independent 4th order elasticity
tensor. Under this material assumption, it was shown in [10] that the
generalized coordinates 𝑞𝑛 (𝑡) satisfy the equations

𝑀𝑖𝑗 𝑞𝑗 +𝐷𝑖𝑗 𝑞̇𝑗 +𝐾 (1)
𝑖𝑗 𝑞𝑗 +𝐾 (2)

𝑖𝑗𝑙 𝑞𝑗 𝑞𝑙 +𝐾 (3)
𝑖𝑗𝑙𝑝𝑞𝑗 𝑞𝑙 𝑞𝑝 = 𝐹𝑖, (4)

where summation over repeated indices is implied. In the above equa-
tion, 𝑀𝑖𝑗 denote the elements of the mass matrix, 𝐾 (1)

𝑖𝑗 , 𝐾 (2)
𝑖𝑗𝑙 , 𝐾

(3)
𝑖𝑗𝑙𝑝 are

the linear, quadratic, and cubic stiffness coefficients and 𝐹𝑖 are the
modal forces. Note that a damping matrix D was also introduced in
Eq. (4) to model dissipation.

Note in Eq. (4) that a series of terms involve the same monomials
of the generalized coordinates, e.g. 𝐾 (2)

𝑖𝑗𝑙 and 𝐾 (2)
𝑖𝑙𝑗 , and thus these terms

may naturally be regrouped leading to

𝑀𝑖𝑗 𝑞𝑗 +𝐷𝑖𝑗 𝑞̇𝑗 +𝐾 (1)
𝑖𝑗 𝑞𝑗 +𝐾

(2)
𝑖𝑗𝑙𝑞𝑗 𝑞𝑙 +𝐾

(3)
𝑖𝑗𝑙𝑝𝑞𝑗 𝑞𝑙 𝑞𝑝 = 𝐹𝑖, (5)

which is very similar to Eq. (4) except that there is no repetition in the
monomials because 𝐾

(2)
𝑖𝑗𝑙 and 𝐾

(3)
𝑖𝑗𝑙𝑝 are nonzero only for j ≤ l and j ≤ l

≤ p. Then, comparing Eqs. (4) and (5) yields

𝐾
(2)
𝑚𝑛𝑙 =

⎧

⎪

⎨

⎪

⎩

0 for 𝑙 < 𝑛

𝐾 (2)
𝑚𝑛𝑛 for 𝑙 = 𝑛

𝐾 (2)
𝑚𝑛𝑙 +𝐾 (2)

𝑚𝑙𝑛 for 𝑙 > 𝑛

(6a)

and

𝐾
(3)
𝑚𝑛𝑙𝑝 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0 unless 𝑝 ≥ 𝑙 ≥ 𝑛

𝐾 (3)
𝑚𝑛𝑛𝑛 for 𝑝 = 𝑙 = 𝑛

𝐾 (3)
𝑚𝑛𝑙𝑙 +𝐾 (3)

𝑚𝑙𝑛𝑙 +𝐾 (3)
𝑚𝑙𝑙𝑛 for 𝑝 = 𝑙 > 𝑛

𝐾 (3)
𝑚𝑝𝑙𝑙 +𝐾 (3)

𝑚𝑙𝑝𝑙 +𝐾 (3)
𝑚𝑙𝑙𝑝 for 𝑝 > 𝑙 = 𝑛

2𝐾 (3)
𝑚𝑛𝑙𝑝 + 2𝐾 (3)

𝑚𝑝𝑙𝑛 + 2𝐾 (3)
𝑚𝑙𝑝𝑛 for 𝑝 > 𝑙 > 𝑛

(6b)

As discussed in [10], the symmetry properties of the elasticity tensor
also imply that

𝐾 (3)
𝑚𝑛𝑙𝑝 = 𝐾 (3)

𝑛𝑚𝑙𝑝 = 𝐾 (3)
𝑚𝑛𝑝𝑙 = 𝐾 (3)

𝑙𝑝𝑚𝑛. (7)

While Eqs. (4) and (5) were derived based on the continuum rep-
resentation of Eq. (2), they are assumed here to be valid as well
for a discrete, finite element model. In fact, the identification of the
coefficients 𝐾

(2)
𝑖𝑗𝑙 and 𝐾

(3)
𝑖𝑗𝑙𝑝 from nonintrusive outputs of commercial

finite element software (e.g., Nastran) has been studied and can be
achieved in different ways, see discussions in [3–5], given the basis
functions 𝑼 (𝑛). The selection of these vectors is discussed in details
in [3,5] and references therein and is not repeated here for brevity.

3. Maximum entropy uncertainty modeling at the ROM level

The modeling of uncertainty at a ROM level has been developed,
see [1,2], as a constrained optimization problem in which the entropy
of the random parameters of the ROM is maximized under constraints
which correspond to (i) physical requirements that these parameters
must satisfy and (ii) conditions imposed by the user. To exemplify this
strategy, consider the important case in which the ROM involves one or
multiple positive definite symmetric matrices as occurs for example in
linear structural dynamics. Let A be that random matrix and denote by
𝑝𝐴 (𝑎) its probability density function which is defined over the domain
of support 𝛺 such that A is positive definite and symmetric, i.e., with

𝐴𝑖𝑗 = 𝐴𝑗𝑖. (8)

Fig. 1. Structure of the random H matrices with 𝑛 = 8, 𝑖 = 2, and 𝜆0 = 1 and 10.

Then, the entropy is

𝑆 = −∫𝛺
𝑝𝐴 (𝑎) ln 𝑝𝐴 (𝑎) 𝑑𝑎 (9)

where 𝑝𝐴 (𝑎) must satisfy

∫𝛺
𝑝𝐴 (𝑎) 𝑑𝑎 = 1. (10)

In addition to the physical requirements of symmetry and positive
definiteness, it is also required that the mean of A, denoted as 𝑨 is
known, that is,

∫𝛺
𝑎 𝑝𝐴 (𝑎) 𝑑𝑎 = 𝐴 (11)

and moreover that

∫𝛺
ln [det (𝑎)] 𝑝𝐴 (𝑎) 𝑑𝑎 = 𝜈 finite (12)

which guaranties that the inverse matrix 𝑨−1 of A, which exists almost
surely, is a second-order random variable (mean-square integrable).

The probability density function 𝑝𝐴 (𝑎) maximizing S given the
constraints of Eqs. (8), (10)–(12) can be derived by calculus of variation
and is found to be

𝑝𝐴 (𝑎) = 𝐶 [det (𝑎)]𝜆0−1 exp
[

−tr
(

𝜇𝑇 𝑎
)]

(13)

where 𝐶 is the appropriate constant to satisfy the normalization con-
dition, Eq. (10) and 𝜇 and 𝜆0 are the Lagrange multipliers associated
with the constraints of Eqs. (11) and (12), respectively. After a change
of random variables, it is found that the matrices A of joint probability
density function 𝑝𝐴 (𝑎), Eq. (13), can be generated as

𝑨 = 𝑳𝑯 𝑯𝑇 𝑳
𝑇

(14)

where 𝑳 is any decomposition, e.g., Cholesky, of 𝑨, i.e.,

𝑨 = 𝑳𝑳
𝑇
. (15)

Moreover, H is a lower triangular matrix such that (see also Fig. 1)

(1) all of its non-zero elements 𝐻𝑖𝑙 are independent random vari-
ables,

(2) its off-diagonal elements 𝐻𝑖𝑙, 𝑖 ≠ 𝑙, are normally distributed
(Gaussian) random variables with standard deviation 𝜎 = 1∕
√

2𝜇, and
(3) its diagonal elements 𝐻𝑖𝑖 are obtained as 𝐻𝑖𝑖 =

√

𝑌𝑖𝑖∕𝜇 where 𝑌𝑖𝑖
is Gamma distributed with parameter (𝑝 (𝑖) − 1) ∕2 where

𝑝 (𝑖) = 𝑛 − 𝑖 + 2𝜆0 − 1 and 𝜇 =
(

𝑛 + 2𝜆0 − 1
)

∕2 (16)
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In the above equations, n is the size of the matrices and the parameter
𝜆0 > 0 is the free parameter of the statistical distribution of the random
matrices A. An alternative parametrization is through the dispersion
parameter 𝛿 defined as

𝛿2 = 𝑛 + 1
𝑛 + 2𝜆0 − 1

. (17)

As stated above, a key component of the maximum entropy for-
mulation is the satisfaction of the physical constraints that the ROM
parameters must satisfy. While this issue is well understood for the
stiffness matrix of linear structural dynamics, it is not as obvious for
the combination of linear, quadratic, and cubic stiffness coefficients of
the ROM of Eq. (4). The derivation of such a condition was achieved
in [10] based on integral expressions of the stiffness coefficients of
Eq. (4) obtained as a by-product of the derivation of this governing
equation. Specifically, it was found that

𝐾 (1)
𝑚𝑛 = ∫𝛺0

𝜕𝑈 (𝑚)
𝑖

𝜕𝑋𝑘
𝐶𝑖𝑘𝑙𝑝

𝜕𝑈 (𝑛)
𝑙

𝜕𝑋𝑝
𝑑X (18)

𝐾 (2)
𝑚𝑛𝑝 =

1
2

[

𝐾̂ (2)
𝑚𝑛𝑝 + 𝐾̂ (2)

𝑝𝑚𝑛 + 𝐾̂ (2)
𝑛𝑝𝑚

]

(19)

where

𝐾̂ (2)
𝑚𝑛𝑝 = ∫𝛺0

𝜕𝑈 (𝑚)
𝑖

𝜕𝑋𝑗
𝐶𝑖𝑗𝑘𝑙

𝜕𝑈 (𝑛)
𝑟

𝜕𝑋𝑘

𝜕𝑈 (𝑝)
𝑟

𝜕𝑋𝑙
𝑑X (20)

and

𝐾 (3)
𝑚𝑠𝑛𝑝 =

1
2 ∫𝛺0

𝜕𝑈 (𝑚)
𝑖

𝜕𝑋𝑗

𝜕𝑈 (𝑠)
𝑖

𝜕𝑋𝑘
𝐶𝑗𝑘𝑙𝑤

𝜕𝑈 (𝑛)
𝑟

𝜕𝑋𝑙

𝜕𝑈 (𝑝)
𝑟

𝜕𝑋𝑤
𝑑X. (21)

In these equations, 𝛺0 denotes the domain of the structure in the
undeformed configuration, 𝑿 ∈ 𝛺0.

Next, a reshaping was performed to transform the M × M × M third
order tensor 𝑲̂ (2) into a M × M2 rectangular array 𝑲̃

(2) and the M × M
× M × M fourth order tensor 𝑲 (3) into a M2 × M2 square matrix 𝑲̃

(3).
These operations are achieved as follows:

𝐾 (2)
𝑚𝐽 = 𝐾̂ (2)

𝑚𝑛𝑝 with 𝐽 = (𝑛 − 1)𝑀 + 𝑝 (22)

and

𝐾 (3)
𝐼𝐽 = 𝐾 (3)

𝑚𝑠𝑛𝑝 with 𝐼 = (𝑚 − 1)𝑀 + 𝑠 and 𝐽 = (𝑛 − 1)𝑀 + 𝑝. (23)

With these operations, it was shown that the matrix 𝑲𝐵 defined as

𝑲𝐵 =

[

𝑲 (1) 𝑲̃ (2)

𝑲̃ (2)𝑇 2𝑲̃ (3)

]

(24)

is positive definite.
Having established the above property, it seems that the modeling

of uncertainty of the ROM level for nonlinear geometric structure is
now well defined. Specifically [10],

(1) from a finite element model of the structure, identify the param-
eters 𝐾 (1)

𝑖𝑗 , 𝐾
(2)
𝑖𝑗𝑙 and 𝐾

(3)
𝑖𝑗𝑙𝑝

(2) determine the coefficients 𝐾 (2)
𝑖𝑗𝑙 and 𝐾 (3)

𝑖𝑗𝑙𝑝 by ‘‘inverting’’ the Eqs.
(6a) and (6b) with Eq. (7)

(3) determine the coefficients 𝐾̂ (2)
𝑚𝑛𝑝 from Eq. (19)

(4) form the matrices 𝑲̃
(2) and 𝑲̃

(3) from Eqs. (22) and (23), then
𝑲𝐵 from Eq. (24)

(5) set 𝑨 = 𝑲𝐵 and follow Eqs. (14)–(16) and Fig. 1 to generate
random samples of the matrix 𝑨 = 𝑲𝐵

(6) proceed with steps (4), (3), (2) and (1) in reverse with each
sample of 𝑲𝐵 to obtain realizations of the uncertain linear,
quadratic, and cubic stiffnesses 𝐾 (1)

𝑖𝑗 , 𝐾
(2)
𝑖𝑗𝑙 and 𝐾

(3)
𝑖𝑗𝑙𝑝 denoted as

⌣𝐾 (1)
𝑖𝑗 , ⌣𝐾 (2)

𝑖𝑗𝑙 and ⌣𝐾 (3)
𝑖𝑗𝑙𝑝 from which the samples of the uncertain

response can be determined.

4. The challenges

The process defined by steps (1)–(6) above seems well character-
ized but after a closer inspection and trials, two key challenges were
encountered:

(I) the determination of the parameters 𝐾̂ (2)
𝑚𝑛𝑝 and 𝐾 (3)

𝑖𝑗𝑙𝑝 cannot be
uniquely performed from Eqs. (6a), (6b), (7), and (19) as there
are more unknowns than equations.

(II) when the above determination can be carried out, the resulting
mean model matrix 𝑲𝐵 may not be positive definite when the
ROM parameters 𝐾 (1)

𝑖𝑗 , 𝐾
(2)
𝑖𝑗𝑙 and 𝐾

(3)
𝑖𝑗𝑙𝑝 are identified from some

finite element codes, e.g., from Nastran.

The positive definiteness of 𝑲𝐵 stems, see [10], from the positive
definiteness of the potential energy in the structure, it is thus an
essential property and its violation may lead to unphysical behavior.

An example of this situation has been encountered with a flat can-
tilevered beam, see [11] and details below, for which a 2-basis function
model was derived. The first of these basis function was selected as
the first linear mode of the beam and the second as its associated
dual (see definition/discussion in [3,5,12]) which exhibits only inplane
motions. Performing the identification of this model nonintrusively
from a Nastran finite element model using the approaches of [4,5]
led to stiffness parameters that were very robust with respect to the
identification details. Among these parameters, it was found that 𝐾

(3)
1122

was rather large and negative [12]. However, from Eqs. (6b) and (7)
this parameter should equal 𝐾 (3)

1122+2𝐾
(3)
1212 where 𝐾 (3)

1212 must be positive
(it is a diagonal term of 𝑲𝐵) and 𝐾 (3)

1122 should be positive according to
Eq. (21). Interestingly, the parameter 𝐾

(3)
1122 identified using the finite

element formulation of [13] is positive.
This example clearly demonstrates that there may be an inconsis-

tency between the expressions of Eqs. (6), (7), (18)–(21) and the ROM
parameters identified from the finite element software that may affect
the positive definiteness of 𝑲𝐵 but can also have significant implica-
tions regarding the accuracy of the ROM. For example, shown in Fig. 2
are the modal force along mode 1 vs. tip displacement predictions from
Nastran and two identified ROMs for the cantilevered beam subjected
to a uniform transverse load along its span. The Nastran nonlinear static
predictions (from SOL 106) show an almost perfectly linear relation.
However, the ROM identified from this software, with the negative
𝐾

(3)
1122 exhibits an unphysical behavior: there exists a peak of the force at

a certain displacement level and thus, for sufficiently large load down,
the tip of the beam is predicted to move up! This situation does not
happen with the nonlinear finite element code Bobtran implementing
the formulation of [13] and for which 𝐾

(3)
1122 is slightly positive. Those

prediction lead to a slight stiffening of the beam in the load range
considered.

5. Resolution of the challenges

5.1. Overall perspective

The two challenges (I) and (II) above were addressed jointly as
follows.

(a) Stiffness parameters for which the ‘‘inversion’’ of Eqs. (6a), (6b),
(7), and (19) could not be accomplished uniquely were opti-
mized to render the matrix 𝑲𝐵 as positive definite as possible.

(b) If the resulting matrix 𝑲𝐵 was not positive definite, its ‘‘least
important’’ elements were modified as little as possible to make
it positive definite. After the matrix 𝑲𝐵 has been modified, the
modified mean model predictions were determined and com-
pared with the ones resulting from the originally identified
parameters. The modified matrix 𝑲𝐵 was accepted if the differ-
ence in predictions was found small enough. The introduction of
uncertainty then followed as in Eqs. (14)–(16) and Fig. 1.
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Fig. 2. Modal force along mode 1 vs. tip transverse displacement for a flat cantilevered
beam. Results from Nastran nonlinear static (SOL 106), the ROM identified from the
Nastran model (‘‘ROM(Nastran)’’) and from the Air Force code Bobtran (‘‘ROM(AF
FEM)’’) implementing [13].

(c) If the predictions obtained from the modified mean model dif-
fered too significantly from those obtained with the originally
identified parameters, a modified simulation approach was de-
fined that relies on the 𝑲𝐵 matrix resulting from step (a) above.

5.2. Optimized decomposition

The first step, (a), of the above process focused on the extraction of
the parameters 𝐾̂ (2)

𝑖𝑗𝑙 and 𝐾 (3)
𝑖𝑗𝑙𝑝 from the identified ones 𝐾

(2)
𝑖𝑗𝑙 and 𝐾

(3)
𝑖𝑗𝑙𝑝 as

to render the matrix 𝑲𝐵 as positive definite as possible.
Consider first the parameters for which all indices are equal, i.e.,

𝐾̂ (2)
𝑖𝑖𝑖 and 𝐾 (3)

𝑖𝑖𝑖𝑖 . For these, no indeterminacy exists and

𝐾̂ (2)
𝑖𝑖𝑖 = 2

3
𝐾

(2)
𝑖𝑖𝑖 and 𝐾 (3)

𝑖𝑖𝑖𝑖 = 𝐾
(3)
𝑖𝑖𝑖𝑖. (25)

For coefficients depending on two mode indices i and j > i, the inde-
terminacy exists as there are 4 new quadratic coefficients, 𝐾̂ (2)

𝑖𝑗𝑗 , 𝐾̂
(2)
𝑖𝑖𝑗 ,

𝐾̂ (2)
𝑗𝑖𝑗 , 𝐾̂ (2)

𝑗𝑖𝑖 , and 4 new cubic ones, 𝐾 (3)
𝑖𝑖𝑖𝑗 , 𝐾 (3)

𝑖𝑖𝑗𝑗 , 𝐾 (3)
𝑖𝑗𝑖𝑗 , 𝐾 (3)

𝑖𝑗𝑗𝑗 , considering
the symmetry of Eq. (7) as well as the property 𝐾̂ (2)

𝑖𝑗𝑙 = 𝐾̂ (2)
𝑖𝑙𝑗 resulting

from Eq. (19). There are however only 5 independent equations relating
them:

𝐾
(2)
𝑖𝑖𝑗 = 2𝐾̂ (2)

𝑖𝑖𝑗 + 𝐾̂ (2)
𝑗𝑖𝑖 and 𝐾

(2)
𝑖𝑗𝑗 =

1
2
𝐾̂ (2)

𝑖𝑗𝑗 + 𝐾̂ (2)
𝑗𝑖𝑗

𝐾
(3)
𝑖𝑖𝑖𝑗 = 3𝐾 (3)

𝑖𝑖𝑖𝑗 𝐾
(3)
𝑖𝑖𝑗𝑗 = 𝐾 (3)

𝑖𝑖𝑗𝑗 + 2𝐾 (3)
𝑖𝑗𝑖𝑗 and 𝐾

(3)
𝑖𝑗𝑗𝑗 = 𝐾 (3)

𝑖𝑗𝑗𝑗 . (26)

To resolve the indeterminacy, it is desired that the matrix 𝑲𝐵 be made
as positive definite as possible given the constraints of Eqs. (26). Since
the split of say 𝐾

(2)
𝑖𝑖𝑗 into 𝐾̂ (2)

𝑖𝑖𝑗 and 𝐾̂ (2)
𝑗𝑖𝑖 should not be dependent on

the coefficients of other modes than i and j, it is more specifically
imposed that the unknown coefficients maximize the lowest eigenvalue of
𝑲

(2)
𝐵,𝑖𝑗 which is the 6 × 6 𝑲𝐵 matrix built using the coefficients relevant

to modes i and j only. This optimization is performed for all distinct
combinations of i and j > i modes which then leads to all parameters
𝐾̂ (2)

𝑖𝑗𝑙 and 𝐾 (3)
𝑖𝑗𝑙𝑝 with 2 different indices.

For the coefficients involving 3 different indices, i, j > i and k > j,
a similar effort is carried out: 3 new quadratic coefficients related by 1
independent equation, and 2 new cubic ones related by 1 independent
equation and the indeterminacy is resolved by maximizing the lowest
eigenvalue of 𝑲

(3)
𝐵,𝑖𝑗𝑘 which is the 12 × 12 𝑲𝐵 matrix built using

the coefficients relevant to modes i, j, and k only. This effort is then
repeated for all distinct combinations of k > j > i modes which then
leads to all parameters 𝐾̂ (2)

𝑖𝑗𝑙 and 𝐾 (3)
𝑖𝑗𝑙𝑝 with 3 different indices.

It remains to address the determination of the parameters 𝐾 (3)
𝑖𝑗𝑙𝑝 with

all 4 indices different. For each set of the 4 indices, there are only 3
such distinct parameters taking into account Eq. (7), i.e., 𝐾 (3)

𝑖𝑗𝑙𝑝, 𝐾
(3)
𝑖𝑙𝑗𝑝,

𝐾 (3)
𝑖𝑝𝑗𝑙 assuming p > l > j > i but only 1 independent equation

𝐾
(3)
𝑖𝑗𝑙𝑝 = 2𝐾 (3)

𝑖𝑗𝑙𝑝 + 2𝐾 (3)
𝑖𝑙𝑗𝑝 + 2𝐾 (3)

𝑖𝑝𝑗𝑙 . (27)

As before, the indeterminacy is resolved by maximizing the lowest
eigenvalue of 𝑲

(4)
𝐵,𝑖𝑗𝑙𝑝 which is the 20 × 20 𝑲𝐵 matrix built using the

coefficients relevant to modes i, j, l and p only. This effort is then
repeated for all distinct combinations of p > l > j > i modes to yield
the remaining cubic parameters 𝐾 (3)

𝑖𝑗𝑙𝑝.

5.3. Rendering 𝑲𝐵 positive definite

After the series of optimization efforts carried out in the previous
section, the resulting matrix 𝑲𝐵 may be positive definite in which case
the uncertainty modeling can proceed as in Eqs. (14)–(16) and Fig. 1. If
this matrix is not positive definite, it will be modified in this second step
to become positive definite. This modification will be accomplished:
(a) without affecting the part of 𝑲𝐵 that is positive definite, e.g., the
linear stiffness matrix 𝑲 (1), and
(b) inducing the smallest changes possible to this matrix.
The task (a) has been achieved iteratively by constructing the biggest
block of the original matrix 𝑲𝐵 that is positive definite. This block is at
least of size N since the linear stiffness matrix 𝑲 (1) is positive definite.
Accordingly, the top left block of 𝑲𝐵 of size N + 1 is first considered
and it is checked for positive definiteness (e.g., by constructing its
Cholesky decomposition). If it is positive definite, the algorithm moves
to the top left block of size N + 2 and the process is repeated.

Otherwise, a permutation of the rows and columns N + 1 and N + 2
is performed. If the top left block of size N + 1 is now positive definite,
the algorithm accepts the permutation and moves forward to the top
left block of size N + 2. On the contrary, the permutation between
rows N + 1 and N + 2 is reversed and a permutation of rows N + 1
and N + 3 is performed followed by a positive definiteness check. This
process concludes when no permutation of rows and columns achieves
an increase in the size of the top left block of 𝑲𝐵 which is positive
definite.

At that point, the matrix 𝑲𝐵 has been transformed in a symmetric
matrix 𝑲̃𝐵 which has the form

𝑲̃𝐵 =

[

𝑲11 𝑲12

𝑲𝑇
12 𝑲22

]

(28)

where 𝑲11 is positive definite and of size 𝑁𝑝×𝑁𝑝, 𝑲12 is of size 𝑁𝑝×𝑁𝑟,
and 𝑲22 is of size 𝑁𝑟×𝑁𝑟 where 𝑁𝑟 = 𝑁2 +𝑁 −𝑁𝑝.

The task (b) above then proceeds with replacing the matrix 𝑲̃𝐵 by

𝑲̂𝐵 =

[

𝑲11 𝑲12

𝑲𝑇
12 𝑲22

]

+
[

0 ∆1
∆𝑇

1 ∆2

]

= 𝑲̃𝐵 +∆ (29)

where the matrix ∆ will be selected to have the minimum Frobenius
norm under the constraint that 𝑲̂𝐵 is at least positive semidefinite.
The solution of this nonlinear optimization problem will be obtained
iteratively through a sequence of linear optimization problems in which
the positive definiteness constraint is enforced linearly. To this end,
note that a symmetric perturbation δA of a symmetric matrix A leads
to a first order perturbation of any of its non repeated eigenvalues 𝜆
by [14]

𝛿𝜆 = ψ𝑇 δ𝑨ψ (30)
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Fig. 3. Cantilevered straight beam with uniform loading.

where ψ is the normalized, ψ𝑇ψ = 1, eigenvector of A corresponding
to the eigenvalue 𝜆. Then, assuming that ∆ is small enough for Eq. (30)
to apply, the eigenvalues 𝜆̂𝑖 of 𝑲̂𝐵 can be expressed as

𝜆̂𝑖 = 𝜆̃𝑖 + ψ̃𝑇
𝑖 ∆ ψ̃𝑖 (31)

where 𝜆̃𝑖 and ψ̃𝑖 are the eigenvalues and corresponding normalized
eigenvectors of 𝑲̃𝐵 . Then, the positive semidefinite requirement can
be approximately written as

ψ̃𝑇
𝑖 ∆ ψ̃𝑖 ≥ −𝜆̃𝑖 for all 𝑖 such that 𝜆̃𝑖 ≤ 0. (32)

Adopting these linearized constraints, the determination of ∆ can be
rewritten as the minimization of

‖∆‖

2
𝐹 − 2

∑

𝜆̃𝑖<0

𝜇𝑖
[

ψ̃𝑇
𝑖 ∆ ψ̃𝑖 + 𝜆̃𝑖

]

(33)

where ‖⋅‖𝐹 denotes the Frobenius norm and 𝜇𝑖 are the Lagrange
multiplier associated to the equality constraints of Eq. (32).

Differentiating the objective function of Eq. (33) yields the linear
system of equations

∆1 =
∑

𝜆̃𝑖<0

𝜇𝑖 ψ̃
(1)
𝑖

[

ψ̃(2)
𝑖

]𝑇
(34)

and

∆2 =
∑

𝜆̃𝑖<0

𝜇𝑖 ψ̃
(2)
𝑖

[

ψ̃(2)
𝑖

]𝑇
(35)

where the eigenvectors ψ̃𝑖 are partitioned into vectors ψ̃(1)
𝑖 and ψ̃(2)

𝑖 of

𝑁𝑝 and 𝑁𝑟 components, respectively. That is, ψ̃𝑇
𝑖 =

[

[

ψ̃(1)
𝑖

]𝑇 [

ψ̃(2)
𝑖

]𝑇
]

.
Finally, the constraints of Eq. (32) yield
∑

𝜆̃𝑟<0

(

2𝑎𝑟𝑖 𝑏𝑟𝑖 + 𝑏2𝑟𝑖
)

𝜇𝑟 = −𝜆̃𝑖 with 𝑎𝑟𝑠 =
[

ψ̃(1)
𝑟
]𝑇
ψ̃(1)

𝑠 and 𝑏𝑟𝑠 =
[

ψ̃(2)
𝑟
]𝑇
ψ̃(2)

𝑠

(36)

Solving the linear system of Eqs. (36) yields the values of the Lagrange
multipliers 𝜇𝑖 which can then be reintroduced in Eqs. (34) and (35) to
yield the unknown partitions ∆1 and ∆2 of ∆.

The resulting matrix 𝑲̂𝐵 will then in general not be positive definite
but the process can be repeated with a new 𝑲̃𝐵 = 𝑲̂𝐵 until a matrix
𝑲̂𝐵 positive definite/semidefinite is finally obtained. At that point,
the rows/columns permutations performed to obtain the largest block
positive definite are reversed leading to a matrix 𝑲 ′

𝐵 which is positive
definite and thus could serve as the basis for the uncertainty modeling
according to Eqs. (14)–(16) and Fig. 1.

It remains however to assess if rendering the matrix positive definite
has changed ‘‘significantly’’ the mean model to the point that the
uncertainty analysis may not be relevant to the original mean model.
To this end, the quadratic and cubic stiffness coefficients 𝐾̂ ′(2)

𝑖𝑗𝑙 and
𝐾 ′(3)

𝑖𝑗𝑙𝑝 are extracted from 𝑲 ′
𝐵 and used, with the linear coefficients 𝐾 (1)

𝑖𝑗 ,
which have not been modified by the modification of the matrix 𝑲̃𝐵 , to
compute a set of representative responses of this modified mean model.
These responses can then be compared with those from the identified
model to assess whether the matrix 𝑲 ′

𝐵 is appropriate to carry out the
uncertainty analysis.

5.4. 𝑲𝐵 cannot be made positive definite without affecting the model

For most of the structural models investigated so far, see the ap-
plication section for details, the procedure described in the previous
section yielded a matrix 𝑲 ′

𝐵 that closely represents the originally
identified mean model and thus can be used to carry out the uncertainty
analysis. When this is not the case, however, it is proposed here to
modify the modeling approach of Eqs. (14) and (15) using a 𝐿𝐷𝐿𝑇

decomposition [15] in place of the Cholesky one so that it can be
applied to the matrix 𝑲𝐵 resulting from the optimized decomposition.
Specifically, this matrix is first rewritten as

𝑲𝐵 = 𝑳𝑲 𝑫 𝑳
𝑻
𝑲 (37)

then, the uncertain matrices are obtained as

𝑲𝐵 = 𝑳𝑲 𝑯 𝑫𝑯𝑇𝑳
𝑇
𝑲 (38)

where H is the same matrix as in Eq. (14) and Fig. 1. Note in Eq. (37)
that the diagonal matrix D will be selected to only carry a sign, i.e., its
elements are either +1 or −1 only.

5.5. Uncertainty modeling of the largest positive block only

An alternative to the modifications of Sections 5.3 and 5.4 is to
proceed with the modeling of uncertainty only on the largest part
of the model that is consistent with the theory of Eqs. (18)–(24)
leaving the rest of it equal to the mean model. That is, uncertainty is
introduced on the positive definite block 𝑲11 of Eq. (28) while leaving
the corresponding matrices 𝑲12 and 𝑲22 unchanged, equal to their

Fig. 4. Static displacement of the cantilevered straight beam tip under a uniform loading. (a) Transverse and (b) inplane displacements (percent of span) vs. load. Mean and
uncertain models.
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Fig. 5. Cantilevered curved beam with uniform loading.

values resulting for example from the optimization of Eqs. (29)–(36)
or as the initial conditions of this process. When the eigenvalues of
the matrices 𝑲̃𝐵 and 𝑲̂𝐵 differ from those of 𝑲11 only mostly by the
addition of small, positive or negative, eigenvalues, this process could
be viewed as similar to the approach of [9] in focusing the uncertainty
on the dominant component of the model only.

6. Applications

The above developments were applied to a series of structures
for which mean NLROM were obtained in prior investigations. While
all of these applications focus on static responses, uncertain dynamic
responses could be computed with the same set of uncertain stiffness
coefficients as those used for the static problems.

The first example considered is the cantilevered straight beam of
Fig. 3 discussed earlier, see Fig. 2, in the context of the positive defi-
niteness of 𝑲𝐵 and the existence of inconsistencies between the stiffness
coefficients obtained from commercial finite element software (Nastran
here) and Eqs. (18)–(21). The mean model selected here includes 8
basis functions — the first 4 linear modes and 4 duals as constructed
in [16]. The matrix 𝑲𝐵 obtained after the optimized decomposition

was not positive definite. The application of the procedure of Eqs.
(28)–(36) did render it positive definite and the predictions obtained
from that modified mean model were found to be very close to those
from the originally identified model. The uncertainty analysis was then
performed using Eqs. (14) and (15) with an overall uncertainty level
selected to be 𝛿 = 0.30 and shown in Fig. 4 are the transverse and
inplane displacements at the tip vs. load level for the mean model as
well as 5th–95th percentile uncertainty band.

The process was next repeated with the curved cantilevered beam
of Fig. 5 the response of which was modeled using 9 basis functions
— the first 3 linear modes and 6 duals. As for the straight cantilevered
beam, the matrix 𝑲𝐵 obtained after the optimized decomposition was
not positive definite. Again, the application of the procedure of Eqs.
(28)–(36) did render it positive definite and the predictions obtained
from that modified mean model were found to be very close to those
from the originally identified model. The uncertainty analysis was
then performed using Eqs. (14) and (15) with an overall uncertainty
level selected to be 𝛿 = 0.15 and shown in Fig. 6 are the transverse
(vertical) and inplane (horizontal) displacements at the tip vs. load
level for the mean model as well as 5th–95th percentile uncertainty
band. Comparing these results with those of Fig. 4, it is concluded that
the response of the curved beam is much less sensitive to uncertainty
than its straight counterpart.

The above process was also repeated for the orthogrid panel of
Fig. 7 [17] modeled using 17 basis functions — the first 8 linear
modes and 9 duals. The uncertainty analysis was carried out as for the
two previous examples with a value 𝛿 = 0.31. Then, shown in Fig. 8
are the displacements at a quarter point along the three directions for
the mean and uncertain models. It is interesting to observe that the
inplane displacements are much more sensitive to the uncertainty than
the transverse ones.

The application of the above concepts was also performed on the
clamped-clamped curved beam of Fig. 9 in a range of displacements

Fig. 6. Static displacement of the cantilevered curved beam tip under uniform loading. (a) Transverse and (b) inplane displacements (percent of span) vs. load. Mean and uncertain
models.

Fig. 7. Orthogrid panel considered in [16] (a) Perspective view and (b) cross-section.
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Fig. 8. Static displacement of the orthogrid panel under a uniform loading. (a) Inplane x, (b) inplane y, and (c) transverse z displacements at a quarter point divided by the panel
thickness vs. load. Mean and uncertain models.

Fig. 9. Clamped-clamped curved beam with uniform loading.

that includes its snap-through. Proceeding as before, the matrix 𝑲𝐵
obtained after the optimized decomposition was not positive definite
but the application of the procedure of Eqs. (28)–(36) did render it
positive definite. However, the predictions obtained from that modified
mean model were found to be too different from those from the
originally identified model, in particular that modified model did not
snap through as predicted by either the original NLROM or the finite
element model. In this light, the revised uncertainty modeling of Eqs.
(37) and (38) was applied with 𝛿 = 0.026. Then, shown in Fig. 10 are the
transverse (vertical) and inplane (horizontal) displacements at a beam
quarter point vs. load level for the mean model as well as 5th–95th
percentile uncertainty band. As already observed in connection with
the two previous examples, the inplane response of the curved beam

Fig. 10. Static displacement of the clamped-clamped curved beam under a uniform loading. (a) Transverse and (b) inplane displacements (in percent of span) of a beam quarter
point vs. load. Mean and uncertain models.
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Fig. 11. Static displacement of the clamped-clamped curved beam under a uniform loading. (a) Transverse and (b) inplane displacements (in percent of span) of a beam quarter
point vs. load. Mean and uncertain models, approach of Section 5.5.

Fig. 12. Static displacement of the orthogrid panel under a uniform loading. (a) Inplane x, (b) inplane y, and (c) transverse z displacements at a quarter point divided by the
panel thickness vs. load. Mean and uncertain models, approach of Section 5.5.

appears more sensitive to uncertainty than its transverse counterpart.
Note as well the large increase in the uncertainty band post snap
through, in both directions, with much smaller variations of the snap
through load which are nevertheless much larger than the variability
of the response prior to snap through.

The above results were all obtained using the modifications of
Sections 5.3 and 5.4 but an assessment of the approach of Section 5.5,
i.e., the uncertainty modeling of the matrix 𝑲11 of Eq. (28), was also
performed for the clamped-clamped curved beam of Fig. 9, see Fig. 11
with the same value of 𝛿 = 0.026 as in Fig. 10. The strong similarity
of the uncertainty bands shown in Figs. 10 and 11 suggests that the

introduction of uncertainty on the largest positive definite block 𝑲11 is
an appropriate strategy that is additionally simpler. Another validation
was performed on the orthogrid panel of Fig. 7, see Fig. 12 for the
results corresponding to 𝛿 = 0.28. While the uncertainty band is visibly
wider than in Fig. 8, it exhibits the same features again supporting the
applicability of the approach of Section 5.5.

7. Summary

The focus of the present investigation was on resolving two key chal-
lenges encountered in the introduction of uncertainty in reduced order
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models of the nonlinear geometric response following an approach
proposed earlier by the authors. The first of these challenges was the
indeterminacy of the mapping of the nonlinear stiffness coefficients
identified from the finite element model, 𝐾

(2)
𝑖𝑗𝑙 and 𝐾

(3)
𝑖𝑗𝑙𝑝, to those

suitable for the uncertainty analysis, i.e., 𝐾̂ (2)
𝑚𝑛𝑝 and 𝐾 (3)

𝑖𝑗𝑙𝑝, see Eqs. (6),

(7), and (19). The second challenge was that the matrix 𝑲𝐵 constructed
with these coefficients (and the linear stiffness ones) is not positive
definite as showed in the original paper because of differences in non-
linear finite element modeling between the commercial software and
the theoretical developments. These challenges were jointly addressed.
First, the indeterminacy was resolved by selecting the coefficients to
maximize 𝑲𝐵 while satisfying the constraints of Eqs. (6), (7), and (19).
In general, the resulting matrix 𝑲𝐵 was found not positive definite but
a strategy was devised to modify it in a minimal manner to achieve
this property. In most of the cases investigated, this modification did
not significantly change the predictions of the mean response and thus
the uncertainty modeling could proceed from it. In one example, a
clamped-clamped curved beam undergoing snap throughs, the changes
of mean were large enough. For such situations, a modification of
the uncertainty modeling was proposed that handles the non positive
definite matrix 𝑲𝐵 with a LDLT decomposition vs. a Cholesky one. A
final alternative to the above modifications was also proposed in which
the uncertainty is only introduced on the largest block of the 𝑲𝐵 that
is positive definite.

The above methods were applied to 4 different structural models
of various complexity and the uncertain response to static loading was
determined. These efforts first demonstrated the broad applicability of
the above methodology but they also suggested that strong nonlinear
features of the response, such as inplane displacements due to trans-
verse loading and post-snap through behavior, are particularly sensitive
to uncertainty.
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The focus of the present investigation is on the introduction of uncertainty directly in reduced 
order models of the nonlinear geometric response of structures following maximum entropy 
concepts.  While the approach was formulated and preliminary validated in an earlier paper, its 
broad application to a variety of structures based on their finite element models from 
commercial software was impeded by two key challenges.  The first of these involves an 
indeterminacy in the mapping of the nonlinear stiffness coefficients identified from the finite 
element model to those of the reduced order model form that is suitable for the uncertainty 
analysis.  The second challenge is that a key matrix in the uncertainty modeling was expected to 
be positive definite but was numerically observed not to be.  This latter issue is shown here to be 
rooted in differences in nonlinear finite element modeling between the commercial software and 
the theoretical developments.  Both of these challenges are successfully resolved and 
applications examples are presented that confirm the broad applicability of the methodology. 

Keywords: Uncertainty modeling, maximum entropy, uncertain structure, nonlinear geometric 
structural response, reduced order modeling. 

 

1 Introduction 

Over the last two decades, maximum entropy 
concepts have been broadly and very 
successfully used to model uncertainties in 
structures directly at the level of reduced order 
models (ROMs) constructed from the finite 
element model of the mean structure, see 
Soize (2016, 2017) for reviews.  In addition to 
its capability to account for some epistemic 
uncertainty, this approach is computationally 
much more expedient than its alternative, 
which is to first introduce uncertainty in the 
finite element model then construct a ROM 
for each sample of the random structure.  The 
computational saving is particularly 

significant for large size linear finite element 
models but also for nonlinear geometric 
problems where the ROMs include a large 
number of linear, quadratic, and cubic 
stiffness coefficients, see Mignolet et al. 
(2013) for an overview.  These coefficients 
must either be identified from a standard (e.g., 
commercial) finite element model using 
nonintrusive techniques (Mignolet et al. 2013, 
Muravyov and Rizzi 2003, Perez et al. 2014)  
or computed using a dedicated finite element 
formulation (Capiez-Lernout et al. 2012, 
2014,  Capiez-Lernout and Soize  2015, 2017) 
based on the reduced order modeling results 
of Mignolet and Soize (2008)].  The latter of 
these two approaches lends itself naturally to 
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the introduction of uncertainty at the ROM 
level using the maximum entropy concepts as 
originally discussed in Mignolet and Soize 
(2008).  The application of this strategy to the 
ROMs identified nonintrusively (Mignolet et 
al. 2013, Muravyov and Rizzi 2003, Perez et 
al. 2014) from a commercial finite element 
code has been exemplified in Mignolet and 
Soize (2008) on a simple flat beam structure.  
More complex applications of this approach 
have been impeded by two key challenges, of 
decomposition and non-positive definiteness, 
in transforming the identified ROM into one 
that is suitable for the uncertainty analysis.  
The focus of the present investigation is on 
efficiently resolving these two challenges and 
applying them to a representative set of 
structures in the nonlinear geometric regimes. 
 
2  Reduced Order Models of 

Nonlinear Geometric Structural 
Response 

The reduced order models considered in the 
present study are based on a representation of 
the nonlinear geometric response of the 
structure in the form 

             ( )

1

M
n

n
n

t q t


 u U                 (1) 

where  tu denotes the vector of 
displacements of the finite element degrees of 
freedom, ( )nU  are basis functions (modes) of 
the ROM specified in the spatial domain of 
the finite element mesh, and  nq t  are the 
time dependent generalized coordinates. 

To obtaining a set of nonlinear ordinary 
differential equations for the generalized 
coordinates  nq t , it is convenient to 
consider the continuum equivalent of Eq. (1), 
i.e., 

													      ( )

1
,

M
n

i n i
n

u t q t U


 X X          (2) 

for i = 1, 2, 3, where X denotes an arbitrary 
point of the structure in its undeformed 

configuration.  Then, introducing Eq. (2) in 
the equations of finite deformations elasticity 
and proceeding with a Galerkin approach 
provides the desired equations.  This process 
was accomplished in Mignolet and Soize 
(2008) considering a Kirchhoff-Saint Venant 
type material in which the second Piola-
Kirchhoff stress tensor S  is linearly related to 
the Green strain tensor E by 
                   ij ijkl klS C E               (3) 
where C denotes the deformation independent 
4th order elasticity tensor.  Under this material 
assumption, it was shown in Mignolet and 
Soize (2008) that the generalized coordinates 

 nq t  satisfy the equations 

  
(1)

(2) (3)

ij j ij j jij

j l j l p iijl ijlp

M q D q K q

K q q K q q q F

 

  

 
     (4) 

where summation over repeated indices is 
implied.  In the above equation, ijM  denote 

the elements of the mass matrix, (1)
ijK , (2)

ijlK , 
(3)
ijlpK  are the linear, quadratic, and cubic 

stiffness coefficients and iF  are the modal 
forces.  Note that a damping matrix D was 
also introduced in Eq. (4) to model 
dissipation. 

Note in Eq. (4) that a series of terms 
involve the same monomials of the 
generalized coordinates, e.g. (2)

ijlK  and (2)
iljK , 

and thus these terms may naturally be 
regrouped leading to  

 
(1)

(2) (3)

ij j ij j jij

j l j l p iijl ijlp

M q D q K q

K q q K q q q F

 

  

 
  (5) 

which is very similar to Eq. (4) except that 
there is no repetition in the monomials 
because (2)

ijlK  and (3)
ijlpK  are nonzero only for j 

 l and j  l  p.  Then, comparing Eqs (4) and 
(5) yields 
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(2) (2)

(2) (2)
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            for  
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                                                                    (6) 
As discussed in Mignolet and Soize (2008), 
the symmetry properties of the elasticity 
tensor also imply that  
     (3) (3) (3) (3)

mnlp nmlp mnpl lpmnK K K K   .      (7) 

While Eqs (4) and (5) were derived based on 
the continuum representation of Eq. (2), they 
are assumed here to be valid as well for a 
discrete, finite element model.  In fact, the 
identification of the coefficients (2)

ijlK  and 
(3)
ijlpK   from nonintrusive outputs of 

commercial finite element software (e.g., 
Nastran) has been studied and can be achieved 
in different ways, see discussions in (Mignolet 
et al. 2013, Muravyov and Rizzi 2003, Perez 
et al. 2014), given the basis functions ( )nU .  
The selection of these vectors is discussed in 
details in (Capiez-Lernout et al. 2012,   
Capiez-Lernout and Soize  2015, 2017)  and 
references therein and is not repeated here for 
brevity. 
 
3 Maximum Entropy Uncertainty 

Modeling at the ROM Level  

The modeling of uncertainty at a ROM level 
has been developed, see Soize (2012, 2017), 
as a constrained optimization problem in 
which the entropy of the random parameters 
of the ROM is maximized under constraints 
which correspond to (i) physical requirements 
that these parameters must satisfy and (ii) 

conditions imposed by the user.  To exemplify 
this strategy, consider the important case in 
which the ROM involves one or multiple 
positive definite symmetric matrices as occurs 
for example in linear structural dynamics.  Let 
A be that random matrix and denote by 

 Ap a  its probability density function which 

is defined over the domain of support   such 
that A is positive definite and symmetric.  
Then, the entropy is 

           lnA AS p a p a da


       (8) 

In addition to the physical requirements of 
symmetry and positive definiteness, it is also 
required that the total probability equal 1 and 
that the mean of A, denoted as Α  is known, 
that is, 

  1Ap a da


   Aa p a da A


 			(9), (10) 

and moreover that 

        ln det finiteAa p a da


        (11) 

which guaranties that the inverse matrix 1A  
of A, which exists almost surely, is a second-
order random variable (mean-square 
integrable). 

The probability density function  Ap a  
maximizing S given the constraints symmetry 
and of Eqs (9)-(11) can be derived by calculus 
of variation and is found to be 

     0 1det exp tr T
Ap a C a a

          
  (12) 

where C  is the appropriate constant to satisfy 
the normalization condition, Eq. (9) and and 

0  are the Lagrange multipliers associated 
with the constraints of Eqs (10) and (11), 
respectively.  After a change of random 
variables, it is found that the matrices A of 
joint probability density function  Ap a , Eq. 
(12), can be generated as 
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                 T TA L H H L         (13) 
where L  is any decomposition, e.g., 
Cholesky, of A , i.e.,  
                       TA L L .          (14) 
Moreover, H is a lower triangular matrix such 
that (see also Fig. 1) 
(1) all of its non-zero elements ilH  are 

independent random variables, 
(2) its off-diagonal elements ilH , i l , are 

normally distributed (Gaussian) random 
variables with standard deviation 

1/ 2   , and 
(3) its diagonal elements iiH  are obtained as 

/ii iiH Y   where iiY  is Gamma 

distributed with parameter   1 / 2p i   
where 
  02 1p i n i     	  02 1 / 2n     (15) 

In the above equations, n is the size of the 
matrices and the parameter 0 > 0 is the free 
parameter of the statistical distribution of the 
random matrices A.  An alternative 
parametrization is through the dispersion 
parameter   defined as 

            2

0

1
2 1
n

n


 

  
.          (16) 

As stated above, a key component of the 
maximum entropy formulation is the 
satisfaction of the physical constraints that the 
ROM parameters must satisfy.  While this 
issue is well understood for the stiffness 
matrix of linear structural dynamics, it is not 
as obvious for the combination of linear, 
quadratic, and cubic stiffness coefficients of 
the ROM of Eq. (4).  The derivation of such a 
condition was achieved in Mignolet and Soize 
(2008) based on integral expressions off the 
stiffness coefficients of Eq. (4) obtained as a 
by-product of the derivation of this governing 
equation.  Specifically, it was found that 

      
0

( )( )
(1)

nm
i l

mn iklp
k p

UU
K C d

X X





  X 	   (17) 

  
Figure 1. Structure of the random H matrices with 

n = 8, i =2, and 0 =1 and 10. 

									 (2) (2) (2) (2)1 ˆ ˆ ˆ
2mnp mnp pmn npmK K K K        (18) 

where     

0

( ) ( ) ( )
(2)ˆ

m n p
i r r

mnp ijkl
j k l

U U U
K C d

X X X


  


   X  (19) 

and 

0

( ) ( ) ( ) ( )
(3) 1

2

m s n p
i i r r

msnp jklw
j k l w

U U U U
K C d

X X X X


   


    X  

                                                                    (20) 
In these equations, 0  denotes the domain of 
the structure in the undeformed configuration, 

0X . 
Next, a reshaping was first performed to 

transforms the MxMxM third order tensor 
K̂ (2)  into a MxM 2 rectangular array K (2)  
and the MxMxMxM fourth order tensor K (3)  
into a M 2xM 2 square matrix K (3) .  These 
operations are achieved as follows: 
   (2) (2)ˆ

mnpmJK K       with       J=(n-1)M+p (21) 
(3) (3)

msnpIJK K ; I=(m-1)M+s J=(n-1)M+p  (22) 
With these operations, it was shown that the 
matrix BK  defined as 

         
(1) (2)

(2) (3)2
B T

 
 
  

K K
K

K K



 
       (23) 

is positive definite. 
Having established the above property, it 

seems that the modeling of uncertainty of the 

DISTRIBUTION A: Distribution approved for public release.



Proceedings of the Eighth Conference on Computational Stochastic Mechanics 
 

5 

 

ROM level for nonlinear geometric structure 
is now well defined.  Specifically, (Mignolet 
and Soize, 2008), 
(1) from a finite element model of the 

structure, identify the parameters (1)
ijK ,	 

(2)
ijlK  and (3)

ijlpK  

(2) determine the coefficients (2)
ijlK  and (3)

ijlpK  

by “inverting” the Eqs (6) with Eq. (7) 
(3) determine the coefficients (2)ˆ

mnpK  from Eq. 
(18) 

(4) form the matrices K (2)  and K (3)  from 
Eqs (21) and (22), then BK  from Eq. (23) 

(5) set BA K  and follow Eqs (13)-(15) and 
Fig. 1 to generate random samples of the 
matrix  BA K  

(6) proceed with steps (4), (3), (2) and (1) in 
reverse with each sample of BK  to obtain 
realizations of the uncertain linear, 
quadratic, and cubic stiffnesses (1)

ijK ,	 (2)
ijlK  

and (3)
ijlpK  denoted as (1)

ijK


,	 (2)
ijlK


 and (3)
ijlpK


 

from which the sample of the uncertain 
response can be determined. 

 
4 The Challenges  

The process defined by steps (1)-(6) above 
seems well defined but after a closer 
inspection and trials, two key challenges were 
encountered: 
(I) the determination of the parameters (2)ˆ

mnpK  

and (3)
ijlpK  cannot be uniquely performed 

from Eqs (6),  (7), and (18) as there are 
more unknowns than equations. 

(II) when the above determination can be 
carried out, the resulting mean model 
matrix BK  may not be positive definite 

when the ROM parameters (1)
ijK ,  (2)

ijlK  

and (3)
ijlpK  are identified from some finite 

element codes, e.g., from Nastran. 
The positiveness of BK  stems (Mignolet 

and Soize, 2008) from the positiveness of the 
potential energy in the structure, it is thus an 
essential property and its violation may lead to 
unphysical behavior.  An example of this 
situation has been encountered with a flat 
cantilevered beam, see Wang et al. (2013). 
 
5 Resolution of the Challenges  

5.1    Overall perspective 
The two challenges (I) and (II) above were 
addressed jointly as follows. 
(a) Stiffness parameters for which the 

“inversion” of Eqs (6), (7), and (18) could 
not be accomplished uniquely were 
optimized to render the matrix BK  as 
positive definite as possible. 

(b) If the resulting matrix BK   is not positive 
definite, its “least important” elements were 
modified as little as possible to make it 
positive definite.  After the matrix BK  has 
been modified, the modified mean model 
predictions were determined and compared 
with the ones resulting from the originally 
identified parameters.  The modified matrix 

BK  was accepted if the difference in 
predictions was found small enough.  The 
introduction of uncertainty then followed as 
in Eqs (13)-(15) and Fig. 1. 

(c) If the predictions obtained from the 
modified mean model differed too 
significantly from those obtained with the 
originally identified parameters, a modified 
simulation approach was defined that relies 
on the BK  matrix resulting from step (a) 
above. 

 
5.2    Optimized decomposition 
The first step, (a), of the above process 
focused on the extraction of the parameters 
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(2)ˆ
ijlK  and (3)

ijlpK  from the identified ones (2)
ijlK  

and (3)
ijlpK  as to render the matrix BK  as 

positive definite as possible.  Consider first 
the parameters for which all indices are equal, 
i.e., (2)ˆ

iiiK  and (3)
iiiiK .  For these, no 

indeterminacy exists and 

   (2) (2)2ˆ
3iii iiiK K    and     (3) (3)

iiii iiiiK K .    (24) 

For coefficients depending on two mode 
indices i and j > i, the indeterminacy exists as 
there are 4 new quadratic coefficients, (2)ˆ

ijjK , 
(2)ˆ
iijK , (2)ˆ

jijK , (2)ˆ
jiiK , and 4 new cubic ones, 

(3)
iiijK , (3)

iijjK , (3)
ijijK , (3)

ijjjK ,  considering the 
symmetry of Eq. (7) as well as the property  

(2) (2)ˆ ˆ
ijl iljK K  resulting from Eq. (18).  There 

are however only 5 independent equations 
relating them: 

(2) (2) (2)ˆ ˆ2iij iij jiiK K K      (2) (2) (2)1 ˆ ˆ
2ijj ijj jijK K K  	

     (3) (3)3iiij iiijK K    (3) (3) (3)2iijj iijj ijijK K K     

  and                (3) (3)
ijjj ijjjK K .                      (25) 

To resolve the indeterminacy, it is desired 
that the matrix BK  be made as positive 
definite as possible given the constraints of 
Eqs (25).  Since the split of say (2)

iijK  into 
(2)ˆ
iijK  and (2)ˆ

jiiK  should not be dependent on 
the coefficients of other modes than i and j, it 
is more specifically imposed that the unknown 
coefficients maximize the lowest eigenvalue of 

(2)
,B ijK  which is the 66 BK  matrix built using 

the coefficients relevant to modes i and j only.  
This optimization is performed for all distinct 
combinations of i and j > i modes leading to 
all parameters (2)ˆ

ijlK  and (3)
ijlpK  with 2 different 

indices. 
For the coefficients involving 3 different 

indices, i,  j > i and k > j, a similar effort is 
carried out: 3 new quadratic coefficients 
related by 1 independent equation, and 2 new 
cubic ones related by 1 independent equation 
and the indeterminacy is resolved by 
maximizing the lowest eigenvalue of  (3)

,B ijkK  

which is the 1212 BK  matrix built using the 
coefficients relevant to modes i, j, and k only.  
This effort is then repeated for all distinct 
combinations of k > j > i modes which then 
leads to all parameters (2)ˆ

ijlK  and (3)
ijlpK  with 3 

different indices. 
It remains to address the determination of 

the parameters (3)
ijlpK  with all 4 indices 

different.  For each set of the 4 indices, there 
are only 3 such distinct parameters taking into 
account Eq. (7), i.e., (3)

ijlpK , (3)
iljpK , (3)

ipjlK  

assuming  p > l > j> i but only 1 independent 
equation 
     (3) (3) (3) (3)2 2 2ijlp ijlp iljp ipjlK K K K   .   (26) 

As before, the indeterminacy is resolved by 
maximizing the lowest eigenvalue of  (4)

,B ijlpK  

which is the 2020 BK  matrix built using the 
coefficients relevant to modes i, j, l and p 
only.  This effort is then repeated for all 
distinct combinations of p > l > j> i modes to 
yield the remaining cubic parameters (3)

ijlpK . 

 
 5.3    Rendering BK  positive definite 

After the series of optimization efforts carried 
out in the previous section, the resulting 
matrix BK  may be positive definite in which 
case the uncertainty modeling can proceed as 
in Eqs (13)-(15) and Fig. 1.  If this matrix is 
not positive definite, it will be modified in this 
second step to become positive definite. This 
modification will be accomplished: 
(a) without affecting the part of BK  that is 

positive definite, e.g., the linear stiffness 
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matrix (1)K , and 
(b) inducing the smallest changes possible to 

this matrix. 
The task (a) has been achieved iteratively 

by constructing the biggest block of the 
original matrix BK  that is positive definite.  
This block is at least of size N since the linear 
stiffness matrix (1)K  is positive definite.  
Accordingly, the top left block of BK  of size 
N+1 is first considered and it is checked for 
positive definiteness (e.g., by constructing its 
Cholesky decomposition).  If it is positive 
definite, the algorithm moves to the top left 
block of size N+2 and the process is repeated. 

Otherwise, a permutation of the rows and 
columns N+1 and N+2 is performed.  If the 
top left block of size N+1 is now positive 
definite, the algorithm accepts the permutation 
and moves forward to the top left block of size 
N+2.  On the contrary, the permutation 
between rows N+1 and N+2 is reversed and a 
permutation of rows N+1 and N+3 is 
performed followed by a positive definiteness 
check.  This process concludes when no 
permutation of rows and columns achieves an 
increase in the size of the top left block of 

BK  which is positive definite. 
At that point, the matrix BK  has been 

transformed in a symmetric matrix BK which 
has the form 

          11 12

12 22
B T

 
  
  

K K
K

K K
             (27) 

where 11K  is positive definite and of size pN

, 12K  is of size pN  rN , and 22K  is of size 

rN  rN  , 2
r pN N N N   . 

The task (b) above then proceeds with 
replacing the matrix BK  by 

11 12 1

12 22 1 2

ˆ
B BT T

   
      
      

K K
K K

K K

 


 
    (28) 

where the matrix  will be selected to have 
the minimum Frobenius norm under the 
constraint that ˆ

BK  is at least positive 
semidefinite.  The solution of this nonlinear 
optimization problem will be obtained 
iteratively through a sequence of linear 
optimization problems in which the positive 
definiteness constraint is enforced linearly.  
To this end, note that a symmetric 
perturbation A of a symmetric matrix A leads 
to a first order perturbation of any of its non 
repeated eigenvalues  by  
                T  A             (29) 

where   is the normalized, 1T   , 
eigenvector of A corresponding to the 
eigenvalue .  Then, assuming that  is small 
enough for Eq. (29) to apply, the positive 
semidefinite requirement can be 
approximately written as 
 T

i i i        for all i  such that 0i  . (30) 
Adopting these linearized constraints, the 
determination of  can be rewritten as the 
minimization of 
         2

0
2

i

T
i i i iF

 

        


        (31) 

where 
F

  denotes the Frobenius norm and 

i  are the Lagrange multiplier associated to 
the equality constraints of Eq. (30). 

Differentiating the objective function of 
Eq. (31) yields the linear system of equations 

              (1) (2)
1

0i

T

i i i
 

      


           (32) 

               (2) (2)
2

0i

T

i i i
 

      


          (33) 

where the eigenvectors i  are partitioned into 

vectors (1)
i  and (2)

i  of pN  and rN  
components, respectively.  That is, 
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(1) (2)T TT
i i i

          
     .  Finally, the 

constraints of Eq. (30) yield 
             2

0
2

r

ri ri ri r ia b b
 

   


         (34) 

with 

    (1) (1)T
rs r sa            (2) (2)T

rs r sb        

Solving the linear system of equations (34) 
yields the values of the Lagrange multipliers 

i  which can then be reintroduced in Eq. (32) 
and (33) to yield the unknown partitions 1  
and 2  of . 

The resulting matrix ˆ
BK  will then in 

general not be positive definite but the process 
can be repeated with a new BK = ˆ

BK  until a 

matrix ˆ
BK  positive definite/semidefinite is 

finally obtained.  At that point, the 
rows/columns permutations performed to 
obtain the largest block positive definite are 
reversed leading to a matrix BK  which is 
positive definite and thus could serve as the 
basis for the uncertainty modeling according 
to Eqs (13)-(15) and Fig. 1. 

It remains however to assess if rendering 
the matrix positive definite has changed 
“significantly” the mean model to the point 
that the uncertainty analysis may not be 
relevant to the original mean model.  To this 
end, the quadratic and cubic stiffness 
coefficients (2)ˆ

ijlK   and (3)
ijlpK   are extracted 

from BK  and used, with the linear 

coefficients (1)
ijK , which have not been 

modified by the modification of the matrix 

BK , to compute a set of representative 
responses of this modified mean model.  
These responses can then be compared with 
those from the identified model to assess 
whether the matrix BK  is appropriate to carry 
out the uncertainty analysis. 

5.4    BK  cannot be made positive definite 

without affecting the model 
 For most of the structural models investigated 
so far, see the application section for details, 
the procedure described in the previous 
section yielded a matrix BK  that closely 
represents the originally identified mean 
model and thus can be used to carry out the 
uncertainty analysis.  When this is not the 
case, however, it is proposed here to modify 
the modeling approach of Eqs (13) and (14) 
using a TL D L  decomposition (Golub and 
van Loan 1966) in place of the Cholesky one 
so that it can be applied to the matrix BK  
resulting from the optimized decomposition.  
Specifically, this matrix is first rewritten as 
              B  T

K KK L D L           (35) 
then, the uncertain matrices are obtained as 
             T T

B  K KK L H D H L       (36) 
where H is the same matrix as in Eq. (14) and 
Fig. 1. Note in Eq. (35) that the diagonal 
matrix D will be selected to only carry a sign, 
i.e., its elements are either +1 or -1 only. 
 
6 Applications 

The above developments were applied to a 
series of structures for which mean NLROM 
were obtained in prior investigations two of 
which are presented.  While these two 
applications focus on static responses, 
uncertain dynamic responses could be 
computed with the same set of uncertain 
stiffness coefficients as those used for the 
static problems.  

The first example considered is the 
orthogrid panel of Fig. 2 (Gogulapati et al. 
2017) modeled using 17 basis function – the 
first 8 linear modes and 9 duals. The matrix 

BK  obtained after the optimized 
decomposition was not positive definite.  The 
application of the procedure of Eqs (27)-(34) 
did render it positive definite and the 
predictions obtained from that modified mean 
model  were  found  to  be  very close to those   
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Figure 2. Orthogrid panel considered in 

(Gogulapati et al. 2017) (a) Perspective view 
and (b) cross-section. 

 
from the originally identified model.  The 
uncertainty analysis was then performed using 
Eqs (13) and (14) with an overall uncertainty 
level selected to be =0.31.  Then, shown in 
Fig. 3 are the displacements at a quarter point 
along the three directions for the mean and 
uncertain models.  It is interesting to observe 
that the inplane displacements are much more 
sensitive to the uncertainty than the transverse 
ones. 
A second application of the above concepts 
focused on the clamped-clamped curved beam 
of Fig. 4 in a range of displacements that 
includes its snap-through.  Proceeding as 
before, the matrix BK  obtained after the 
optimized decomposition was not positive 
definite but the application of the procedure of 
Eqs (27)-(34) did render it positive definite.  
However, the predictions obtained from that 
modified mean model were found to be too 
different from those from the originally 
identified model, in particular that modified 
model did not snap through as predicted by 
either the original NLROM or the finite 
element model.  In this light, the revised 
uncertainty modeling of Eqs. (35) and (36) 
was applied with =0.026. Then, shown in 
Fig. 5 are the transverse (vertical) and inplane  

 

 

 

 
 

Figure 3. Static displacement of the orthogrid 
panel under a uniform loading. (a) Inplane x, (b) 
inplane y, and (c) transverse z  displacements at a 
quarter point, divided by the panel thickness vs. 

load. Mean and uncertain models. 
 
(horizontal) displacements at a beam quarter 
point vs. load level for the mean model as 
well as 5th-95th percentile uncertainty band.   
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Figure 4. Clamped-clamped curved beam with 

uniform loading. 
 

 

 
Figure 5. Static displacement of the clamped-

clamped curved beam under uniform loading.  (a) 
Transverse and (b) inplane displacements (in 

percent of span) at beam quarter point vs. load.  
Mean and uncertain models. 

 
As already observed in connection with the 
two previous examples, the inplane response 
of the curved beam appears more sensitive to 
uncertainty than its transverse counterpart.  
Note as well the large increase in the 
uncertainty band post snap through, in both 
directions, with much smaller variations of the 
snap through load which are nevertheless 
much larger than the variability of the 
response prior to snap through. 

7 Summary 

The focus of the present investigation was on 
resolving two key challenges encountered in 
the introduction of uncertainty in reduced 
order models of the nonlinear geometric 
response following an approach proposed 
earlier by the authors.  The first of these 
challenges was the indeterminacy of the 
mapping of the nonlinear stiffness coefficients 
identified from  the  finite  element model, 

(2)
ijlK  and (3)

ijlpK , to those suitable for the 

uncertainty analysis, i.e., (2)ˆ
mnpK  and (3)

ijlpK , see 

Eqs (6),(7), and (18).  The second challenge 
was that the matrix BK  constructed with 
these coefficients (and the linear stiffness 
ones) is not positive definite as showed in the 
original paper because of differences in 
nonlinear finite element modeling between the 
commercial software and the theoretical 
developments.  These challenges were jointly 
addressed.  First, the indeterminacy was 
resolved by selecting the coefficients to 
maximize BK  while satisfying the constraints 
of Eqs (6), (7), and (18).  In general, the 
resulting matrix BK  was found not positive 
definite but a strategy was devised to modify 
it in a minimal manner to achieve this 
property.  In most of the cases investigated, 
this modification did not significantly change 
the predictions of the mean response and thus 
the uncertainty modeling could proceed from 
it.  In one example, a clamped-clamped 
curved beam undergoing snap throughs, the 
changes of mean were large enough. For such 
situations, a modification of the uncertainty 
modeling was proposed that handles the non 
positive definite matrix BK  with a LDLT 
decomposition vs. a Cholesky one. 

The above methods were applied to two 
different structural models of various 
complexity and the uncertain response to 
static loading was determined.  These efforts 
first demonstrated the broad applicability of 
the above methodology but they also 
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suggested that strong nonlinear features of the 
response, such as inplane displacements due 
to transverse loading and post-snap through 
behavior, are particularly sensitive to 
uncertainty.  
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ABSTRACT 

The focus of this investigation is on modeling uncertainties on the structural and thermal 

properties of heated structures and assessing their effects on the resulting temperature 

distributions and structural response. This effort is accomplished within the framework of 

reduced order models (ROMs) of both the thermal (heat conduction) and structural (nonlinear 

geometric response) problems relying on the maximum entropy nonparametric approach. 

Uncertainties are introduced on both the heat conduction and the structural response 

problems. In the latter, it is in particular shown that the purely structural terms of the ROM 

governing equations and those associated with the structural-thermal coupling should be 

randomized jointly. Moreover, this can be done through the construction of a large matrix that 

includes all of them and is shown to be symmetric and positive definite. Several challenges in 

applying this approach are identified and resolved. Finally, the applicability of the 

methodology is demonstrated on the response of a simple panel subjected to an oscillating 

heating flux as an example of strongly coupled thermal-structural problems. 

 

NOMENCLATURE 

A : mean of a random matrix A 

ijB : element of modal capacitance matrix 

DISTRIBUTION A: Distribution approved for public release.



 2

C: 4th order elasticity tensor 

ijD : element of modal damping matrix 

iF :  modal mechanical forces.  

)(th
ilF : modal force induced by thermal mode l 

H, KH , TH , SH : triangular random matrices 

)1(
ijK , )2(

ijlK , )3(
ijlpK :  linear, quadratic, and cubic stiffness coefficients 

)(th
ijlK : linear stiffness coefficients induced by thermal mode l 

ijK
~ : element of modal conductance matrix 

BK , CK : random matrices composed of structural coefficients and structural and coupling 

coefficients 

ijM : element of modal mass matrix 

iP : modal heat flux 

 pA a : joint probability density functions of the elements of a random matrix A 

 tqn : generalized structural coordinates 

)(nT : thermal basis functions 

: coefficient of thermal expansion tensor 

: uncertainty level 

 tn : generalized thermal coordinates  

0 : structural domain in the undeformed configuration 
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)(n : structural basis functions 
 
 
INTRODUCTION 

A significant challenge in the prediction of the response of real structures is the lack of 

precise information on their geometry and/or material properties. If they were accurately 

known, then standard analysis tools such as finite elements could in principle be used to 

determine the structural response under specified loads. These observations have led in 

particular to the modeling of the uncertainty in the geometry and/or material properties 

through probabilistic concepts, i.e. by treating them as random variables, stochastic processes 

and fields. This approach permits the consideration of the variability in geometry and/or 

material properties from one nominally identical structure to another which is referred to as 

aleatoric uncertainty.  

Invariably, computational models approximate or ignore particular features of the 

problem, e.g. grain structure, anisotropy, curvature of a nominally straight structure, three-

dimensionality modeled through plates and beams models, etc. These approximations lead in 

the predicted response to another form of uncertainty, i.e., epistemic uncertainty, which is 

typically challenging to model. 

A particularly elegant strategy to incorporate both aleatoric and epistemic uncertainties is 

the maximum entropy based nonparametric method, e.g. see [1-3]. This approach relies on the 

modeling of the fields of interest, e.g. structural displacements, in a reduced order model 

format in which the basis is fixed, determined from the mean model. The uncertainty in the 

structural model is then entirely regrouped into the parameters (stiffness matrix, mass matrix, 

...) of the governing equations for the generalized coordinates of this reduced order model. To 

complete the uncertainty modeling process, it remains to postulate or derive the joint 
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probability density function of these parameters and a way to simulate them. The approach 

proposed in [1-3] and adopted here is to derive this joint probability density function to 

maximize the corresponding entropy under the physical constraints that these parameters must 

satisfy, such as symmetry, positive definiteness, etc. Moreover, simulating the random 

parameters/matrices according to this distribution was shown [1-3] to be fast and 

straightforward. Then, Monte Carlo analyses can be carried out to obtain any desired statistics 

of the response and they are performed in a particular efficient manner since they only involve 

the reduced order model. It should be noted that the maximum entropy based nonparametric 

method does account for aleatoric but also some epistemic uncertainty. It has been used in a 

variety of different contexts within structural dynamics, e.g., linear structural dynamics [1,4-

7], vibro-acoustics [8,9], rotor dynamics [10-12], nonlinear structural dynamics [13,14], linear 

viscoelastic structures [15], etc., but also in rigid body dynamics [16,17] and micromechanics 

and multiscale modeling, see [3] for extensive review. 

The present investigation focuses on effects of uncertainty on the response of heated 

structures. In such multidisciplinary problems, the uncertainty may be associated with each 

discipline and/or with their coupling. Since the consideration of uncertainty on the structural 

properties alone has been discussed extensively before, this investigation will focus on the 

novel aspects of the uncertainty on the thermal properties (capacitance, conductance) and the 

thermal-structural coupling induced by the coefficient of thermal expansion. The propagation 

of these uncertainties to both temperature distribution and structural response will be 

determined. In this regard, note that thermal-structural coupling is effectively a one-way 

interaction. Indeed, the temperature distribution induces stresses in the structure that result in 

thermal loads and changes in its natural frequencies and mode shapes. In reverse however, the 

structural deformations directly affect the temperature distribution only through the very weak 
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latency term which is ignored here. A stronger coupling between the structural deformations 

and the temperature distribution may however exist in aero-structural-thermal problems since 

the structural motion will affect the aerodynamics and especially the aeroheating which drives 

the temperature distribution. This situation is not considered here. Moreover, it will mostly be 

assumed that all properties are independent of temperature. However, the extension of the 

proposed formulation to the case where the coefficient of thermal expansion is linearly 

dependent on temperature is presented in [18] to highlight the process of such extensions. 

Owing to the potential or actual occurrence of thermal buckling, it is highly desirable to 

carry out the structural analysis in a nonlinear geometric format which, unfortunately, leads to 

a significant increase in computational effort especially when considering dynamic situations. 

These conflicting requirements have led to the formulation and development of nonlinear 

thermal-structural reduced order modeling strategies for the temperature and displacements, 

see [19,20], which are based on similar developments for structural only models, see [21-23]. 

This reduced order modeling strategy is adopted here and briefly reviewed below. 

 
OVERALL CHALLEGES AND PLAN 

The above discussion has motivated the use of reduced order models for the consideration of 

uncertainties in heated structures because of (i) their computational efficiency but also (ii) of 

the capability of such models to include both aleatoric and epistemic uncertainties. To benefit 

from these advantages, it is key that the uncertain reduced order models be constructed 

directly from their equivalent for the mean model without returning to the underlying finite 

element model, in particular to avoid the computational cost of constructing the reduced order 

model for each finite element sample. Modeling uncertainties directly within reduced order 

models has been done for several problems in the past, including nonlinear reduced order 

models but of non heated structures. Heated structures however include additional terms in 
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the governing equations that reflect the coupling of the displacements with the temperature 

field. A key question addressed here is then how these coupling terms should be randomized 

to account for the uncertainties. That is, can they be considered separate of the purely 

structural terms or should they all be randomized together and, either way, how should one 

proceed? 

It is demonstrated in the sequel that the purely structural and structural-thermal coupling 

terms should be randomized jointly through their grouping in a large matrix CK  that is 

symmetric and theoretically positive definite. Then, the randomization of this matrix can be 

achieved using the maximum entropy nonparametric approach. 

Several challenges are however encountered in the implementation of this overall strategy. 

First, as formed, the matrix CK  involves a smaller size matrix that does not exist in the reduced 

order model and which has been found to be difficult to determine accurately from the underlying 

finite element model. This issue is resolved here by appealing to the maximum entropy principle from 

which it is found that the matrix can be selected as proportional to the identity matrix. A second novel 

challenge arises from the desire to control separately the levels of uncertainties on the purely structural 

terms and on the structural-thermal terms. To this end, a multiplicative decomposition of the 

uncertainty is proposed. Finally, it is observed that the present formulation shares with its counterpart 

for non heated structures the potential for the matrix CK  to not be positive definite owing to 

differences in nonlinear formulation between finite element and reduced order modeling. Fortunately, 

strategies developed very recently to mitigate this issue are shown to be applicable. With all 

theoretical and implementation issues resolved, the methodology is demonstrated on an example. 

The plan of this paper is as follows. The next two sections provide reviews of (a) the reduced 

order modeling methods on which uncertainty is introduced and (b) the maximum entropy 

nonparametric approach. In fact, two versions of this approach are described which are used 
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for different aspects of the uncertainty modeling. The construction of the matrix CK  is 

achieved next followed by the detailed strategies proposed for the resolution of the implementation 

challenges described above. Finally, the applicability of the methodology is demonstrated. 

 

COUPLED STRUCTURAL-THERMAL REDUCED ORDER MODEL (ROM) 

The coupled structural-thermal reduced order models employed here are the extension to 

geometrically nonlinear problems of the modal models used in linear analysis. They are based 

on the representation of the temperature and displacements of the finite element nodes, 

stacked in the time varying vectors T(t) and u(t), in expansion forms, i.e. 

                                                              





1

)(

n

n
n tt TT                                                   (1) 

                                                                



M

n

n
n tqt

1

)(u                                                    (2) 

In these equations, )(nT  and )(n  are the thermal and structural basis functions, or modes, 

while  tn  and  tqn  are the time-dependent thermal and structural generalized coordinates. 

Assuming that the material properties (elasticity tensor, coefficient of thermal expansion) do 

not vary with temperature, it is found, e.g. [19], for the structural generalized coordinates that 

(summation over repeated indices assumed) 

(1) ( ) (2) (3) ( )th th
ij j ij j l j j l j l p i lij ijl ijl ijlp ilM q D q K K q K q q K q q q F F         

 
  .  (3) 

In this equation, ijM  denotes the elements of the mass matrix, )1(
ijK , )2(

ijlK , )3(
ijlpK  are linear, 

quadratic, and cubic stiffness coefficients and iF  are the modal mechanical forces. The 

parameters )(th
ijlK  and )(th

ilF  represent the sole coupling terms with the temperature field 

which is described by the governing equations [19,20] 
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                  ijijjij PKB  ~                                                             (4) 

where ijB  and ijK
~  are the capacitance and conductance matrices of the finite element model, 

which are assumed here not to depend on temperature. The source term iP  represents the 

combined effects of an applied flux, nonzero homogenous boundary conditions, radiation, 

latency, etc., as applicable. 

Having established the forms of the governing equations, i.e., Eqs (3) and (4), it remains to 

address (i) the selection of the basis functions )(nT  and )(n  and (ii) the identification of all 

stiffness, mass, conductance, and capacitance parameters from commercial finite element 

software. The latter effort is detailed in [19,21-23] for temperature independent structural 

properties and has been extended in [20] when they vary linearly with the local temperature. 

The former issue has also been addressed, in [22] for the structural problem, see also [21,23] 

for the linear + dual modes basis selected here. The construction of the thermal basis has been 

investigated in a series of papers [19,24-27] and can be achieved from a series snapshots of 

the temperature distribution, e.g., [24], a priori from the conductance and capacitance matrices 

[19], or using a combination of a priori information and a few snapshots [25-27].  

The above discussion demonstrates that coupled nonlinear structural-thermal reduced 

order models can be constructed from well characterized finite element models. Given this 

state of the art, it is then timely to consider the introduction of uncertainty in these models to 

bridge the gap between designed and realized structures and assess the effects of the 

differences between them. 

 
UNCERTAINTY MODELING 

Basis: Random or Deterministic 

When introducing uncertainty in an analysis carried out in a reduced order modeling 
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framework, as in Eqs (1)-(4), the first question to address is whether the basis functions )(nT  

and )(n  can be kept the same as in the mean model (i.e., the model without uncertainty) or 

whether they need to be modified. The latter strategy is necessary when the uncertainty 

triggers a new physical behavior (e.g., buckling not anticipated in the mean model) that is not 

appropriately captured with the mean model basis. This issue can be prevented by adopting at 

the onset a basis that addresses not just the mean model behavior but also a broader physics. 

This is the approach selected here so that the basis functions will remain constant through the 

uncertainty analysis. 

Maximum Entropy Nonparametric Modeling 

As described in the introduction, the maximum entropy-based nonparametric stochastic 

modeling approach initially proposed by Soize [1], see [2,3] for recent comprehensive 

reviews, is an elegant alternative to the randomization of several parameters/properties of the 

computational model. It proceeds directly from the mean model matrices, randomizing them 

so that they always satisfy physical requirements (positive definiteness, symmetry, etc.) and 

that the joint distribution of their elements achieves the maximum of the entropy. Moreover, 

as discussed in [1-3], this approach not only permits the modeling of aleatoric (or 

parameter/data) uncertainty but also some epistemic (or model) uncertainty. 

The original formulation of this method [1] focuses on symmetric positive definite NN 

matrices A for which it assumes that the mean A  is known. This limited information is not 

sufficient to uniquely define the joint probability density function of the elements of A, 

denoted as  pA a . Faced with this issue, Soize proposed in [1] that this joint probability 

density function be selected as the one that maximizes the entropy S given the available 

information. That is,  pA a  should maximize 
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            lnS p p d


  A Aa a a                    (5) 

under the constraints of 

Unit total probability:     1p d


 A a a                      (6) 

Given mean:     p d


 Aa a a A .                      (7) 

In addition to the above constraints, it is also imposed that (see discussion in the sequel) 

        ln det finitep d


    Aa a a .                    (8) 

In the above equations, the support  of the probability density function is then such that the 

matrix A is positive definite, or equivalently that it admits a Cholesky decomposition, i.e.,  

        ; , , 1,..., : , , 0, .T
ij ij iiL i j N L i j L               a LL                      (9) 

The probability density function  pA a  maximizing S given the constraints of Eqs (6)-

(8) can be derived by calculus of variations and is found to be 

                       0 1det exp tr Tp C
         A a a a       (10) 

where C
~  is the appropriate constant to satisfy the normalization condition, Eq. (6) and and 

0  are the Lagrange multipliers associated with the constraints of Eqs (7) and (8), 

respectively. After a change of random variables, it is found that the matrices A of joint 

probability density function  pA a , Eq. (10), can be generated as follows. First, the mean 

matrix A  is decomposed as 

          TLLA          (11) 
e.g., by Cholesky factorization. Then, random matrices A are generated as  

      TT LHHLA                         (12) 
where H is a lower triangular matrix such that (see also Fig. 1) 

(1) its off-diagonal elements ilH , li , are normally distributed (Gaussian) random 
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variables with standard deviation  2/1 , and 

(2) its diagonal elements iiH  are obtained as  /iiii YH  where iiY  is Gamma 

distributed with parameter    2/1ip  where 

      12 0  inip  and     2/12 0  n                  (13) 
 

 
Figure 1. Structure of the random H matrices with N = 8, i =2, and 0 =1 and 10. 

 
In the above equations, the parameter 0 > 0 is the free parameter of the statistical 

distribution of the random matrices A. An alternative parametrization is through the 

dispersion parameter   defined as 

         2

0

1
2 1

N

N


 

  
.         (14) 

 
Maximum Entropy Nonparametric Modeling for Localized Responses 

A modification of the nonparametric approach has recently [28] been proposed which is 

applicable to problems that exhibit a localized response and will be used in the sequel. For 

such problems, the approach described in the previous section may lead, as part of its 

epistemic uncertainty modeling, to a more extended response that can be expected. The 
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recapture of the local behavior can be achieved by first splitting the matrices A and their mean 

A  into components that promote the local response and global components of the response, 

modeling them separately to maintain their characters, and finally reassembling the two 

components. Specifically, see [28] for details, let 

      T
i i

i

   LA                    (15) 

where   is the smallest eigenvalue of A  and i  the ith eigenvector of that matrix. Then, the 

global matrix GA  is obtained as 

       G LA A A   .                  (16) 
Random matrices A are then generated as 

       G LA A A .                  (17) 
where, given its global character, GA  is modeled using the nonparametric approach described 

in the previous section, i.e., following Eqs (5)-(8) and Fig. 1, and with a specified value of . 

Moreover, to maintain its local character, the matrix LA  is expressed as 

     T
i i

i

   LA                    (18) 

where the random variable  is  

           LY           (19) 
with LY  is a Gamma random variable with coefficient of variation L  and  is a deterministic 

coefficient such that 

           E    .        (20) 
 
Modeling of Conductance and Capacitance Matrices 

Uncertainty in the conductance and capacitance properties of the structure can be included 

in the reduced order model by modeling the corresponding ROM matrices (conductance 

and/or capacitance) using the above nonparametric approaches as these matrices are 
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symmetric and positive definite. 

 

Modeling of the Structural and Coupling Properties 

The next task is the modeling of uncertainties in the material properties that affect the 

structural ROM, e.g., the tensor of elasticity, coefficient of thermal expansion. The intent here 

is on generating random values of the parameters )1(
ijK , )2(

ijlK , )3(
ijlpK , )(th

ijlK , and )(th
ilF  

directly, as opposed to simulating the material properties in the finite element then mapping 

them to the ROM. To proceed in this manner, it is necessary to first establish the 

mathematical/physical properties that those parameters must satisfy, then construct simulation 

algorithms that maintain these properties for every sample. 

Such an effort was carried out in [13] for the structural alone problem, i.e., the simulation 

of the parameters )1(
ijK , )2(

ijlK , and )3(
ijlpK . More specifically, it was shown that a matrix BK  

composed of these stiffnesses is positive definite. This property was derived from the 

following expressions (see [13,21])  

                 Xd
X

U
C

X

U
K

p

n
l

iklp
k

m
i

mn 






 


)()(
)1(

0

                (21) 

              )2()2()2()2( ˆˆˆ
2
1

npmpmnmnpmnp KKKK                  (22) 

where 

         Xd
X

U

X

U
C

X

U
K

l

p
r

k

n
r

ijkl
j

m
i

mnp 








 


)()()(
)2(

0

ˆ      (23) 

and 

           Xd
X

U

X

U
C

X

U

X

U
K

w

p
r

l

n
r

jklw
k

s
i

j

m
i

msnp 












 



)()()()(
)3(

0
2
1 .    (24) 

In these equations, 0  denotes the domain of the structure in the undeformed configuration, 

 X)(m
iU  is the mth basis function for the representation of the ith component of the 
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displacement vector over the continuous domain 0X . Moreover, iklpC  is the elasticity 

tensor. 

Next, a reshaping was first performed to transforms the MxMxM third order tensor (2)K̂  

into a MxM 2 rectangular array (2)K
~  and the MxMxMxM fourth order tensor (3)K  into a M 

2xM 2 square matrix (3)K
~ . These operations are achieved as follows: 

       )2()2( ˆ~
mnpmJ KK        with       J=(n-1)M+p                (25) 

and 
                     )3()3(~

msnpIJ KK        with     I=(m-1)M+s   and   J=(n-1)M+p.               (26) 
Construct next the expression  

          JIIJJmmJnmmnS vvKvwKwwKE )3()2()1( ~2~2                  (27) 
where mw  and Iv  are the components m and I of arbitrary vectors w  and v . Then, from Eqs 

(21)-(24) one finds 
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              (28) 
where for notational convenience 
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                (29) 

Since the elasticity tensor iklpC  is positive definite, it is seen from the last equality of Eq. 

(28) that SE  is positive for any vectors  w  and v . Rewriting this quantity as 

            



















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w

KK

KK
vw

(3)(2)
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~2~
~

T
TT

SE                            (30) 

it is seen that the PxP ( 2MMP  ) symmetric matrix BK  defined as 

DISTRIBUTION A: Distribution approved for public release.



 15

           













(3)(2)

(2)(1)

KK

KK
K ~2~

~

TB       (31) 

is positive definite. 

To extend this discussion to include the structural-thermal coupling terms )(th
ijlK , and 

)(th
ilF , note first that these parameters can be expressed as [19] 
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and 
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

.     (33) 

which are of the same form as Eqs (21)-(24) but involve the strain term  )(n
lr T  where  is 

the coefficient of thermal expansion tensor and  X)(nT  is the nth basis function for the 

temperature in the continuous domain 0X . 

Next, proceed in reverse of Eqs (27)-(28) and define 
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which is positive for all mw , Iv , and mz . Expanding the products in the integrand leads to 
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               (35) 

where  thK
~  is the M 2xrectangular array obtained by reshaping the third order tensor  thK  

according to 

       )()( ˆ~ th
ijp

th
Ip KK        with       I=(i-1)M+j                (36) 

and  ttK  is the x symmetric, positive definite matrix of components 
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Since the expression CE  of Eq. (34) is positive for all mw , Iv , and mz , it is concluded that 

the QxQ ( 2MMQ  ) symmetric matrix CK   
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                (38) 

is positive definite. 

The above property provides a clear path for the simulation of parameters )1(
ijK , )2(

ijlK , 

)3(
ijlpK , )(th

ijlK , and )(th
ilF  within the maximum entropy nonparametric approach. Specifically, 

form first the matrix CK  of the mean model from the parameters )1(
ijK , )2(

ijlK , )3(
ijlpK , )(th

ijlK , 

)(th
ilF , and )(tt

mnK  of the finite element model of the mean structure. Then, proceed with the 

simulation of random matrices CK  according to Eqs (11)-(14) and Fig. 1, i.e., 

   T
C  K KK L L    and   T T

C  K K K KK L H H L      (39),(40) 
where (assuming a Cholesky decomposition of CK ) 
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 

     (41),(42) 

where the subscripts S and T refer to the structural and thermal part of the model. 

Finally, decompose the random matrices CK  of Eq. (40) according to the partition of Eq. 

(38) and identify the random parameters )1(
ijK , )2(

ijlK , )3(
ijlpK , )(th

ijlK , and )(th
ilF . It is 

interesting to note in the above format that the simulation of the thermal-structural coupling 
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properties )(th
ijlK  and )(th

ilF  is achieved in conjunction with the structural only model but 

independently of the thermal properties, e.g., capacitance, conductance. 

In the context of unheated linear structures, the constraint of Eq. (8) guarantees that the 

mean squared response is finite, see [1-3]. Since these structures are a subset of the nonlinear 

geometric ones subjected to temperature considered here, i.e., the matrix CK  reduces to K (1)

, Eq. (8) will once again be imposed. Note however that no theoretical result regarding the 

finiteness of the mean square response in the nonlinear heated case is currently available. 

While the above developments assumed that the elasticity tensor and thermal expansion 

were independent of temperature, linear variations of these properties can also be considered 

in a deterministic ROM formulation, see [20], and in an uncertain one, see [19] for the 

extension of Eqs (3), (32)-(38) to the case of the thermal expansion varying with temperature 

as an example of the process. 

 

IMPLEMENTATION CHALLENGES 

The above process seems clear and well defined but after a closer inspection and trials, 

three key challenges were encountered. They are described below separately and their 

solutions briefly discussed, see Appendix A and B for details. 

(A) Identified coefficients vs. symmetric coefficients 

The first challenge in applying the above methodology is that the stiffness coefficients 

present in the mean matrix CK  are neither directly not fully identifiable by the standard 

methods discussed in [19-23]. To clarify this issue, it should first be recognized that a series 

of terms in Eq. (3) involve the same monomials of the generalized coordinates, e.g. )2(
ijlK  and 
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(2)
iljK , and thus these terms may naturally be regrouped leading to the ROM governing 

equations 

    (1) ( ) (2) (3) ( )th th
ij j ij j l j j l j l p i lij ijl ijl ijlp ilM q D q K K q K q q K q q q F F         

 
  .    (43) 

This equation  is very similar to Eq. (3) except that there is no repetition in the monomials 

because (2)
ijlK  and (3)

ijlpK  are nonzero only for j  l and j  l  p. Note further that the 

identification methods discussed in [19-23] yield the coefficients (2)
ijlK  and (3)

ijlpK  not (2)
ijlK  

and (3)
ijlpK  but it is these latter ones which are necessary in Eq. (38). Accordingly, an 

intermediate step in the simulation process is to transform one set of quadratic and cubic 

coefficients ( (2)
ijlK  and (3)

ijlpK , referred to as “identified”) into another ( (2)
ijlK  and (3)

ijlpK , 

referred to as “symmetric”). To this end, comparing Eqs (3) and (43) it is found that 

(2) (2)

(2) (2)

0                   for  

        for  

for  
mnnmnl

mnl mln

l n

K K l n

K K l n

 
 


 

  

(3)

(3) (3) (3)(3) ln
(3) (3) (3)

(3) (3) (3)

0                                       unless 

                     for  

for  

for  

2 2 2

mnnn

mnll m l mllnmnlp

mpll mlpl mllp

mnlp mpln mlpn

p l n

K p l n

K K K p l nK

K K K p l n

K K K

 

 

   
   

   for  p l n










 

 

                                     (44) 
Moreover, as discussed in [13], the symmetry properties of the elasticity tensor and the form 

of Eqs (23) and (24) also imply that  

       (2) (2)ˆ ˆ
ijl iljK K        (45) 

and 
          )3()3()3()3(

lpmnmnplnmlpmnlp KKKK  .                (46) 

Unfortunately, Eqs (44) and (45) are not sufficient to yield a unique set of values of (2)
ijlK  

and (3)
ijlpK  from given values of (2)

ijlK  and (3)
ijlpK  except for the one mode situation, i.e., all 
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indices equal. The problem is further compounded by a similar issue in the transformation of 

the quadratic parameters (2)
ijlK  to their related coefficients (2)ˆ

ijlK  using Eq. (22). It is thus not 

possible to uniquely map the identified coefficients (2)
ijlK  and (3)

ijlpK  to the corresponding 

blocks of the matrix CK . 

This problem is not specific to the matrix CK , it is also encountered in the purely 

structural situation, i.e., when constructing the matrix BK , and it has recently been addressed 

[29] based on the following observations: 

(a) the decomposition of the identified coefficients (2)
ijlK  and (3)

ijlpK  into the parameters (2)ˆ
ijlK  

and )3(
ijlpK  should only be a function of the modes i, j, l and i, j, l, p, respectively. 

(b) the decomposition should ensure that the matrix BK  corresponding to the M selected 

modes or any subset of these modes, is positive definite, or as close as possible to it. 

Accordingly, it was proposed in [29] to proceed in steps, resolving the indeterminacy on 

all distinct two-mode coefficients, i.e., (2)ˆ
ijjK , (2)ˆ

iijK , (2)ˆ
jijK , (2)ˆ

jiiK , (3)
iiijK , (3)

iijjK , (3)
ijijK , and 

(3)
ijjjK , by enforcing that they satisfy Eqs (22) and (44) and lead to a maximum of the lowest 

eigenvalue of the matrix BK  corresponding to the two modes i and j > i. 

Next, the indeterminacy on all distinct three-mode coefficients, i.e., (2)ˆ
ijlK , (2)ˆ

jilK , (2)ˆ
lijK , 

(3)
iilpK , and (3)

ilipK , was similarly resolved by enforcing that they satisfy Eqs (22) and (44) and 

lead to a maximum of the lowest eigenvalue of the matrix BK  corresponding to the three 

modes p > l > j> i. 
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Finally, the indeterminacy on all distinct four-mode coefficients, i.e., )3(
ijlpK , (3)

iljpK , and 

(3)
ipjlK , was again resolved by enforcing that they satisfy Eqs (22) and (44) and lead to a 

maximum of the lowest eigenvalue of the matrix BK  corresponding to the four modes i and j 

> i and l > j > i. Note that the above operations do not alter the mean model, they are only 

necessary to  introduce the uncertainty. 

(B) Lack of positive definiteness of the matrix BK  

After the series of optimization efforts carried out in the previous section, it was found 

that the resulting matrix BK  may not be positive definite, see [29] for justification and 

examples. In such cases, it was proposed that this matrix either be modified to become 

positive definite or that only its positive definite part be randomized. These options proposed 

in [29] are summarized here in Appendix A and their applicability to the matrix CK  

discussed. In performing this operation, it is important that the response of the mean model 

not be altered visibly, see discussion of Appendix A and [29] for options. 

(C) The matrix  ttK  is not well identifiable 

An unusual feature of the matrix CK  is that it involves the matrix  ttK  which does not 

appear in the reduced order model equations, Eqs (3) or (43), and thus its 

identification/selection requires further discussions. 

At first, it was intended to identify the mean value of this matrix. An indirect approach 

was devised in which the terms ( )n
lr T  and  ( )n

jklr lrC T  were recognized as components 

lr and jk of the thermal only strain tensor  th
n and the corresponding stress tensor  th

n both 

induced by the thermal mode n. Then, the coefficient ( )tt
mnK  corresponds to the integral 
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(summation over all nodes/elements) of the product    :th th
m n  . It remained then to 

determine the thermal strain and stresses. This was accomplished by applying temperature 

along mode n on the structure with all of its nodes restrained, the resulting stress distribution 

would then equal  th
n  and the corresponding strains  th

n  could then be obtained using the 

tensor of elasticity. 

The implementation of this identification approach within Nastran was not successful, 

leading, even for very small reduced order models, to matrices CK  that were not positive 

definite. Accordingly, another strategy was devised. Specifically, since  ttK  is only present 

in CK , not in Eqs (3) and (43), its determination is effectively part of the stochastic modeling 

effort. Then, its value being unclear, it was argued that  ttK  should be determined by the 

entropy optimization effort. It is shown in Appendix B that this condition leads to TTL , in Eq. 

(41), is equal to the identity matrix. 

This result completes the determination of the lower triangular matrix KL , its structural 

only blocks  1
SSL ,  2

SSL , and  3
SSL  are determined by the Cholesky decomposition of the 

positive definite BK  resulting of the steps (A) and (B) above. Moreover, from Eqs (38) and 

(39), 

       1 1 T
th T

TS SS


    

L F L  and                  2 1 2 3 T
Tth T

TS TS SS SS


          

L K L L L . (47),(48) 

 
IMPLEMENTATION OF SEPARATE UNCERTAINTY LEVELS 

The matrix CK  involves two different properties of the structure: its elasticity tensor and 

its coefficient of thermal expansion the level of variability of which may be different. This 

situation is somewhat similar to the maximum entropy modeling of uncertainties achieved in 
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[12] (for a rotordynamics application) and [30] (for an implementation focused on material 

properties). In these investigations, it was proposed to compound the effects, i.e., H matrices, 

induced by the two types of uncertainties present, i.e., those who maintain a high level 

symmetry and those who do not. 

In the present context, the compounding of the uncertainties in the elasticity and thermal 

expansion tensors can be achieved by expressing KH  as 

      T SKH H H                   (49) 
where 

  
   1 2 *

T

TS TS

 
 
 
 
 
 

I

H I

H H

 
              and   

 

   

1

2 3
SS

S SS SS

 
 
  
 
 
 

H

H H H

I

 


 

.       (50), (51) 

In the above equations, I denotes the identity matrix of appropriate dimensions and the * 

designates a matrix partition which is irrelevant as it does not arise further in the 

computations, affecting only the matrix  ttK  of the random structures. Rewriting Eq. (40) 

with (49) yields 

                 TT T T T
C T S S T T S S T K K K KK L H H H H L L H H H L H    (52) 

it is seen that the randomization of the structural properties is a two-step process. First, is the 

randomization by TH  transforming the mean model matrix CK  into the random one 

     TT T
C T T T T K K K KK L H H L L H L H      (53) 

which serves as a mean model for the further randomization by SH . 

Note in the above process that the random matrix TH  only affects the ST blocks of CK , 

i.e., )(th
ijlK  and )(th

ilF , and thus it models the uncertainty associated with the thermal 

expansion which is present only in those terms. On the contrary, the components of the 

random matrix SH  will affect all blocks of the CK  matrix and thus is appropriate for the 
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modeling of the uncertainty in the elasticity tensor which is present in all elements of CK . 

The selection of blocks of the SH  and TH  matrices as the identity or the zero matrix 

does not conform with the discussion of Eqs (5)-(14) and Fig. 1 but it is consistent with the 

extended nonparametric formulation developed in [4] in which the uncertainty associated with 

the corresponding eigenvalues is set to zero while no constraint is imposed on the variability 

of the other eigenvalues. Accordingly, the block  1
TSH  and  2

TSH  are simulated as off-

diagonal elements of the matrix H of Fig. 1, i.e., as independent identically distributed zero 

mean Gaussian random variables with standard deviation  related to a uncertainty level T . 

Finally, the 2x2 top left block of SH  is simulated as in Eqs (5)-(14) and Fig. 1 with the 

appropriate matrix size, i.e., 2M M , and uncertainty level S . 

EXAMPLE OF APPLICATION 

Mean Model 

The panel of [20] was considered to demonstrate the application of the above uncertainty 

modeling strategies and provide a first assessment of the effects of on the structural-thermal 

response uncertainty on the thermal properties and/or on the coefficient of thermal expansion. 

Following [20], the panel was modeled as an isotropic clamped-clamped beam with 

properties given in Table 1 and was modeled by finite elements in MSC.Nastran. Structurally, 

the beam was considered as one-dimensional and was discretized using 40 beam elements 

(“CBEAM” within Nastran). Thermally, the structure was considered as a two-dimensional 

object discretized with 40 4-node elements (“CQUAD4” within Nastran) along its length and 

6 through the thickness thereby allowing the capture of the temperature distribution along the 

beam and across its thickness. 
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Table 1.  Clamped-Clamped Beam Mean Properties 
Beam Length (L) 0.2286 m 
Cross-section Width (w) 0.0127 m 
Cross-section Thickness (h) 7.88 10-4 m 
Density 2700 kg/m3 

Young’s Modulus 73,000 MPa 
Shear Modulus 27,730 MPa 
Coeff. Thermal Expansion 2.5 10-5 /°C 
Mesh (CBEAM) 40 

 
 

The beam was subjected to a triangular flux of width 2=0.4 L, see Fig. 2, oscillating 

about the middle of the beam ( 2/0 La  ) with a frequency  and an amplitude =0.075 L. 

The peak heat flux was selected so that the peak temperature on the upper surface of the beam 

would be 10C for the steady problem ( = 0) while the bottom surface was maintained at 

0C. The ends of the beam were also maintained at 0C. This thermal loading led to a tip 

static deflection of 0.65 thickness and thus to a nonlinear geometric behavior. 

A reduced order model of the panel was constructed using 17 structural modes and 12 

thermal basis functions, see [20] for details, which led to an excellent prediction of the full 

Nastran results. Of particular interest here is the peak response vs. frequency  which 

displays a peak for  approximately equal to 1/2 of the first linear natural frequency of the 

beam, see Fig. 3. 

 
Figure 2. Beam panel subjected to an oscillating flux. 
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Figure 3. Maximum transverse deflection on the beam and at the beam middle as a function of 
the flux oscillation frequency  as determined from the ROM and Nastran computations. 

 
 
 

Uncertainty Modeling and Analysis 

The consideration of uncertainty on the conductance properties was first carried out. In 

selecting the simulation strategy, Eqs (5)-(14) or Eqs (15)-(20), it was first noted in the results 

presented in [20] that the temperature distribution rapidly decayed to zero away from the zone 

heated by the triangular flux. This observation suggested that the temperature distribution 

exhibited a localized behavior. To confirm this expectation, a concentrated flux was applied to 

the beam and the resulting steady temperature was determined using a full finite element 

analysis, see Fig. 4(a). It is clearly seen that the temperature is strongly localized. In fact, this 

behavior results from the fixed temperature boundary condition on the bottom. If this 

condition was replaced by an adiabatic one, the temperature distribution would be the one 

shown in Fig. 4(b) which is extended to the entire panel, i.e., exhibits a global behavior. 

 

(a) (b)
Figure 4. Distribution of temperature in a beam due to a single heat flux at the location 

marked by X. (a) Adiabatic boundary condition on beam top but zero temperature on bottom. 
(b) Adiabatic boundary conditions throughout.  
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The localized vs. global character of the temperature distribution can also be assessed 

from the eigenvalues of the conductance-capacitance problem as shown in Fig. 5. A localized 

character is associated with a series of close eigenvalues occurring at a nonzero value, see Fig. 

5(a), while a global problem results when these values are spread in relative values. The 

existence of these two opposite behaviors for the mean model suggests that the uncertainty 

modeling strategy of the conductance and capacitance matrices should similarly be able to 

induce mostly global or mostly local variations. On this basis, the maximum entropy approach 

for localized responses, Eqs (15)-(20), is proposed here to model these uncertain matrices 

regardless of the thermal boundary conditions. 

 

Figure 5. Comparisons of eigenvalues of the conductance-capacitance problem. (a) Case (a) 
of Fig. 4, (b) Case (b) of Fig. 4. (c) Comparison. 
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Given the localized behavior of the current example problem (with the fixed temperature 

boundary conditions), see Fig. 4(a) or 5(a), it was expected that the uncertainty would mostly 

be introduced on the local component of the model, i.e., LK
~ . Nevertheless,  the effects of 

introducing the uncertainty on GK
~  and LK

~  were separately assessed first then jointly. The 

overall uncertainty level was quantified as in [2] by the dispersion parameter  of Eq. (14). 

Then, shown in Fig. 6 is the temperature distribution on the beam at a representative time 

induced by the flux oscillating at 402  rad/sec (or 40Hz). The yellow band represents 

the range of values between the 5th and 95th percentile of the temperature obtained at each 

node point for a value of =0.05 on the global component of the conductance matrix, GK
~ , and 

no uncertainty on its local counterpart, LK
~ . Note that the uncertainty band extends very far 

reaching the boundaries as expected from a global behavior. On the contrary, the temperature 

induced by a similar uncertainty in LK
~  remains very localized to the middle of the beam 

where the flux is defined, see Fig. 7. Combining these two uncertainties leads to the results of 

Fig. 8 which exhibit a broad band near the flux and only a very small band away from it as 

would be physically expected. 

Having successfully produced random samples of the temperature distribution, it was next 

desired to propagate this uncertainty to the structural response. Each sample of the 

temperature was input to the structural ROM to determine the response over the range of 

oscillation frequencies  corresponding to the peak in Fig. 3(b). The resulting uncertainty 

band corresponding to the 5th-95th percentile was then evaluated for each frequency and is 

shown in Fig. 9. Note the broad range of frequencies over which the peak is observed and that 

the width of the (yellow) uncertainty band in the response at peak is wider than the one on the 

temperature, i.e., about  10% of the mean value vs.  5% in Fig. 8. 
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Figure 6. Uncertainty band induced by introducing uncertainty only in the global component 

of the ROM conductance matrix. 40Hz oscillating triangular heat flux. 
 

 
Figure 7. Uncertainty band induced by introducing uncertainty only in the local component of 

the ROM conductance matrix. 40Hz oscillating triangular heat flux. 
 

 
Figure 8. Uncertainty band induced by introducing uncertainty on both local and global 

components of the ROM conductance matrix. 40Hz oscillating triangular heat flux. 
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Figure 9. Uncertainty band on peak structural (transverse) response as a function of the flux 

oscillating frequency. Uncertainty on conductance. 

 
Figure 10. Uncertainty band on peak structural (transverse) response as a function of the flux 

oscillating frequency. Uncertainty on thermal-structural coupling parameters only. 
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first through the matrix TH  with SH  set to the identity matrix. This effort was carried out 

with a value of = 2×10-4. This value seems very small  but it gives rise to coefficients of 

variation of 0.51% (l =1), 0.29% (l =3), 0.73% (l =5) on the parameters )(
11

th
lK  and 0.48% (l 

=1), 2.53% (l =3), 7.09% (l =5) on )(
1

th
lF  which are the key driving terms to the first and 

dominant structural mode. Then, shown in Fig. 10 is the uncertainty band and mean model 

prediction of the peak beam (transverse) response as a function of frequency. Note that the 

width of the band is larger than the above coefficients of variation of the parameters 

demonstrating a definite sensitivity of the response with respect to the coefficient of thermal 

expansion and thus the importance of carrying such uncertainty analyses. 

 
Figure 11. Uncertainty band on peak structural (transverse) response as a function of the flux 

oscillating frequency. Uncertainty on structural parameters only. 
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peak beam (transverse) response as a function of frequency. Once again, it is seen that the 

uncertainty level on the response is much larger than it is for the model coefficients, 

confirming the sensitivity of the response. Finally, shown in Fig. 12 is uncertainty band 

induced by both structural and thermal expansion uncertainties. As expected, this band is 

wider than the ones seen in Figs. 10 and 11 and corresponding to each uncertainty separately. 

 
Figure 12. Uncertainty band on peak structural (transverse) response as a function of the flux 
oscillating frequency. Uncertainty on structural and thermal-structural coupling parameters. 
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beam example, it was shown that the behavior of the temperature distribution may be strongly 

dependent on the boundary conditions, i.e., being localized near the applied flux or very 

global. Then, the simulation strategy chosen for the uncertain ROM conductance matrices is a 

recent extension of the nonparametric approach in which the local and global characters of the 

uncertainty on the temperature can be separately controlled. Accordingly, this approach is 

applicable to the various types of thermal boundary conditions. This uncertainty on the 

thermal properties was propagated to the nonlinear structural response by imposing the 

random temperature distributions on the panel. The results demonstrate a level of variability 

of the response that is similar to that of the temperature distributions. 

The uncertainties on the structural, i.e., structural and thermal-structural coupling (thermal 

expansion) properties was considered next. It was shown that these uncertainties may indeed 

be modeled directly at the ROM level and both appear through the positive definite matrix 

CK  of Eq. (38). Yet, the formulation permits the imposition of uncertainties on either 

properties separately or together through their compounding in Eq. (49). Further, practical 

implementation details that appear when the mean ROM is identified from a black box finite 

element code were pointed out and resolved in a general setting. The application of these 

concepts to the beam example was finally performed and it was observed that a coefficient of 

variation around 0.5% of the key structural-thermal coupling terms led to an increased 

variability, of the order of ±2%, of the structural response near its peak demonstrating a 

significant sensitivity of this response with respect to the coefficient of thermal expansion 

uncertainty. A similar sensitivity was also observed with respect to the structural only 

parameters of the model. 
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APPENDIX A 

As stated in the main text, the process to render the matrix BK  positive definite was 

achieved in [29] 

(a) without affecting the part of BK  that is positive definite, e.g., the linear stiffness matrix 

(1)K , and 

(b) inducing the smallest changes possible to this matrix. 

The condition (a) has been achieved iteratively by constructing the biggest block of the 

original matrix BK  that is positive definite. This block is at least of size M since the linear 

stiffness matrix (1)K  is positive definite. Accordingly, the top left block of BK  of size M+1 

is first considered and it is checked for positive definiteness (e.g., by constructing its 

Cholesky decomposition). If it is positive definite, the algorithm moves to the top left block of 

size M+2 and the process is repeated. 

Otherwise, a permutation of the rows and columns M+1 and M+2 is performed. If the top 

left block of size M+1 is now positive definite, the algorithm accepts the permutation and 

moves forward to the top left block of size M+2. On the contrary, the permutation between 

rows M+1 and M+2 is reversed and a permutation of rows M+1 and M+3 is performed 

followed by a positive definiteness check. This process concludes when no permutation of 
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rows and columns achieves an increase in the size of the top left block of BK  which is 

positive definite. 

At that point, the matrix BK  has been transformed in a symmetric matrix BK which has 

the form 

          11 12

12 22
B T

 
  
  

K K
K

K K
                (A.1) 

where 11K  is positive definite and of size pN , 12K  is of size pN  rN , and 22K  is of size 

rN  rN  where 2
r pN M M N   . 

The task (b) above then proceeds with replacing the matrix BK  by 

        11 12 1

12 22 1 2

ˆ
B BT T

   
      
      

K K
K K

K K

 


 
              (A.2) 

where the matrix  will be selected to have the minimum Frobenius norm under the constraint 

that ˆ
BK  is at least positive semidefinite. The solution of this nonlinear optimization problem 

will be obtained iteratively through a sequence of linear optimization problems in which the 

positive definiteness constraint is enforced linearly. This process leads at iteration m to [29] 

             (1) (2)
1

0i

T
i i i

 

  
   


           (2) (2)

2
0i

T
i i i

 

  
   


             (A.3),(A.4) 

where i  and i  are the eigenvalues of the matrix BK̂  at iteration m. Moreover, the 

eigenvectors are partitioned into vectors (1)
i  and (2)

i  of pN  and rN  components, 

respectively. That is, (1) (2)T TT
i i i

          
     . Finally, the coefficients i  are solutions of 

the linear system of equations 

          2

0
2

r

ri ri ri r ia b b
 

   


  with (1) (1)T
rs r sa        and (2) (2)T

rs r sb                (A.5) 
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Solving the linear system of equations (A.5) yields the values of the coefficients i  which 

can then be reintroduced in Eq. (A.3) and (A.4) to yield the unknown partitions 1  and 2  of 

. 

The resulting matrix ˆ
BK  will then in general not be positive definite but the process can 

be repeated with a new BK = ˆ
BK  until a matrix ˆ

BK  positive definite/semidefinite is finally 

obtained. At that point, the rows/columns permutations performed to obtain the largest block 

positive definite are reversed leading to a matrix BK  which is positive definite and thus could 

serve as the basis for the structural uncertainty modeling. 

A second option was investigated in [29] in which the uncertainty is introduced only on 

the largest part of the model that is consistent with the theory of Eqs (21)-(31) leaving the rest 

of it equal to the mean model. That is, uncertainty is introduced on the positive definite block 

11K  of Eq. (A.1) while leaving the corresponding matrices 12K  and 22K  unchanged, equal 

to their values resulting for example from the above optimization of Eqs (A.13)-(A.5) or as 

the initial conditions of this process. 

In principle, achieving the positive definiteness of the structural only component of the 

matrix CK  (i.e., BK ) is sufficient to enable the stochastic modeling process as defined in 

Eqs (39)-(42). Unfortunately, barely achieving positive definiteness or semidefiniteness 

induces ill conditioning in the propagation of the uncertainty to the structural-thermal 

matrices of the model. Indeed, if BK  is singular, then so is  3
SSL  (see Eq. (41) and it is not 

possible to determine  2
TSL  which should satisfy (see Eq. (39) and (41)) 

                     2 1 3 2T T th
SS TS SS TS L L L L K .    (A.6) 
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If the matrix BK  is not singular but has very small eigenvalues,  2
TSL  will have large 

terms that depend strongly on these small eigenvalues. Considering further that they probably 

result from the introduction of the matrix 1  and 2 , not from an actual property of the 

structure, it is concluded that the values of  2
TSL  will be large and unphysical. 

Another perspective on the same issue is that the existence of a nonzero difference 

     2 1 Tth
SS TSK L L  is inconsistent with the theory of Eqs (32)-(35). Then, proceeding as done 

in [29], it is proposed here to introduce the uncertainty only on the part of the model 

consistent with the theory leaving any inconsistencies as in the mean model.  

To formalize this perspective, note first that if      2 1 Tth
SS TSK L L  is imposed to vanish 

then  2
TSL  can be selected as zero to satisfy Eq. (A.6). Next, rewriting the matrix CK  in a 

partition consistent with Eq. (A.1) leads to 

                                    
 

11 12 1 13
(1) (2)

12 1 22 2 23

13 23

T T
C C C

T T

 
 

     
 
  

tt

K K K

K K K K K K

K K K



  .             (A.7) 

In this equation,  

 

11 12 1 13
(1)

12 1 22 2

13

T T
C

T T

 
 

   
 
  

tt

K K K

K K K R

K R K



       and   (2)
23

23

C
T T

 
 

  
 

  

K K R

K R

  
 

 

     (A.8) 

where R is a matrix such that the Cholesky decomposition of (1)
CK  is of the form 

                 
11

(1)
21 22

31

 
  
 
 

K

L

L L L

L I

 



         (A.9) 

in which the presence of the identity matrix in the 33 block results from the discussion of 

Appendix B. Moreover, the null matrix in the 32 block is the vanishing block  2
TSL . 

Performing the product of Eq. (39) leads to 
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   11 11 11
T L L K ;  1

21 11 12 1
T  L L K  ; 1

31 11 13
T L L K ; and finally 21 31

TR L L  .          (A.10) 

which fully defines (1)
KL . Uncertainty can then be introduced by randomizing the matrix (1)

CK  

only, keeping (2)
CK  as a deterministic addition to each random sample. 

Note in the above discussion that the matrix 22L  is typically very small as a result of the 

modification process of Eq. (A.2)-(A.5) which aims at only reaching positive definiteness for 

the matrix BK . A simplification of the approach of Eqs (A.7)-(A.10) can then be conceived 

that simply assumes 22L = 0 leading to the matrix 

                
11

(1)
21

31

 
  
 
 

K

L

L L

L I

 
 


 .      (A.11) 

Since the matrix 22L  is no longer of concern, the modification process of Eq. (A.2)-(A.5) can 

be further sidestepped and the blocks 21L  and 31L  evaluated directly from their counterparts 

12K  and 13K  before Eqs (A.2)-(A.5). That is, 

         11 11 11
T L L K ; 1

21 11 12
T L L K ; 1

31 11 13
T L L K ; and finally 21 31

TR L L  .               (A.12) 

To avoid a change of the mean model, the matrix (2)
CK  is then selected as 

     (2)
22 21 21 23

23

T
C

T T

 
 

   
 

  

K K L L K R

K R

  



 

                               (A.13) 

and is not randomized. 

A further modification of this approach can be conceived that combines the above 

discussion with the alternative approach of [29]. That is, the structural uncertainty modeling is 

limited to the block 11K  leaving the corresponding matrices 12K  and 22K  unchanged. In this 
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final framework, only the blocks 11K , 13K , and  ttK  are affected by the uncertainty. Then, 

the matrix CK  can be reduced, for the uncertainty modeling, to 

          
11 13( )

13

s
C T

 
  
  

tt

K K
K

K K
              (A.14) 

all other terms in CK  remaining equal to their tuned counterparts. The random samples of 

( )s
CK  can then be obtained as 

             ( ) ( ) ( ) ( ) ( ) ( ) ( )s s s s s T s T s T
T TC S S K KK L H H H H L              (A.15) 

where 

        ( ) 11

31

s  
  
 

K
L

L
L I


 ;   ( )

( ) *
s

T s
TS

 
 
 
 

I
H

H


   and 

( )
( )

s
s SS

S

 
  
 

H
H

I




   (A.16), (A.17), (A.18) 

consistently with Eqs (A.9), (50), and (51).  

 

APPENDIX B 

This appendix focuses on the determination of the deterministic matrix TTL  yielding a 

maximum entropy of the random matrices CK  as defined by 

           ln
C C

S p p d


 K K Kk k k .             (A.16) 

To this end, rewrite first Eq. (40) as 

               T
C  K KK L G L     where  T K KG H H              (A.17),(A.18) 

and note that Eq. (A.17) can be viewed as a linear transformation of the random elements of 

the matrix G into the random components of CK . Accordingly, the joint probability density 

functions of the elements of these two matrices are related by the equation 

        / det
C

p pK Gk g J  and   detd dk J g             (A.19),(A.20) 
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where J is the Jacobian of the transformation. To evaluate this matrix from Eq. (A.7), it is 

convenient to rewrite it first stacking the columns of the matrix CK  below each other and 

proceeding similarly with the matrix G consistently with the vec operation. Then, one obtains 

                          T
C   K K K Kvec K vec L G L L L vec G            (A.21) 

where  denotes the Kronecker product owing to the property 

                                      T vec A B C C A vec B                (A.22) 

for any matrices A, B, and C with consistent dimensions. 

From Eq. (A.21), it is found that  

         K KJ L L        so that            2 2
,det det K ii

i

L KJ L      (A.23), (A.24) 

where the last equality holds owing to the triangular structure of KL . 

Next, combining Eq. (A.16), (A.19), and (A.20), it is found that 

                  ln / detS p p d


    
G

K G Gg g J g .                 (A.25) 

where G  is the appropriate domain of variations of the matrices g. Since J is a constant 

matrix (independent of g), Eq. (A.25) reduces to 

             ln det ln ln detS p d p p d S
 

            
G G

K G G G GJ g g g g g J      (A.26) 

where SG  is the entropy of the matrices G and is independent of KL . Recognizing that  

                   
22 1 3det det det det det TTSS SS

                 KJ L L L L               (A.27) 

it is concluded that maximizing the entropy SK  is achieved when the determinant of TTL  is 

as large as possible, implying that some scaling constraint should be added to the problem. 

In this regard, consider the effect of TTL  on the simulated reduced order model 

coefficients. This matrix affects only the random coefficients )(th
ijlK  and )(th

ilF  through the 
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products  1
TT TSL H  and  2

TT TSL H , i.e., TTL  provides a scaling of the effects of TH which 

are all proportional to the standard deviation . So, increasing uniformly TTL  is equivalent to 

increasing . Accordingly, it is not possible to specify or identify both a uniform scaling of 

TTL  and the standard deviation . The approach chosen here is then to constraint the uniform 

scaling so that  can be a true parameter of the model. Thus, to the maximization of the 

entropy is now added the scaling constraint 

       TT F
 L .              (A.28) 

The lower triangular matrix TTL  sought leads to a maximum value of its determinant while 

satisfying Eq. (A.28). Proceeding with a Lagrange multiplier, it is desired to find the elements 

ijL , i  j, of TTL  such that iiL > 0 and 

           2

11
ii ij

i j ii

L L
 

 

 
     
  
              (A.29) 

is maximum where  is the Lagrange multiplier. Differentiating Eq. (A.29) with respect to ijL  

i  j demonstrates first that these components must all be zero and thus the matrix TTL  is 

diagonal. Then, differentiating Eq. (A.29) with respect to jjL  yields 

    
1,

2 0ii jj
i i j

L L


 
    or  2

1
2 0ii jj

i

L L



                   (A.30),(A.31) 

where Eq. (A.31) results from (A.30) by multiplication by jjL  0. Since the product term in 

Eq. (A.31) is independent of jjL , it is concluded that 2
jjL  is independent of the index j and 

thus, from Eq. (A.28), 2
jjL = 1. Since the diagonal terms jjL  must be positive, one obtains jjL

= 1 for all j and thus the lower triangular matrix TTL  sought equals the identity matrix. 
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ABSTRACT 
The non-intrusive construction of reduced order models (ROMs) for the prediction of the response of structures 
undergoing large deformations has received significant attention, and new challenges are arising when it is extended 
to the coupled structural-thermal or structural-thermal-aerodynamic problems. One such challenge is the 
construction of the basis functions. In the present investigation, a detailed analysis of possible enrichments that 
could be used and their performance is carried out. This study is first on a piezoelectric beam which exhibits a 
thermal-piezoelectric analogy. The potential enrichments can be differentiated based on which effects they include 
of: 
(i) the equivalent forces (right-hand-side of governing equations), 
(ii) the change in structural behavior due to induced thermal stresses (left-hand-side of governing equations), and 
(iii) nonlinear geometric effects (left-hand-side of governing equations). 
Enrichments that include 1, 2, or all 3 of the above effects are constructed and their usefulness to capture the 
response of the beam is studied. It is found that the enrichment has to include all the three effects, and the one 
derived from the nonlinear response data corresponding to the applied temperature field as a single thermal mode, 
has the optimal performance. A similar study is repeated in connection with a curved panel subjected to local 
heating, and similar behavior is observed.  
Keywords:  heated structures, nonlinear reduced order modeling, enrichment for thermal effects 

INTRODUCTION 
The non-intrusive construction of reduced order models (ROMs) for the prediction of the response of structures 
undergoing large deformations, i.e., with nonlinear geometric effects, due to mechanical loading has received 
significant attention in the last two decades. The key components of this modeling, i.e., (i) the form of the ROM 
governing equations, (ii) the selection of the basis functions to approximate the response, and (iii) identification 
strategies of the ROM coefficients from commercial finite element software have all been well developed and are 
still progressing.  
In recent years, this non-intrusive ROM has been extended to the coupled structural-thermal or structural-thermal-
aerodynamic problems, especially in the context of hypersonic vehicles [1-5]. The high-temperature thermal loading 
arising from the hypersonic environment brings new challenges to the development of the ROM, particularly for the 
construction of the basis functions. Appropriate bases have been devised by adding enrichments that capture the 
effects of the thermal loading to the basis constructed for mechanical loads only. However, the form of these 
enrichments has varied with the particular application.  
In this light, the focus of the present investigation is on a detailed analysis of the possible enrichments that could be 
used and their potential benefits. A beam with a piezoelectric actuating patch [6] is studied first since the 
piezoelectric effect shows similar behavior as the thermal effect. Potential effects are identified for the enrichment to 
take into account, and possible enrichment options including part or all of these effects are constructed and their 
usefulness to capture the structural response is studied. A similar investigation is repeated for the curved panel of [7] 
subjected to local heating.  

COUPLED STRUCTURAL-THERMAL NLROM 
In the coupled structural-thermal nonlinear reduced order model (NLROM), structural displacement field u and the 
temperature field T are expressed as  
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(2) 
where the functions ( ) ( )n X  and ( ) ( )nT X  are structural and thermal basis functions (modes) defined in the 
undeformed configuration, respectively. They satisfy the corresponding boundary conditions.  
Using the Galerkin approach, the governing equations of the coupled structural-thermal NLROM have been derived 
based on the thermoelasticity theory. The detail of the formulation can be found in [3]. When the structural 
properties are independent of the temperature and the effects of the latency and the change of geometry are small 
hence ignored, the governing equation for the structural part is expressed as   

(1) ( ) (2) (3) ( )th th
ij j ij j l j j l j l p i lij ijl ijl ijlp ilM q D q K K q K q q K q q q F F         

 
                                                              (3) 

The thermal effects on the structural deformation are two-folds: one is the term ( )th
lijlK   on the left hand side (LHS) 

of the equation, which alters the linear stiffness of the structure, usually inducing a softening effect responsible for 
thermal buckling; the other is the term ( )th

lilF   on the right hand side (RHS) of the equation, which gives rise to an 
applied force inducing inplane deformation. This inplane deformation is different from the membrane stretching 
effect due to the geometric nonlinear effect of large deformation as shown later.  
The current investigation is focused on the construction of the structural basis, ( ) ( )n X , in the coupled structural-
thermal ROM. It can be seen from Eq.(3) that the structural basis has to capture the LHS and the RHS thermal 
effects, in addition to the nonlinear geometric effect due to large structural deformation.  
The general construction strategy for the structural basis is an “enrichment” approach, that is, some enrichment 
modes will be sought as the addition to an isothermal (cold) structural basis which is assumed to be available. In the 
current investigation, various enrichment options are studied to see whether a nonlinear enrichment could be 
successful without the need of the data having all three effects. To help classify these enrichment options, a triplet of 
1’s or 0’s will be attached to them. The first number in the triplet refers to whether the RHS thermal effect is 
included, 1 if it is, 0 otherwise. The second number refers to whether the LHS thermal effect is included, 1 if it is, 0 
otherwise. Finally, the third number of the triplet refers to the presence of geometric nonlinearity, it is a 1 if the 
enrichment is computed with nonlinearity, 0 otherwise. 
To assess the quality of the enriched basis, the representation error is employed, defined as: 

100%basis Nastran
re

Nastran

u u

u


   ,                                                                                                                                  (4) 

where Nastranu  is the vector of structural response (i.e., Nastran displacement), and basisu  is its best approximation 
for a given basis  , expressed as  

basis proju q   ,                                                                                                                                                     (5) 

where projq  is the vector of projection coefficients, which is obtained by the least squares method. The 

displacement vector u  could be the vector of displacements in all six DOFs or in a single DOF (usually a translation 
DOF, transverse or inplane).  

INVESTIGATION OF ENRICHMENT OPTIONS 
Beam with piezoelectric actuating patch 
The first structure to study is a beam with a piezoelectric actuating patch as shown in Fig. 1. The properties of the 
beam are listed in Table 1.  
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Figure 1. Beam with a piezoelectric patch [6].  
 

The width of the beam for the built-up components (layers 3-7) is slightly less than that for the bottom two layers. 
Each layer is assumed to be made of a linearly elastic material of Young’s modulus (E), Poisson’s ratio (), and 
density () as listed in Table 1. Also given in the table are the piezoelectric properties e311 and 33 of the PZT layer. 
The beam is fully clamped on both sides.  

 
Table 1.  Properties of the layers of the beam (bottom to top) [6] 

 
Layer Material Width 

m 
Thick. 

nm 
E 

GPa 
 

kg/m3 
e311 

C/m2 33̂  
F/m

1 Si 1 340 169 0.3 2500 - - 
2 SiO2 1 10 70 0.17 2150 - - 
3 Ti 0.9 10 110 0.32 4510 - - 
4 Pt 0.9 80 145 0.35 21450 - - 
5 PZT 0.9 110 96 0.45 7800 17.16 2.12 10-8 
6 Ti 0.9 10 145 0.32 4510 - - 
7 Pt 0.9 80 96 0.35 21450 - - 

 
A finite element model of the beam was created in Nastran with 40 (along length) x 4 (across width) standard shell 
elements (CQUAD4). To model the layup of the composite cross-section across the beam, PCOMP cards were used. 
Since Nastran does not include piezoelectric elements in its library, the thermal analogy was employed with a 
coefficient of thermal expansion nonzero along the beam axis only. This anisotropy was implemented within 
NASTRAN through a MAT8 card. Further details can be found in [6].  
With the thermal analogy used for the piezoelectric effect, assuming the electric field is expressed as  

    ( )
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E X t t T X


  ,                                                                                                                                          (6) 

the governing equation of the ROM for the beam is the same as Eq.(3), except that the terms ( )th
lijlK   and ( )th

lilF   

now represent the piezoelectric effects on the structural deformation.  
In order to study various enrichment options, an isothermal basis of the beam is firstly constructed. This basis has 18 
structural modes including 5 linear modes and 13 duals (Basis5L13D). Before proceeding with any enrichment, it is 
instructive to first assess how well (or badly) the isothermal basis represents the structural responses to the thermal 
load.  
For this beam structure, the thermal load is actually a static voltage applied on the piezoelectric layer, and the 
nonlinear structural deformation is computed by Nastran. In Fig. 2(a) is shown the maximum transverse 
displacement of the beam as function of the applied voltage. For the nonlinear static deformation with the highest 

64
0 

nm
 

7.5 m 
10 m
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applied voltage (150 V), the representation error of the 18-mode isothermal basis is computed by Eq. (4) and shown 
in Fig. 2(b). It can be seen that the error in the transverse direction is close to 1% while the error in the inplane 
direction is a few percent. It should be noted that the NLROM with this isothermal basis does not predict the 
response in Fig. 2(a) well. Therefore, the enrichment is necessary.  

  
                                                   (a)                                                                                                  (b) 
Figure 2. Beam subjected to the applied voltage on the piezoelectric layer. (a) Nonlinear static response by Nastran; 

(b) Representation error of the isothermal basis for the highest applied voltage.  
 

In a previous work [6], the linear static response of the beam to the applied voltage was used as the linear 
enrichment. The representation error was reduced but the prediction is still not good even at smaller applied voltage. 
In the current study, this linear enrichment is retained to give a 19-mode basis (Basis5L13D1EL), and the additional 
nonlinear enrichment options are implemented, summarized as follows: 
(i) Hot duals from thermal modes (1,1,1): dominant POD eigenvectors out of nonlinear displacements due to 

temperature loads related to thermal modes. Here the voltage load is taken as the single thermal mode, and the 
displacements are computed by Nastran. 

(ii) Semi-hot duals from RHS effect of thermal modes (1,0,1): dominant POD eigenvectors out of nonlinear 
displacements due to the RHS effect of temperature loads related to thermal modes. The RHS effect is not 
included. Same as (1), the voltage load is taken as the single thermal mode, and the displacements are computed 
by Nastran. 

(iii) Hot Linear-Cold duals (1,0,1): duals from the combination of cold linear modes and linear enrichment modes 
(iv) Hot linear modes from thermal modes (1,1,1): linear structural modes around the deformed positions induced by 

the temperature loads related to thermal modes. The computation starts as in (1) but the data contains the linear 
modes around the deformation position as opposed to the displacements themselves. 

(v) Hot linear responses (1,1,0): dominant POD eigenvectors out of linear structural responses due to temperature 
loads related to thermal modes. These responses are computed out of the finite element solver using the finite 
element linear stiffness matrix of the heated structure and the equivalent forces as computed in (2). Geometric 
nonlinearity is not included. 

(vi) Buckling modes from thermal modes (0,1,0): buckling modes of the heated structure. These modes include the 
LHS effect of temperature loads related to thermal modes when nonlinear geometric deformation is taken into 
account.  

These enrichment options are implemented and the nonlinear enrichment modes derived from each option are added 
to the 19-mode basis (Basis5L13D1EL, common to all options) to obtain the final enriched basis. Once the basis is 
obtained, its representation error is computed by Eq. (4). The representation errors of all these options are plotted in 
Fig. 3 for comparison.  
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                                                   (a)                                                                                                  (b) 
Figure 3. Representation error by various enriched structural bases of the nonlinear static response to the highest 
applied voltage. (a) Transverse, Tz; and (b) In-plane, Tx.  
 
The error in the transverse direction can be reduced by the linear enrichment further to very small, but the error in 
the inplane direction is still a little large. Among all the nonlinear enrichment options, four options could reduce the 
inplane error to be smaller than 1%, and option 1 has the most significant reduction. This is not surprising since the 
enrichment of option (i) includes all the three effects and is obtained from the same temperature field as resulted 
from the applied voltage but at different load levels.  
Noting that the first enrichment mode of option (i) has reduced the error to a very small level, only that mode is 
taken as the nonlinear enrichment, leading to the 20-mode enriched basis (Basis5L13D1EL1ENL). The NLROM 
with this basis is constructed by identifying the stiffness coefficients and the structural-thermal coupling coefficients 
in Eq.(3). Validations of the NLROM are carried out for the range of applied voltages in Fig. 2(a). The comparison 
between the Nastran results and the NLROM predictions is shown in Fig. 4, and the matching is quite good. 

  
                                                   (a)                                                                                                  (b) 
Figure 4. Validation of the 20-mode enriched ROM of the beam for the applied voltage load. (a) Transverse, Tz; and 
(b) Inplane, Tx.   
 
Curved panel 
The second structure to study is a curved panel as shown by its FE model in Fig. 5. It was originally studied by the 
AFRL researchers for geometric nonlinear response to large aero-acoustic loading with temperature [7]. The curved 
panel is a part of a cylindrical shell with radius of curvature of 100 inch. A finite element model of the curved panel 
is constructed using 2457 CQUAD4 shell elements (a 64-by-40 mesh) in Nastran, as shown in Fig. 5. The panel is 
curved along the x-axis while straight along the z-axis. When projected on the x-z plane, its dimensions are 9.75 inch 
by 15.75 inch, and its thickness is 0.048 in. The panel material is stainless steel with elastic modulus of 2.85x106 psi, 
Poisson's ratio of 0.3, and density of 7.48x10-4 lb-sec2/in4. The panel is clamped along all the edges. 
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Figure 5. Finite element model of the curved panel.  
 
Similar to the beam model, an isothermal structural basis of the curved panel is firstly constructed for further 
enrichment study. The basis has 19 modes including 4 linear modes and 15 duals (Basis4L15D). For the curved 
panel, the thermal load is the temperature field due to a local heating shown in Fig. 6(a). The nonlinear static 
response of the panel to this temperature load is computed by Nastran and shown in Fig. 6(b).   

      
(a)                                                                                    (b) 

 
Figure 6. Temperature field due to a local heating and structural response. (a) Temperature distribution. (b) 

Nonlinear static response by Nastran.  
 
For this local heating scaled at a set of load levels, the nonlinear static responses are computed by Nastran, and the 
representation error of the 19-mode isothermal basis with respect to the displacements are checked as shown in Fig. 
7. The isothermal basis does not represent the response to the thermal load well, hence the enrichment is necessary.  

 
Figure 7. Representation error of the isothermal basis.  
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The linear static response to this local heating is computed and added to the isothermal basis as the linear 
enrichment, then various nonlinear enrichment options are constructed and assessed in terms of the representation 
error. A summary of all the options studied is as follows: 
(1) Hot duals from thermal modes (1,1,1): dominant POD eigenvectors out of nonlinear displacements due to 

temperature loads related to thermal modes including LHS effects. The displacements are determined from 
nonlinear finite element computations with temperature field from each thermal mode applied. 

(2) Semi-hot duals from RHS effect of thermal modes (1,0,1): dominant POD eigenvectors out of nonlinear 
displacements due to the RHS effect of temperature loads related to thermal modes. The temperature effect on 
the change of structural properties (LHS) is not included. To determine the displacements, the equivalent forces 
from the RHS are fist evaluated. This is achieved by blocking all nodes of the finite element model and 
applying the temperature fields. The corresponding reaction forces at the nodes are then equal to the forces on 
the right hand side of Eq. (1) at these nodes (changed sign). In a second step, these forces are then applied to the 
cold finite element model and scaled to mimic the temperature effect. 

(3) Semi-hot linear modes from LHS effect of thermal modes (0,1,0): linear structural modes of the heated structure. 
These modes include the LHS effect of temperature loads related to thermal modes taken into account 

(4) Hot linear modes from thermal modes (1,1,1): linear structural modes around the deformed positions induced by 
the temperature loads related to thermal modes. The computation starts as in (1) but the data contains the linear 
modes around the deformation position as opposed to the displacements themselves. 

(5) Hot Linear-Cold duals (1,0,1): duals from the combination of cold linear modes and linear enrichment modes 
(6) Hot linear responses (1,1,0): dominant POD eigenvectors out of linear structural responses due to temperature 

loads related to thermal modes. These responses are computed out of the finite element solver using the finite 
element linear stiffness matrix of the heated structure and the equivalent forces as computed in (2). Geometric 
nonlinearity is not included. 

(7) Hot duals from linear responses (1,1,1): Hot duals from linear responses (1,1,1): these enrichments are 
obtained from the nonlinear structural response of the unheated structure to a combination of (i) the force which 
is the product of the temperature dependent part of the linear stiffness matrix (i.e., the one inducing the LHS 
effect) and the linear response to the thermal load and (ii) the linear response to the RHS force. The logic for 
considering such a loading arises from a transfer of the temperature dependent on the left-hand-side of the 
equations of motion for the generalized coordinates to their right-hand-side.  

Moreover, as a variation of option (3),  
(3a) Buckling modes from LHS effect of thermal modes (0,1,0): buckling modes with temperature loads related to 

thermal modes taken into account. 
For completeness, the linear enrichment corresponds to the triplet (1,0,0) and the cold duals would be cataloged as 
(0,0,1). 
The above enrichment options are implemented with the quarter-heating temperature field, and the nonlinear 
enrichment modes derived from each option are added to the basis of 4 linear modes, 15 (cold) duals, and 1 linear 
enrichment mode (4L15D1EL, common to all options) to obtain the final enriched basis. Once the basis is obtained, 
its representation error is computed by Eq. (4). The representation errors of all these options are plotted in Fig. 8 for 
assessment.  
Similar to the beam example, option (1) is significantly better than the other options, since it includes all the three 
effects and is obtained from the same temperature field as the local heating but at different load levels within the 
same range. This can be considered as the scenario that the temperature load is taken as a single and the only 
thermal mode in the thermal basis, so that the temperature field is perfectly represented by this single-mode thermal 
basis. In practice, the temperature field is usually complex and varying with time, and a number of thermal modes 
are needed for the thermal basis. For such a scenario, it would be expected that the enrichment option (1) is still the 
optimal one, but might be used with each thermal mode and/or their combinations and the enrichment modes are 
assembled to obtain a good structural basis.  
Having obtained the enriched basis, that is, 5 nonlinear enrichment modes from option (1) added to the 4L15D1EL 
basis, leading to the final 25-mode basis (4L15D1EL5ENL), the NLROM is constructed by identifying the stiffness 
coefficients and the structural-thermal coupling coefficients in Eq.(3). Validations of the NLROM are carried out for 
the local heating at a set of load scales so that the maximum structural displacement is up to about 4 thicknesses. 
Shown in Fig. 9 is the comparison between the Nastran results and the NLROM predictions. It can be seen that 
excellent matching is achieved.  
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Figure 8. Representation error by various enriched structural bases of the nonlinear static response to the scaled 
temperature field of local heating. The maximum displacement level is about 4 thicknesses. (a) Transverse, Ty; (b) 
In-plane, Tx; and (c) In-plane, Tz.   

 

  
Figure 9. Validation of the 25-mode enriched ROM. (a) Transverse, Ty; (b) Inplane, Tx; and (c) Inplane, Tz.   

(a) 

(b) (c) 
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CONCLUSION 
A systematic investigation of nonlinear enrichment options for the construction of structural bases in coupled 
structural-thermal reduced order models is carried out. It is identified that three features are involved in the 
structural-thermal coupling, that is,  
(i) the excitation force due to the thermal effect (the right-hand-side thermal effect), 
(ii) the change in structural stiffness due to thermal stresses (the left-hand-side thermal effect), and 
(iii) the large structural deformation (the nonlinear geometric effect) 
Two example structures are studied: one is a piezoelectric beam with non-uniform asymmetric actuating load (akin 
to a temperature change) and the other is a curved panel subjected to local heating. It is found that the needed 
enrichments have to include all the three features, and the one derived from the nonlinear response data has optimal 
performance. The NLROM with such an enriched basis gives very good predictions as compared to the finite 
element (Nastran) results. The above discussion serves as foundation for the formulation of enrichments for heated 
structures in which the temperature is represented as a sum of thermal modes.  

ACKNOWLEDGEMENTS 
The  authors  gratefully  acknowledge  the  support  of  this  work  by  the  AFRL-University Collaborative 
Center in Structural Sciences (Cooperative Agreement FA8650-13-2-2347), an d  the contract FA9550-16-1-0021 
from the Air Force Office of Scientific Research with Dr. Ben Smarslok and Dr. Jaimie Tiley as program managers, 
respectively. 
 

REFERENCES 
[1] Perez, R., Wang, X.Q., and Mignolet, M.P., “Steady and Unsteady Nonlinear Thermoelastodynamic 

Response of Panels by Reduced Order Models,” Proceedings of the 51st Structures, Structural Dynamics, 
and Materials Conference, Orlando, Florida, Apr. 12-15, 2010, Paper AIAA-2010-2724. 

[2]  Matney, A., Perez, R., and Mignolet, M.P., “Nonlinear Unsteady Thermoelastodynamic Response of a 
Panel Subjected to an Oscillating Flux by Reduced Order Models,” Proceedings of the 52nd Structures, 
Structural Dynamics and Materials Conference, Apr. 4-7 2011, Denver, Colorado, AIAA 2011-2016. 

[3] Gogulapati, A., Deshmukh, R., Crowell, A.R., McNamara, J.J., Vyas, V., Wang, X.Q., Mignolet, M., 
Beberniss, T., Spottswood, S.M., and Eason, T.G., “Response of a Panel to Shock Impingement: Modeling 
and Comparison with Experiments,” Proceedings of the AIAA Science and Technology Forum and 
Exposition (SciTech2014), National Harbor, Maryland, Jan. 13-17, 2014, AIAA Paper AIAA 2014-0148. 

[4] Matney, A., Mignolet, M.P., Culler, A.J., McNamara, J.J., and Spottswood, S.M., “Panel Response 
Prediction through Reduced Order Models with Application to Hypersonic Aircraft,” Proceedings of the 
AIAA Science and Technology Forum and Exposition (SciTech2015), Orlando, Florida, Jan. 5-9, 2015, 
AIAA Paper AIAA 2015-1630. 

[5] Gogulapati, A., Brouwer, K., Wang, X.Q., Murthy, R., McNamara, J.J., and Mignolet, M.P., “Full and 
Reduced Order Aerothermoelastic Modeling of Built-Up Aerospace Panels in High-Speed Flows,” 
Proceedings of the AIAA Science and Technology Forum and Exposition (SciTech2017), Dallas, Texas, 
Jan. 9-13, 2017,  AIAA Paper AIAA 2017-0180. 

[6] Vyas, V., Wang, X.Q., Jain, A., and Mignolet, M.P., “Nonlinear Geometric Reduced Order Model for the 
Response of a Beam with a Piezoelectric Actuator,” Proceedings of the AIAA Science and Technology 
Forum and Exposition (SciTech2015), Orlando, Florida, Jan. 5-9, 2015, AIAA Paper AIAA 2015-0692. 

[7] Gordon, R.W., and Hollkamp, J.J., “Reduced-Order Models for Acoustic Response Prediction of a Curved 
Panel,” Proceedings of the 52nd Structures, Structural Dynamics and Materials Conference, Apr. 4 – 7,  
2011, Denver, Colorado, Paper AIAA 2011-2081. 

 

DISTRIBUTION A: Distribution approved for public release.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

APPENDIX D: 
 
[C6]: Wang, X.Q., Lin, J., Wainwright, B.A., and Mignolet, M.P., “Multiple-Level 
Identification of Stiffness Coefficients in Nonlinear Reduced Order Modeling,” Proceedings 
of the International Modal Analysis Conference, IMAC XXXVII, Orlando, Florida, Jan. 28-31, 
2019. 
  

DISTRIBUTION A: Distribution approved for public release.



Multiple-Level Identification of Stiffness Coefficients in Nonlinear Reduced 
Order Modeling 

 
X.Q. Wang, Jinshan Lin, Bret A. Wainwright, and Marc P. Mignolet 

SEMTE, Faculties of Mechanical and Aerospace Engineering,  
Arizona State University, Tempe, AZ 85287-6106 

 
ABSTRACT 
One key issue in the reduced order modeling of geometric nonlinear vibration is the identification of stiffness 
coefficients of the reduced order model (ROM). For a non-intrusive ROM, the data of modal displacements and 
corresponding modal forces or modal tangent stiffness matrices are needed to identify the coefficients. The usual 
practice is using the data from commercial finite element software (e.g., Nastran) at an appropriate displacement 
level. According to the theoretical formulation of the ROM based on the general elasticity theory, the identified 
coefficients are independent of the level at which the data are obtained. In practice, however, this is not the case due 
to the inconsistence between the general elasticity formulation and the finite element formulation in the commercial 
software. The choice of an appropriate level for data acquisition is thus critical.  
 
In the present study, a multiple-level (ML) identification strategy is proposed to reduce this inconsistence. The basic 
idea is to obtain the data at a series of displacement levels and identify each stiffness coefficient at this series of 
levels. For each coefficient, a local relative gradient metric is used to find the displacement level at which the 
coefficient has the least variation (“most constant”). The value at this level is taken as the identified coefficient.  
 
The implementation procedure of the strategy is presented, and applied to a few structures with reasonable 
complexity, including a curved panel, a hat-stiffened panel, and a joined wing. As compared to the regular 
identification method, the improvements in the stability and/or the prediction capability and accuracy of the ROM 
are observed for each structure.  
 
Keywords: reduced order modeling, geometric nonlinear vibration, multiple level identification of stiffness 
coefficients, non-intrusive identification, commercial FE software data  
 
 
INTRODUCTION 
Geometric nonlinear vibration of thin-walled structures has been an active research subject in many engineering 
disciplines. One example in the aerospace engineering discipline is the hypersonic aircraft structures in extreme 
aerodynamic-thermal environments, e.g., large aerodynamic, thermal, and mechanical loadings with nonlinear 
interactions [1-8]. Numerical methods, among which mainly the finite element method, have been developed for 
structural response and life predictions [9]. Meanwhile, the computational cost and complexity associated with 
numerical methods has motivated the study of reduced order modeling techniques for this subject, see a recent 
review [10].  
 
The present study is concerned with one type of the reduced order models, that is, the non-intrusive ROM in which 
the nonlinear stiffness coefficients are identified indirectly from the data relating the loads and the nonlinear 
displacements. One advantage of the non-intrusive ROM is that these data can be obtained from commercial finite 
element software (e.g., Nastran) to address a broad set of complex geometries and boundary conditions experienced 
in practice. Such reduced order models have been constructed for a large number of structures, and their strong 
potentials have been demonstrated [11-25].  
 
In a non-intrusive ROM, a modal basis is constructed to represent a given nonlinear displacement,  ,u X t ,  

                                     ( )

1
, ( )

N
n

n
n

u X t q t X


  ,                                               (1) 
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where  ,u X t  denotes the vector of physical displacements defined on the finite element degrees of freedom. ( )n  

are constant basis functions and  nq t  are the time dependent generalized coordinates.  
The governing equation of the ROM can be obtained from the elasticity theory by the Galerkin approach [17], 
expressed as  

                             
(1) (2) (3)

ij j ij j ij j ijl j l ijlp j l p iM q D q K q K q q K q q q F      ,                         (2) 

where ijM  denotes the elements of the mass matrix, )1(
ijK , )2(

ijlK , )3(
ijlpK  are the linear, quadratic, and cubic 

stiffness coefficients, and iF  are the modal forces. The viscous damping matrix { ijD } is added to collectively 

represent various dissipation mechanisms following standard practice. 
 
It can be seen that two key issues need to be addressed for a non-intrusive ROM, i.e., the construction of the modal 
basis and the identification of nonlinear stiffness coefficients. The present study is concerned with the latter issue.  
The nonlinear stiffness coefficients can be directly evaluated using their integral expressions as given in [17]. 
However, the ROM is usually constructed using the data from commercial finite element software (e.g., Nastran) for 
much broader applications, in which an indirect (non-intrusive) identification of these coefficients is desired.  
 
One of such non-intrusive identification methods is the displacement-force method [16, 17], in which a set of 
designed static displacements are imposed to the structure and the corresponding nonlinear forces are obtained. They 
are then used to compute modal displacements and corresponding modal forces to identify the coefficients according 
to the static version of the governing equation, written as,   

                                                  
(1) (2) (3)
ij j ijl j l ijlp j l p iK q K q q K q q q F   ,                                         (3) 

where N denotes the number of modes in the ROM basis, and p is the number of displacement-force data required to 
identify the coefficients. A strategy has been developed so that these coefficients are separated into smaller groups 
of coefficients and identified independently. The details can be found in [16, 17].  
 
When the basis of a ROM is large, this displacement-force method requires a huge number of data (order of 3N ). A 
method using the tangent stiffness matrix ( ( )TK ) instead of the force in the identification has been developed [25]. 
This displacement- ( )TK method replies on the availability of the tangent stiffness matrix for each imposed 
displacement. Its advantage is that an N × N matrix (the tangent stiffness matrix) is obtained for each solution, thus a 
reduction of the computational effort to 2( )O N  is achieved.  
 
The iu element of the tangent stiffness matrix of a ROM can be derived from Eq. (3), expressed as 

                              
( ) (1) (2) (3)

(1) (2) (2) (3) (3) (3)

[ ]

[ ] [ ]

T
iu ij j ijl j l ijlp j l p

u

iu iju iuj j ijlu ijul iujl j l

K K q K q q K q q q
q

K K K q K K K q q


  


     
                              (4) 

 
Imposing a set of designed static displacements to the structure and obtaining the corresponding ( )TK  matrices, the 
coefficients can be identified according to Eq. (4). The details of the algorithm can be found in [25]. 
 
In the above methods, the data used in the identification are generated with a single generalized coordinate ( jq  
value) for each mode in the basis. In other words, each coefficient is basically identified at a single level of imposed 
displacement. Theoretically this is acceptable according to the formulation of the ROM, which shows that the 
identified coefficients are independent of the jq  value. However, when the data from commercial FE software are 
used, this is not the case due to the inconsistence between the general elasticity formulation and the finite element 
formulation in the commercial software. The choice of an appropriate displacement level ( jq  value) for data 
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acquisition is thus critical. In the present paper, a multiple-level (ML) identification strategy is proposed to reduce 
this inconsistence with the objective to improve the prediction capability and/or accuracy of the ROM.  
 
 
MULTIPLE-LEVEL IDNETIFICATION STRATEGY 
The basic idea of the multiple-level identification strategy is described as follows. For a structure, assume a basis of 
N modes has been constructed, the multiple-level identification is carried out in three steps:  
(1) A set of jmq  values is selected for each mode j, where  j = 1, 2, …, N, and m = 1, 2, …, M representing various 

jq  values giving rise to various maximum displacements covering the range of displacements to be captured by 
the ROM.  

(2) For each set of jmq  values at the level m, the stiffness coefficients are identified by the regular identification 

method (e.g., the displacement- ( )TK method) independently. The coefficient is not perfectly constant but a 
function of its corresponding  q value, i.e., ( )K K q .  

(3) It is expected that the value of a coefficient at a displacement level where it is closest to a constant would be the 
best one taken as the identified. To this end, a local relative gradient metric is proposed in the following to find 
such a displacement level ( jmq  value): for a given jmq  value at 0m m , the jmq  values in its vicinity can be 

expressed as 
0

( ) (1 )
sjm jm sq q   . The local relative gradient of a coefficient is thus given by 

0

jm
jm

jm jm

dqdK dK dK
q

d dq d dq 
   , where the local absolute gradient 

jm

dK

dq
 can be computed by a numerical 

method, e.g., the central difference method. For each coefficient, the local relative gradient is computed, and the 
value corresponding to the displacement level at which it takes the minimum absolute value is taken as the 
identified value.  

 
The multiple-level identification strategy can be implemented with any other regular identification method in the 
same fashion.  
 
 
EXAMPLES  
The multiple-level identification strategy has been applied to three structures with reasonable complexity: a curved 
panel, a hat-stiffened panel, and a joined wing.  
 
Curved panel 
The curved panel was originally studied by the AFRL researchers for geometric nonlinear response to large aero-
acoustic loading with temperature [26], whose finite element model is shown in Fig.1. This curved panel is a part of 
a cylindrical shell with radius of curvature of 100 inch, curved along the x-axis while straight along the z-axis. When 
projected on the x-z plane, the dimension of the panel is 9.75 inch by 15.75 inch, and the thickness of the panel is 
0.048 in. The panel material is stainless steel with elastic modulus of 2.85x106 psi, Poisson's ratio of 0.3, and density 
of 7.48x10-4 lb-sec2/in4. The panel is clamped along all the edges. The finite element model of the panel is 
constructed in MSC/Nastran, and the mesh has 39-by-63 CQUAD4 shell elements and 2560 nodes. A reduced order 
model of 17 modes (11 transverse and 7 dual, 11T7D) has been constructed (see the detail in [27]) and the nonlinear 
stiffness coefficients are identified using the regular displacement- ( )TK  method. In the present study, the same 17-
mode basis is used in the multi-level identification.  
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Figure 1. Finite element model of the curved panel. 

 
A dynamic load case is considered to check the performance of the multi-level ROM and the regular ROM, as 
compared to the Nastran results. The loading is a spatially uniform pressure of 160 dB (OASPL) and temporally 
white noise with the cut-off frequency of 500 Hz. With this loading, the standard deviation of the center transverse 
displacement is about 0.24 thickness. In Fig.2 are shown the power spectral density (PSD) results of the 
displacements in the three directions at a quarter point of the panel. It can be seen that the multi-level ROM captures 
the first frequency peak of the PSD in the transverse (y) and the dominant inplane (x) directions very well. For the 
rest frequency peaks, the multi-level ROM also shows better matching with the Nastran results than the regular 
ROM.   
It is worth noting that the regular ROM has a convergence issue when the pressure level is further increased to 170 
dB, whereas the multi-level ROM converges at this increased load level. This suggests the multiple-level 
identification strategy also improve the prediction capability (stability) of the ROM.  
 

 

  
Figure 2. Comparison of ROM predictions of power spectral density at a quarter node. (a) Transverse displacement, 

Ty; (b) Inplane displacement, Tx; and (c) Inplane displacement, Tz.  
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Hat-stiffened panel 
The hat-stiffened panel, whose finite element model is shown in Fig.3, is a highly asymmetric structure which 
composed of a flat symmetric rectangular plate (referred to as the skin) and a U open section rigidly connected along 
its entire length to the skin on only one side (referred to as the bottom). It is clamped at the two ends of the U section 
and free on the other two sides. Consistently with the hat stiffener, the skin is constrained at the ends only, with the 
U section remaining free. This panel is 25.4 cm long (in the x direction), 2.54 cm high (in the z direction), and 12.7 
cm wide (in the y direction). The thickness of the panel skin is 6.35x10-4 m while the thickness of the hat section is 
3.175x10-4 m. The material properties are selected as follows: Young’s Modulus of 2x1011 Pa, shear modulus of 
8x1010 Pa, and density of 7850 kg/m3. The finite element model of the panel is constructed in MSC/Nastran, and the 
mesh has totally 360 CQUAD4 shell elements and 378 nodes.  A reduced order model of 19 modes (11 transverse 
and 8 dual) has been constructed (see the detail in [28]) and the nonlinear stiffness coefficients are identified using 
the regular displacement- ( )TK  method. In the present study, the same 17-mode basis is used in the multi-level 
identification.  
 

 
Figure 3. Finite element model of the hat stiffened panel. 

 
The same dynamic load case as for the curved panel is considered here, and the spatially uniform pressure is applied 
at a level of 143.5dB, which induces the transverse displacement of a quarter node at a free edge to be about 0.16 
thickness (standard deviation). In Fig.4 are shown the power spectral density (PSD) results of the displacements in 
the three directions at this free edge node. It can be seen that the multi-level ROM captures the two dominant 
frequency peaks of the PSD in the transverse (z) direction very well. For the two inplane directions (x and y), the 
multi-level ROM also shows better matching with the Nastran results than the regular ROM.  
 
The regular ROM also has a convergence issue when the pressure level is further increased to a medium and a high 
nonlinear level of 150.9dB and 154.0dB, which give rise to the displacement levels of 0.35 and 0.50 thickness 
(standard deviation) respectively, whereas the multi-level ROM converges at these two increased load levels [28]. 
Again, the multiple-level identification improves the prediction capability (stability) of the ROM.  
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Figure 4. Comparison of ROM predictions of power spectral density at a free edge node. (a) Transverse 

displacement, Tz; (b) Inplane displacement, Tx; and (c) Inplane displacement, Ty.  
 

Joined wing 
The joined wing is in the PrandtlPlane-like concept (box wing), see its finite element model shown in Fig.5. This 
joined wing model is essentially two in parallel slender thin panels with their ends at one side joined by a vertical 
thin panel, while the ends at the other side (not joined) clamped. Each slender thin panel has a span of 500 mm and a 
width of 50 mm. The size of the vertical joining panel is 50 mm by 20 mm. The thickness of all the panels is 1 mm. 
The material properties are assumed to be those of aluminum, i.e. Young’s modulus of 6.9x1010 Pa, Poisson's ratio 
of 0.33, and density of 2700 kg/m3. The joined wing was modeled in MSC/Nastran with 704 CTRIA shell elements 
and 445 nodes. A reduced order model of 22 modes (4 transverse and 18 dual) has been constructed (see the detail in 
[29]) and the nonlinear stiffness coefficients are identified using the regular displacement- ( )TK  method. The same 
22-mode basis is used in the multi-level identification.  
 

 
Figure 5. Finite element model of the joined wing. 

 
A static load case is considered to check the performance of the multi-level ROM, as compared to the Nastran and 
the regular ROM results. The loading is a uniform pressure downward on the upper branch of the wing, varied from 
0 to about 0.27 Pa. It should be noted (as seen in Fig.6) that the joined wing buckles when the pressure is increased 
to about 0.25 Pa, which induces significant increase of the displacement. Right before the buckling, the tip 
transverse displacement is already quite large, at about 13% of the span. When the buckling happens, the tip 
transverse displacement increases to about 27% of the span.  
In Fig.6 are shown the tip displacements in the transverse (z) and the inplane (y) directions. The multi-level ROM 
has a much better prediction of the pre-buckling responses than the regular ROM, in both directions. Unfortunately, 
it is not able to predict the buckling behavior properly, and further refinement of the current strategy to capture such 
behavior is in progress.  
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Figure 6. Comparison of ROM predictions. (a) Transverse displacement, Tz; and (b) Inplane displacement, Ty.   

 
 
CONCLUSION 
A multiple-level (ML) identification strategy is proposed to identify nonlinear stiffness coefficients of a non-
intrusive type of reduced order model, when the data from a commercial finite element software (e.g. MSC/Nastran) 
are used, with the objective to improve the prediction capability and/or accuracy of the ROM. The basic idea is to 
find the displacement level for each coefficient, at which level the variation of this coefficient is the closest to 
constant, in order to be consistent with the formulation of the ROM from the elasticity theory. The strategy is 
applied to a few structures with reasonable complexity, including a curved panel, a hat-stiffened panel, and a joined 
wing. As compared to the ROM identified by the regular method, the improvements in both prediction capability 
(stability) and the accuracy of the ROM are achieved.  
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ABSTRACT 
Reduced order modeling of structures for geometric nonlinear vibration has been an active research subject due to its 
advantage of reducing the computational cost associated with using traditional numerical methods. One type of 
reduced order models are the non-intrusive ones, for which the ROM is built from data obtained from commercial 
finite element software. Their advantage is the capability to handle a broad set of complex geometries and boundary 
conditions experienced in practice. Due to inconsistencies between the ROM and commercial software formulations, 
however, the constructed ROM cannot be an exact match of the finite element model. Accordingly, epistemic 
uncertainty exists in the ROM modeling beside issues of truncation of the number of modes. 
In the present study, the epistemic uncertainty associated with nonlinear stiffness coefficients of the non-intrusive 
ROM is quantified using a clamped-clamped straight beam as a demonstration example. A Monte Carlo simulation 
strategy is used first. Random samples of the optimal displacement level at which the identification is performed are 
generated with their probability distribution consistent with those used in the construction of the deterministic ROM. 
Random ROM samples are then identified at these random optimal levels, and the corresponding predicted response 
for a particular dynamic excitation are computed. Uncertainty bands on these predictions are then calculated to 
quantify the uncertainty of the ROM predictions. Furthermore, the nonparametric stochastic approach is considered 
as an alternative strategy to generate these uncertainty bands. The mean ROM used is the one identified by the 
multiple-level identification method, and the dispersion parameter (a measure of uncertainty level in the approach) 
of the corresponding stochastic ROM is determined by the maximum likelihood principle. A number of random 
samples of the mean ROM are generated, and their predictions of the same dynamic validation cases are computed, 
from which the uncertainty bands of the predictions are obtained. The uncertainty band results are shown to match 
the Monte Carlo simulation results very well.  
Keywords: uncertainty quantification, nonparametric stochastic approach, nonlinear stiffness coefficients, non-
intrusive reduced order modeling 

INTRODUCTION 
Reduced order modeling of structures for geometric nonlinear vibration has been an active research subject due to its 
advantage of reducing the computational cost associated with using traditional numerical methods [1-14]. One 
particular class of applications are hypersonic aircraft structures in extreme aerodynamic-thermal environments, e.g., 
large aerodynamic, thermal, and mechanical loadings with nonlinear interactions [15-17].  
One type of reduced order models are the non-intrusive ones, for which the ROM is built from data obtained from 
commercial finite element software (e.g., Nastran, Abaqus). Their advantage is the capability to handle a broad set 
of complex geometries and boundary conditions experienced in practice. Such reduced order models have been 
constructed for a large number of structures, and their strong potentials have been demonstrated. The details can be 
found in a recent review [18]. 
In a non-intrusive ROM [7], a modal basis is constructed to represent a given nonlinear displacement,  ,u X t ,  

    ( )

1

, ( )
N

n
n

n

u X t q t X


  ,                                                      (1) 

where  ,u X t  denotes the vector of physical displacements defined on the finite element degrees of freedom. ( )n  

are constant basis functions and  nq t  are the time dependent generalized coordinates.  
The governing equation of the ROM is derived from the elasticity theory by the Galerkin approach, expressed as  

(1) (2) (3)
ij j ij j ij j ijl j l ijlp j l p iM q D q K q K q q K q q q F      ,                               (2) 
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where ijM  denotes the elements of the mass matrix, )1(
ijK , )2(

ijlK , )3(
ijlpK  are the linear, quadratic, and cubic stiffness 

coefficients, and iF  are the modal forces. The viscous damping matrix { ijD } is added to collectively represent 

various dissipation mechanisms following standard practice. 
The above formulation of the ROM is not necessarily the same as the commercial finite element software, hence the 
ROM built upon the data from the commercial software may show some variation from the finite element model 
even if a large number of modes are taken. One example is the nonlinear stiffness coefficients. In a non-intrusive 
ROM, they are identified from either nonlinear forces or tangent stiffness matrices corresponding to enforced 
displacements [19]. The stiffness coefficients are supposed to be independent of the displacement level enforced, but 
this is not the case, and a multi-level identification method has been developed to find the optimal displacement 
level for each nonlinear stiffness coefficient [20]. The optimal displacement levels show variability from one 
coefficient to another, thus the stiffness coefficients identified at these displacement levels. This variation can be 
considered as an epistemic uncertainty, that is, uncertainty due to the modeling.  
In the present study, this epistemic uncertainty associated with the nonlinear stiffness coefficients is quantified. The 
Monte Carlo simulation is firstly carried out as follows. Random samples of optimal displacement levels will be 
generated, whose probability distribution is consistent with that observed in the multi-level identification. Random 
samples of nonlinear stiffness coefficients will be identified at these displacement-level samples, and structural 
responses to a dynamic load are computed. The uncertainty bands of the responses are then computed to give 
quantitative measure of the epistemic uncertainty. Afterwards, the nonparametric stochastic approach [21-24], which 
uses a dispersion parameter determined by a small number of samples from the Monte Carlo simulation to directly 
generate the large number of random samples, is employed to repeat the same uncertainty quantification and 
compared to the Monte Carlo simulation results.  

QUANTIFICATION OF EPISTEMIC UNCERTAINTY: MONTE CARLO SIMULATION 
As a demonstration example, a clamped-clamped straight beam is considered. The beam is of rectangular cross 
section and its geometric and material properties of the straight beam are given in Table 1. A finite element model of 
the beam was constructed with Nastran using 40 CBEAM elements.  
 

Table 1.  Beam Properties 
Beam Length 0.2286 m 

Cross-section Width 0.0127 m 

Cross-section Thickness 7.75 10-4 m 

Mass per unit length 2763 kg/m3 

Young’s Modulus 73,000 MPa 

Shear Modulus 27,700 MPa 
 
A nonlinear ROM of the beam has been constructed, including the first 4 symmetric linear modes and 4 

associated duals (ROM4L4D). The stiffness coefficients were identified by the multi-level identification method [3]. 
Static and dynamic validations were carried out, and good matching between the ROM and the Nastran results is 
obtained (the results will be shown later along with the uncertainty quantification results).  

Nevertheless, there is still some discrepancy, especially for the dynamic results at higher load levels. One 
observation from the multi-level identification results is that the optimal displacement level is not the same for all 
the coefficients. This is not consistent with the ROM formulation and suggests that epistemic uncertainty exist in the 
data used in the identification, which leads to the variation of the optimal displacement level. The uncertainty 
propagates further to affect the identified stiffness coefficients and eventually the ROM predictions.  

This epistemic uncertainty can be seen from the distribution of the optimal displacement levels for the quadratic 
and the cubic coefficients, respectively, as shown in Fig.1. For the quadratic coefficients, the optimal displacement 
levels are concentrated at a low displacement level but there are a small number of coefficients whose optimal 
displacement levels distribute widely. For the cubic coefficients, the optimal displacement levels are concentrated at 
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a range of higher displacement level while there are a number of coefficients whose optimal displacement levels 
distribute widely.  

 

 (a)                                                                                                       (b) 
Figure 1. Distribution of optimal displacement levels for the quadratic and the cubic coefficients. (a) Quadratic coefficients; (b) 
Cubic coefficients. 
 
The cubic coefficients whose optimal displacement levels are at the highest displacement level are found to be the 
coefficients which are small and negligible thus difficult to be identified with high accuracy. This is indicated by the 
distribution of the optimal displacement levels for the remained cubic coefficients after “cleaning up” the ROM, that 
is, zeroing out those negligible coefficients, as shown in Fig.2. The distribution for the quadratic coefficients 
essentially does not change.  

 

  
Figure 2. Distribution of optimal displacement levels for the remained quadratic and the cubic coefficients after 
“cleaning up” the ROM. (a) Quadratic coefficients; (b) Cubic coefficients. 

 
In the present study, this epistemic uncertainty is firstly quantified using the Monte Carlo simulation: 
(1) Two sets of random samples of optimal displacement levels are generated for the quadratic and the cubic 

coefficients, respectively, termed as quadratic and cubic random samples thereafter. The statistic distribution 
features of the two sets of random samples are made consistent with the cumulative distribution functions of the 
original data by using the inverse transform sampling method. The cumulative distribution functions of the 
original data and the generated random samples are shown in Fig.3, and it can be seen that the random samples 
represent the original data quite well.  
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(a)                                                                        (b) 

Figure 3. Cumulative distribution functions of optimal displacement levels for the quadratic and the cubic coefficients. Top: 
original data from multi-level identification. Bottom: random samples generated by the inverse transform sampling method. (a) 
Quadratic coefficients; (b) Cubic coefficients. 

 
(2) 100 random samples are then taken. For each random sample (a displacement level) in the two sets, the stiffness 

coefficients are identified by the regular single-level identification method. The quadratic coefficients identified 
using a quadratic random sample and the cubic coefficients identified from a cubic random sample are 
combined and considered as a random sample of stiffness coefficients.  

(3) Using the set of random samples of stiffness coefficients obtained in (2), a Monte Carlo simulation is carried 
out to compute the responses of the random samples to the static and dynamic loads used in the validation. The 
uncertainty bands are computed from the response data.  

In Figs. 4 and 5 are shown the uncertainty band results, along with the validation results of ROM versus Nastran, for 
a dynamic load case at two load levels, respectively. The dynamic load case is a uniformly distributed force along 
the span, time-variant as modeled by a white noise with the cut-off frequency of 1000Hz. Firstly, the ROM 
predictions match Nastran results at dominant frequency peaks very well. Secondly, the uncertainty band encloses 
Nastran PSD curve in almost the whole range of frequency 0 to 1500 Hz, suggesting the epistemic uncertainty is 
properly quantified.  
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(a)                                                                                                     (b) 
Figure 4. Uncertainty band of the ROM predictions for the dynamic load case. Load level 130dB (OASPL) which gives standard 
deviation of center transverse displacement at about 0.75 thicknesses. (a) Transverse displacement, center point; (b) Inplane 
displacement, quarter point.  

 

     (a)                                                                                                     (b) 
Figure 5. Uncertainty band of the ROM predictions for the dynamic load case. Load level 145dB (OASPL) which gives standard 
deviation of center transverse displacement at about 1.9 thicknesses. (a) Transverse displacement, center point; (b) Inplane 
displacement, quarter point.  

Uncertainty band of “cleaned” ROM 
The above uncertainty quantification procedure is then applied to the cleaned ROM, to further understand the 
behavior of epistemic uncertainty. 
The sets of quadratic and cubic random samples are generated according to the cumulative distribution functions of 
the data of the remained coefficients after cleaning up, using the inverse transform sampling method. The 
cumulative distribution functions of the cleaned data and the generated random samples are shown in Fig.6. A 
zoomed view is shown for the cubic coefficients since its CDF reaches 1 at a small value. It can be seen that the 
random samples represent the data quite well. 
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(a)                                                                                                         (b) 

Figure 6. Cumulative distribution functions of optimal displacement levels for the quadratic and the cubic coefficients remained 
after cleaning up. Top: cleaned data from multi-level identification. Bottom: random samples generated by the inverse transform 
sampling method. (a) Quadratic coefficients; (b) Cubic coefficients, zoomed view. 
 
Similar to the uncleaned ROM, random samples of stiffness coefficients are identified at displacement levels given 
by the above random samples. Again the quadratic coefficients identified using a quadratic random sample and the 
cubic coefficients identified from a cubic random sample are combined and considered as a random sample of 
stiffness coefficients. Using the set of random samples of stiffness coefficients obtained, a Monte Carlo simulation is 
carried out to compute the responses of the random samples to the dynamic loads used in the validation. The 
uncertainty bands are computed from the response data.  
In Figs. 7 and 8 are shown the uncertainty band results for the save dynamic load case at two load levels, 
respectively. Compared to the uncleaned ROM, the uncertainty band of the cleaned ROM becomes broader. The 
coefficients remained after cleaning up are usually considered better identified, so the broader uncertainty band 
implies that the ROM has larger variation than what the uncleaned ROM has shown.  
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                                                    (a)                                                                                                    (b) 
Figure 7. Uncertainty band of the cleaned ROM predictions for the dynamic load case. Load level 130dB (OASPL) which gives 
standard deviation of center transverse displacement at about 0.75 thicknesses. (a) Transverse displacement, center point; (b) 
Inplane displacement, quarter point.  

 

     (a)                                                                                                     (b) 
Figure 8. Uncertainty band of the cleaned ROM predictions for the dynamic load case. Load level 145dB (OASPL) which gives 
standard deviation of center transverse displacement at about 1.9 thicknesses. (a) Transverse displacement, center point; (b) 
Inplane displacement, quarter point.  

QUANTIFICATION OF EPISTEMIC UNCERTAINTY: NONPARAMETRIC APPROACH 
As shown above, in order to evaluate the uncertainty band, a number of Monte Carlo simulations with the ROM 
have to be done. This requires the identification of random ROM samples, which could be time consuming when the 
number of samples is large.  
The nonparametric approach [21-23] has been developed to directly generate random ROM samples. It can be 
accomplished using the maximum entropy approach as demonstrated in [24] for an elastic nonlinear ROM. A key 
observation is that the linear, quadratic, and cubic stiffnesses cannot be varied independently, rather a bigger matrix 
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must remain positive definite for all realizations. In this equation, the matrices )2(~
K  and )3(~

K  are obtained by a 

reshaping of the quadratic and cubic stiffness tensors )2(
mnlK  and )3(

mnlpK , see [10]. This property was instrumental in 
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the uncertainty modeling which proceeds from the matrix 
BK  of the mean model first decomposed as (e.g., 

Cholesky decomposition) 
T
KKB LLK  .                                                                                                                                                          (4) 

Next, lower triangular matrices 
KH
  are generated according to the following, see Fig. 1: 

(i) the elements ilH
 , i>l, are all independent of each other and independent of the elements iiH

 . Further, they are 
normally distributed with mean 0 and standard deviation iiil  2/1 . 
(ii) the elements iiH

  are all independent of each other and can be expressed as           

ii

ii
ii

Y
H




 ,                      (5) 

where  iiY
  are Gamma random variables, and ii  is given by 

2
12 


n

ii
 ,                    (6) 

where ത݊ is the size of the matrix 
BK  and  is the free parameter of the distribution which can be used to specify a 

level of uncertainty on 
BK . Finally, random 

BK  matrices can be obtained as 
T
K

T
KKKB LHHLK


 .                               (7) 

from which random linear, quadratic, and cubic stiffness parameters can be extracted given the form of 
BK .  

 

 
Figure 9. Structure of the random 

KH
  matrices with nത = 8, i =2, and 0 =1 and 10. 

In the nonparametric approach, the parameter  needs to be determined. In practice, a dispersion parameter  is 
usually used, and its relation to is given by  

2 1
2 1

n

n


 

  
.                                                (8) 

The parameter  can be determined using the maximum likelihood principle. To this end, a set of  values are taken. 
For each of them, 100 

BK  samples are generated, and the PSD of the ROM responses to the dynamic load at 145dB 

are computed. For each  value, the likelihood function of the PSD results from these 
BK  samples is evaluated with 

respect to 10 samples from the Monte Carlo simulation as the true observations. The log of the likelihood function 
value as function of  is shown in Fig. 10, from which  = 0.04 is the optimal value for the nonparametric model.  
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Figure 10. Log of likelihood function value as function of . 

 
The 100 

BK  samples corresponding to  = 0.04 are used to compute the responses to the dynamic load at 130dB 

and 145dB, then the uncertainty band of the PSD result is computed and shown in Figs. 10 and 11, respectively.  
The uncertainty band results from the nonparametric approach are almost the same as the results from the Monte 
Carlo simulation.   
 

  

(b)                                                                                                     (b) 
Figure 10. Uncertainty band of the ROM predictions by the nonparametric approach. Dynamic load level 130dB (OASPL) which 
gives standard deviation of center transverse displacement at about 0.75 thicknesses. (a) Transverse displacement, center point; 
(b) Inplane displacement, quarter point.  
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     (a)                                                                                                     (b) 
Figure 11. Uncertainty band of the ROM predictions by the nonparametric approach. Dynamic load level 145dB (OASPL) which 
gives standard deviation of center transverse displacement at about 1.9 thicknesses. (a) Transverse displacement, center point; (b) 
Inplane displacement, quarter point.  

CONCLUSION 
The epistemic uncertainty associated with the nonlinear stiffness coefficients of the reduced order model (ROM) as 
evaluated by the multi-level identification method is quantified using both the Monte Carlo simulation and the 
nonparametric approach. A clamped-clamped straight beam is used as an example for demonstration. In the Monte 
Carlo simulation, random ROM samples are identified at random optimal displacement levels whose probability 
distribution is consistent with that observed in the multi-level identification. The responses of ROM samples to a 
dynamic load at two load levels are computed, and the uncertainty bands of the power spectral density (PSD) results 
are computed for uncertainty quantification. It is demonstrated that the uncertainty bands properly account for the 
uncertainty of the stiffness coefficients. For the nonparametric approach, the dispersion parameter is determined by 
using the maximum likelihood principle, then random ROM samples are directly generated. These ROM samples 
are used to obtain the uncertainty band results for the same dynamic load. The uncertainty bands from the 
nonparametric approach match the Monte Carlo simulation results very well.  
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Abstract 
 
Quantifying effects of system-wide uncertainties (i.e., affecting structural, piezoelectric, and/or electrical components) 
in the analysis and design of piezoelectric vibration energy harvesters has recently been emphasized. The present 
investigation proposes first a general methodology to model these uncertainties within a finite element model of the 
harvester obtained from an existing finite element software. Needed from this software are the matrices relating to the 
structural properties (mass, stiffness), the piezoelectric capacitance matrix, as well as the structural-piezoelectric 
coupling terms of the mean harvester. The thermal analogy linking piezoelectric and temperature effects is also extended 
to permit the use of finite element software that do not have piezoelectric elements but include thermal effects on 
structures. The approach is applied to a beam energy harvester. Both weak and strong coupling configurations are 
considered and various scenarios of load resistance tuning are considered, i.e., based on the mean model, for each 
harvester sample, or based on the entire set of harvesters. The uncertainty is shown to have significant effects in all cases 
even at a relatively low level and these effects are dominated by the uncertainty on the structure vs. the one on the 
piezoelectric component. The strongly coupled configuration is shown to be better as it is less sensitive to the uncertainty 
and its variability in power output can be significantly reduced by the adaptive optimization, and the harvested power 
can even be boosted if the target excitation frequency falls into the power saturation band of the system.  
 
 

1 Introduction 
 
Piezoelectric energy harvesting has received significant attention in recent years as a viable solution to self-powered 
wireless sensors for emerging applications including wearable electronics, structural health monitoring, Internet of 
Things (IoT) and robotics. Ambient vibrations are abundant in many applications, for example, industrial machines, 
moving vehicles and aircraft, building and bridges, and human motions, etc. Piezoelectric materials have a crystalline 
structure inside which the atoms are not symmetrically arranged. Deforming the structure modifies the balance of the 
electric charges and results in a net electric charge on the crystal surface, which is called the direct piezoelectric effect. 
This effect has typically been used for sensor devices such as accelerometers, microphones, load cells, etc., and also 
makes piezoelectrics a suitable material for vibration energy harvesting, where the piezoelectric material is strained as a 
result of vibration. In addition, piezoelectrics have attractive features such as high energy density and compact and simple 
architecture [1]. These all contributed to the growing interest in piezoelectric vibration energy harvesting for self-
powered microsystems. A general overview of the research and development in piezoelectric vibration energy harvesting 
can be found in references [2-8].   
 
Most of the analytical models of piezoelectric energy harvesters have been developed based on the assumption that the 
vibration excitation is harmonic. Also, it is desirable to make vibration energy harvesters lightly damped to utilize their 
large structural response for greater power output. As a result, the effective harvesting bandwidth is usually narrow and 
the power output is very sensitive to the “matching” between the excitation frequency and the natural frequency of the 
system. Though nonlinearity has been introduced to broaden the bandwidth and reduce this sensitivity [9,10] and was 
shown to overperform the linear configuration by an uncertainty propagation study [11], the uncertainty in the system 
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still has a significant influence on the power performance. Recognizing the uncertainty in most environmental vibration 
excitations, i.e., variation of amplitude and frequency, researcher have studied the effect of excitation randomness on 
harvested power and attempted to developed models in a stochastic manner. Lefeuvre et al [12] performed theoretical 
and experimental studies, and compared the power performance of the standard AC-DC and Synchronous Electric Charge 
Extraction (SECE) techniques in the case of broadband, random vibration. Halvorsen [13] developed a closed-form model 
of linear resonant energy harvesters driven by broadband vibrations, and obtained the Fokker-Planck equation describing 
the probability density function of the harvested power. Following a similar approach, Adhikari et al [14] derived 
expressions for the mean normalized power of system of stack configuration subjected to Gaussian white noise base 
acceleration. They studied the cases when the system was connected to a resistive load and connected to a resistive load 
and inductor in parallel. Seuaciuc-Osόrio and Daqaq [15] presented a theoretical analysis of the response of energy 
harvesters to excitations having a time-varying frequency. Yoon and Youn [16] applied a statistical time–frequency 
analysis to quantify the harvested power of a piezoelectric energy harvester under nonstationary random vibrations. 
Based on a distributed-parameter electroelastic formulation, Zhao and Erturk [17] presented analytical and numerical 
solutions, and experimental validations of piezoelectric energy harvesting from broadband random vibrations. Based on 
the Wiener path integral technique, a methodology was developed by Petromichelakis et al [18] to determine and 
optimize stochastic response of nonlinear electromechanical energy harvesters. 
 
On the other hand, to enhance the power or energy conversion performance of the system and provide design guidance 
for energy harvesters, optimization studies have been conducted on the geometrical parameters [19-22] or the electrical 
parameters [23-26]. Additionally, topology optimization methods have also been applied [27-29]. However, as pointed 
out by Franco and Varoto [30], most of these optimization strategies usually seek for a single optimal parameter at a time. 
A piezoelectric energy harvester is an electromechanically coupled system whose performance is simultaneously affected 
by multiple parameters in the materials, mechanical, and electrical domain. Moreover, during the modeling and 
manufacturing processes, uncertainty is inevitably introduced into the mean model, for which the optimal parameters are 
obtained. As a result, the actual performance will deviate from predictions. 
 
While some optimization methods have been coupled to stochastic response analysis tools for the response optimization 
of energy harvesters subjected to external random excitation, e.g., in [18], researchers have also recognized the 
importance of quantifying the uncertainties in the system parameters and further accounting for them in the analysis and 
design processes of harvesters, e.g., see [11,30-39]. These investigations have used parametric uncertainty, i.e., they have 
considered variations in some of the parameters of the system which they have modeled as random variables, independent 
of each other when multiple such parameters are varied. Geometrical dimensions, properties of the structural component 
and/or of the piezoelectric device, and characteristics of the electrical circuits have been treated as random. Moreover, 
the structural model of the harvester has typically been an equivalent SDOF although finite elements have also been used 
[36,39]. These investigations have yielded two key findings. First and foremost, they have demonstrated that a small 
level of uncertainty typically induces a dramatic change in power output. Relatedly they have also shown the interest of 
designing under uncertainty. That is, the performance of the harvester optimally designed based on the mean model is 
no longer optimum once uncertainty is introduced. These findings clearly demonstrate the need to include uncertainty in 
the analysis and design of piezoelectric energy harvesters and the focus of the present investigation is on developing a 
general framework to consider in such efforts the uncertainties on the geometry/material properties of the structural and 
piezoelectric components. 
 
While the above investigations have focused on introducing uncertainty on certain parameters of simple structural 
models of the harvesters, the real-world uncertainty is expected to affect all components and parameters of the model in 
a coupled manner. For example, uncertainty in a natural frequency originates from uncertainty on the structural properties 
and/or geometry and thus also implies uncertainty in the mode shapes, in the coupling with the piezoelectric elements, 
as well as in other natural frequencies. To account for all these effects, it is necessary to have a global, or nonparametric, 
modeling of uncertainty and such a modeling is best performed on a finite element description of the harvester, i.e., 
structure and piezoelectric components, especially to enable the consideration of complex geometries. Such an 
uncertainty modeling is proposed here based on the very recent work in [40-42], where the developed nonparametric 
approach is nonintrusive to the finite element software, requiring only the capability to output finite element mass, 
stiffness, electromechanical coupling, and piezoelectric capacitance matrices for the mean harvester design. The 
approach in [40-42] follows the original work of Soize in [43], in which the maximum entropy principle is applied and 
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the uncertainty is modeled directly at the level of a reduced order model of the structure, not within the finite element 
formulation as is done with the stochastic finite element approach. In this nonparametric maximum entropy approach, 
the uncertainty is lumped into the mass and/or stiffness matrix of the structure corresponding to a specified, deterministic 
basis. The joint probability density function of the elements of these matrices is then selected to: (i) have means which 
equal the corresponding deterministic matrices of the mean structural model, (ii) satisfy the mathematical requirements 
existing for these matrices (symmetry, positive definiteness), (iii) satisfy an integrability condition which guarantees the 
existence of the response in mean square, and (iv) maximize the entropy. This maximum entropy approach has been 
applied to matrices and fields with a variety of properties for which the construction of realizations has been detailed 
and is often very straightforward permitting a broad set of applications, see [44,45] for extensive review. The specific 
formulation in [40-42], also used in the present study, is a modification of the original methodology of Soize, in which 
the elemental mass and stiffness matrices are recognized as reduced order model matrices of the structure within each of 
the finite elements with the interpolation functions serving as basis functions inside the elements. Once the mean model 
elemental matrices have been obtained, uncertainty is introduced element per element for each sample of the uncertain 
harvester, the structural-piezoelectric matrices are reassembled and the simulation, e.g., output power determination, can 
be carried out.  Random elemental matrices are simulated in such a way that all sources of uncertainties, material 
properties and geometry, are accounted for as long as the components remain linear. The uncertainty modeling then 
becomes equivalent to the random field modeling of these elemental matrices, which is described in full in section 3 of 
the paper. For the broadest applicability, the use of finite element software that do not include an explicit piezoelectric 
element is also considered and it is shown by extending the thermal analogy, that the modeling of the complete system 
can still be accomplished if the finite element model includes thermal effects.  
 
In the present study, the above approach is applied to a bimorph piezoelectric energy harvester (PEH), for which an 
analytical model and an optimization formula have been developed [24] to obtain the optimal load resistance for the 
specified maximum power output at a given excitation frequency. A finite element model of the energy harvester is first 
constructed with Nastran using the piezoelectric-thermal analogy and the uncertainty modeling is implemented to allow 
uncertainty in structural and/or piezoelectric properties. These capabilities are then utilized to study the effects of 
uncertainty on the power output of the energy harvester, both with weak and strong coupling and with different tuning 
scenarios of the resistive load to optimize the power output. Section 2 provides an overview of important power 
characteristics of piezoelectric vibration energy harvesters, along with their finite element modeling, including the 
thermal analogy necessary in Nastran, the finite element software chosen for this analysis. The uncertainty modeling is 
reviewed in Section 3 and the application to the bimorph PEH is detailed in Section 4. 
 
 
 

2 Modeling of piezoelectric vibration energy harvesters 
 
2.1 Electromechanical modeling and power behavior 
 
Using a Rayleigh-Ritz formulation and a generalized form of Hamilton’s Principle, Hagood, Chung and von Flotow [46] 
derived a set of equations to model the electromechanically coupled dynamics of an elastic structure with piezoelectric 
elements and passive electronics: 

          ft t t t t   Mw Cw Kw Θv B f  ,        (1)  

     T
p qt t t Θ w C v B q ,             (2) 

which are called the actuator and sensor equations, respectively. There are n mechanical degrees of freedom (DOF), m 
electrical voltage DOF at the electrodes, nf forces, and nq applied electric charges. M, C, and K are the n-by-n mass, 
damping, and stiffness matrices, respectively. w is the n-by-1 generalized mechanical (or displacement) coordinate vector, 
and v is the m-by-1 generalized electrical (or voltage) coordinate vector. Θ is the n-by-m electromechanical coupling 
matrix, and Cp the piezoelectric capacitance matrix. Finally, Bf is the n-by-nf force forcing matrix, Bq the m-by-nq charge 
forcing matrix, f the nf-by-1 force vector, and q is the nq-by-1 charge vector. The exact definitions of these quantities 
can be found in [46]. Beam harvesters subjected to base motion have received great interest because of their simplicity 
in implementation and large structural response, along with the fact that base motion excitations are abundant in 
environment. Following an approach similar to that of Hagood et. al, a single-mode (or equivalent SDOF) model for 
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beam harvesters operating near its resonance and subjected to base motion was developed by Liao and Sodano [24] as: 
                  Mw t Cw t Kw t v t Da t     ,        (3) 

              pw t C v t q t   ,             (4) 
where D is the equivalent input mass, a is the base motion acceleration selected here as ( ) cosa t A t  , and q is the 
total electric charge applied on the piezoelectric elements, v is the voltage across the elements. In the case of a fully-
covered and symmetric bimorph beam configuration where the substrate layer is sandwiched between two piezoelectric 
layers, Liao and Sodano [24] derived the analytical expressions of the equivalent SDOF quantities in Eqs. (3) and (4) 
and they are given in the Appendix. In addition, if the energy harvesting interface circuit is simply resistive, i.e., 
connected to a resistor, the harvested power is given as  

       
2 2 2 2

2 22 2 2 21 2 2 1

D A k r
P

KM r r r r k r



   


           

,      (5) 

where the short-circuit natural frequency ωn, damping factor  , frequency ratio r, and dimensionless resistance ρ are 
defined as 

M

KE
n  , 

2
C

KM
  , 

E
n

r



 , p nRC         (6) 

with ω and R being the excitation frequency and electrical load resistance, respectively. In addition, a very important 
parameter, the electromechanically coupling coefficient k2 of the system, is defined as 

2
2

p

k
C K


 .             (7) 

 
The general power behavior of piezoelectric vibration energy harvesters is briefly reviewed here through an example of 
the energy harvester connected with a resistor. However, this behavior is also exhibited by energy harvesters with other 
types of interface circuits [47]. To facilitate the discussion, a numerical beam harvester has been created and the 
associated results are shown in Fig. 1. The properties of the simulated system are given in Table 1, where brass is used 
for the substrate and PSI-5H is for the PZT material. The mechanical damping ratio at the first mode of 0.02 is used. 
Generally, the harvested power depends on both the load resistance and excitation frequency [48]. Figure 1(a) plots the 
harvested power vs. the excitation frequency at different resistance values. Unsurprisingly, for each power curve, the 
peak power occurs near the structural natural frequency of the system where the structural response is large, resulting in 
more mechanical strain energy for energy conversion. It can be seen that the peak frequency increases (or moves from 
left to right, graphically) from the short-circuit to open-circuit frequency as the electrical load increases. This is due to 
the electromechanical coupling of the piezoelectric material, which changes the effective stiffness of the system. 
Furthermore, the energy harvesting process results in an additional damping effect as a part of the mechanical energy is 
“removed” from the system due to energy conversion. For a given frequency, the harvested power depends on the load 
resistance. This is illustrated in Fig. 2(b), where the harvested power at a given fixed frequency, i.e., 55 Hz, is plotted 
against the load resistance. There is an optimal resistance that maximizes the harvester power and its theoretical 
expression has been determined as [24]:  

   
   

22 2

22 2 2

1

/
opt

p p

C K M
R

C C K C M

 

   

 


  
,        (7) 

which varies as the excitation frequency changes. If the load resistance is optimally tuned for all frequencies, this results 
in the power envelope of the system shown in Fig. 1(a), representing the maximum possible power through the tuning 
of load resistance. Graphically, this envelope is essentially the outer profile of the power curves if we plot them for a 
continuous and infinite range of load resistance instead of the five resistance values.   
 

Table 1. Properties of the simulated bimorph beam harvester in Section 2 
Property Symbol Value 
Length L 80 mm 
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Width b 10 mm 
Substrate thickness ts 0.25 mm 
PZT thickness tp 0.25 mm 
Substrate density ρs 8740 kg/m3 
PZT density ρp 7800 kg/m3 
Substrate modulus Ys 101 GPa 
PZT modulus Yp 62 GPa 
PZT dielectric constant KT

3 3800 
PZT piezoelectric coefficient d31 -320×10-12 m/V 
Damping ratio   0.02 

 

 
Figure 1. (a) Power vs. frequency at constant or optimal load resistance; (b) power vs. load resistance at a fixed excitation 

frequency.  
 
 
In addition, the electromechanical coupling has a significant effect on the overall power behavior of the system. Figure 
2 plots the power envelopes of the same system as given in Table 1 but at different levels of coupling by changing the 
piezoelectric coefficient d31. Overall, initially the harvested power increases as the coupling increases as a result of a 
higher energy conversion efficiency. However, the electrically induced damping due to energy harvesting also increases, 
which leads to a reduced structural response. When the coupling coefficient reaches a critical value, a balance between 
the conversion efficiency and structural response is reached and the power saturates at a level called power limit, which 
has been determined [49] as  

2 2

lim
1

8
D A

P
MK 

 ,            (8) 

and represents the overall power ceiling of a harvester. Depending on the amount of coupling in the system, this limit 
may or may not be reached. The minimum coupling to reach the power limit, i.e., critical coupling, for energy harvesters 
of a resistive interface circuit is given [26,48] as 

 2 24 4
c

k    ,            (9) 

which is a function of the mechanical damping ratio. A system of coupling higher than the critical coupling is defined as 
strongly coupled and it is weakly coupled if the coupling is lower than the critical coupling. For damping ratio 0.02, the 
critical coupling coefficient is 0.0816, and the curves for k2 = 0.18 and 0.25 are of strongly coupled systems. There are 
two power limit peaks in the power envelope of a strongly-coupled resistive energy harvester: one near the short-circuit 
natural frequency and the other near the open-circuit natural frequency. Note that the critical coupling changes with the 
type of energy harvesting circuit interface [47], which has been utilized as a method for enhanced power performance 
through innovative circuit designs. However, the system is still subjected to the same power limit regardless of the 
interface circuit type [49].  
 
Even though once the coupling reaches its critical value, the power saturates and further increasing of the coupling does 
not lead to enhanced power, a strongly coupled system still offers few benefits. For example, the higher coupling induces 
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more damping and further reduces the structural response and stress, which helps extend the fatigue life of the system. 
In addition, it can be seen from Fig. 2 that the frequency bandwidth, over which the harvested power is relatively large, 
is much wider at high coupling. This allows the system to be more robust as to the change in the excitation source 
frequency through a “correction” tuning of the electrical load to match the actual frequency.  
 

 
Figure 2. Power envelopes of the system given in Table 1 at various coupling. Base-motion acceleration is 1g and damping 

ratio is 0.02. 
 
 
2.2 Finite element modeling of piezoelectric energy harvesters 
 
2.2.1 Finite element formulation 
 
The finite element formulation for the piezoelectric harvester can be rewritten as  

                            FE FE FE FE FE FE FE FE FEt t t t t   M u C u K u Θ v f  ,    (10a) 
           ( ) ( )FE FE FET FE FE

pt t t Θ u C v q ,        (10b) 
where the actuator equation, Eq. (10a), is similar to the Rayleigh-Ritz formulation given by Eq. (1). However, it should 
be noted that Eq. (1) is a reduced-order formulation with system quantities obtained by using the assumed basis functions, 
e.g., mode shapes; while the quantities in Eqs. (10a) and (10b) are obtained at the element level. The superscript “(FE)” 
is used in Eqs. (10a,b) to emphasize this difference. Denoting by SN  and EN  as the numbers of the structural and the 

piezoelectric degrees of freedom (DOFs), respectively,  FEM ,  FEK , and  FEC  are SN -by- SN  matrices,  FEΘ  is a 

SN  -by- EN   matrix,  FE
pC   is a EN  -by- EN   matrix,  FEu   and  FEf   are SN  -by-1 vectors, and  FEv   and  FEq   are a 

EN -by-1 vectors. Applying the electrical boundary condition that the electrodes on the PZT surfaces are connected, i.e., 
vi = v, effectively reduces the number of DOFs for the voltage to be one and the actuator equation, Eq.(10a), can be 
rewritten as   

                          FE FE FE FE FE FE FE FEt t t v t t   M u C u K u θ f  ,     (11a) 

where the coupling vector  FEθ  is obtained by summing the columns of the coupling matrix  FEΘ  as a result of the 
electrical boundary condition. Accordingly, the sensor equation, Eq.(10b), becomes  
                                                               FE FET

pt C v t q t θ u ,         (11b) 
where Cp is the total piezoelectric capacitance of the PZT layer, obtained by the summation of all the elements of the 
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capacitance matrix,  FE
pC , and q is the total electric charge induced on the layer, obtained by summing the columns of 

the charge vector,  FEq .  
 
In the case of a resistive energy harvesting interface circuit, i.e., the harvester is connected to a resistor, one has 
                                                                     v Rq   .            (12) 
Substituting this relationship into Eqs. (11a,b) yields the governing equations  

                          FE FE FE FE FE FE FE FEt t t Rq t t   M u C u K u θ f   ,    (13a) 

           0
T

FE FE
pt RC q t q t  θ u  .        (13b) 

The set of equations can be rewritten in a state-space form as 
           

  
   00

0 01

FE
FE FEFE FE FE FE FE

T
FE

p

R

RCq q q

                                       

KC θM u u u f

00 θ

 
 

,  (14) 

which serves as the governing FE equations to be solved. 
 
2.2.2 Extraction of finite element matrices 
 
To perform the uncertainty analysis at the finite element level, the FE matrices in Eqs. (10a,b) need to be obtained. A 
convenient way is to extract them from a commercial FE software. However, not all commercial finite element software 
allows directly modeling of piezoelectric element, which prevents piezoelectric matrices from direct extraction. This is 
the case for example of MSC Nastran which is a widely-used multidisciplinary finite element package that is capable of 
performing static, dynamic and thermal analysis of structures in both linear and nonlinear domains. Nevertheless, it is 
possible to resort to some analogy between piezoelectric and structural or thermal properties to extract these FE matrices. 
This is implemented in the present study, described as follows. 
 
In general, the FE matrices to extract can be classified into three groups: (a) structural matrices; (b) piezoelectric-
structural coupling matrix; and (c) piezoelectric matrix.  
(a) The structural mass and stiffness matrices,  FEM  and  FEK , are output by using the Nastran DMAP alters, the high-
level Nastran language commands. The damping matrix  FEC  is then computed by using the Rayleigh damping model, 
i.e.,  
                                                                FE FE FE  C M K ,                                                (15) 
where   and    are the Rayleigh damping coefficients, determined according to the damping ratio of the mode of 
interest. The Rayleigh damping model is a widely used viscous damping model where the damping is considered to be 
associated with mass and stiffness and expressed as a linear combination of the mass and the linear stiffness matrices, 
which is convenient to use with a finite element model or in the modal expansion approach. 
 
(b) The electromechanical coupling matrix  FEΘ  is obtained by considering the following static actuation equation 
                                                              ( )FE FE FEf Θ v ,                        (16) 
which shows that when a static distributed voltage ( )FEv  (a EN -by-1 vector) is applied to the piezoelectric layer, it 

induces a static distributed force  FEf  (a SN -by-1 vector) on the structure. From Eq. (16), one can imagine when the 
static voltage is such that its ith element is one and the other elements are zeroes, the static structural force will be 
equivalent to the ith column of the matrix  FEΘ . In this way, varying i from 1 to EN  one by one and collecting the 

corresponding structural force vectors,  FEΘ   can be obtained. With Nastran linear static solution (SOL101), the 
structural force vector can be obtained as the reaction force by applying the static voltage and fixing all the structural 
degrees of freedom, where the static voltage is applied by the equivalent distributed temperature using the piezoelectric-
thermal analogy [50,51]. 
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To clarify this analogy, consider a piezoelectric beam harvester with direction 1 defined along the length direction and 
direction 3 defined along the thickness direction (also the polarization direction). Due to the converse piezoelectric effect, 
the induced normal or bending strain in the 1-direction, i.e., ε1, due to an applied electrical field in the 3-direction, E3, is 
given as 
                                                                     1 31 3d E  ,            (17) 
where d31 is the piezoelectric coefficient. Usually it is a negative number, meaning that application of a positive electric 
field in the polarization direction, i.e., direction 3, will generate a compressive strain in direction 1. Assume the electrical 
field within the PZT element is uniform and given as E3 = v/tp, where v is the voltage across the element (between the 
electrodes on the top and bottom surfaces) and t is the thickness of the PZT. Equation (17) can be rewritten as 

                                                                   31
1

p

d
v

t
  .            (18) 

On the other hand, the thermal strain induced by a temperature change is given as 
                                                                1 1 refT T   ,           (19) 

where α is the coefficient of thermal expansion, T the current temperature, and Tref is the reference temperature.  
Comparing Eqs. (17) and (18) and setting Tref = 0 lead to the piezoelectric-thermal analogy:  

                                                                31
1,

p

d
v T

t
  ,           (20) 

which means that the converse piezoelectric effect can be equivalently modeled by the thermoelastic effect of structures 
with the temperature corresponding to the applied voltage and the equivalent thermal expansion coefficient related to 
the piezoelectric properties as shown in Eq. (20).  
 
(c) The piezoelectric-thermal analogy only models the converse piezoelectric effect only in the mechanical domain, i.e., 
Eq. (10a) or (13a), thus can only be used to extract the electromechanical coupling matrix  FEΘ . To model the direct 
effect on the circuit dynamics in the electrical domain and set up the other governing Eq. (10b) or (13b), the piezoelectric 
capacitance matrix needs to be extracted as well. This can be achieved by an analogy between the structural mass, M, 
and the total piezoelectric capacitance, Cp, expressed as, respectively,  
                                                               

S

S S

V

M dv  ,           (21a) 

                                                              ( ) ( )
S

T S
p S

V

C z z dv    ,         (21b) 

where S  is the mass density, S  is the dielectric constant at constant strain, and ( )z  defines the distribution of the 

piezoelectric material across the thickness of the device domain, SV . From Eqs. (21a,b), the capacitance matrix ( )FE
pC  

can be obtained as the mass matrix of the structure, when the mass density is set to be  

                         

2
31

0 33 2
33 11

1( )     piezoelectric layers
( ) ( )

0                                 substrate

E T S
ps

d

Y tz z
 

   


   



,             (22) 

where 0  is the vacuum permittivity, 33  is the relative permittivity in the 3-direction, 11Y  is the Young’s modulus in 
the 1-direction, and pt  is the thickness of the piezoelectric layer.  
 
2.2.3 FE modeling validation 
 
With the finite element modeling framework constructed above, fully coupled piezoelectric-structural simulations of 
piezoelectric energy harvesters can be performed. For validation, a finite element model of a bimorph harvester of 
properties given in Table 2 was constructed using Nastran, as shown in Fig. 3. The harvester is basically a cantilever 
beam type structure, and CQUAD4 shell elements were used for the structure FE model with 1760 elements and 1887 
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nodes. The composite property card (PCOMP) was used to define the substrate and the piezo layers structural properties.  
 
 
 

 
Figure 3. Finite element model in NASTRAN 

 
The validation case is that the harvester is subject to base motion at the clamped end, of 1g acceleration at a single 
excitation frequency, the resultant force vector is constructed as  

     ( ) ( ) [ ]FE FE FEFE i t i tt e g e   f F M a ,                                          (24) 

where 2 f   , f is the excitation frequency, and  FEa   is a SN  -by-1 acceleration vector. For a base acceleration 

excitation of 1g, the components of  FEa  are zero except those associated with the transverse translation which are all 
set to 1. The steady-state structural response and piezoelectric charge are computed by solving Eq. (14) using the method 
of frequency response function, i.e.,  

         

  
 

1

2
00  

0 01

FE
FE FEFE FE FE

T
FE

p

R
i

RCq
 


                                 

KC θu M F

00 θ
      (25) 

The solution is implemented outside of the Nastran environment. At each excitation frequency, the amplitude of 
harvested power output is computed from the solution as 2

0( )P q R , where 0q  denotes the amplitude of the charge. 
   

Table 2. Properties of the cantilever piezoelectric beam for validation [24] 
Property Symbol Value 
Length L 66.62 mm 
Width b 9.72mm 
Brass thickness ts 0.76mm 
PSI-5H thickness tp 0.26 mm 
Brass density ρs 8740 kg/m3 
PSI-5H density ρp 7800 kg/m3 
Brass modulus Ys 101 GPa 
PSI-5H modulus Yp 62 GPa 
PSI-5H dielectric constant KT

3 3800 
PSI-5H piezoelectric coefficient d31 - 320×10-12 m/V 

 
The harvested power vs. excitation frequency is plotted in Fig. 4(a) at different load resistances. It is the same 
configuration used by Liao and Sodano [24] in their experimental studies and the results are shown in Fig. 4(b). For 
further comparisons, its ANSYS and analytical results are shown in Figs. 4(c) and 4(d), respectively. The analytical 
results are obtained by using Eq. (5) with the effective system parameters evaluated by using the expression in the 
Appendix. Overall, it can be seen that the NASTRAN derived results are in excellent agreement with other results, which 
confirms the adequacy of the thermal analogy. 
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Figure 4. Harvested power vs. excitation frequency for the harvester given in Table 2. Base-motion acceleration is 1g and 

damping ratio is 0.019.  
 
 

3. Nonparametric maximum entropy approach for uncertainty quantification at finite element level 
 
In the present study, the finite-element-level nonparametric maximum entropy approach is used for uncertainty analysis 
of the bimorph piezoelectric energy harvester. Based on the piezoelectric-thermal analogy, the approach is implemented 
in a similar way to that in the uncertainty analysis of heated structures [42], where the details of the theoretical derivation 
can be found. The mass, stiffness, and the electromechanical coupling matrices of the FE model are randomized in the 
present uncertainty analysis to reflect the uncertainties of the parameters of the coupled system globally. Note that the 
ordering of the degrees of freedom in the matrices discussed below is degree of freedom 1 for all nodes, degree of 
freedom 2 for all nodes, etc. 
 
For the mass matrix, the randomization is a single-physics one [41,42], i.e., it is performed with the matrix itself. For 

each elemental mass matrix of the mean FE model, denoted as ( )eM , its random sample is constructed as  

                                                    ( ) ( ) ( ) ( )( ) e e e T e Te
M M M MM L H H L ,                                    (26) 

where 
( )e
ML  is a decomposition of ( )eM  satisfying  

                                                             ( ) ( )( ) e e Te
M MM L L .                                                                 (27) 

The random matrix ( )e
MH  is obtained by  

                                                           ( ) ( )e e
rM  H H I ,                                                         (28) 

where ( )eH  is a m-by-m random matrix where m is the number of degrees of freedom per node and its structure is  

shown in Fig. 5, rI   is the r-by-r identity matrix where r is the number of nodes per element, and   denotes the 
Kronecker product operation.  
 


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Figure 5. Structure of a random H matrix.  

 
The randomization process is repeated for each element, but since these elements are connected to form the finite element 

mesh, the matrices ( )eH   corresponding to different elements cannot be simulated independently of each other. 

Following the procedure proposed in [41,52,53], each element ijH  of the matrix ( )eH  is treated as the transformation 

of a zero mean, unit variance Gaussian field ijP  with a specified stationary autocorrelation function 

                                                                  ( )  [ ( ) ( )]ij ijR E P P y x x                                                                      (29) 

where  y x x ,  x  and x  denote the coordinates of two elements (e.g., of their centers). Then,   

                                                            1

                      
 

[ ( )]        
ii

ij

ij
ijH

P i j
H

F F P i j

  


,                                                              (30) 

where F is the cumulative distribution function of the standard Gaussian random variable,  is the inverse of the 

cumulative distribution function of the Gamma random variable. As shown in Figure 5, 1/ 2    where   is the 
parameter controlling the uncertainty level. Usually an alternative dispersion parameter   is used (as in the present 

study), which is related to   as 2( 1) (2 )n    , where n is the dimension of the matrix. Once random samples of 
all elemental matrices are obtained, they are assembled to construct the random sample of the mass matrix of the whole 
FE model. 
 
Different from the mass matrix, the randomization of the stiffness and the coupling matrices needs to be carried out 
together as a multiple-physics one due to the electromechanical coupling, similar to the heated structure case [40,42]. To 
this end, construct the matrix 

                                  
( ) ( )

( )
( )( )

e e
e

B ee T
EE

 
 
  

K
K

K
 ,                                                          (31) 

where ( )eK  and ( )e  are the Sn -by- Sn  structural stiffness and the Sn -by- n  electromechanical coupling matrices 
of an element, respectively. Here, Sn  and n  are the numbers of degrees of freedom of structural displacement and 
electrical voltage per element, respectively. In the present application, 6Sn r    and 1n r    where r = 4 as the 

1
iiHF
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CQUAD4 elements have 4 nodes, with 6 structural degrees of freedom and 1 electrical degree of freedom each. Finally, 
( )e
EEK  denotes a n -by- n  matrix relating to the strain energy induced by the electromechanical coupling, see [40] for 

discussion in the thermal case, and which will be discussed later in this section. The randomization of the elemental 

stiffness and the elemental electromechanical coupling matrices is carried out with the mean ( )e
BK matrix, denoted as 

( )e
BK .  

The randomization of the mean ( )e
BK  is given by 

             ( ) ( ) ( ) ( ) ( )e e e e T e T
B B B B BK L H H L .                                                             (32) 

In Eq.(32), the ( )e
BL  matrix is obtained from a decomposition of ( )e

BK ,  

                                          ( ) ( ) ( )e e e T
B B BK L L   ,                                                                   (33) 

in the block triangular form 

           
( ) ( )

( )
( ) ( )

 
e e

e KK
B e e

EK EE

 
 
  

L 0
L

L L
.                                                                        (34) 

The ( )e
BL   matrix includes three block matrices as shown in Eq.(34). The ( )e

KKL   matrix can be obtained by a 

decomposition of the mean elemental stiffness matrix ( )eK , 

                                                                        ( ) ( )( ) e e Te
KK KKK L L .                                                                         (35) 

Following the algorithm in [38], the ( )e
EKL  matrix is computed by 

                   ( ) ( )e e TT
EK DL q  ,                                                               (36) 

where 

                                                ( ) 1/2[ ]e
D

q p , and ( ) ( )e T e
D p  ,                                                     (37) 

that is, ( )e
D  and ( )e

D  are the matrices of eigenvectors and eigenvalues (diagonal elements) of the matrix ( )e .  

The third matrix, ( )e
EEL , should be obtained from the matrix ( )e

EEK . The thermal counterpart of ( )e
EEK  has been shown 

[42,53] to be difficult to accurately estimate from a commercial finite element code non-intrusively. Hence, considering 
that it does not appear in the governing equation, it was proposed [42,53] that it be selected to maximize the entropy of 

the random samples, achieved by setting ( )e
EEL  to be the identity matrix.  

 

The random part of ( )e
BK  in Eq.(32) is represented by the lower triangular matrix ( )e

BH , expressed as 

           
( ) ( )

( )
( ) ( )

 
e e

e KK
B e e

EK EE

 
 
  

H 0
H

H H
,                                                                      (38) 

where ( )e
EEH  only affects the ( )e

EEK  block. Since the ( )e
EEK  matrix does not appear in the governing equation, its value 

is irrelevant and thus ( )e
EEH  needs not be computed nor discussed. It is symbolically replaced by a * in the following.  

Noting that the matrix ( )e
BK  involves two quantities, the structural stiffness and the electromechanical coupling, and 

their uncertainty levels may be different, following the treatment in [42], ( )e
BH  is expressed as the product of two lower 
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triangular matrices, one representing the uncertainty of the stiffness properties ( ( )e
SH ) and the other of the piezoelectric 

properties ( ( )e
EH ), i.e.,  

             ( ) ( ) ( )e e e
B E SH H H ,                                                            (39) 

where 

            ( )
( )

e
E e

EK

 
  
 

I 0
H

H 
 and 

( )
( )

e
e KK

S

 
   
 

H 0
H

0 I
.                                                           (40),(41) 

Two random matrices, ( )e
KKH  and ( )e

EKH , need to be realized. The matrix ( )e
KKH  can be computed in the same way as  

( )e
MH  but with its own dispersion parameter K . Finally, the random matrix ( )e

EKH  is simulated row per row as 
 

                          ( ) ( )
, ,

e e
iEK i EK iH L U ,                                                             (42) 

and   

                 ( )
,diag e

i rEK i U h J    ,                                                               (43) 

where the notation ,iA  denotes the ith row of the matrix A and diag is the operation taking a vector and creating the 

diagonal matrix having these elements along the diagonal. Moreover in Eq. (43), ( )e
EKh   is a matrix of n  -by-6 

components defined as independent Gaussian random fields with a specified autocorrelation function, e.g., Eq. (29), and 
rJ  denotes the row vector of dimension r with all elements equal to one.  

 
Finally, the random elemental stiffness and electromechanical coupling matrices are computed by  

                                                  ( ) ( ) ( ) ( )( ) e e e T e Te
KK KK KK KKK L H H L ,                                                            (44) 

         ( ) ( ) ( )( ) ( ) ( ) ( ) ( )e e e T e e e T
KK KK EK KK KK

ee
EKKK

T  L H H L LH H .                                    (45) 
Once random samples of all elemental matrices are obtained, they are assembled to construct the random sample of the 
stiffness and the coupling matrices of the whole FE model. For each random sample, the damping matrix is computed 
by the Rayleigh damping model using the randomized mass and stiffness matrices and the same Rayleigh damping 
coefficients as in the nominal FE model. Therefore, the variation of the damping ratio is introduced through the variations 
of mass and stiffness. 
 
In the present application, the autocorrelation functions of the independent Gaussian random fields ijP  for the simulation 

of the random elemental mass matrices, of their counterparts for the random elemental stiffnesses, and of the components 

of the random matrix ( )e
EKh were all selected as in [41,42,52] as 

 
2

2
22

4 sin
2

corr

corr

L
R

L

    
   
    

y
y

y
,             (46) 

 where corrL  is the corresponding correlation length. While each random field can be described by its own correlation 
length, they were all taken equal here to 1/10 of the beam length to exemplify the methodology. 
 
 
 
 

4 Uncertainty analysis of bimorph beam harvesters 
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4.1 Systems for analysis 
 
To illustrate the uncertainty analysis process and investigate the effect of coupling and load tuning schemes on power 
uncertainty, two numerical beam configurations shown in Table 3 are studied. System 1 is weakly coupled with coupling 
coefficient k2 = 0.03, and System 2 is strongly coupled with k2 = 0.15. There are two sets of uncertainty studies performed 
for both systems: 1) uncertainty in the harvested power at a given excitation frequency, and 2) uncertainty in the power 
envelope. We also compare the situation when the electrical load remains fixed to its pre-tuned or preoptimized value to 
the situation when the load is “adaptively” re-tuned to the modified system parameters due to the introduced uncertainty. 
As a comparison baseline, the two systems harvest the same amount of power at a target excitation frequency, i.e., 3 mW 
at 135 Hz. The analytical model discussed in Section 2.1 has been used to guide the selection of these system properties 
in Table 3. The associated power behavior of the systems is shown in Fig. 6, which shows that the analytical model 
predicts that the two systems will harvest 3 mW at 135 Hz with an electrical load of 6001 Ω and 2806 Ω, respectively. 
To provide a “nominal” model for the uncertainty analysis, the two systems are also analyzed by NASTRAN using the 
approach outlined in Section 2.2 and the results are shown in Fig. 6 as well. Overall, the NASTRAN results match the 
analytical results quite well, except for a slightly frequency shift (about 2 Hz or 1.5% w.r.t 135 Hz) between the results.   
 
For these two configurations, the mass, stiffness, and the electromechanical coupling matrices of the FE model are 
randomized to globally reflect the uncertainties of the parameters of the coupled system. Since no detailed uncertainty 
information is available for the system parameters, the uncertainty levels of the three matrices, denoted as M , K , 

and  , respectively, are selected to yield specified values of the coefficient of variation of three quantities, selected 
here to be the total mass, the natural frequency of the first mode, and the modal coupling coefficient of the first mode, 
i.e.,  ( )

1 1
FE TFE T   θ   where ( )

1
FE   is the first mode. A population of 100 random samples was generated with 

coefficients of variation of the above three quantities set to 1.0%, 1.0%, and 1.5%, respectively following the discussion 
of Section 3. 
 

Table 3. Properties of the cantilever piezoelectric beams for uncertainty analysis 
Property Symbol System 1 System 2
Length L 66.86 mm 66.81 mm
Width b 12.12 mm 9.60 mm
Substrate thickness ts 0.76 mm 0.76 mm
PZT thickness tp 0.26 mm 0.26 mm
Substrate density ρs 8740 kg/m3 8740 kg/m3

PZT density ρp 7800 kg/m3 7800 kg/m3

Substrate modulus Ys 101 GPa 101 GPa
PZT modulus Yp 62 GPa 62 GPa
PZT dielectric constant KT

3 3800 3800
PZT piezoelectric coefficient d31 - 320×10-12 m/V - 378.1×10-12 m/V
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Figure 6. Analytical and NASTRAN power envelopes of the weakly and strongly coupled systems for uncertainty analysis.  

 
If some detailed information about the uncertainty in the parameters of the energy harvester is known, it can be used to 
determine the above uncertainty levels. For example, if the variation of the mass density is known, a number of samples 
of the total structural mass can be generated by a traditional stochastic approach, e.g., the Monte Carlo method, from 
which the true variation of the total mass is computed. Then, for each of a set of uncertainty levels M , a number of 
random samples are generated by the nonparametric approach, and the corresponding variation of total mass is computed. 
The uncertainty level at which the variation of total mass matches the true variation is taken. Alternatively, a more 
rigorous approach is to evaluate the likelihood function using the sample data for each uncertainty level, with respect to 
the true sample data, then the uncertainty level is determined as the one corresponding to the maximum likelihood [54,55]. 
The above procedure can be applied to K  if the variation of the Young’s modulus is known thus the variation of the 

natural frequency of the first mode can be computed, and to   if the variation of the piezoelectric coefficient is known 
thus the variation of the modal coupling coefficient of the first mode can be computed.  
 
4.2 Results and discussions 
 
4.2.1 Effect of mass, stiffness and coupling uncertainties and load resistance tuning 
 
The uncertainty analysis results are presented in Fig. 7 in the form of uncertainty bands spanning the 5th to 95th percentile 
interval. For both beam configurations (weakly and strongly coupled), there are 100 random samples at each nominal 
point, i.e., for each particular frequency of excitation in the band 115 Hz to 160 Hz. For each of the 100 samples, the 
response to the base excitation of 1g acceleration at the nominal point is computed and the harvested power is determined. 
These computations are performed for two situations: 1) the load resistance is fixed to its pre-optimized (pre-tuned) 
value of the nominal model for all 100 samples, and 2) the load resistance is “adaptively” optimized (adaptively re-tuned) 
for each sample individually to account for the system change due to uncertainty using based on Eq. (7). The first scenario 
corresponds to a harvester produced as a black box ready to be installed for a particular application. The second scenario 
would correspond to a critical use of a harvester where availability of maximum power is more important than the 
additional cost associated with the tuning of the load. 
 
In the case of pre-optimized resistance, as seen from Figs. 7(a) and 7(b), the uncertainty effect on the power envelope is 
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significant. For both configurations, the uncertainty band is quite broad with the relatively small uncertainty level, and 
the effect on the weakly-coupled configuration appears to be larger than that of the strongly coupled one. The uncertainty 
does not appear to affect the overall maximum value of the harvested power as much, which is consistent with the 
piezoelectric energy harvesting theory that the overall maximum power of an energy harvester is “capped” by its system 
properties, for example, Eq. (8). The change in system properties due to uncertainty is not significant enough to result in 
a large change in the overall maximum power. On the other hand, the uncertainty analysis shows that there could be a 
large probability that an energy harvester sample does not yield this maximum power. This means that a factor of safety 
on power needs to be considered in the design process, and the uncertainty analysis serves as an effective tool to quantify 
it. 
 
In the case of adaptively re-optimized resistance, as seen from Figs. 7(c) and 7(d), the uncertainty band of the weakly 
coupling configuration does not change as much; while that of the strongly coupling configuration is reduced by almost 
half in the frequency range between the two power limit frequencies, over which the power level is high. This is 
consistent with the piezoelectric energy harvesting theory that higher coupling leads to a broader harvesting bandwidth. 
The uncertainty in the system changes the system parameters and graphically moves the power envelope left and right 
(with small change in power). For a weakly coupled system, this movement could lead to a significant power drop at a 
particular frequency because of its narrow power envelope; while the effect is not as significant for a strongly coupled 
system because of the wider frequency range of high power. In all, the uncertainty results and observations suggest that 
the configuration of strong coupling be preferred in the design, since it is less sensitive to the uncertainty as shown in 
Figs. 7(a) and 7(b); and when the uncertainty is present, its performance can be improved, e.g., by the adaptive 
optimization, as shown in Figs. 7(c) and 7(d).  
 

 
Figure 7. Uncertainty band of the power envelope of the energy harvester with weak or strong coupling for two situations of 
optimal load resistance, Ropt. (a) weakly coupled, nominal optimized Ropt; (b) strongly coupled, nominal optimized Ropt; (c) 

weakly coupling, adaptively optimized Ropt; and (d) strongly coupling, adaptively optimized Ropt. 
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Figure 8. Uncertainty band of the power envelope of a strongly coupled energy harvester with the pre-tuned load resistance, 

Ropt, in the presence of (a) uncertainty in mass and stiffness only, and (b) uncertainty in coupling only. 
 
In the above study, the uncertainties in mass, stiffness and coupling are all included. To examine their effects separately, 
the configuration in Fig. 7(b) was used as an example and analyzed in two scenarios: presence of uncertainty in mass 
and stiffness only, and presence of uncertainty in coupling only. The results for the two scenarios are presented in Figs. 
8(a) and 8(b), respectively. For the system and under the uncertainty settings, it can be seen that the overall uncertainty 
of power shown in Fig. 7(b) is mostly due to the uncertainty in mass and stiffness. In addition, the effect from the mass 
and stiffness uncertainty appears to be “centered” about the nominal power envelope through most of the frequency 
range; while the effect from the coupling uncertainty alone is almost unnoticeable on the left side of the power envelope 
and becomes much more visible on the right side. These observations are consistent with the analytical PEH power 
characteristics discussed in Section 2.1. For Fig. 8(a), the uncertainty in mass and stiffness changes the natural frequency 
of the system, effectively moving the power envelope left and right about the original power envelope. In the middle 
frequency range between the two power limit peaks, the maximum power is still subjected to the power limit, and the 
pre-tuned load resistance becomes “mistuned” to the “new” system in the presence of uncertainty. As a result, almost all 
the power points fall below the nominal power envelope curve over the middle frequency range. On the other hand, the 
change in the coupling of a strongly coupled system does not change its short-circuit natural frequency but open-circuit 
natural frequency. As illustrated in Fig. 2, when the coupling increases, the left side of the power envelope (near the 
short-circuit natural frequency) remains almost “fixed” while the right side extends to the right as a result of increased 
open-circuit natural frequency. Therefore, the effect of uncertainty in coupling causes the power envelope to extends and 
contracts mostly on the right side. This is in agreement with the results shown in Fig. 8(b), where the uncertainty band 
is very noticeable on the right side but not on the left side of the power envelope.  
 
4.2.2 Further discussion on the effect of load resistance tuning schemes 
 
To investigate further the role of adaptive optimization in handling the uncertainty effect, the distribution of the harvested 
power (samples) at a few selected excitation frequencies by the systems shown in Fig. 7 are presented in Fig. 9. The 
adaptive optimization does not offer much power improvement as to uncertainty for the weakly coupled system 
throughout the frequencies, e.g. Figs. 9(c), and 9(e), except some slight enhancement near the peak frequency, e.g., Fig. 
9(a). This can be also stated about the strongly coupled system for frequencies outside the frequency band between the 
two power limit frequencies, e.g., Figs. 9(d) and 9(f). There are only a very small number of samples whose harvested 
power is increased by the adaptive optimization. However, as shown in Fig. 9(b), for frequencies that fall into the band, 
the adaptive optimization is able to not only reduce the size of the uncertainty band (or scattering), but also boost the 
harvested power for most of the samples. In addition, the distribution of the optimized values of the load resistance are 
shown in Fig. 10. It can be seen that the enhanced power in Figs. 9(a) and 9(b) is connected to a more centered distribution 
of the adaptively re-tuned optimized resistance about its associated pre-tuned optimal value. 
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Figure 9. Distribution of harvested power at selected excitation frequencies for the weakly and strongly coupled 

configurations. Weakly coupled: (a) 137 Hz; (c) 135 Hz; and (e) 139 Hz. Strongly coupled: (b) 140 Hz; (d) 134 Hz; and (f) 
146 Hz.  
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Figure 10. Distribution of optimized load resistance at selected excitation frequencies for the weakly and strongly coupled 
configurations. Weakly coupled: (a) 137 Hz; (c) 135 Hz; and (e) 139 Hz. Strongly coupled: (b) 140 Hz; (d) 134 Hz; and (f) 

146 Hz.  
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The adaptive re-tuning of the load resistance has been shown to be an effective method for power enhancement and 
uncertainty reduction of strongly coupled systems. However, compared to the pre-tuned method, it requires an additional 
tuning step and its implementation increases the complexity of the system because the load needs to be adjustable. As 
another effort to find a pre-tuned and fixed load resistance for power enhancement, a new tuning scheme was investigated. 
Instead of using the analytical optimization Eq. (7) to determine the pre-tuned optimal resistance, uncertainty analysis 
was performed to find an optimal resistance that maximizes the mean power of the samples [24]. As an example, the 
harvested power of the strongly coupled system at excitation frequency 140 Hz was studied. Uncertainty was introduced 
into 100 samples. For a fixed pre-tuned resistance, the harvested power was obtained for all the samples. The results are 
presented in Fig. 11, where the harvested power is plotted against the pre-tuned resistance. The plot clearly demonstrates 
the load dependence of power, a characteristic of PEHs. The pre-tuned Ropt given analytically by Eq. (7) based on the 
nominal model is 7863 Ω, and the numerical study finds the load resistance maximizing the mean power (of the 100 
samples) is 8200 Ω. Table 3 summarizes and compare the power characteristics of the three load-resistance tuning 
schemes. The pre-tuned Ropt scheme determines a fixed load resistance analytically from Eq. (7) based on the nominal 
model; the adaptive re-tuned Ropt scheme adjusts the load resistance still analytically from Eq. (7) but based on the 
updated model due to the presence of uncertainty; and the pre-tuned-for-the-mean method finds the optimal load 
resistance through the uncertainty analysis of the nominal model. It can be seen from the table that the two pre-tuned 
methods perform about the same. However, the pre-tuned-for-the-mean method could be a more practical approach as 
the pre-tuned Ropt scheme relies on the analytical theory, i.e., Eq. (7), which might not be available or accurate due to the 
modeling complexity of energy harvesters. The adaptive tuning scheme outperforms the other two. However, as 
mentioned above, the load needs be adjustable and adjusted individually to account for different uncertainty effects in 
the samples. 
 

 
Figure 11. Mean and uncertainty band of harvested power vs. pre-tuned resistance of the strongly coupled system at 140 Hz 

 
Table 3. Power statistics of load-resistance tuning schemes 

Power statistics Pre-tuned Ropt Adaptively re-tuned Ropt Tuned for the mean
Mean (mW) 2.6895 2.8297 2.6907
Standard deviation (mW) 0.1331 0.0819 0.1415
95th percentile (mW) 2.8036 3.0211 2.8132
75th percentile (mW) 2.7728 2.8502 2.7807
25th percentile (mW) 2.6511 2.7739 2.6440
5th percentile (mW) 2.4004 2.7423 2.4060
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4. Conclusions 
 
A general nonparametric uncertainty analysis methodology is presented for uncertainty quantifications of piezoelectric 
energy harvesters at the finite element level. First, a finite element modeling framework is developed which utilizes the 
matrices relating to the structural properties (mass, stiffness), the piezoelectric capacitance matrix, as well as the 
structural-piezoelectric coupling terms of the mean harvester. For finite element software that do not have piezoelectric 
elements but include thermal effects on structures, the thermal analogy linking piezoelectric and temperature effects can 
be applied. Fully coupled piezoelectric-structural simulations can be performed using the constructed finite element 
modeling framework. This framework was applied to a bimorph energy harvester in Nastran and validated by the 
excellent agreement between its results and those obtained experimentally, analytically and from Ansys.  
 
To better account for the coupled manner that the real world uncertainty is expected to affect all components and 
parameters of the model, a global, nonparametric uncertainty modeling approach based on the maximum entropy 
principle is adopted with the constructed finite element model, and applied to two configurations of the energy harvester, 
one of weak and the other of strong piezoelectric-structural coupling. For a fair comparison, they are designed for the 
same excitation frequency at the same power level. Random samples of mass, stiffness, and electromechanical coupling 
matrices are generated to represent the global effects of the uncertainties of the system parameters. The uncertainty 
analysis is performed to study the uncertainty effect on the power output of the energy harvester with three load resistance 
tuning schemes: First scheme is when a fixed load resistance is given by an optimization method applied to the nominal 
model without considering the system changes due to uncertainty; second scheme is when the effect of uncertainty is 
considered and the load resistance of each random sample is adaptively optimized to the changed system parameters; 
third scheme is when a fixed load resistance is designed to maximum the mean power of the entire sample set. The 
uncertainty effect is shown to be significant even at a relatively low uncertainty level, and more pronounced for the 
weakly coupled configuration than the strongly coupled one. The uncertainty analysis demonstrates the advantages of a 
strongly coupled harvester over a weakly coupled harvester. Firstly, its harvested power is less sensitive to uncertainty 
with either pre-optimized or adaptively optimized load resistance. Secondly, with the application of the adaptive 
optimization, its uncertainty effect can be significantly reduced and the harvested power can even be boosted if the target 
excitation frequency falls within the “harvesting bandwidth” between the two power limit frequencies. On the other hand, 
the application of the adaptive optimization method does not affect the uncertainty characteristic of the weakly coupled 
harvester as much.  
 
 
Appendix: Analytical expressions of system parameters in Eqs. (3) and (4) 
 
For a fully-covered and symmetric bimorph beam harvester, its equivalent parameters in the single-mode model have 
been obtained as [24]: 
 

 bttM ppss  2                  (46) 
2 2 33

4 4

3 6 4
1.0302 2.0604 s p s p ps

s p

t t t t tt
K Y Y b

L L

    
          

        (47) 

31 3
2.753 s p

p

t t
d Y b

L


 
   

 
               (48) 











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p

S
p t

L
bKC 032                   (49) 

  LttbD sspp   2783.0               (50) 
where the subscripts s and p denote the substrate and piezoelectric materials, respectively. The length, width and 
thickness are denoted by L, b and t, respectively. In addition, ρ is the density, Y the Young’s modulus in the 1-direction,  

3
SK the relative dielectric constant measured at constant strain, and d31 is the piezoelectric coefficient.   
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APPENDIX G: 
 
[A1]: Extension of the concepts of [C3](Appendix I) to include the epistemic uncertainty 
associated with incomplete bases 
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MODELING OF EPISTEMIC UNCERTAINTY DUE TO INCOMPLETE BASES 
The work carried out in the previous section focused on epistemic uncertainty induced by 

an imposed sparsity of the parameters of the reduced order model. Another source of 
epistemic uncertainty relates to the basis of the ROM, i.e., that it is not complete enough to 
represent the response within the desired accuracy. This realistic situation reflects the current 
methodology used to construct a priori the basis in structural-thermal ROMs. For example, 
the structural basis is composed of (i) linear modes of the structure, (ii) dual modes, and (iii) 
enrichments. 

The purpose of the dual modes is to capture the nonlinear effects present when the 
response along the linear modes becomes “large” due to the mechanical loading which is 
primarily transverse in thin shell structures, see [13]. The enrichments are basis functions 
introduced to widen the basis to allow the capture of the displacements fields induced by a 
temperature distribution. These displacements are often very different from those induced by 
mechanical loads and further depend strongly on the applied temperature, see [32] for 
discussion. One challenge of the dual modes and enrichment construction processes is that 
they do not guarantee completeness and thus it may not be possible to reduce the error to be 
small enough. A corollary of this issue is that the low error level may be reach but requires a 
very large number of either dual modes or enrichments. 

A similar situation in encountered for the thermal basis which has been proposed [26] to 
be constructed from the eigenvectors of the steady heat conduction problem. While its first 
eigenvalues are well separated, their spacing decreases with eigenvalue number and the 
number of eigenvectors needed increases very rapidly as the error is decreased. This situation 
reflects the physics that the heat conduction problem may be very localized to different areas 
of the structure. A different construction strategy of the thermal bases has recently been 
proposed [33] which is structure-centric, i.e., aims to reduce the basis by capturing primarily  
the temperature distributions that affect the structural response. As for the dual modes and 
enrichments, no completeness property has been derived for such a thermal basis. 

Based on the above discussion, it is of interest here to investigate how to model the 
epistemic uncertainty associated with an incomplete set of: 

(i) thermal basis functions, 
(ii) enrichments, or 
(iii) dual modes. 

This modeling is achieved for these three conditions in the ensuing sections. The basic 
perspective is to recognize the incomplete basis as a complete one from which a set of basis 
function has been removed. Then, the group of components of the matrix DK  that are affected 
by the removal of these basis functions is randomized to reflect the induced uncertainty. This 
strategy will be demonstrated on the heated beam introduced in [27], see also [29], which is 
briefly reviewed in next section. 
 
BEAM SUBJECTED TO AN OSCILLATING FLUX 

The panel was modeled as an isotropic clamped-clamped beam with temperature 
independent properties given in Table 1 and was modeled by finite elements in Nastran. 
Structurally, the beam was considered as one-dimensional and was discretized using 40 beam 
elements (“CBEAM” within Nastran). Thermally, the structure was considered as a two-
dimensional object discretized with 40 4-node elements (“CQUAD4” within Nastran) along its 
length and 6 through the thickness thereby allowing the capture of the temperature distribution 
along the beam and across its thickness. 
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Table 1.  Clamped-Clamped Beam Mean Properties 
Beam Length (L) 0.2286 m 
Cross-section Width (w) 0.0127 m 
Cross-section Thickness (h) 7.88 10-4 m 
Density 2700 kg/m3 

Young’s Modulus 73,000 MPa 
Shear Modulus 27,730 MPa 
Coeff. Thermal Expansion 2.5 10-5 /°C 
Mesh (CBEAM) 40 

 

The beam was subjected to a triangular flux of width 2=0.4 L, see Fig. 18, oscillating about 
the middle of the beam ( 2/0 La  ) with a frequency  and an amplitude =0.075 L. The peak 
heat flux was selected so that the peak temperature on the upper surface of the beam would be 
10C for the steady problem ( = 0) while the bottom surface was maintained at 0C. The ends 
of the beam were also maintained at 0C. This thermal loading led to a tip static deflection of 
0.65 thickness and thus to a nonlinear geometric behavior. 

An initial ROM of the panel was constructed using 17 structural modes and 12 thermal basis 
functions, see [27] for details, which led to an excellent prediction of the full Nastran results. A 
Reduced ROM (RROM), see [34], was also constructed that includes 12 structural modes and 
5 thermal basis functions. The RROM predictions are essentially identical to those of the 
original ROM.  

 
Figure 18. Beam panel subjected to an oscillating flux. 

 

Figure 19. Maximum transverse deflection on the beam and at the beam middle vs. flux 
oscillation frequency  as determined from the ROM and Nastran computations. 
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Of particular interest here is the peak response vs. frequency  which displays a peak for 
 approximately equal to 1/2 of the first linear natural frequency of the beam, see Fig. 19. 

Focusing next on the uncertainty modeling, note that since the properties of the beam are 
temperature independent, the matrix DK  is reduced in size to the following matrix 

                 

 

 

     
2

th

thT
C

th T th T

 
 
   
 
  

(1) (2)

(2) (3)



  

 tt

K K F

K K K K

F K K

.               (28) 

 
INCOMPLETE THERMAL BASIS 

The absence of thermal basis functions is reflected by the absence of terms in the blocks 
 thF ,  thK , and  ttK  of the matrix CK  as shown in Fig. 20. Accordingly, the uncertainty 

should be introduced on those terms through the random matrix DH  of Eq. (25) with TH  
random and SH  identity. 

 
Figure 20. Effect of incomplete thermal basis on the matrix CK . 

 

 
Figure 21. Log likelihood function as a function of the uncertainty level T  for several 

numbers (m) of eigenvectors retained. Incomplete thermal basis. 
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The validation of this strategy was accomplished on the heated beam by decreasing the 

number of thermal modes in the RROM from 5 to 3 keeping the 3 most dominant. The value 
of the parameter T  was identified by the maximum likelihood strategy as in the earlier part 
of this investigation using the response of the maximum transverse displacements of the mean 
model with 5 thermal basis functions at the various frequencies. This process, see Fig. 21, led 
to the value T =1.5 10-4 and shown in Fig. 22 are the uncertainty bands on the maximum 
transverse displacement of the beam. It is seen as expected that the mean model response with 
the 5 thermal basis functions is within the uncertainty band of the small model with only 3 
thermal basis functions. This result validates the concept that the epistemic uncertainty 
associated with an incomplete thermal basis can indeed be introduced directly in the matrix 

CK . 
 

 
Figure 22. Uncertainty band on peak transverse response as a function of the flux oscillating 

frequency. Displacement expressed as fraction of thickness. Incomplete thermal basis. 
 

INCOMPLETE SET OF ENRICHMENTS 
A similar process to the one above was followed for an incomplete set of enrichments. 

The absence of some of those is reflected by the absence of terms in the blocks (1)K , (2)K , 
(3)K ,  thF , and  thK  of the matrix CK  as shown in Fig. 23(a). Accordingly, the uncertainty 

should be introduced on the structural terms only in DH , i.e., with TH  identify and SH  an 
appropriate random matrix. To proceed further, it is worthwhile to carry out a series of 
permutations of the rows and columns of CK  so that the linear, quadratic, and cubic stiffness 
coefficients involving only the linear modes and dual modes, collectively referred to as “O” 
basis functions below, are regrouped in the top left block. Similarly, those same stiffness 
coefficients involving only the enrichments, collectively referred to as “E”, will be positioned 
along the second diagonal block, leaving the thermal modes related terms at their original 
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locations. After those permutations, the structure of the matrix CK  is as shown in Fig. 23(b). 
Accordingly, it is proposed here to randomize the block EEK  which can be achieved with the 

SH  matrix of the form of Eq. (29) in the permuted form. 
 

 
(a) 

 
(b) 

Figure 23. Effect of incomplete set of enrichments on the matrix CK . 
 

      
0 0

0 0
0 0

 
   
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S EE

I

H H

I

.    (29) 

The selection of the parameter E  of the random matrix EEH  was performed once again 
using the maximum likelihood identification approach with the data from the mean model 
with the 3 enrichments but the incomplete model only included the first two of these 
enrichments. This process, see Fig. 24, led to the value E =0.1 and shown in Fig. 25 are the 
uncertainty bands on the maximum transverse displacement of the beam. It is seen as expected 
that the mean model response with the 3 enrichments is within the uncertainty band of the 
small model with only 2 of them.  

A final validation of this uncertainty modeling was achieved by determining the band of 
uncertainty induced on a purely structural loading, i.e., a uniform pressure. Since the purpose 
of the enrichments is to capture the effects of thermal loading, not mechanical ones, it would 
be expected that the uncertainty bands on the response to the pressure are very small. This is 
indeed the case as seen in Fig. 26, the bands are so small that they are not visible. 

This result validates the concept that the epistemic uncertainty associated with an 
incomplete set of enrichments can indeed be introduced directly in the matrix CK . 
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Figure 24. Log likelihood function as a function of the uncertainty level E  for several 

numbers (m) of eigenvectors retained. Incomplete set of enrichments. 
 

 
Figure 25. Uncertainty band on peak transverse response as a function of the flux oscillating 
frequency. Displacement expressed as fraction of thickness. Incomplete set of enrichments. 
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                                     (a)                                                                       (b) 

Figure 26. Maximum (a) inplane and (b) transverse displacement of the beam subjected to a 
uniform pressure. Displacements expressed as fraction of thickness. 

 
INCOMPLETE SET OF DUAL MODES 

A final analysis is currently being carried out which investigates the epistemic uncertainty 
induced by an incomplete set of dual modes. In the absence of temperature, the matrices DK  
and CK  both reduce to 

                      
2

B
T
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(1) (2)

(2) (3)
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 
K K

K
K K

.                 (30) 

As done for the enrichments, it is desirable to separate the terms (linear, quadratic, and cubic 
stiffnesses) that involve only the linear modes (referred to “L” below) and only the dual modes 
(referred to as “D”). Then, through a series of permutations, the above matrix  can be rewritten 
as 

                      LL LD
B

DL DD

 
  
 

K K
K

K K
.                 (31) 

Accordingly, missing dual modes are reflected on the LDK , DLK , and DDK  blocks of the 

matrix BK . Then, uncertainty can be introduced as in Eqs (23) and (24) with the random 
matrix H of the form of Eq. (32) in the permuted configuration 
 

  
Figure 23. Effect of incomplete set of dual modes on the matrix BK . 
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This paper is the continuation of an investigation on the application of nonlinear reduced 

order models (ROMs) for the large deformation analysis of structures, curved ones especially, 
exhibiting strongly nonlinear behavior, see [1] for an earlier study of a curved beam. The present 
efforts are focused on a fully clamped cylindrical shell successfully modeled by nonlinear 
reduced order models in [2]. This panel has a footprint of 9.75in by 15.75in by 0.048in thick and 
a radius of curvature of 100in. The panel material had an elastic modulus of 2.85x106 psi, 
Poisson's ratio of 0.3, density of 7.48x10-4 lb-sec2/in4, and coefficient of thermal expansion of 
10.5x10-6 in/in/°F. Mass proportional damping was selected with coefficient  = 39.93 which 
leads to a damping ratio of 1% on the first symmetric mode. The shell was discretized within 
Nastran with a mesh of 39x63 square CQUAD4 elements (40x64 nodes), see Fig. 1. 

 
 

Figure 1. Finite element model of the curved shell of [2]. 
 

A first challenge encountered in the construction of a nonlinear reduced order model for the 
shell of Fig. 1 was the determination of a set of dual modes leading to a good representation of 
the response in the x and z directions. Following our earlier work on a clamped-clamped curved 
beam [1], the first part of the basis was constructed by a proper orthogonal decomposition of the 
projection of a series (11) of nonlinear Nastran static solutions (SOL 106) on the first 8 
symmetric linear modes of the undeformed panel. The 6 POD modes with the largest 
eigenvalues, see Fig. 2, were retained in this computation. Duals were then constructed with the 
first 2 POD modes as dominant leading to 7 duals orthogonal to the first 27 symmetric linear 
modes. This 13-mode 6POD7D model performed very well in predicting the static response vs. 
load over a broad range of pressures including the occurrence of a mode switching event, see 
Figs 3 and 4.  

x 

y 

z 
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Also investigated, see Fig. 5, are the first two eigenvalues of the tangent stiffness matrix as a 
function of the applied pressure. Shown on this figure are the Nastran eigenvalues, those of the 
Nastran tangent stiffness projected on the basis, and those predicted from the ROM generalized 
coordinates obtained for the various loading conditions. Note that the Nastran eigenvalues 
clearly show the veering that is the origin of the mode switching. Moreover, the eigenvalues of 
the projected tangent stiffness matrix match very well those predicted from the ROM suggesting 
that the identified model is accurate but the difference between these two curves and the Nastran 
one for the second eigenvalue suggests that the basis is not quite appropriate for large enough 
load levels.  
 

 
Figure 2. Singular values of the POD of the projections on the first 8 symmetric linear modes 

 

 
Figure 3. Center and peak displacement along the y (transverse) direction vs. applied uniform 

pressure. Nastran SOL 106 and ROM predictions 
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(c) 

Figure 4. Contour plots of displacements along x, y, z as predicted by Nastran SOL106 and the 
ROM for uniform pressures of (a) 1.5 psi, (b) 2.5 psi, and (c) 3.0 psi. 

 

 
Figure 5. Eigenvalues of the tangent stiffness matrix from Nastran, projected Nastran tangent 

stiffness matrix on the basis, and from the ROM. 
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Having successfully predicted the static response of the shell, the ROM construction focused 
next on dynamic comparisons under a uniform pressure varying in time as a white noise in the 
frequency range of [0,500]Hz with variable overall sound pressure levels. It was first recognized 
that the dynamic response is dominated in the linear case by the first two symmetric modes (of 
frequencies 272Hz and 346Hz) which are not exactly represented by the 6 POD modes. This 
issue was resolved by appending to the 6 POD modes, the first 11 linear modes from which they 
were extracted, then proceeding with a Gram-Schmidt orthogonalization (with respect to the 
mass matrix) limited to the first 11 modes. These modes are not the linear modes but a rotation 
of them. While it would seem that these modes span a much larger frequency band than 
necessary, dynamic computations have shown that there is significant out-of-band response, 
especially at the higher load levels, which warrant the use of that number of modes. 

The first dynamic model considered was obtained by appending the 7 dual modes derived 
from the 6 POD modes only and this 18-mode model provided an excellent prediction of the 
Nastran results at low (140dB and 150dB) levels but it did not capture well the high frequency 
component of the power spectral density at the 160dB. The issue was eventually found to be 
rooted in a poor identification of some of the nonlinear stiffness coefficients using the tangent 
stiffness approach of [3], even though it has been very successful in many prior applications. 

To resolve this issue, the multilevel identification method developed recently, see [4], was 
used. In this process, it was found that the difficulties encountered at the 160dB level were 
resolved and that the 18-mode ROM does indeed provide a very good match of the Nastran 
predictions at that level, see Fig. 6. 

Based on the very good results obtained in Fig. 6, the analysis proceeded to the higher level 
of 170dB excitation, see Fig. 7. While the ROM predictions are still very good in the band, there 
is a clear worsening of the matching with Nastran in the band [500,1000]Hz. To understand the 
source of this degradation, a short time history of the full Nastran displacement field was 
computed and outputted. The representation error of this data with the existing basis and the 
remaining 18 symmetric linear modes in the range of 1-100 is shown in Fig. 8(a). It is seen on 
this figure that with the 11L7D basis, the representation error is 16% which is certainly too large 
to have a good match as observed in Fig. 7. Moreover, the addition of a series of symmetric 
linear modes does not lead to a significant reduction of the error, only by about 2.5%! 

This observation suggests that the response of the panel may be exhibiting an antisymmetric 
component. To confirm this assumption, the 18-mode basis was complemented with the 71 
antisymmetric modes in the range 1-100 and shown in Fig. 8(b) is the corresponding 
representation error vs. mode number. It is clearly seen that the addition of antisymmetric modes 
reduces the error significantly, by approximately 13% from 16% to 2.5%. Moreover, much of 
this drop is generated by the antisymmetric modes 1, 3, and 9 (i.e., linear modes 1, 5, and 14). 
The inclusion of these 3 modes would lead to a representation error of approximately 6% which 
is still reasonably large and with no obvious strong contributor, either symmetric or 
antisymmetric, see Figs 8 (a) and (b). 
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(a) (b) 

(c) (d) 

(e) (f) 
Figure 6. Power spectral densities of the response corresponding to 160dB excitation, Nastran 
and ROM. (a), (c), (e) node 657 of coordinates (0.25,0.25), (b),(d),(f) node 1248 near middle. 

Displacements along the (a),(b) x, (c),(d) y, and (e), (f) z directions. 
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(a) (b) 
Figure 7. Power spectral densities of the response corresponding to 170dB excitation, Nastran 
and ROM at node 1248 near panel middle. Displacements along the (a) y, and (b) z directions. 

 

(a) (b) 
Figure 8. Representation errors of a short time Nastran displacement field corresponding to a 

170dB excitation with the 18 mode basis and additional (a) symmetric, (b) antisymmetric modes. 
 

To confirm the presence of antisymmetric components in the Nastran response, segments of 
the transverse (in the y direction) displacements of the nodes 657, 688, 1873, and 1904 are 
shown on Figs 9(a)-(c). These nodes are located symmetrically with respect to the panel center at 
(x, z) coordinates (0.25,0.25), (0.25,0.75), (0.75,0.25), and (0.75,0.75). In Fig. 9(a), the 
displacements are all the same and the response is symmetric. In Fig. 9(b), the displacements of 
nodes 657 and 1873 and 688 and 1904 are equal but not altogether. The response is thus, rather 
significantly, asymmetric including an antisymmetric component around the parallel to the z axis 
passing by the panel middle, as in linear modes 1, 5, and 14 of the panel. Finally, in Fig. 9(c), the 
pairs of nodes with equal (or nearly equal) displacements are 657-1904 and 688-1803 so that the 
antisymmetric component present is antisymmetric with respect to the parallels of both the x and 
z axes as in linear mode 6 of the panel. 

The results of Figs 8 and 9 confirm that a symmetry breaking occurs in the response at an 
excitation level between 160dB and 170dB. Future efforts in this investigation will focus on 
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extending the current 18-mode ROM to include antisymmetric modes to capture the symmetry 
breaking of the dynamic response. 
 

 
(a) 

(b) (c) 
Figure 9. Segments of time history of the Nastran displacement along the y direction at the nodes 

657, 688, 1873, and 1904. 170dB excitation. 
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The construction of nonlinear reduced order models (ROMs) for the large deformation analysis 
of structures, e.g., see [1,2], has been successfully applied to many structures of broadly varying 
complexity, from simple flat beam/plate models to complex multi-bay panels, see [2] and 
references therein. A particularly interesting example within this list is the curved beam 
considered in [3-6], see Fig. 1, for which very good match of full finite element data with ROM 
predictions  were obtained by all three of the approaches reviewed in [1], even in the highly 
nonlinear regime of snap-through responses, see [4-6]. 

 
Figure 1. Curved beam geometry. 

 
While carrying out the work reported in [5,6], the authors observed a strong sensitivity of the 
nonlinear response to small variations of some of the nonlinear stiffness coefficients of the 
reduced order model. This sensitivity motivated the revisit in [6] of the identification of these 
coefficients, carried in [5] by the imposed displacement method of [7]. This approach proceeds 
first with the imposition of a well chosen set of displacements fields to the finite element model 
from which the required forces are extracted. Then, requiring that these displacements and forces 
are consistent with the nonlinear ROM leads to a series of small size linear systems of equations 
for the unknown nonlinear stiffnesses. The displacements selected in this process are 
proportional to each mode alone and each combination of 2 and of 3 modes. Note that the 
magnitudes of these displacement fields have typically been taken “small” to avoid any potential 
effect of differences in the nonlinear formulations of the finite element code (e.g., updated 
Lagrangian) vs. the full Lagrangian assumptions underlying the reduced order model. A variant 
of this approach which utilizes the tangent stiffness matrix of the finite element and ROM 
models has also been developed [2]. 
 
Due to the curvature of the beam, the quadratic stiffness coefficients of its ROM are significant 
and play a dominant role in the response until snap-through. Past snap-through however, the 
response is dominated by the cubic stiffness coefficients. An accurate prediction of the response 
through the entire range of motions thus requires an accurate identification of all nonlinear 

t = 0.09 in
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stiffness coefficients. When proceeding with small imposed displacements, it was noted that the 
values of the identified cubic coefficients were notably more sensitive than the quadratic ones to 
small changes in the levels of these displacements. This finding suggested in [6] a revisit of the 
identification  strategy to include not only imposed displacement fields around the undeformed 
configuration (as described above) but also around specific deformed states. For example, 
utilizing data around the beam deformed beyond snap-through naturally highlights the cubic 
coefficients. Moreover, proceeding around a deformed state right before snap-through permits a 
good identification of the quadratic terms, etc. While this approach performed well and an 
accurate ROM was indeed obtained, see [6], it requires a first hand knowledge of the behavior of 
the structure, i.e., the presence and location of the snap-through, and leads to systems of 
equations for the coefficients which are full vs. the almost decoupled equations obtained with the 
original imposed displacements strategy of [7] or [2]. 
 
An alternative approach, referred to as the multi point identification (MTP) approach, is 
developed here as a variant of the above methods. It involves carrying out the original imposed 
displacement identification approach of [2,7] but at a variety of displacement levels. The linear, 
quadratic, and cubic stiffness coefficients of the model are identified at each of these “low”, 
“medium”, and “high” levels, and the final values of the coefficients are taken as the ones having 
minimum variations with respect to the displacement level. This is consistent with a basic 
property of the ROM that the stiffness coefficients are independent of the displacement levels.  
 
Besides the identification of the coefficients, the selection of the basis functions also plays a key 
role in the quality of the ROM predictions. Clearly, this basis must represent well the finite 
element displacements but, in the presence of a structure with ROM parameters and predictions 
that are sensitive, it is additionally desired that the response be dominated by the smallest 
possible number of basis functions. The number of ROM parameters strongly affecting the 
response is then minimized and the propagation of the sensitivity to the predicted response may 
be limited. For the curved beam of Fig. 1, this strategy suggests to not use its linear modes as 
they are very different from the static deformations induced by the beam, see Fig. 2. 
 

 

 
(a) 

 
(b) 

Figure 2. (a) Static nonlinear transverse displacement of the beam normalized by beam thickness 
below (top) and above (bottom) snap-through. (b) First three linear modes of the beam. Both 

plotted vs. node number. 
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 Rather, a different selection was performed. Specifically, a set of static nonlinear displacements 
of the beam were generated (as shown in Fig. 2(a)) under a broad set of uniform loads. These 
displacement fields were then projected on the first 6 linear modes of the beam and a POD 
analysis of these projections was then carried out. As may be construed from Fig. 2(a), the 
eigenvector with the largest eigenvalue is strongly dominant and it was retained as the first basis 
functions. The linear modes 1 and 2 of the beam (see Fig. 2(b)) were then added after being 
rendered orthogonal to the first basis functions. This process is effectively equivalent to a 
rotation and down select of the linear modes vs. adopting them as is. To complete the basis, four 
dual modes were determined based on these 3 linear modes as described in [1] resulting in 7 
basis functions. 
 
The identification of the ROM stiffness parameters of this 7-mode model was carried out by both 
the original imposed displacement approach and its MPT variant, both using tangent stiffness 
data. The displacements predicted from the MPT-identified model, see Fig. 3 were found to be 
notably closer to the Nastran data than those resulting from the original identification scheme 
(not shown here from brevity), especially for the inplane displacements. Yet, it may be seen from 
Fig. 3 that there is still a large discrepancy between Nastran and MPT-identified ROM 
predictions. 

 
Figure 3. Static nonlinear transverse and inplane displacements of the beam normalized by beam 

thickness for a loading above snap-through. Finite element (Nastran) and ROM predictions 
identified by the MTP algorithm. 

 
Given past history, it was wondered whether this relatively poor matching could be attributed to 
just small inaccuracies of the identified coefficients. To this end, a sensitivity analysis was next 
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carried out in which each ROM coefficient was varied by 5%  and the prediction of the model at 
a post snap-through level recomputed. This effort demonstrated that: 
(i) the cubic stiffness coefficient of the first basis function, i.e., the term  3

1111K  has by far the 
strongest effect on the response, especially on its inplane component, and 
(ii) that there are many coefficients which have no significant effect on the response. 
In this light, the model was first “cleaned” by eliminating the coefficients having no effect on the 
response. While a significant fraction of the stiffness coefficients were thus eliminated, the 
response is almost unaffected as seen in Fig. 3. In a second step, a manual adjustment of the 
coefficient  3

1111K  was attempted and it was found that increasing it by 1%  led to a dramatically 
improved prediction, matching the Nastran results almost perfectly, see Fig. 3. 
 
In summary, this investigation has confirmed the past observation that the nonlinear ROM 
response of the curved beam is very sensitive to small changes in some of its coefficients. This 
sensitivity was reduced here by (i) the development of a novel variant of the imposed 
displacements identification approach and (ii) optimally selecting the basis so that it contains a 
limited number of dominant modes. While the sensitivity is not eliminated, it appears to be 
limited to a very small number of parameters which can then be carefully tuned as necessary. 
Excellent predictions were thus obtained with a 7-mode ROM. 
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ABSTRACT 

           The focus of this dissertation is first on understanding the difficulties involved 

in constructing reduced order models of structures that exhibit a strong 

nonlinearity/strongly nonlinear events such as snap-through, buckling (local or 

global), mode switching, symmetry breaking. Next, based on this understanding, it is 

desired to modify/extend the current Nonlinear Reduced Order Modeling (NLROM) 

methodology, basis selection and/or identification methodology, to obtain reliable 

reduced order models of these structures. Focusing on these goals, the work carried 

out addressed more specifically the following issues:  

 i) optimization of the basis to capture at best the response in the smallest number of 

modes, 

 ii) improved identification of the reduced order model stiffness coefficients, 

 iii) detection of strongly nonlinear events using NLROM. 

For the first issue, an approach was proposed to rotate a limited number of linear 

modes to become more dominant in the response of the structure. This step was 

achieved through a proper orthogonal decomposition of the projection on these linear 

modes of a series of representative nonlinear displacements. This rotation does not 

expand the modal space but renders that part of the basis more efficient, the 

identification of stiffness coefficients more reliable, and the selection of dual modes 

more compact. In fact, a separate approach was also proposed for an independent 

optimization of the duals. Regarding the second issue, two tuning approaches of the 

stiffness coefficients were proposed to improve the identification of a limited set of 
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ii 

 

critical coefficients based on independent response data of the structure. Both 

approaches led to a significant improvement of the static prediction for the clamped-

clamped curved beam model. Extensive validations of the NLROMs based on the 

above novel approaches was carried out by comparisons with full finite element 

response data. The third issue, the detection of nonlinear events, was finally addressed 

by building connections between the eigenvalues of the finite element software 

(Nastran here) and NLROM tangent stiffness matrices and the occurrence of the 

‘events’  which is further extended to the assessment of the accuracy with which the 

NLROM captures the full finite element behavior after the event has occurred.  
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CHAPTER 4 BASIS OPTIMIZATION 

4.1 Optimization of the Transverse Basis ˆ
l  

A standard observation made in regards to modal expansion of the form of Eq. ( 1 ) 

is that replacing the basis function (n)ψ  by linear combinations of themselves does not 

change the capability of the sum to represent any particular function. It may thus be 

concluded that there is no value in performing a rotation of the linear modes to form the 

first, transverse part of the basis. 

This conclusion is correct for the transverse basis alone, but it must be remembered 

that these transverse modes are the source of the dual modes. So, a transformation of the 

transverse modes will give rise to new dual modes which are not simple rotations of the 

prior duals because the duals are derived from a nonlinear problem. Accordingly, it is 

meaningful to investigate the role of a rotation of the transverse mode on the 

appropriateness of the duals and, more globally of the corresponding basis, in representing 

the response. 

In this regard, it has long been noted that the duals are particularly efficient when 

there is only one mode that dominates the response. In fact, in most of the successful 

NLROMs, there is a strongly dominant single mode – typically the lowest frequency mode 

excited. Accordingly, it is proposed here to induce a rotation of the linear modes to capture, 

at best with one mode, the response of the structure in some typical nonlinear responses 

computed in advance for that purpose. 
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Emphasizing one mode vs. multiple ones has also some potential stability benefit. 

Indeed, it has often been observed that the cubic coefficients (3)
iujlK  with u  j  l are more 

sensitive to the conditions of the identification than their counterparts where u = j = l. When 

the response is primarily split between two or more modes, many more cubic coefficients 

are strongly involved in the equations than when there is a single mode. So, a single 

dominant mode response is likely to provide an increase accuracy/stability by reducing the 

number of terms on which the identification may be inaccurate (this issue results from the 

nonlinear geometric model of the finite element being different from the one assumed from 

the NLROM, see [13,14]). 

Consider the curved beam of section 2.3.1 and shown in Figure 8 are its first 6 

linear modes. Shown in Figure 9 are the displacement of the beam under downward 

pressures, one below the snap-through level and the other above it. 

At first glance, the curves of Figure 8 and Figure 9 are quite different. There are a 

few nodal points on linear modes but not on the displacements. Using that linear basis to 

represent well the deformations is possible but this approximation will heavily involve 

several of the linear modes.  

Based on the above discussion, a process was established to create a rotation of the 

basis (the 6 linear modes) so that one of them provides the best possible approximation of 

the observed (reference) static deformations. This process is as follows. 
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Figure 8. Mode Shape of the First 6 Linear Modes. In-plane (Tx, Left Column) and 
Transverse (Ty, Right Column) Deflections.   

0 50 100 150
-5

0

5

m
od

e 
1

Tx

0 50 100 150
-200

0

200
Ty

0 50 100 150
-5

0

5

m
od

e 
2

0 50 100 150
-100

0

100

0 50 100 150
-10

0

10

m
od

e 
3

0 50 100 150
-100

0

100

0 50 100 150
-10

0

10

m
od

e 
4

0 50 100 150
-100

0

100

0 50 100 150
-10

0

10

m
od

e 
5

0 50 100 150
-100

0

100

0 50 100 150

Node number

-10

0

10

m
od

e 
6

0 50 100 150

Node number

-100

0

100

DISTRIBUTION A: Distribution approved for public release.



40 

 

 
Figure 9. Deformation of the Curved Beam under Uniform Downward Loadings of 1 lb/in (Top) 

and 3 lbs/in (Bottom). 

(1) Generate a series of nonlinear displacements from the finite element under 

loading that are relevant to the structure and its expected excitation. These 

nonlinear displacements are typically static ones, which are faster to 

determine, but dynamic ones are also applicable. These nonlinear 

displacements should span the range of expected deformations of the 

structure. 

(2) Project the nonlinear displacements on the selected normal modes. 

(3) Perform a POD analysis of the projection coefficients, selecting the 

eigenvectors corresponding to the largest eigenvalues. 

(4) Using the eigenvectors, transform the original modes into modes that span 

the structure.  
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The application of this process to the curved beam using displacements under 

uniform pressures from -0.1 lb/in to -4.5 lbs/in led to the mode shown on Figure 10 (from 

the eigenvector with largest eigenvalue). Clearly, this new mode is much closer to the 

reference static displacements implying that it will be dominant in the response of the 

curved beam.  

 
Figure 10. Mode Shape of the POD Mode. 

It is not enough to consider only one mode and thus others must be appended. They 

could be chosen either as originating from additional eigenvectors of the POD analysis, 

especially those with eigenvalues larger than the floor, or from linear modes. 

4.2 Optimization of the Dual Basis ˆ
d  

Past efforts have shown that the dual modes are often very efficient in 

complementing the transverse modes, i.e., that they represent well reference nonlinear 

responses with only a few modes. In some cases, a slow convergence of the representation 

with respect to the number of dual modes has been observed thereby penalizing the 

computational benefits of the NLROM but also, as pointed out above, potentially leading 

to stability problems of this model.  
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On that basis, it was questioned whether it would be possible to rotate a given basis 

of dual modes into one in which the number of dominant duals is reduced. This effort could 

be accomplished as done with the transverse basis by performing a POD of the projections 

of the reference deflections, but this strategy may lead to a set of dual modes too biased 

toward the reference data. 

A different approach was adopted here that is similar in spirit to some aspects of 

the construction of the optimum thermal modes [46]. Specifically, recognize first that the 

dominant stiffness coefficient (2)
ijlK  where ‘i’ and ‘j’ refer to linear (transverse) modes and 

‘l’ is associated with a dual. These terms are the most significant ones (besides the linear) 

because (i) they are the main coupling mechanism between the linear and the dual modes 

and thus induce the membrane softening effects and (ii) because they are multiplied by a 

first power of the dual modes generalized coordinates which are typically much smaller 

than their linear modes counterparts. So, quadratic terms involving two or more dual modes 

coordinates have typically small effects and are often neglected (as proposed in [47]). 

Cubic terms involving the dual modes are also known to be very small. 

Given the linearity of the coefficients (2)
ijlK  with respect to the dual mode l, see Eqs 

( 17 )-( 18 ), it is concluded that the coefficient (2)
ijlK  corresponding to a linear combination 

of dual modes 

  ( ) ( )=l n
n

n

   ( 42 )  

where the summation extend over the dual mode indices, would be given by 
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  (2) (2)= n ijnijl
n

K K  ( 43 )  

On this basis, one can define an optimization of the dual mode basis seeking to 

maximize, with respect to the parameters n , one or a particular set of coefficients (2)
ijlK  

for specific values of i and j. Of particular interest would be the optimization of the dual 

associated with transverse mode 1, i.e., (2)
11lK . Note in this effort that a normalization 

constraint should be imposed on the parameters n  to avoid an unbounded solution. 

 Define here 
1 2

(2) (2) (2) (2), ,...,
nttd ttd ttd ttd

K K K K =
  

 the vector of quadratic coefficients of 

interest where the first two indices could be any pair of transverse mode numbers but 

remain the same for all terms. Introduce similarly  1 2, ,..., T
n   = . The problem is then 

to maximize 
2(2)

ttd
K   given 1T  = (the constraint could be changed to be adapted to 

different problem) where 

  ( ) ( )2(2) (2) (2) (2) (2)T
T T

ttd ttd ttd ttd ttd
K K K K K    = =  ( 44 )  

Adding the constraint through a Lagrange multiplier, the objective function becomes

  ( )(2) (2) 1T T T
ttd ttd

f K K    = + −  ( 45 )  

Rewriting in index format and differentiating yields 

  ( )1i ij j i if V    = + −  ( 46 )  
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  2kj j ik i k
k

f
V V  




= + +


 ( 47 )  

where (2) (2)T
ttd ttd

V K K=  and thus is symmetric so that 

  2 2kj j k
k

f
V  




= +


 ( 48 )  

Setting the above derivative to zero to achieve the optimum leads to  

  kj j kV  = −  ( 49 )  

Rewriting this equation in matrix form yields the eigenvalue problem 

  = V  ( 50 )  

The corresponding eigenvector(s)  with largest eigenvalue(s)  could then be used to rotate 

the dual modes as in Eq. ( 42 ). 

 Another strategy for the dual modes optimization is based on performing their 

modal analysis, i.e., solving the eigenvalue problem 

  dd ddK M=   ( 51 )  

where ,dd ddK M  are the dual blocks of the linear stiffness and mass matrices. 

Eigenvectors in Eq ( 51 ) associated with eigenvalues   that are in the range of those of 

the linear modes should likely be eliminated as duplicating the role of the linear modes. 

Moreover, the eigenvectors with very large eigenvalues would lead to dual modes that are 
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extremely stiff and thus not likely to contribute significantly to the response. It is thus 

suggested that the eigenvectors with low eigenvalues but larger than those of the linear 

modes be kept and that the rotation be carried out as in Eq. ( 42 ) 
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CHAPTER 6 VALIDATION RESULTS 

6.1 Validation Plan 

 The focus of this chapter is on validating the concepts developed in previous 

sections, in particular the optimization of the linear modes, of the duals, as well as the 

stiffness coefficients tuning. The three structures discussed in section 2.3 will be 

considered for this validation effort. More specifically, the optimization of the linear modes 

of section 4.1 will be carried for all three structures, either as a strategy to reduce the 

number of linear modes and/or to improve the construction of the duals by creating more 

distinct dominant modes. The optimization of the duals, as discussed in section 4.2, will be 

applied solely to the clamped-clamped curved beam. This structure will also be the primary 

testbed for the stiffness coefficients tuning strategies of Chapter 5 because capturing its 

snap throughs in either static or dynamic conditions has been shown to require a particular 

good reduced order model which is difficult to achieve directly using the existing methods 

of section 3.3. The stiffness coefficients tuning approach will also be performed on the 

hypersonic panel in an unsuccessful attempt to better capture the occurrence of local 

buckling. The lack of success in this effort is not due to the tuning strategy but rather to the 

inadequacy of the basis which it cannot overcome. The validations of the NLROM will be 

performed on static loading, assessing displacements and eigenvalues of tangent stiffness 

matrix, as well as on dynamic conditions, and, for a small set of NLROMs, on the response 

due to a constant applied temperature. 
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6.2 Application to the Curved Beam 

 The strategies developed in the last two sections were first applied to the clamped-

clamped curved beam shown in Figure 1 under symmetry constraints, i.e., the finite 

element model was forced to only exhibit symmetric deformations using multi point 

constraints. This constraint was imposed to reduce the complexity of the problem since the 

snap-through may occur under both symmetric and antisymmetric motions with the latter 

occurring at a slight lower load level than the former. The validation results presented 

below are split into 4 separate efforts/sections:  

i) Optimization of the basis.  

ii) Results with optimized basis before tuning. 

iii) Results after tuning based on modal force. 

iv) Results after tuning based on generalized displacements. 

6.2.1 Optimization of the Basis 

As mentioned in Chapter 4, see Figure 8, the mode shapes of the linear modes of 

the curved beam are not very similar to the actual deformation induced by a uniform load. 

Accordingly, the first task focused on the optimization of the linear basis. Specifically, the 

Nastran static nonlinear displacements induced by the uniform pressures of -0.1, -0.2, -

0.3, ..., -4.5 lbs/in were used as reference data and were projected on the first 15 linear 

modes of the beam. The set of projection coefficients were then processed by a POD and 

the first eigenvector was retained to construct the first transverse mode. The linear (normal) 

modes 1, 2, 3, 5, 6 from Nastran SOL103 were added to this first transverse mode and 

made orthogonal to it. leading finally to 6 transverse modes (denoted as transverse 1 to 6). 
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Next, 8 dual modes were determined from these 6 transverse modes considering 

combinations (1-1), (1-2), (1-3), (1-4), (1-5), (1-6), and are shown in Figure 20-Figure 21. 

While the predictions of this 6T8D NLROM were very close to those of Nastran prior to 

the snap-through, the model is unstable post snap-through even though the truncation error 

is quite small. A possible reason for this behavior is an inaccurate identification of some 

of stiffness coefficients as discussed in Chapter 5. To circumvent this issue, it was desired 

here to proceed with an optimization of the dual modes to reduce the size of the basis and 

hopefully improved the predictive capabilities of the NLROM. 

 Before performing this optimization, it is useful to investigate the relative 

magnitudes of the transverse (Ty) and in-plane (Tx) of the linear (see Figure 8) and dual 

(see Figure 20-Figure 21) modes, see Table 3. Note on this table that the ratio is inverted 

for the linear and dual modes. It is seen that the (original) linear modes are strongly 

transverse dominant while the reverse typically holds for the duals, although the ratio of 

magnitudes is smaller, i.e., there is a large contribution of transverse motions in the duals 

than in-plane in the linear modes. Moreover, the third dual is clearly transverse dominant. 
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Figure 20. In-plane (Left Column) and Transverse (Right Column) Displacements of the 
Original Duals 1-4. Curved Beam.  
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Figure 21. In-plane (Left Column) and Transverse (Right Column) Displacements of the 
Original Duals 5-8. Curved Beam. 
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Table 3. Ratios of Transverse and In-plane Displacements NORMs, Linear, Transverse 
and Dual Modes, Curved Beam. 

Norm(Ty)/N
orm(Tx) 

Lin. 1 Lin. 2 Lin. 3 Lin. 4 Lin. 5 Lin. 6 

24.04 17.57 14.50 14.97 15.17 15.27 

Norm(Ty)/N
orm(Tx) 

Tran. 1 Tran. 2 Tran. 3 Tran. 4 Tran. 5 Tran. 6 

61.26 13.97 13.51 14.08 18.96 15.58 

Norm(Tx)/N
orm(Ty) 

Dual 1 Dual 2 Dual 3 Dual 4 Dual 5 Dual 6 Dual 7 Dual 8 

4.26 6.28 0.50 2.77 7.16 10.81 12.21 6.70 

 

 The first effort to optimize the duals proceeded as in Eq. (49) and (50) focusing on 

the quadratic stiffness term (2)
ttd

K . Since there is only one combination of transverse modes, 

only one optimum dual can be generated in this process and it is shown in Figure 22. This 

basis function is fairly similar to the first dual of Figure 20 but the first and last peaks have 

been reduced. Note that the ratio of the norms of the in-plane and transverse displacement 

is rather small, 2.57, confirming the visual expectation from Figure 22 that the transverse 

component is still rather large. Nevertheless, this mode seems very efficient in reducing 

the representation error of the uniform response post snap-through as shown in Figure 23  

(curve “Opti 1”) for the loadings of 2.5, 3, 3.5, 4, and 4.5 lbf/inch. More specifically, this 

error drops from 164% to 32% with that single dual. For comparison, the first original dual 

only reduces it to 95%. Enriching further the model would require the consideration of 

other combinations of the transverse modes beside the 1-1.  
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Figure 22. In-plane and Transverse Components of the Dual Mode Optimized According 

to Eqs (49) and (50). Curved Beam. 
 

 
(a) 

 
(b) 

Figure 23. Average Representation Error, in %, of the In-plane Displacements 
corresponding to Loadings of 2.5, 3, 3.5, 4, and 4.5 lbf/inch (i.e., Post Snap Through) vs. 

Number of Various Types of Dual Modes. (a) Linear, (b) Log Scale. 

 It was next desired to assess the benefits of the second dual optimization, i.e., based 

on the modal analysis of the corresponding blocks of the mass and linear stiffness matrices, 

see Eq. (51). That computation was performed with the 8 original duals and given in Table 

4 are the corresponding eigenvalues while the new duals associated with the corresponding 

eigenvectors are shown in Figure 24-Figure 25 

Table 4. Eigenvalues Associated with the Original Dual Mass and Linear Stiffness 
Matrices. 

1 2 3 4 5 6 7 8 

4.24 1011 2.05 1011 1.55 1011 9.58 1010 6.34 1010 1.99 1010 6.78 109 1.33 109 
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Figure 24. In-plane (Left Column) and Transverse (Right Column) Displacements of the 

New Duals 1-4 Following the Modal Analysis of Eq. (51). Curved Beam. 
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Figure 25. In-plane (Left Column) and Transverse (Right Column) Displacements of the 

New Duals 5-8 Following the Modal Analysis of Eq. (51). Curved Beam. 

 Two key observations can be drawn from Figure 24-Figure 25. First, it is seen that 

the new dual with the lowest eigenvalue (number 8) is primarily transverse while all others 

are primarily in-plane. In fact, comparing Figure 24-Figure 25 and Figure 20-Figure 21, it 

appears that the new duals are significantly more in-plane dominant than the original ones. 
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as the transverse motions are much softer than the in-plane ones and thus the eigenvalue 

problem splits these motions into separate eigenvectors/new duals.  

Table 5. Ratio of Transverse and In-plane Displacements Norms, New Dual Modes, 
Curved Beam.  

 Dual 
1 

Dual 
2 

Dual 
3 

Dual 
4 

Dual 
5 

Dual 
6 

Dual 
7 

Dual 
8 

Norm(Tx)/Norm(Ty) 6.23 14.18 15.21 14.01 18.01 14.72 13.40 0.08 

 The assessment of these new duals for the representation of the uniform 

displacement data was carried out as before by evaluating the average in-plane 

representation error corresponding to the loadings of 2.5, 3, 3.5, 4, and 4.5 lbf/inch, see 

Figure 23. Note in this figure that the new duals were considered in order of increasing 

eigenvalue and that the transverse dominant one was not included. That is, the error is 

presented for new duals in order 7, 6, 5, ..., 1. It is seen that the two in-plane duals with 

lowest eigenvalues (i.e., 6 and 7 in Figure 25) provide a significant drop in the 

representation error, yet, not quite as large as the original duals. However, the 

representation error drops consistently with these new duals at the contrary of the original 

ones. In this regard, note that the increase in representation error for the original duals 

associated with dual #3 results from this dual being primarily transverse. Thus, it leads to 

a decrease of the representation error in the transverse error but at the cost of an increase 

in the in-plane one. In this light, the continuous decrease of the representation error for the 

new duals is effectively associated with the decoupling induced by the eigenvalue problem. 
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 It is concluded from the above discussion that the two dual optimization strategies 

of section 4.2 are both beneficial but in different ways. Then, it was questioned whether 

they could be combined to achieve an even better selection of duals. To this end, the two 

duals 7 and 6 were first retained and an optimization as in Eqs (49)-(50) was performed 

with transverse mode 1 (the POD mode) and the remaining 5 new duals (1 to 5) in Figure 

24-Figure 25. Shown in Table 6 are the corresponding quadratic coefficients (2)
11d

K  for d 

=7 to 11 (new dual modes 1 to 5) after separate identification. Also shown on this table, on 

the left most column, is the optimum value corresponding to the optimum new dual shown 

as final dual 3 on Table 7. 

 The inclusion of this 3rd final dual led to a significant drop in the representation 

error which still was slightly larger than the 1% usually desired. Accordingly, other 

combinations of linear modes were considered in the quadratic stiffness coefficients-based 

optimization and it was found that the 1-3 transverse mode combination led to the largest 

drop in representation error. Shown in Table 7 and Figure 26 (final dual 4) are the result of 

this optimization which does lead to yet another notable drop in the representation error, 

see Figure 23, well below 1%. Note that this 4th new dual appears very similar to the new 

dual 5 (flipped sign) which is consistent with the very close values of the quadratic stiffness 

coefficient of mode 11 (new dual 5). Given the low representation error, no further duals 

were considered leading to a 4 dual mode basis, shown in Figure 26, vs. the original 8.  
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Table 6. Data and Result of Optimization of New Duals 1-5 Using Eqs (49)-(50) for the 
1-1 Combination. 

 Index and values of (2)
ijlK  for the 5 new dual modes before optimization 

(2)
ijlK  (1,1,7) (1,1,8) (1,1,9) (1,1,10) (1,1,11) 

2.1679e+10 3.7415e+09 6.7323e+09 -5.6926e+09 -1.0910e+10 8.0979e+09 

 

Table 7. Data and Result of Optimization of New Duals 1-5 Using Eqs (49)-(50) for the 
1-3 Combination. 

 Index and values of (2)
ijlK  for the 5 new dual modes before optimization 

(2)
ijlK  (1,3,7) (1,3,8) (1,3,9) (1,3,10) (1,3,11) 

-3.7078e+11 -1.8903e+10 -1.2731e+11 5.0843e+10 4.6443e+10 3.4567e+11 

 In a final attempt to reduce the basis size, the role of each of the 6 transverse modes 

was analyzed and it was found that the last 3 transverse modes contributed only little to the 

reduction of the transverse representation error. Accordingly, they were removed yielding 

a 3 transverse – 4 dual (3T4D) basis which will be validated in the next section. 

 It was of interest to assess this basis in comparison to a 3T4D one which would be 

built following the standard dual construction process. Specifically, 2 duals were taken 

from each of the 1-1 and 1-2 combinations. Then, the in-plane representation error of the 

2 3T4D bases are compared on Figure 27 on the same data as Figure 23. As would be 

expected, the 4 optimized duals decrease the representation error faster than the one 

constructed by the regular process. The gain is minimal for the first dual but is much larger 

for the next two. Eventually, on dual 4, the optimum approach cannot reduce the error 
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much more but the regular process still can and yields to a final representation error that is 

very similar to that of the optimized process. This comparison confirms that the benefit of 

the dual optimization process is primarily in potentially reducing the number of duals 

necessary. 

 

Figure 26. In-plane (Left Column) and Transverse (Right Column) Displacements of the 
4 Final Duals Following from the Two Optimizations. Curved Beam.  
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Figure 27. Average Representation Error for the Two 3T4D Models, in %, of the In-plane 
Displacements corresponding to Loadings of 2.5, 3, 3.5, 4, and 4.5 lbf/inch (i.e., Post 

Snap Through) vs. Number of Various Types of Dual Modes. (a) Linear, (b) Log Scale. 

 

6.2.2 Results with Optimized Basis before Tuning  

The identification of the stiffness coefficients of the 3T4D NLROM were 

determined using the single-level tangent stiffness approach and the model was cleaned. 

Then, the assessment of this NLROM started with the comparison of static predictions. The 

static displacements before snap-through and the location of that event are well captured 

by the ROM, see Figure 28 and Figure 29, but not as well after snap-through (which occurs 

for a load of 2.4 lbf/inch). Similar observations can be drawn from the prediction of the 

lowest eigenvalue of the tangent stiffness matrix, see Figure 30. Note on this figure that 

the lowest eigenvalues obtained by projecting the Nastran tangent stiffness matrix on the 

NLROM basis (“Nastran proj.”) are also shown and are much closer to those of the full 

Nastran model than its NLROM counterpart. This observation suggests that the largest 
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source of the discrepancy between NLROM and Nastran above the snap-through load 

originates from the coefficients of the model, not from the basis selection. 

 
(a)                                                                      (b) 

Figure 28. Displacements vs. Uniform Load, Clamped-Clamped Cantilevered Beam. (a) 
Transverse Displacement at Beam Middle and Quarter Point, (b) In-Plane Displacement at Quarter 

Point. 

 

   
(a)                                                                              (b) 

Figure 29. In-Plane (Top) and Transverse (Bottom) Deformations of the Clamped-Clamped Curved 
Beam under a Uniform Load of (a) 1 lbs/in, (b) 4.5 lbs/in.  
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Figure 30. Lowest Eigenvalue of the Tangent Stiffness Matrix Corresponding to a Symmetric 
Eigenvector vs. Uniform Load Magnitude. Clamped-Clamped Curved Beam 

 
Figure 31. Time Histories of the Transverse Displacement of the Center of the Clamped-Clamped 

Beam under Low (Top), Medium (Middle), and High (Bottom) Acoustic Loadings.  
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A dynamic validation of this NLROM was also carried out, see Figure 31 and 

Figure 32 for time histories and power spectra density, under acoustic loads bandlimited in 

the [0,500]Hz frequency and of level ranging from low to medium to high for which the 

beam vibrates around the undeformed position, exhibits occasional snap-throughs, and 

regularly snap-through, respectively, see Figure 31. As shown in Figure 32, a good to very 

good match of the Nastran and NLROM power spectra was observed. 

 

 

Figure 32. Power Spectral Densities of the In-Plane (Left) and Transverse (Right) Displacements at 
the Quarter Point of the Clamped-Clamped Beam under (a) Low, (b) Medium, and (c) High 

Loading.  
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6.3 Application to the Shallow Cylindrical Shell 

The shallow cylindrical shell shown in Figure 4 has been found in this investigation 

to exhibit two strong nonlinear features, i.e., of mode switching and symmetry breaking. A 

first challenge of this model construction was the determination of a set of dual modes 

leading to a good representation of the response in the x and z directions. Following the 

work on the clamped-clamped curved beam, the first part of the basis was constructed by 

a proper orthogonal decomposition of the projection of a series (11) of nonlinear Nastran 

static solutions (SOL 106) corresponding to uniform pressures of different magnitudes with 

peak transverse displacement extending up to 3.1 thicknesses on the first 8 symmetric 

linear modes of the undeformed panel. The 6 POD modes with the largest eigenvalues, see 

Figure 57, were retained as the transverse modes in this computation. Duals were then 

constructed with the first 2 POD modes as dominant leading to 7 dual modes orthogonal to 

the first 27 symmetric linear modes. This extended orthogonalization was carried out to 

eliminate more significantly the transverse components present in the data and thereby 

generate dual modes with stronger in-plane components that rapidly reduce the in-plane 

representation error. The identification of the stiffness coefficients was initially done with 

the single level approach. 

6.3.1 Validation Results under Static Load 

This 13-mode 6T7D model performed very well in predicting the static response 

vs. load over a broad range of pressures including the occurrence of a mode switching event.   

see Figure 58 and Figure 59. A deviation between the maximum displacement and 

displacement at the center of the panel in transverse direction arises as the load increases. 

DISTRIBUTION A: Distribution approved for public release.



114 

 

 

Figure 57. Singular Values of the POD of the Projections on the First 8 Symmetric Linear Modes 
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Figure 58. Center and Peak Displacements along the Y (Transverse) Direction vs. Applied Uniform 

Pressure. Nastran and NLROM Predictions. 
 

Also investigated, see Figure 60, are the first two eigenvalues of the tangent 

stiffness matrix as a function of the applied pressure. Shown on this figure are the first two 

Nastran eigenvalues corresponding to symmetric eigenvectors, those of the Nastran tangent 

stiffness projected on the basis, and those predicted from the NLROM generalized 

coordinates obtained for the various loading conditions. Note that the Nastran eigenvalues 

clearly show the veering that is the origin of the mode switching. Moreover, the 

eigenvalues of the projected tangent stiffness matrix match very well those predicted from 

the NLROM suggesting that the identified model is accurate but the difference between 

these two curves and the Nastran one for the second eigenvalue suggests that the basis is 

not quite appropriate for large enough load levels.  
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Figure 59. Contour Plots of Displacements along X, Y, Z as Predicted by Nastran and the NLROM 
for Uniform Pressures of (a) 1.5 psi, (b) 2.5 psi, and (c) 3.0 psi.  
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Figure 60. Eigenvalues of the Tangent Stiffness Matrix from Nastran (Corresponding to Symmetric 

Eigenvectors), Projected Nastran Tangent Stiffness Matrix on the Basis, and from the ROM. 

6.3.2 Validation Results under Dynamic Load 
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APPENDIX I: 
 
[C3]: Song, P., Wang, X.Q., and Mignolet, M.P., “Uncertainty Management for the Stochastic 
Response of Uncertain Structures,” Proceedings of the AIAA Science and Technology Forum 
and Exposition (SciTech2020), Orlando, Florida, Jan.6-10, 2020. AIAA Paper AIAA-2020-
1419. 
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UNCERTAINTY MANAGEMENT FOR THE STOCHASTIC 
RESPONSE OF UNCERTAIN STRUCTURES 

 
P. Song, X.Q. Wang, and M.P. Mignolet 

 
SEMTE, Faculties of Mechanical and Aerospace Engineering, 

Arizona State University,  Tempe, AZ 85287-6106 
 

ABSTRACT 
The present investigation hinges on the perspective that using the most detailed 

computational models (e.g., very refined meshes) and/or the most complete physical models to 
evaluate each sample of the response is not an efficient use of computational or time resources in 
the presence of aleatoric uncertainty. Rather, the fidelity of the models can be degraded as long 
as the induced epistemic uncertainty remains small in comparison of the aleatoric uncertainty 
present. This perspective is here referred to as uncertainty management and the focus of the 
present effort is to validate this concept to two very different structures: the first is linear 
modeled in finite elements while the second behaves nonlinearly, is part of a multiphysics 
problem and is represented as a reduced order model (ROM). The reduction of fidelity and 
increase in computational speed is achieved in the first problem by relying on a coarse model 
while in the second sparsity is introduced in a large group of ROM coefficients. For these model 
downgrades which induce only small changes in the response, it is indeed shown that a well 
identified/calibrated lower fidelity model provides indeed a close fit of the random response of 
the higher order one. The maximum entropy nonparametric approach to uncertainty modeling is 
a convenient framework for this uncertainty management strategy given its capability to 
represent both aleatoric and some epistemic uncertainties. 
 
INTRODUCTION 

The present effort is concerned with the computationally efficient prediction of the 
uncertainty on the response of a system/structure induced by a combination of epistemic and 
aleatoric uncertainties in the system properties. It is assumed here that different models of the 
system are available, e.g., finite element models with different mesh densities or reduced order 
models with different number of basis functions. Then, to each of these models may be 
associated a level of epistemic uncertainty with respect to the “truth” or to each other. 

The central point of the present effort is that using the most detailed computational models 
(e.g., very refined meshes) and/or the most complete physical models to evaluate each sample of 
the response is not an efficient use of computational or time resources in the presence of 
aleatoric uncertainty. Rather, an optimum resource management strategy would be to relax the 
computational and modeling accuracies to a level such that the resulting (epistemic) uncertainty 
does not lead to a significant increase in the uncertainty band on the prediction as compared to 
the one obtained with the inherent uncertainty in the system/its excitation. 

This strategy, referred to here as uncertainty management, thus focuses on the balancing of 
epistemic and aleatoric uncertainties, i.e., the joint selection of a fidelity level and a global 
uncertainty level, to achieve the required prediction accurately with a low computational cost. 
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It is assumed here that the epistemic and aleatoric uncertainties are modeled stochastically 
within a single framework. For example, if considering reduced order models within matrix 
coefficients, such a single framework could conveniently be taken as the maximum entropy-
based approach of Soize [1,2]. Within the context of linear finite element models, the single 
framework could be chosen as the maximum entropy modeling at the elemental level recently 
introduced by the authors [3,4]. Then, epistemic and aleatoric uncertainty are characterized by 
similar metrics which allows for their comparison and their interchange. 

In this light, the specific objectives of the present effort are to exemplify the above 
uncertainty management process which involves: 

(1) the quantification of the level of epistemic uncertainty associated with a lower fidelity 
model in comparison to a higher fidelity one, 

(2) the comparison of the levels of epistemic and aleatoric uncertainties. One would expect 
similar predictions from a lower fidelity model and a higher fidelity one when the level of 
epistemic uncertainty of the former is lower/much lower than its aleatoric counterpart. This 
requirement is the basis of the selection of an appropriate lower fidelity model. 

(3) the “training” of the lower fidelity model to emulate the uncertain high fidelity model, 
e.g., identify the uncertainty level of the low fidelity model given samples of the response of the 
high fidelity one, thereby decreasing the computational cost  of the prediction effort. 

The two examples given below demonstrate that the uncertainty management can be carried 
out on either full finite element models or reduced order models thereof. 

The above focus has overlap with the recent innovative work of [5,6] in which a multi-
fidelity prediction strategy is developed and validated, combining the predictions from multiple 
models of different fidelity to yield high fidelity equivalent predictions. The present approach 
proceeds differently with all computations originating from a single model but this model is 
required to have sufficient fidelity so that the aleatoric uncertainty is larger/much larger than the  
epistemic one. 

Before describing in details the two examples, their mean and uncertain models, a brief 
review of the maximum likelihood identification approach is presented below as it represents the 
strategy used here for the estimation of the level of uncertainty. 

 
MAXIMUM LIKELIHOOD IDENTIFICATION OF PARAMETERS 

It is proposed here to identify the deterministic parameter(s) of the uncertainty model through 
the maximum likelihood strategy. This approach proceeds as follows. 

Denote by  obs
ix , i =1, ..., R, a series of R observations/samples of the random vector X, i.e., 

the response of the uncertain system considered. The model of this system is characterized by a 
set of deterministic parameters  which are to be identified from the given observations. Then, 
according to the maximum likelihood approach, the most appropriate values of  are those which 
maximize the likelihood function 

        ( )

1
;

R
obs

i
i

L p


 X x                         (1) 

where  ( );obs
ipX x   denotes the probability density function of the random vector X 

corresponding to the values  of the parameters of the model. This probability density function is 
in general estimated statistically from a number of samples produced in a Monte Carlo analysis, 
e.g., by using the kernel density estimation method [7-9]. This approach may be expensive when 
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the vector X has many components in which case one can resort (e.g., see [10]) to a Gaussian 
approximation of  it for which the probability density function is readily expressed as 

     
   

   1
/2

1 1; exp
22 det

TG
p

p       
X X XX X

XX

x x K x
K

                 (2) 

where T  denotes the operation of matrix/vector transposition. Note in Eq. (2) that  X   and 

 XXK   denote the mean vector and covariance matrix of the random vector X determined for 
particular values  of the parameters of the uncertain model. The Gaussian assumption of Eq. (2) 
leads to significant computational savings as it requires only the estimation of the mean and 
covariance matrix. 

In computational problems that lead to a “large” vector X, e.g., response over a fine finite 
element mesh or time dependent response computed at a small time step, it is quite typical that 
the covariance matrix XXK  of the ensemble of components is nearly singular. This finding is 
not surprising as, for example, the responses at neighboring nodes of a fine mesh are expected to 
be closely correlated to each other. Then, a preliminary step in the maximum likelihood 
construction is to proceed with a Principal Component Analysis (PCA) to reduce the random 
vector X to another, Y, of typically much smaller size which corresponds to the projection of X 
on the set of m eigenvectors of XXK  with largest eigenvalues i . 

This approach is effectively equivalent as approximating in Eq. (2) the covariance matrix 

XXK  by its approximation ( )m
XXK  based on the m largest eigenvalues and associated 

eigenvectors. That is, 
      ( ) ( ) ( ) ( )m m m m TXXK               (3) 

where ( )m  denotes the matrix with the orthonormal eigenvectors in columns, ( )m is the mm 
diagonal matrix of the largest eigenvalues. 

Combining Eqs (2) and (3) yields 

       
   

1( )
/2 ( )

1 1; exp
22 det

G T m

p m
p

      
X x z z 


              (4) 

where 
       ( )m T  Xz x   .            (5) 

Owing to the diagonal nature of ( )m , Eq. (4) can be rewritten as 

        
2

1

1; exp
22

m
G i

iii

z
p



 
  

   
X x                 (6) 

where iz  denotes the ith component of the vector z.  
 
FIRST SAMPLE PROBLEM: FINITE ELEMENT MODELS 
Physical System and Model 

The first sample problem considered here is the response of the uncertain plate of mean 
model shown in Fig. 1(a). It is an annulus of inner radius 0.8m, outer radius 1m, thickness 
0.002m clamped on its inner radius and free on the outer one. The material, aluminum, is 
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assumed to be homogenous and isotropic with Young’s modulus E = 7.3 1010 Pa and Poisson’s 
ratio = 0.316. This mean structure and all uncertain ones are subjected to a static uniform unit 
(1 Pa) pressure in the quadrant [180,270] degrees highlighted in yellow in Fig. 1(a). 
 

 
(a) 

 
(b) 

Figure 1. (a) The annulus and its “truth” finite element model with the loading domain 
highlighted in yellow. (b) Static transverse displacement at the periphery. 

 
The “truth” model considered here is a finite element model of the annulus using 4-node 

shell finite elements within Nastran (CQUAD4 elements with 6 degrees of freedom per node) 
with a mesh of 144 nodes around the periphery and 6 in the radial direction. Then, shown in Fig. 
1(b) is the transverse displacement of the periphery which is clearly localized near the excitation, 
i.e., in the band [150,300] degrees. 
 
Stochastic Model of Uncertainties at the Finite Element Level 

The modeling of uncertainties for this problem will be accomplished at the level of each 
element using the recently proposed application of the maximum entropy at the finite element 
level [3,4]. In this approach, the uncertainty is accounted for by randomizing the elemental 
(stiffness here) matrices of each element with the maximum entropy construct.  

Specifically, denote by  the elemental stiffness matrix of a typical element of the mean 
model finite element. Then, following the maximum entropy strategy, one can express the 
uncertain stiffness matrix of that element as 

                                     (7) 
where  is a decomposition of satisfying 

                                               (8) 
and  is a random matrix. The above process is carried out for each element and the resulting 
samples of the elemental matrices are assembled to form one realization of the global stiffness 
matrix characterizing the uncertain structure. 

In applying the above concepts, there are two key issues which must be carefully addressed. 
The first one is that (R.1) the matrices  corresponding to different elements cannot be 
simulated independently of each other. Doing so would induce very high spatial frequency 
variations which are unphysical. The second is that (R.2) each simulated sample of the random 
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global matrix must be independent of the ordering of the nodes and degrees of freedom in each 
element to represent a physical realization of the uncertain structure, see [3,4] for discussion. 

To satisfy the second requirement, the matrices are simulated as [3,4] 
                                        (9) 

where H is a mxm lower triangular random matrix with m the number of degrees of freedom per 
node and  denotes the rxr identity matrix where r is the number of nodes per element. Finally,  

 denotes the Kronecker product operation. 
The above expression is appropriate when the degrees of freedom of the element follow the 

“degree of freedom – node” ordering, i.e.,  ordered as degree of freedom 1 for all nodes, degree 
of freedom 2 for all nodes, etc. If they are ordered along “node - degree of freedom”, i.e., all 
degrees of freedom of the first node, then all of the second node, etc., Eq. (9) should be replaced 
by 

        r KH R H I                                 (10) 
where the matrix R corresponds to the permutation of the degrees of freedom. It contains all 
zeros except the IJ elements which equal 1 when I = (j - 1) m + i and J = (i - 1) r + j,  i = 1, 2, ..., 
m and j = 1, ..., r . 

To satisfy the requirement (R.1), it is necessary that a correlation exist between the matrices 
H corresponding to different elements. This is accomplished following the matrix field modeling 
proposed in [5] which views each element  as the transformation of a zero mean, unit 

variance Gaussian field ijS  with a specified stationary autocorrelation function 

          ij
ij ijSSR E S S   y x x                                     (11) 

where x and  denote the coordinates of two elements (e.g., of their center). 
Specifically, for ij 

       ij ijH S                                     (12) 
while for i = j 
          1

ii
ii iiHH F F S              (13) 

where F is the cumulative distribution function of the standard Gaussian random variable and 
 is the inverse of the cumulative distribution function of the Gamma random variable 

 /iiii YH . In the above equations, the parameters  and  are related to the uncertainty level 
 through 

      2/1   and    21 / 2 /m    .        (14) 

In this paper, the autocorrelation functions  ij
SSR y  will be selected the same for all i and j 

and defined as 

      
2

2
22

4 sin
2

ij corr
SS

corr

yL
R

Ly

    
   
    

y           (15) 

where corrL  is its single parameter, quantifying the correlation length of the Gaussian processes 

ijS . The stochastic model presented above thus involves two parameters  and corrL that fully 

KH

rK IHH 

rI


ijH

xxy 

x

1
iiHF
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define the stochastic representation of the elemental (and thus the global) stiffness matrices. 
 
Results 

To assess the proposed uncertainty management approach, a coarse mesh was defined which 
exhibits 1/2 the number of nodes along the periphery as well as radially, so 1/4 of the total nodes 
of the truth model. Then, shown in Fig. 2 are the mean model predictions of the transverse 
response (the in plane ones are zero) from the coarse and truth models which are seen to be 
different, notably by a shift of the response. 

Next, the coarse model was randomized according to the elemental approach described in the 
previous section with a correlation length selected as corrL = /3 and with varying values of the 
uncertainty level c . It was then desired to estimate this level for which the mean response of the 
fine mesh could be considered as a realization of the uncertain coarse mesh model. This 
estimation was carried out using the maximum likelihood approach for which the first step is to 
determine the number m of eigenvectors to retain. To this end, shown in Fig. 3(a) is a typical plot 
of the eigenvalues i  vs. the index i (for  of the uncertain coarse model) which suggests 
to retain approximately m = 10 eigenvectors. This data was obtained by stacking in the vector X 
the values of the 6 degrees of freedom at each of the nodes of the coarse model. The evolution of 
the maximum likelihood function vs.  was then carried for several numbers of m as shown in 
Fig. 3(b). It is observed from these plots that the value of c  for which the maximum of the 
likelihood is achieved varies little with m in the range and occurs for c =0.05. To support this 
finding, shown in Fig. 4 are the 5th-95th bands of uncertainties corresponding to this level and 
which clearly enclose the fine mesh model predictions which can thus be viewed as a realization 
of the uncertain coarse model. Note that uncertain bands exist on the in plane (radial and 
tangential) directions as the elemental uncertainty modeling produces samples of the elemental 
stiffness matrices that do not preserve the flatness of the annulus. 

 
Figure 2. Static transverse displacement at the periphery of the mean annulus. 

Mean fine model (in blue), mean coarse model (in red). 
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Figure 3. (a) Eigenvalues i  of the covariance matrix vs. index i for c =0.06. (b) Log likelihood 
function as a function of the uncertainty level c  for several numbers (m) of eigenvectors 

retained. Mean model/epistemic uncertainty only. 

 
Figure 4. Static displacement at the periphery of the mean annulii. (a) radial, (b) tangential, (c) 

transverse. Mean fine model (in blue), mean coarse model (in red), and 5th-95th percentile 
uncertainty band (in yellow). c =0.05, Lcorr =/3. 
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It was next desired to introduce aleatoric uncertainty in the models. In this regard, it was 
recognized that the elemental uncertainty modeling introduced above does not alter notably the 
mean of the responses. Thus, the difference between coarse and fine mesh, see Fig. 2, which 
appears as a shift, effectively induces a difference in the mean responses obtained with aleatoric 
uncertainty. This shift pushes to higher values the uncertainty level c  of the coarse model that 
is required by the maximum likelihood approach so that the nearly symmetric uncertainty band 
of the coarse model essentially includes the shifted symmetric uncertainty band of the fine 
model, see Fig. 5. 

This issue can be resolved by a change in either the mean coarse model or by the introduction 
of a variable mean (not identity) in the random matrices H. In the former case, what is desired is 
modifying the coarse model so that the average of the quantities of interest, i.e., here the 
responses of the fine and coarse model over the periphery, equals nearly zero. This option was 
adopted here and the modification to the model was a slight reduction, by 1.5%, of the applied 
load achieving the nearly zero average difference between fine and coarse model predictions. In 
this particular case, this resulting difference was nearly zero everywhere. 

 Five samples of the response of the uncertain (aleatoric) fine model, with f  = 0.1, were 
generated and used in the maximum likelihood approach to identify the necessary uncertainty 
level of the coarse model. As seen in Fig. 6, the maximum likelihood estimate is also c  = 0.1 
which is consistent with the observation that the epistemic uncertainty level of the modified 
coarse model to simulate the response of the mean fine model is very small. Note that the 
correlation length was maintained for both models at Lcorr =/3 but it could also have been 
identified for the coarse model as a second parameter in the likelihood function optimization. As 
shown in Fig. 7, the uncertainty band of the resulting coarse model matches extremely well its 
counterpart for the fine model at a significant computation savings. 

 
Figure 5. Uncertainty bands of the fine and coarse models resulting from maximum likelihood 

identification showing the effect of the difference in mean. 
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Figure 6. Log likelihood function as a function of the uncertainty level c  for several numbers 

(m) of eigenvectors retained. Aleatoric and epistemic uncertainty. 
 

SECOND SAMPLE PROBLEM: REDUCED ORDER MODELS 
In the context of reduced order models (ROMs), a lower fidelity model could be obtained as 

resulting from selecting a smaller basis or by eliminating some of the coefficients of the ROM. It 
is the latter perspective that will be emphasized here by considering nonlinear reduced order 
models that account for the nonlinear geometric behavior of the structure undergoing large 
deformation. Lower fidelity then results from an imposed “sparsity” of the ROM coefficients, 
see [11] for an earlier example. 

 
Physical System and Model 

The physical system of interest is the panel with stiffeners as shown in Fig. 8 which was 
originally considered in [12] and is subjected to a trajectory spanning Mach 2 to Mach 12 in 300 
seconds with fully coupled structural/thermal/aerodynamic computations. Full details of the 
panel properties are in [12] but some key features are: 
(i) nonlinear geometric structural effects are considered, 
(ii) the coefficient of thermal expansion is linearly dependent on temperature but the tensor of 

elasticity is not, 
(iii) the heat conduction problem is solved on the undeformed configuration with capacitance 

and conductance properties varying with temperature, 
(iv) the aerodynamic forces are determined from piston theory while the aerodynamic heat flux is 

estimated from Eckert reference enthalpy method, 
(v) the structural problem is solved quasi statically while the heat conduction is marched through 

a time step; 
(vi) the computations of the thermal problem and the structural one are staggered, marched with 

time step of 0.5s. The thermal solution at one time step is obtained first, from the thermal and 
structural fields at the previous time step. Then, the structural problem is solved using the 
current temperature distribution. 
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(a) 
 

(b) 

(c) 
 

(d) 

 
(e) 

 
(f) 

Figure 7. Static displacement at the periphery of the mean annulii. Respective mean models, and 
5th-95th percentile uncertainty band. (a),(b) radial, (c),(d) tangential, (e),(f) transverse. (a),(c),(e) 

from fine model, f  (b),(d),(f) from coarse model. c =0.1, corrL = /3 
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Based on the above assumptions, shown in Fig. 9 and 10 are the maximum transverse 
displacements and the temperature at the center of the panel over the 300 seconds of the 
trajectory. The computation of this response by structural and thermal finite element models and 
their coupling is an extensive process and reduced order modeling techniques have been devised 
for problems such as this one to dramatically speed up the computations. A brief review of these 
methods (see also [13-28]) is provided below followed by the uncertainty modeling that has been 
proposed for these ROMs. 

 
Figure 8. Hypersonic panel with stiffener [12]. 

 

 
Figure 9. (a) Maximum transverse displacement and (b) temperature of the panel center over the 

trajectory. Predictions by finite element models [12] and structural-thermal full ROM [28]. 
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Nonlinear Structural-Thermal Reduced Order Models 
The reduced order models considered here are based on a representation of the temperature 

and displacement fields in the continuum structure in a “modal expansion” form, i.e. as 

           





1

)(,
n

n
n TttT XX                                     (16) 

for the temperature, and 

                                  



M

n

n
ini Utqtu

1

)(, XX                                 (17) 

for the displacement. Note that )(m
iU  and )(mT  are specified functions of the position vector X 

in the undeformed configuration of the structure, chosen to satisfy the necessary boundary 
conditions. In the context of finite elements, the analogous representations of the displacement 
and temperature vectors, w and T, are 

            





1

)(

n

n
n tt TT                         (18) 

and 

          



M

n

n
in tqt

1

)(w .                                             (19) 

A set of nonlinear ordinary differential equations governing the evolution of the generalized 
coordinates  tqn  and  tn  can be obtained in a Galerkin format from the governing field 
equations for the displacements  tui ,X  and temperature  tT ,X  in the undeformed 
configuration. Specifically, assuming a Duhamel-Neumann form of the Helmholtz free energy in 
terms of the temperature and Green strain tensors, it is found that (summation implied over 
repeated indices) 

(1) ( ) ( ) (2) (3)

( ) ( )                                                                              

th th
ij j ij j l l p j j l j l pij ijl ijlp ijl ijlp

th th
i l l pil ilp

M q D q K K K q K q q K q q q

F F F

         
 

     

 
        (20) 

and 
     ilj

st
ijljijjij PqKKB   )(~                                      (21) 

where the terms ( )th
ijlpK  and ( )th

ilpF are induced by a coefficient of thermal expansion dependent 

linearly on the local temperature while the elasticity tensor is assumed independent of it. Note 
that ijB  and ijK  denote the components of the capacitance and conductance matrices, ( )st

ijlK  is a 

coefficient that models the latency effect (neglected here), and iP  denotes the various applies 
fluxes. 

A structural-thermal ROM of this panel providing a close match of finite element results was 
developed in [28]. Shown in Fig. 9 is a comparison of the maximum transverse displacement and 
the temperature of the center of the panel predicted by the finite element model [12] and by the 
ROM [28] both of which match very well. In this ROM, the structural model included 44 
structural basis functions, and the thermal model included 42 basis functions. 
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One notable drawback of these large bases is a large number of ROM coefficients, of the 
order of M 

4/6 + 2 M 2/4 in the above example, which will in turn lead to a large computational 
cost undercutting the benefits of using ROMs. A similar observation drawn for structural ROMs 
only [18] motivated there the introduction of a computational cost cutting strategy in which 
nonlinear stiffness terms (which constitute the vast majority of ROM coefficients) were retained 
only for the dominant structural modes creating a sparse ROM from a full one. Of course, 
associated with the sparsity is an error which unfortunately may not be easy to quantify ahead of 
time. Thus, the second stage of the sparsity modeling of [18] was the introduction of the induced 
modeling error as an epistemic uncertainty in the linear stiffness coefficients of the modes of 
which the nonlinear terms were discarded consistently with the uncertainty management strategy 
proposed here. 

The present effort focuses on complementing the work of [18] by performing a similar 
reduction of coefficients but focusing on those modeling the temperature dependent stiffness 
terms, coupling the structural and thermal problems, as well as considering aleatoric uncertainty 
not investigated in [18]. 
 
Uncertainty Modeling for Nonlinear ROMs 

Following [29,30], it is possible to introduce uncertainty on the structural and structural-
thermal properties of the structure directly at the level of the reduced order model using an 
extended version of the maximum entropy nonparametric approach developed in [1,2] in the 
linear case and in [31] for nonlinear structural only applications. This methodology is based on 
the regrouping of the various ROM coefficients of Eq. (20) in a single matrix  

     

   

   

   

   

2

2

2 2

2

* *

* *

thth

ththT

D
th T th T

th T th T

 
 
 
   
 
 
  

K K F F

K K K K
K

F K

F K



   





(1) (2)

(2) (3)

                      (22) 

where K (1)  denotes the linear stiffness matrix without temperature, the arrays K (2)  and K (3)  

involve the quadratic and cubic stiffness coefficients (2)
ijlK  and (3)

ijlpK . Further,  thK  and  
2
th

K  

contain the coefficients of the components of the linear stiffness matrix that are proportional and 
quadratic, respectively, to the thermal generalized coordinates, that is ( )th

ijlK  and ( )th
ijlpK . Finally, 

the arrays  thF  and  
2

th
F  are similarly constructed from ( )th

ilF  and ( )th
ilpF . Note that the * 

denote blocks of coefficients that are mathematically defined in [29,30] in terms of the tensors of 
elasticity and thermal expansion but do not appear in the ROM governing equation (20). 
Accordingly, see [29,30], the evaluation of these blocks of terms can be sidestepped. 

It is shown in [29,30] that the mean matrix DK  is theoretically positive definite and thus the 
maximum entropy nonparametric approach can be applied to it. That is, random matrices DK  
can be generated as 

      TT
D DD D DK L H H L          (23) 

where 
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             T
D D DK L L              (24) 

DL being a lower triangular matrix of the block form (see [29,30]) 

            

11

21 22

31 32

41 42

D

 
 
 
 
 
 

L

L L
L

L L I

L L I

  
 




                       (25) 

where I denotes the identity matrix of appropriate dimensions. Note that the 22 block identity 
matrix on the lower right corner of DL  fully defines the * blocks in Eq. (22). Moreover, the 
lower triangular matrix DH  can be expressed as the product of 2 matrices of similar shape, i.e., 
            D T SH H H           (25) 
where TH  and SH  induce uncertainty in the structural-thermal coupling terms and the 
structural terms. That is, these matrices are of the form 

  
,31 ,32

,41 ,42

* *

*

T
T T

T T

 
 
   
 
  

I

I
H

H H

H H

  
  



 and 

,11

,21 ,22

S

S S
S

 
 
   
 
  

H

H H
H

I

I

  

 

  
  

.      (26) 

Following [29,30], the elements of the full matrices ,31TH , ,32TH , ,41TH , and ,42TH  are 
selected as independent identically distributed zero mean Gaussian random variables. Moreover, 
the nonzero off-diagonal elements of ,11SH , ,21SH , and ,22SH  are also independent identically 
distributed zero mean Gaussian random variables while the diagonal terms of ,11SH  and ,22SH  
are independent Gamma random variables. 

 
Results 

As stated above, the focus of this second validation is on inducing sparsity in the structural-
thermal coupling terms ( )th

ijlpK  and ( )th
ilpF  to reduce the number of coefficients to involve at each 

step of the computations and thus speed up the determination of the response. A first step is thus 
to decide for which thermal modes l and p, these coefficients must be kept and for which 
combinations of these indices the coefficients can be eliminated. 

Observing the thermal response in the whole trajectory, the thermal modes were found to be 
divided into three groups. The first group S1 contains thermal modes [1, 3, 4], which are 
dominant modes; the second group S2 contains modes [5, 10, 13, 15, 17, 25, 26, 28, 30] whose 
general coordinates n  are relatively smaller in magnitude; and the remaining 30 out of the 42 
thermal modes were chosen to be group S3 because their responses are the smallest in 
magnitude. Correspondingly, the ( )th

ijlpK  and ( )th
ilpF  are retained only when the l and p terms are 

(i) both in S1 and (ii) one in S1 one in S2. This process gives the simplified model, where the 
maximum transverse displacements only changed moderately after about 230s comparing to the 
response of the original model, see Fig. 10. Accordingly, this model will serve as the lower 
fidelity one vs. the original, full ROM being the higher fidelity one. 
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Figure 10. Maximum transverse displacement (in thickness), full ROM and ROM with 

eliminated thermal structural coupling terms. 
 

Considering first the epistemic uncertainty modeling of the mean full ROM, two options 
have been investigated. The first, consistent with the approach of [18], introduced the uncertainty 
only on the terms  ( )th

ijlK and ( )th
ilF  for the thermal modes indices l corresponding to the sets S2 

and S3 only. This perspective stems from rewriting ( ) ( )th th
l l pijl ijlpK K     as ( ) ( )th th

p lijl ijlpK K   
 

. 

Then, eliminating the terms ( )th
ijlpK  could be balanced by variations of the other term in bracket, 

i.e., ( )th
ijlK . A similar argument also holds for ( )th

ilpF  and ( )th
ilF . 

For this first alternative, shown in Fig. 11 is the evolution of the log likelihood function as a 
function of the uncertainty level s  of the simplified/sparse model for various values of m, the 
number of eigenvectors of XXK  retained. For this plot, the entire time histories of the structural 
response, i.e., all 600 time steps and 44 structural generalized coordinates, were used to form the 
vector X. This figure shows a peak at s  = 0.008 for most values of m which was accordingly 
selected as measure of the epistemic uncertainty. The band of uncertainty on the predictions of 
the sparse ROM corresponding to this value of s  is shown in Fig. 12 and it encloses most of the 
mean response of the full ROM. 

Another option to account for the epistemic uncertainty is to introduce the uncertainty on all 
kept structural-thermal coefficients. From the plot of the log likelihood function, see Fig. 13, it is 
seen that s =1.0 10-4 which is significantly smaller than the value of 0.008 obtained in the first 
case. The reduction may be understood by recognizing that this second option induces also 
variations of the most significant coupling terms and thus smaller changes of them are warranted. 
The resulting band of uncertainty, see Fig. 14, is in fact wider than the one shown in Fig. 12 and 
does also mostly enclose the response of the full ROM. 
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Figure 11. Log likelihood function as a function of the uncertainty level s  for several numbers 
(m) of eigenvectors retained. Mean model/epistemic uncertainty only. First uncertain modeling. 

 

 
Figure 12. Maximum transverse displacement (in thickness) vs. time, full ROM (in blue) and 

5th-95th percentile uncertainty band (in yellow) of the sparse ROM, s =0.008. First uncertain 
modeling. 
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Figure 13. Log likelihood function as a function of the uncertainty level s  for several numbers 

(m) of eigenvectors retained. Mean model/epistemic uncertainty only. Second uncertain 
modeling. 

 

 
Figure 14. Maximum transverse displacement (in thickness) vs. time, full ROM (in blue) and 

5th-95th percentile uncertainty band (in yellow) of the sparse ROM, s =1.0 10-4. Second 
uncertain modeling. 
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The above computations were next repeated in the presence of aleatoric uncertainty which 
was introduced only on the structural-thermal part of the model, i.e., with the matrix TH  
keeping SH  to be the identity matrix. In this case, uncertainty on the sparse ROM is introduced 
on all coefficients and thus only the second modeling option above was considered. The aleatoric 
uncertainty level on the full ROM was selected to be T = 5.0 10-4. Using 15 samples of the full 
ROM as data, the maximum likelihood identification led to the higher 3 10-4 value for the 
corresponding uncertainty level s , see Figure 15, which leads to the uncertainty bands shown in 
Fig. 16 in which the 5 samples of the full ROM shown do fit in. Shown in Fig. 17 is the 
uncertainty band for the full model for T = 5.0 10-4. Comparing Figs 16 and 17, it is seen that 
they match fairly well with the largest difference being the 95th percentile for t > 250 s which is 
higher for the full ROM than for the sparse one. This finding results from the lower identified s  
which itself is due to the 15 samples selected that did not emphasize the high values of the 
response in that time segment. Since this issue is about identification not about the sparsity of the 
model, it is concluded that the sparse model appropriately calibrated would indeed capture well 
the band of uncertainty of the response in the presence of aleatoric uncertainty. 

 
 

 
 Figure 15. Log likelihood function as a function of the uncertainty level s  for several numbers 

(m) of eigenvectors retained. Aleatoric and epistemic uncertainty only. Second uncertain 
modeling. 
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Figure 16. Maximum transverse displacement (in thickness) vs. time, 5 samples of the full ROM, 

T = 5.0 10-4, and 5th-95th percentile uncertainty band (in yellow) of the sparse ROM, 
 s =3.0 10-4. Second uncertain modeling. 

 

 
Figure 17. Maximum transverse displacement (in thickness) vs. time, 5th-95th percentile 

uncertainty band (in yellow) of the full ROM, T = 5.0 10-4. 
 

SUMMARY 
The focus of the present investigation has been on assessing whether a well 

identified/calibrated lower fidelity model can provide a close fit of the response of the higher 
order one when both are subjected to uncertainty. This perspective has been validated on two 
very different structures: the first is linear modeled in finite elements while the second behaves 
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nonlinearly, is part of a multiphysics problem and is represented as a reduced order model 
(ROM). The reduction of fidelity and increase in computational speed was achieved in the first 
problem by relying on a coarse model while in the second sparsity was introduced in a large 
group of ROM coefficients. For these model downgrades which induced only small changes in 
the response, it was indeed shown that a well identified/calibrated uncertain lower fidelity model 
provides a close fit of the random response of the higher order one. Globally, it is suggested that 
the fidelity of the models can be degraded as long as the induced epistemic uncertainty remains 
small in comparison of the aleatoric uncertainty present. This perspective is here referred to as 
uncertainty management. Finally, it was noted that the maximum entropy nonparametric 
modeling approach to uncertainty is particularly convenient in the present context as it permits 
the quantification of the epistemic uncertainty with the same metric than used for the aleatoric 
one, thereby allowing a straightforward comparison. 
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TOWARD AN UNCERTAIN MODELING OF HYPERSONIC 

AERODYNAMIC FORCES 
 

P. Sharma, X.Q. Wang, and M.P. Mignolet 

 
SEMTE, Faculties of Mechanical and Aerospace Engineering, 

Arizona State University,  Tempe, AZ 85287-6106 
 
ABSTRACT 

This investigation lies within the focus of aeroelastic analyses of uncertain structures in 
hypersonic flow conditions. Given the uncertainty, aleatoric or epistemic, on the structure, it is 
computationally advantageous to reduce the aerodynamic model complexity as long as the 
induced epistemic uncertainty is “small” enough not to affect the band of predictions of the 
response. Within this perspective of uncertainty management, it is desirable to have 
computationally very efficient, physically-based, surrogates of the fluid forces that provide 
approximate fluid forces with tunable accuracy. Moreover, such surrogates should be stochastic 
in that the aerodynamic epistemic uncertainty should be included and modeled. The present 
investigation provides some recent efforts toward the constructions of such stochastic surrogates 
in which the pressure is expressed as a sum of a local component, modeled with piston theory, 
and a global one. 
 
INTRODUCTION 

The fielding of hypersonic vehicles has long been a goal of the U.S. Air Force to increase its 
operational envelope. The design of such vehicles is however a new paradigm owing first to the 
strong multi-physics interactions between structural response, aerodynamic forces and heating, 
and heat conduction and to the severity of the aerodynamic and thermal loading which will result 
in large deformations and strong nonlinearities in the structural response. Further, uncertainties 
resulting from vehicle-to-vehicle variability (aleatoric uncertainty) and from modeling 
assumptions (epistemic uncertainty) are expected to be important and to affect significantly the 
vehicle response. The use of safety factors to address these uncertainties has been shown to be 
inappropriate, it would lead to overweight vehicles unable to carry out the planned missions.  

Thus, the successful design of hypersonic vehicles will require the modeling of all aleatoric 
and epistemic uncertainties and their propagation to the structural response in a computationally 
viable framework. A key observation in this regard is that it is not efficient to use the most 
accurate computational models when aleatoric uncertainty is present. Rather, it is 
computationally advantageous to reduce somewhat the model complexity, i.e., allow epistemic 
uncertainty to increase until it becomes measurable with respect to its aleatoric counterpart. The 
process of balancing computational efficiency versus overall uncertainty is referred to here as 
uncertainty management. 

The accurate determination of the fluid forces on a vibrating vehicle represents a very 
significant effort typically involving unsteady computational fluid dynamics (CFD) runs over a 
very large grid. Such computations include all effects such as the viscosity of the fluid and are 
applicable to any level of deformation of the structure. This generality is in contrast with the 
limited applicability of historical simple (closed form) models, the best known of which is the 
piston theory (see [1] for discussion of the various piston theory formulations) which models the 

D
ow

nl
oa

de
d 

by
 M

ar
c 

M
ig

no
le

t o
n 

M
ay

 1
, 2

02
0 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
02

0-
18

78
 

 AIAA Scitech 2020 Forum 

 6-10 January 2020, Orlando, FL 

 10.2514/6.2020-1878 

 Copyright © 2020 by P. Sharma, X.Q., Wang, and M.P. Mignolet. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. 

 

 AIAA SciTech Forum 

DISTRIBUTION A: Distribution approved for public release.

http://crossmark.crossref.org/dialog/?doi=10.2514%2F6.2020-1878&domain=pdf&date_stamp=2020-01-05


inviscid fluid forces in a particular set of conditions (see [1]). Notwithstanding its simplicity, the 
piston theory formulation has been shown [2] to provide an appropriate framework for 
connecting unsteady forces on a vibrating structure to their quasi-steady equivalent on the 
statically deformed structure. This finding has then permitted the construction of surrogate 
models of the unsteady fluid forces, see [3] for a recent application and references. While the 
reduction of computational effort is very significant, the construction of the surrogate still 
requires a large number of steady computations which may have be repeated, e.g., on slightly 
different geometries, when uncertainty in the structural properties/geometry is introduced. 

Within the above perspective of uncertainty management, the objective of this paper is to 
develop computationally very efficient, physically-based, stochastic surrogates of the fluid forces 
that are applicable to uncertain structures (with uncertainty in material properties/geometry). For 
the ensemble of structural samples considered, these surrogates should lead to an uncertainty 
band on the fluid forces that is the same as the one obtained by using full CFD computations on 
every sample. Yet, for a particular structure, the surrogate will not necessarily provide a close 
match of those CFD computations but rather a band around them. The present effort thus focuses 
first on understanding which physically-based models could be used and how uncertainty could 
be introduced for a particular, simple structure. 

 
AEROELASTIC SYSTEM 

Given the existing discussions of [2,3], the present effort focuses on a simple aeroelastic 
system as a first validation case, i.e., the hypersonic flow over a flexible straight clamped-
clamped beam. The beam of length 1.5m and thickness (th.) 5 mm is part of a wedge of angle 5 
degree in a uniform upstream flow of Mach equal to 5, 7, 8, 10, or 12 at an altitude of 30km. The 
beam was discretized by finite elements using a uniform mesh of 1001 nodes. It was then 
deformed along each of its first four normal modes at various amplitudes, see Table 1 for details, 
with positive amplitudes corresponding to beam displacements into the fluid flow. The 
corresponding steady pressure distributions were computed using CFL3D with the Menter k- 
SST turbulence model and for each of the upstream Mach numbers. From the perspective of 
generating mode independent models later, note that the range of amplitudes for modes 1 and 2 
is larger than for modes 3 and 4, hence a wider distribution of data is used for the former modes 
but that there is an increasing complexity of the pressure with mode number that counterbalance 
the lower amplitudes at higher modes.  

 
Table 1. System steady configurations for surrogate generation and validation 

 
 
 

 
 
 
 
 
Unsteady computations were also carried for 2.25 cycles of harmonic motions of the beam 

along each of its first four modes with amplitudes and frequencies shown in Table 2 to provide 
an additional validation of the steady-based surrogates. 

 

mode Amplitudes (thickness) upstream 
Mach 

1 8, 6, 4, 3, 2, 1 12, 10, 8, 7, 5 
2 7, 6, 4, 3, 2, 1  12, 10, 8, 7, 5 
3 3, 2.5, 2, 1.5, 1, 0.5 12, 10, 8, 7, 5 
4 1.5, 1, 0.5 12, 10, 8, 7, 5 
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Table 2. System unsteady configurations for surrogate validation 
 
 
 

 
 
 
 
 

DETERMINISTIC MODELING EFFORT SUMMARY 
Local Modeling – Piston Theory 

The first physically-based model considered was piston theory which relates the pressure at 
one point to only the material derivative of the beam displacement at that point and at that time. 
Accordingly, such models will here be referred to as local as they would predict the pressure 
using only local information on the structural deformations. Such local models with powers 0, 1, 
2, and 3 (as is usual) of the material derivative and coefficients dependent on the Mach number 
but not the mode considered were found to be insufficient to accurately represent the pressure 
field from the available, viscous CFD data, see Fig. 1 for an example. Rather, it was found that 
the approximation should also involve powers and combinations of the displacement and its 
integral, see [4] for details. Such approximations are succinctly written as 
        ,,,,,,, 32 wsiwsssCtxC L

pp             (1) 
where w(x,t) is the displacement at position x on the beam at time t. Moreover, 

    
x

w
U

t

w

Dt

Dw
txs








 ,   and     
x

dztzwtxi
0

,,          (2) 

are the material derivative and integral of the displacement. 
 

 
(a) 

 
(b) 

Figure 1. Comparison of steady pC  from CFL3D (blue) and piston theory with linear (red) and 
cubic (yellow) slope terms for Mach 12, amplitude +3 th. and (a) mode 1, (b) mode 3. 

 
Local – Global Modeling 

The need to include notably more variables than the material derivative in Eq. (1) to obtain an 
appropriate matching of the CFD data prompted an investigation of other physically-based 

mode Amplitudes 
(thickness) 

Frequency 
(Hz) 

upstream 
Mach 

1 1, 2, 3, 4, 6 100, 140, 160 12, 10, 8, 5 
2 1, 2, 3, 4  100, 140, 160 12, 10, 8, 5 
3 0.5, 1, 1.5, 2, 3 100, 140, 160 12, 10, 8, 5 
4 0.5, 1, 1.5 100, 140, 160 12, 10, 8, 5 
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models. Of particular interest was the unified hypersonic model of [1] in which the introduction 
of a limited spatial (downstream) coupling between pressure at neighboring locations was shown 
to provide significant improvements over the piston theory predictions. Based on that finding, 
the approximation of the pressure field was written as the sum of a local (as in Eq. (1)) and a 
“global” component G

pC , i.e.,  

             2 3 2 3
0 1 2 3, , ,L G G

p p p pC x t C s s s C s s s C                 (3) 

where the local term was assumed to be a linear combination of a constant and the first three 
powers of s only with i  dependent on the Mach number but not the mode of deformation. Two 

different construction of the global components G
pC  are described below. 

 
ARMA-Based Global Modeling 
To induce a coupling between pressure values at neighboring locations, the global component 

G
pC  was modeled through an Autoregressive Moving Average (ARMA) difference equation, i.e., 

          
 




 
r

l

p

k
knl

l
k

m

j
jn

G
pjn

G
p txZbtxCatxC

1 0

)(

1
,,,          (4) 

where   xnxn  1  is the nth (equidistant) location on the beam and ja  and )(l
kb  are 

parameters of the model. Further, the variables  txZl ,  potentially include wsiwsss ,,,,, 32 , etc. 
Two different types of models were considered. The first one is applicable for the prediction of 

the pressure distribution induced by motions of the structure along a particular mode and at a 
particular Mach number. This model is appropriate if it is further assumed/demonstrated that 
superposition applies and that the pressure distribution induced by a linear combination of modal 
deflections is the sum of the pressures obtained by considering one mode at a time. The second 
model is applicable to the entire set of modes at a particular Mach number and thus would be 
applicable even if superposition cannot be assumed. 

The identification of these models was carried out in a least squares manner from the CFD data 
with the determination of the parameters i  performed first. The ensuing determination of the 

ARMA parameters ja  and )(l
kb  was carried out using the residual of the pressure distribution 

through a separate least squares process. In those computations, the variable  txZl ,  retained 

were 32 ,, sss , and s i. Then, shown in Fig. 2 is a typical comparison of the steady pressure 
distributions obtained by the above approximations with the original CFD data showing the 
improvements obtained by the addition of the global term. 

Next, it was proposed to apply the above two-level composite model, with the same 
coefficients, to the unsteady situation based on the material derivative, i.e., 

)1(1
t

w

Ux

w

Dt

Dw

U 









 instead of 
dx

dw . The approximate pC  distributions exhibit an offset 

and a phase difference for smaller displacement (see Fig. 3 (a),(c)) but as the displacement level 
increases the fitting improves. In contrast to the steady case where the fitting error increased with 
increasing amplitude, it appears here that the error decreases (see Fig. 3(b),(d)). Since the same 
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coefficients are utilized to generate the unsteady pC  this is due to the nature of 
Dt

Dw  over time. 

Similar observations can also be drawn from Fig. 4 corresponding to mode 3 displacement. The 
improvement at higher negative displacements, Fig. 4(c), (d) is more pronounced than on the 
positive, Fig. 4(a), (b).  

 

 
(a)                                                                  (b) 

 
                                   (c)                                                                   (d) 

 
                                   (e)                                                                   (f) 
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                                   (g)                                                                   (h)                   

Figure 2. Comparison of steady pC  from CFL3D (blue) and approximate pC  with composite 
model of Eqs (3)-(4) (red) for mode 1, Mach 12, (a) amplitude +8th., (b) amplitude +1th.; mode 
2, Mach 12, (c) amplitude +7th., (d) amplitude +1th.; mode 3, Mach 12, (e) amplitude +3th., (f) 

amplitude +0.5th.; mode 4, Mach 12, (g) amplitude +1.5th., (h) amplitude +0.5th. 
 

 
(a)                                                                  (b) 

 
(c)                                                                  (d) 

Figure 3. Comparison of unsteady pC  from CFL3D (blue) and approximate pC  with composite 
model of Eqs (3)-(4) (red) for mode1 Mach 12 amplitude 6th., frequency 160Hz (a) t = 2.5e-05 s 

(b) t = 0.00025 s (c) t = 0.00052 s (d) t = 0.00077 s 
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(a) (b) 

 
(c)                                                                  (d) 

Figure 4. Comparison of unsteady pC  from CFL3D (blue) and approximate pC  with composite 
model of Eqs (3)-(4) (red) for mode 3, Mach 12, amplitude 3th., frequency 160Hz (a) t = 2.5e-05 

s (b) t = 0.00025 s (c) t = 0.00052 s (d) t = 0.00077 s 
 
Modal Amplitude-Based Global Modeling 

The pressure component given by Eq. (4) is global because the deformations of the beam at a 
particular location is propagated in the flow direction through the ARMA model but it is still 
constructed, as the piston theory term, from local information. Another perspective is to correlate 
the difference in pressure L

p pC C  to the amplitudes iq , i = 1, 2, 3, 4, of the four structural 

modes that created the deformations, see Table 1. That is, the global component G
pC  will be 

expressed as 

                     
4 4

2

1 1
, ...G

p i i i i
i i

C x t q t U x q t V x
 

             (5) 

where  iU x  and  iV x  are unknown functions dependent on the Mach number. They were 

estimated here through a least squares of the difference L
p pC C  once the piston theory 

coefficients i  were determined as in the ARMA-based approach. Note in Eq. (5) that no 
quadratic term involving two different modal amplitudes iq  and jq , i j , is included here as 
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that pressure data does not include any such cases. Figures 5 and 6 provide an overall perspective 
on the accuracy of the composite model of Eqs (3) and (5) and include linear, quadratic, but also 
cubic approximations of the form of Eq. (5). Both of these figures clearly indicate that the 
approximation improves significantly by the addition of the linear terms in Eq. (5) but also of the 
quadratic ones. However, using a cubic model only provides a slight improvement, typically for 
higher Mach numbers. 

For the quadratic and cubic models, the largest relative error norms occur typically (and for all 
modes) for the lower modal amplitudes. This property results from the least squares process that 
has more emphasis on the higher modal amplitudes thereby leading to a better fit of those 
conditions.  

 
Figure 5. Relative norm of error between the CFL3D pC  distribution and its approximation by 

the composite model of Eqs (3),(5). Mode 1 deformations. 
 

 
Figure 6. Relative norm error averaged over all deformations vs. Mach number, local and 

composite models of Eq. (3),(5). 
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Figure 7. Comparison of steady pC  from CFL3D and approximate pC  with local and composite 
model of Eqs (3),(5). (a) Mode 3, amplitude -1.5th, Mach 5 (1.8% error), (b) Mode 4, amplitude 
-0.5th.; Mach 7 (4.48% error), (c) Mode 1, amplitude -1th., Mach 8 (5.56% error), (d) Mode 2, 

amplitude +3th., Mach 10, (8.33% error), (e) Mode 2, amplitude +3th., Mach 12, (10.31% error), 
(f) Mode 2, amplitude -3th, Mach 12 (12.7% error). 

 
When considering the Mach dependence, it is seen that the norm error typically increases with 

this parameter, increasing on average over all amplitudes and mode numbers from 2.4% to 4.8% 
between Mach 5 and 12 for the quadratic model. The maximum relative error norm with this 
model is 12.7% observed for deformations of amplitude of -3 thicknesses along mode 2 at Mach 
12. As seen in Fig. 7(f), this error originates mostly from a slight shift in the pressure 
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distributions. Other comparisons leading to approximately 2%, 4%, 6%, 8%, and 10% relative 
norm errors are also shown in Fig. 7(a)-(e). As can be noted, several of the higher error cases are 
obtained for mode 2 deformations of which the induced pressure distribution seems harder to 
model. Based on these results and those shown in Fig. 2, it is suggested that the composite 
approximation of Eqs (3) and (5) is better than its counterpart from Eqs (3)-(4). 

 

Figure 8. Comparison of unsteady pC  from CFL3D and approximate pC  with local and 
composite model of Eqs (3),(5). Frequency 160Hz. (a),(b) Mode 1, amplitude 6th, Mach 12. 

Location: (a) node 300, (b) worst node (846), (c) Mode 1, amplitude 1th, Mach 12, (d) Mode 2, 
amplitude 4th., Mach 12, (e) Mode 2, amplitude 4th., Mach 5, (f) Mode 4, amplitude 1.5th, Mach 

12. Figures (b)-(f) correspond to location with largest error for each case. 
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As done for the ARMA-based modeling, the composite model of Eqs (3) and (5) was also 
validated to unsteady cases by using time independent piston theory coefficients i  and the 
material derivative instead of the slope. With regard to the global component, the time dependent 
modal amplitudes were used directly in Eq. (5) so that both local and global components are 
position and time dependent. The unsteady comparison focused most specifically on evolution 
with time of the pressure and shown in Fig. 8 are typical examples over the 2.25 cycles with 40 
time steps per cycle at the frequency of 160Hz obtained with the quadratic model of Eq. (5). 

Figures 8(a) and (b) correspond to the same conditions (mode, amplitude, and Mach) but to 
different locations along the beam, a generic point for Fig. 8(a) but the location with the worst 
match between CFL3D and the composite model of Eqs (3), (5) for Fig. 8(b). A slight phase 
difference between the two curves is seen on the latter that induces a larger difference at certain 
time steps. The remaining figures, i.e., Figs 8(c)-(f), all correspond to the worst location and 
show similar trends to those observed in the steady case. Specifically, the smaller modal 
amplitudes show larger errors than the larger ones, compare Figs 8(b) and (c). Moreover, the 
pressure distribution induced by mode 2 motions are not as well captured as those of any other 
mode, compare Figs 8(b) and (d) and Figs 8(d) and (f). Finally, the pressure distribution is more 
accurately predicted at lower Mach numbers than higher ones, compare Figs 8(d) and (e). 
 
STOCHASTIC MODELING 

As expected, the models of Eqs (3)-(4) and (3),(5) do not always provides a close 
approximation of the CFD results, i.e., they exhibit epistemic uncertainty. The next phase of the 
modeling effort was then the incorporation of this uncertainty in Eqs (3)-(5) to obtain a 
stochastic/uncertain aerodynamic model such that the CFD results fit within the band of 
uncertainty of the model predictions. The uncertainty was introduced in both the local and global 
component of the model. For the former, each coefficient i  was considered as independent 
Gaussian random variable with mean equal to the value identified in the previous section and of 
equal coefficient of variation, δ. This modeling is consistent with the maximum entropy 
principle. 

 
ARMA-Based Global Modeling 

The introduction of uncertainty in the global component of Eq. (4) was achieved through the 
randomization of the autoregressive coefficients following the maximum entropy based method 
proposed by Wang et al. [5]. 

As shown in Figs 9-12, the combination of the uncertainties on the local and autoregressive 
components for an equal uncertainty level  = 0.1 leads to the desired results, i.e., the CFD 
results are contained within the band of uncertainty and we have constructed a simple 
approximation of the CFD data that carries/quantifies its epistemic uncertainty. 

 
Modal Amplitude-Based Global Modeling 

The introduction of uncertainty in the global component of Eq. (5) was performed by 
randomizing each of the terms in the sum as 

                    
4 4

2

1 1
, ...G

p i i i i i i
i i

C x t q t U x q t V x
 

               (6) 

where i  and i , i = 1, 2, 3, 4, are independent Gaussian random variables with unit mean and 
standard deviation equal to , the same standard deviation as that of the local model coefficients. 
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            (a)            (b) 

Figure 9. (a) Uncertainty band on the pC  for the composite model of Eqs (3)-(4). (b) Random 

samples with CFL3D pC . Mode 1, Mach 12, amplitude +4th. 

 
           (a)            (b) 

Figure 10. (a) Uncertainty band on the pC  for the composite model of Eqs (3)-(4). (b) Random 

samples with CFL3D pC .  mode 2, Mach 12, amplitude +6th. 

 
           (a)            (b) 

Figure 11. (a) Uncertainty band on the pC  for the composite model of Eqs (3)-(4). (b) Random 

samples with CFL3D pC .  mode 3, Mach 12, amplitude +3th. 
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           (a)            (b) 

Figure 12. (a) Uncertainty band on the pC  for the composite model of Eqs (3)-(4). (b) Random 

samples with CFL3D pC .  Mode 4, Mach 12, amplitude +1.5th. 
 
The value of this standard deviation was estimated using the maximum likelihood approach 

from the steady data at each Mach number. It is found that  decreases quite linearly as the Mach 
number is increased, see Fig. 13. 

 

 
Figure 13. Common standard deviation  vs. Mach number estimated from maximum likelihood. 
 

To evaluate the effects of this uncertainty on the predicted pressure distributions, the cases of 
Fig. 7(c)-(f) were considered again and shown in Fig. 14 are the mean predictions as well as the 
associated uncertainty bands corresponding to the 5th and 95th percentiles with the quadratic 
model in Eqs (5)-(6). As expected, it is seen that the differences between the pressure 
distributions predicted by CFL3D and the composite model fit within the uncertainty band with 
the exception of the largest deviations in the worst cases, see Figs 14(c),(d). On that basis, the 
proposed uncertainty modeling appears appropriate. 

The final validation was carried out on unsteady data, more specifically on the cases of Fig. 
8(b)-(e), see Fig. 15. It is seen that the uncertainty band on the time evolution of the response is 
broad near the peak values but thin otherwise. Accordingly, the uncertainty accounts well for 
reasonable differences in the peak, as in Figs 15(b),(d), not the worst cases, as in Fig. 15(c), but 
not well for small phase differences, see Fig. 15(a).  
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Figure 14. Uncertainty band on steady pC  from composite model of Eqs (3),(5) and CFL3D 
predictions. (a) Mode 1, amplitude -1th., Mach 8 (5.56% error), (b) Mode 2, amplitude +3th., 
Mach 10, (8.33% error), (c) Mode 2, amplitude +3th., Mach 12, (10.31% error), (d) Mode 2, 

amplitude -3th, Mach 12 (12.7% error). 
 

CONCLUSIONS 
The present investigation focused on the development of stochastic surrogates of the 

aerodynamic pressure induced by displacements of the structure in hypersonic flow conditions. 
The randomness in the surrogate is of epistemic origin to account for the lack of accuracy of the 
otherwise deterministic surrogate which is constructed first. 

In constructing these surrogates, it was first confirmed that a model involving only the local 
slope, e.g., as in piston theory, does not predict well the viscous pressures. While improvements 
of this model can be obtained by including additional quantities such as displacement and 
integral thereof, it was concluded that a global component of the pressure must be included as 
well. Two such global components were proposed and analyzed. The first is based on an 
autoregressive moving average model which propagates the set of local displacements and slopes 
along the flow direction thereby inducing a global effects. The second global component is based 
on a correlation between the differences in steady pressure obtained from viscous CFD and from 
the local model and the amplitudes of the modal deformations to which they correspond. As 
such, this surrogate is only applicable as long as the structure deforms along the modes 
considered in the database while the ARMA-based one may be used with other deformations as 
it only involves the set of displacements and slopes. Both surrogates were built using steady data 
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but were shown to be applicable as is to unsteady pressures induced by time varying 
displacements. Globally, it was found that the deterministic modal amplitude-based surrogate 
provided a closer fit of the viscous CFD data than the ARMA-based one. 

Epistemic uncertainty was introduced in both composite models, i.e., combinations of local and 
global components, by randomizing the coefficients of the local model and the coefficients of the 
autoregressive model, for the ARMA-based surrogate, or the modal amplitudes, for the modal 
amplitude-based surrogate. This modeling of uncertainty produces samples of the pressure which 
are smooth and thus physically admissible. Moreover, calibrating the uncertainty level permits to 
obtain uncertainty bands on the pressure prediction that include the viscous CFD data so that this 
data can be considered as a sample of the stochastic surrogates as was desired. 

 

Figure 15. Uncertainty band on unsteady pC  from composite model of Eqs (3),(5) and CFL3D 
predictions. Frequency 160Hz. (a) Mode 1, amplitude 6th, Mach 12, (b) Mode 1, amplitude 1th, 
Mach 12, (c) Mode 2, amplitude 4th., Mach 12, (d) Mode 2, amplitude 4th., Mach 5. All figures 

correspond to location with largest error in the mean prediction for each case. 
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ABSTRACT 

 

Analysis of structure under Hypersonic flow is computationally intensive due to complex 

coupled behavior between fluid dynamics, structural dynamics, control and material 

properties. Current investigation focusses on analysis and calibration of Stochastic Piston 

Theory based surrogate model for reconstructing steady and unsteady pressure coefficient 

under inviscid hypersonic flow over clamp-clamp beam. Mean model based on local 

linear and cubic downwash are analyzed. The model is enriched with contributing local 

linear and quadratic displacement, curvature and displacement integral terms to capture 

the phase difference in downwash constructed Cp. At second stage, model is further 

enriched with global terms (upstream properties) of the beam which leads to ill 

conditioned matrices due to fine mesh. Conditioning is improved by considering only 

discrete global terms. Third stage is enrichment of global formulation with Cp for 

upstream nodes leading to an ARMA model with moving average of nonlinear dsci or 

cubic slope. Finally, a two-level composite model where initial modelling with local 

cubic slope and modelling of residual with cubic slope ARMA provide the most efficient 

and simplest mean model. This model is applicable to reconstructing steady Cp 

(downwash = 
x

w



 ) and unsteady Cp (downwash = 
t

w

Ux

w












1 ). For generation of 

stochastic samples auto-regressive coefficients are randomized with maximum entropy 

approach. The uncertainty band constructed doesn’t have desired features to capture all 

the peaks in the data. Local model is randomized with maximum entropy approach in two 

ways – (i) randomizing model coefficients and (ii) randomizing diagonal, positive 

definite and symmetric matrix of coefficients. Former approach leads to uncertainty band 
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characteristic proportional to local component of the reconstruction. A composite 

technique is presented with random local and auto-regressive coefficients capturing the 

validation data with smooth reconstruction. Later approach leads to globalization of the 

construction due to non-zero elements at non-diagonal locations of random coefficients. 

The feature of globalization of the random local model generated by maximum entropy 

approach is studied for simple system of 1D beam with winkler foundation. This is 

established by inability to optimally reconstruct corresponding full tridiagonal stiffness 

matrix from reduced random stiffness matrices. Random stiffness matrices lead to global 

response to a local force.   
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1. Introduction 

Deterministic response and characterization have been a norm for solving the engineering 

problems but in real world scenarios these deterministic results form a subset of all 

possible results. For instance, deterministic dynamic response of a structure 

mathematically depends on physical properties and loading conditions and to be 

calculated for design specification but deviation in manufacturing processes and 

operating load in service are inevitable. To accommodate deviation in physical parameter 

(dimensions, stiffness etc.) or loading conditions stochastic outcomes can be developed 

through Monte Carlo simulation. Joint Probability Density Function for each parameter 

must be postulated to generate stochastic outcomes from the model. A Parametric 

approach require exhaustive experimental/physical samples to proceed which in most 

practical cases are not available. In most cases, only marginal probability density function 

can be formulated. Unlike deterministic analysis, here a band of response is obtained and 

the width depends on magnitude of uncertainty and model characteristics. To tackle the 

unavailability of data, Soize [1] introduced a Non-Parametric Uncertainty Quantification 

methodology initially for applications in matrix based structural dynamics system.  

Non-Parametric methodology mandates that (i) Matrices are positive definite (ii) Mean 

for matrices are prescribed ( E[A]A  ) and (iii) Overall variance for matrices are 

prescribed. Elements (Aij) can have broad set of distribution and the one selected should 

put large emphasis on deviation from mean which ensures robustness of design under 

limited Monte Carlo Simulations. [7], [8] discusses that these properties can be achieved 

by selecting distribution maximizing the statistical entropy given above constraints. To 
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satisfy the conditions, A is generated as 
TT L H H LA  , where L  is Cholesky 

Decomposition of A and H is lower triangular matrix for which all elements are 

statistically independent. Probability density functions for diagonal (Hii) and non-

diagonal (Hil) elements of  TH H are given by  

pHii
 (h) = Cii hp(i) exp [-μ  h2], h 0 

pHil 
(h) = Cil exp [-μ  h2], i j 

where,  

Π
μC

1)/2)Γ((p(i)
2μC

2
12λNμ

12λiNp(i)

il

2
1p(i)

ii













 

With the above distribution, diagonal elements Hii are obtained as 


iiY
where Yii is 

gamma distributed with parameter (p(i) - 1)/2. Non-diagonal elements Hil (i   l) are 

obtained as normal distributed variables with standard deviation 



2
1

 . λ is an 

independent variable for statistical distribution of random matrices H and A. The 

correlation to the variability in the experimental/physical data is obtained by defining an 

overall measure of variability given by 

 
12

11 22









N

N
IHHE

N F
N

T  
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where 
F

 is frobenius norm. The generation process starting with calibration of  with 

given data will give matrices with desired features. This approach was introduced for 

application to matrix based systems in structural dynamics but has been since suitably 

modified and applied to other applications. Since parameterization is not essential for 

maximum entropy approach, so aleatory (variability of parameters) and epistemic 

(variability due to model deficiency) can be modelled using the same approach.  

Design and application of projectiles with hypersonic velocity is an important ongoing 

research in aerodynamics. Due to complex nature of the coupling of structural, fluid, 

material and control phenomenon involved, the orthodox CFD computation are expensive 

and leads to requirement of computational surrogate. McNamara et. al. [1] have been 

successful in modelling time dependent component of pressure by piston theory surrogate 

hence removing the need to compute time series for unsteady pressure. The model 

demands to calculate steady Cp through CFD solution and further use the surrogate to 

calculate unsteady pressure. In the current work piston theory based surrogate model is 

calibrated to model Steady Cp. In the process, steady Cp is modelled by local slope from 

classical piston theory, effect of global parameters is studied with direct and Auto-

Regressive Moving-Average (ARMA) modelling approaches. The peculiar feature of 

high speed flow, that it causes complex and nonlinear loading conditions under service. 

The uncertainty in the environment of flight coupled with deviation in manufacturing 

process and material properties from the design specification (in this context, mean 

values) requires an aleatory uncertainty modelling with the model. Using non-parametric 

methodology uncertainty can be modelled without having to differentiate between 

aleatory and epistemic. Hence this gives us an opportunity to model pressure under 
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hypersonic flow with simplistic classical theories (piston theory) and epistemic 

uncertainty to cover the deficiencies. 

Application is divided in two sections; Chapter 2 discusses calibration of mean piston 

theory based surrogate model for modelling of coefficient of pressure for hypersonic flow 

over clamp-clamp beam. The models evaluated are local linear and cubic slope, global 

linear and cubic slope, local linear and nonlinear dsci (displacement, slope, curvature, 

displacement integral), global linear and nonlinear dsci, Auto-regressive Moving-average 

(various configurations). Secondly, Chapter 3 discusses performance of uncertainty 

propagation in the global, ARMA and composite models by randomizing the coefficients 

through Non-Parametric approach and by direct marching of noise. In Chapter 4, 

stochastic reduced order stiffness matrices generated by the non-parametric approach for 

their feasibility to physically feasible system (i.e. tridiagonal matrix). The correlation will 

be achieved by generating banded matrices of full order corresponding to reduced order 

stochastic matrices. For the reverse optimization, we will be looking at performance of 

Lagrange multipliers and MATLAB TOOLBOX (fmincon & fminsearch). Scope of the 

analysis is reduced model of order 2 to 20 for a simply supported beam with 1001 nodes. 
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Chapter 2. Piston Theory based surrogate for hypersonic flow: Mean Model 

Under an inviscid flow and away from shock Piston Theory introduced by Lighthill [2] 

claims that gradient in the direction of flow is small as compared to gradient in 

perpendicular direction of flow. As velocity of flow increases within supersonic range 

this relation become prominent and local pressure coefficient is a function of local linear 

gradient. 
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where, w is upwash 

12/)1(,4/)1(,1 321   ccc for piston theory 

 

As we move into hypersonic range of flow Piston Theory approximation becomes 

inaccurate. In this chapter, modelling of Piston Theory based surrogate is explored to 

represent Steady and Unsteady Cp with hypersonic flow over clamp-clamp beam. Table 1 

gives detail of the CFD solutions of steady pressure coefficients for creating and 

validating the model. Each beam loading test case is under single normal mode with 

various amplitudes for different mach number of inviscid fluid flow over the beam. 

Positive amplitude refers to beam displacement into the fluid flow and negative refers to 
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away from fluid flow.  From the perspective of generating mode independent model, 

range of amplitudes for mode 1 and mode2 of nonlinear Cp is larger than mode 3 and 

mode 4 hence a wider distribution of data is used for those modes and on the other hand 

factor of increasing complexity with mode counter balance it.  

Table 1 

CFD solution (steady Cp) data for model generation and validation 

 

Steady data can be categorized in four overlapping bins to visualize the effect of each 

parameter (mode, magnitude of amplitude, polarity of amplitude and mach number). 

Figure 1 shows the variation for mode 1, coefficient of pressure increases non-linearly 

with amplitude and decreases with a phase generation with mach number  

 
                             (a)                                                                      (b) 

Figure 1. Variation of steady Cp for mode 1 with (a) amplitude for mach 12 (b) mach 
number for amplitude =1 

 

mode    Amplitude Mach 

1 + and - 8, 6, 4, 3, 2, 1 12, 10, 8, 7, 5 
2 + and - 7, 6, 4, 3, 2, 1  12, 10, 8, 7, 5 
3 + and - 3, 2.5, 2, 1.5, 1, 0.5 12, 10, 8, 7, 5 
4 + and - 1.5, 1, 0.5 12, 10, 8, 7, 5 
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Figure 2 shows the variation for mode 3, coefficient of pressure increases linearly with 

amplitude (unlike mode 1 because of smaller range of amplitude compared to mode 1) 

and decreases and generating phase difference with mach number.  

 
                          (a)                                                                    (b) 

Figure 2. Variation of steady Cp for mode 3 with (a) amplitude for mach 12 (b) mach 
number for amplitude =1  

 

Like mode 3, in case of mode 4 Cp increases linearly with amplitude and decreases (with 

smaller phase difference) with mach number.  

  
(a)                                                                          (b) 

Figure 3. Variation of steady Cp for mode 4 with (a) amplitude for mach 12 (b) mach 
number for amplitude =1  
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Due to non-linearity in the data Cp corresponding to negative amplitude have different 

features from positive counter parts. As the amplitude or mach number is increased 

asymmetry increases. For smaller amplitude Cp is closely symmetric for with respect to 

polarity of amplitude. Figure 4 shows the comparison of large and small amplitude. 

 
(a)                                                                          (b) 

Figure 4. Variation of Cp for mode 1 and mach 12 (a) amplitude = -/+ 1 (b) amplitude = -
/+ 8 

 

Unsteady data is generated for 2.25 cycles of amplitudes and frequencies as mentioned in 

Table 2 with 400 time steps per cycle. Figure 5. shows Cp for various time steps. These  

time step data can be directly compared to steady Cp of different amplitudes. In  
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Figure 5. Unsteady Cp for mode1 mach12 freq160 amp6 for different time steps during 

first cycle 

 

comparison to steady Cp of increasing amplitudes (both polarity) there is a phase 

difference in time step data. Cp is periodic through the excitation cycles, Figure 6 

compares various corresponding time steps in during cycle 1 and 2. As already mentioned 

these have similar shapes as steady Cp, Figure 7 confirms the similarity of maximum 

unsteady Cp with steady Cp of same amplitude. The model will not be frequency 

dependent as the three frequencies considered have mainly offsetting effect on Cp for 

smaller displacement at later nodes. As the displacement of the beam increases role of 

frequencies reduces to convergence of the Cp data (as shown in Figure 8). 
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Figure 6. Comparison of Unsteady Cp for mode1 mach12 freq160 amp6 for 

corresponding time steps during first (C1) and second (C2) cycle  

 

 
Figure 7. Comparison of max. Unsteady Cp for mode1 mach12 freq160 amp6 and Steady 

Cp for mode1 mach12 amp6 
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(a)                                                                  (b) 

Figure 8. Comparison of Unsteady Cp for mode1 mach12 amp6  (a) maximum 
displacement of beam (b) small displacement of beam for various excitation frequencies 

 

 

Table 2 

CFD solution (unsteady Cp) data for model generation and validation 

  

 

Model calibration is sub-divided into two categories – mode dependent and mode 

independent. Mode dependent is applicable when loading comprised of only 1 normal 

mode (as in the current case) or modal superposition is applicable. For modal 

superposition to be valid, model should be linear. Mode independent is a general model 

applicable irrespective of the loading condition as it depends only on physical 

parameters. Following sections define the various models and discusses characteristics of 

reconstructed Cp.  

mode    Amplitude Frequency (Hz) Mach number 

1 6, 4, 3, 2, 1 160, 140, 100 12, 10, 8, 5 
2 4, 3, 2, 1  160, 140, 100 12, 10, 8, 5 
3 3, 2.5, 2, 1.5, 1, 0.5 160, 140, 100 12, 10, 8, 5 
4 1.5, 1, 0.5 160, 140, 100 12, 10, 8, 5 
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2.1 Local Linear and Cubic Piston Theory 

Linear piston theory model, Cp = (aM + bM2 + c)(dw/dx) + (a2M + b2M2 + c2) 

Cubic piston theory model, Cp = (aM + bM2 + c)(dw/dx) + (a2M + b2M2 + c2)(dw/dx)2 +  

                                                         (a3M + b3M2 + c3)(dw/dx)3 + (a4M + b4M2 + c4) 

 

2.1.1 Mode independent model 

As mach number increases in hypersonic range linear Piston Theory becomes increasing 

inaccurate in modelling pressure coefficient. As can be seen from Figure 1, 

reconstruction for all the mach number for mode 1 are similar in nature (peaking error for 

small amplitude is discussed below) but error increases. The behavior of fitting error with 

respect to mach number is true for all the models so for analysis and reporting hereon 

only mach 12 will be considered.  

  
Figure 9. Fitting error comparison for all mach nos. with local linear slope mode 

independent model 
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The peak values for both polarities is at the smallest amplitude (1 and -1) due to 

offsetting of reconstructed Cp in y-axis from the CFL3D Cp (refer figure 3(a)). This 

characteristic of offset is mitigated by introducing higher order factors of slope as can be 

seen in Figure 1 and Figure 3(a). Solving the offset issue reduces the fitting error sharply 

and cubic slope model have a more predictable performance i.e. error is proportional to 

amplitude due to magnitude of Cp values. 

 
Figure 10. Fitting error (%) comparison for mode1-mach12 with local linear and cubic 

slope mode independent model   
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(a)                                                                         (b) 

Figure 11. Comparison of CFL3D Cp and reconstructed Cp with local linear slope and 
local cubic slope mode independent model (a) mode1 mach12 amp1 (b) mode1 mach12 

amp3 

 

Second prominent feature of local linear slope fit is the phase difference in the 

reconstructed Cp with respect to CFL3D Cp. This issue is not mitigated by adding higher 

order terms of slope. These two features are so prominent that nothing else can be 

concluded about the fit removing these anomalies. Similar feature is observed for all the 

modes. 
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Figure 12. Fitting error comparison for mode2-mach12 with local linear and cubic slope 

mode independent model 

 

  
(a)                                                                         (b) 

Figure 13. Comparison of CFL3D Cp and reconstructed Cp with local linear slope and 
local cubic slope mode independent model (a) mode2 mach12 amp1 (b) mode2 mach12 

amp-2 
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Figure 14. Fitting error comparison for mode3-mach12 with local linear and cubic slope 

mode independent model 

 

 

 
(a)                                                                         (b) 

Figure 15. Comparison of CFL3D Cp and reconstructed Cp with local linear slope and 
local cubic slope mode independent model (a) mode3 mach12 amp-0.5 (b) mode3 

mach12 amp3 
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Figure 16. Fitting error comparison for mode4-mach12 with local linear and cubic slope 

mode independent model 

 

 
(a)                                                                          (b) 

Figure 17. Comparison of CFL3D Cp and reconstructed Cp with local linear slope and 
local cubic slope mode independent model (a) mode4 mach12 amp0.5 (b) mode4 mach12 

amp-1.5 
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2.1.2 Mode dependent model 

Although the aim of current work is to generate a model which only depend on physical 

parameters of the beam under investigation and the spectrum of data is based on realistic 

chances of occurrence (for example, considering data with amplitude 8 for mode 4 

deformation would not be physically feasible but is feasible for mode 1). Given this 

constraint, the fitting error with mode independent model for higher modes is partly due 

to higher complexity associated and non-linearity associated with higher amplitude for 

lower modes. Cp corresponding to higher amplitude have larger magnitude hence a 

higher weightage in fitting the data with least square methodology by default. The 

contribution of complexity associated with mode number can be dissected by generating 

a mode dependent model also this can be applicable if either the loading is comprised of 

one mode only or modal superposition is applicable. Applicability of modal superposition 

is out of the scope of current work.  

Reconstruction using mode dependent model for mode 1 improves the fit reducing the 

error (refer Figure 13). But the prominent features of phase difference and offset 

reconstruction of lower amplitude Cp still exists (refer Figure 14).  
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Figure 18. Fitting error comparison for mode1-mach12 with local linear and cubic slope 
mode independent model 

 

 
(a)                                                                          (b) 

Figure 19. Comparison of CFL3D Cp and reconstructed Cp with local linear slope and 
local cubic slope mode independent model (a) mode1 mach12 amp-1 (b) mode1 mach12 

amp3 

Mode 2 data has a unique feature that it has higher complexity as compared mode 1 but 

the amplitude are similar (for mode 3 and mode 4 amplitude reduces). Hence the mode 
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dependent modelling error increases for mode 2 in addition to the previous mentioned 

features for local linear slope model.   

 
Figure 20. Fitting error comparison for mode2-mach12 with local linear and cubic slope 

mode independent model 

 

 
(a)                                                                          (b) 

Figure 21. Comparison of CFL3D Cp and reconstructed Cp with local linear slope and 
local cubic slope mode independent model (a) mode2 mach12 amp1 (b) mode2 mach12 

amp-3 
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In contrast to mode 2, for mode 3 peak error for lower amplitude doesn’t increase 

drastically due to low amplitude of overall data. But similar issues persist with these 

results as before (refer Figure 17 and 18). The reconstruction for mode 4 also give similar 

observations (Figure 19 and 20). 

 
Figure 22. Fitting error comparison for mode3-mach12 with local linear and cubic slope 

mode independent model 
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                                (a)                                                                        (b) 

Figure 23. Comparison of CFL3D Cp and reconstructed Cp with local linear slope and 
local cubic slope mode independent model (a) mode3 mach12 amp-0.5 (b) mode3 

mach12 amp1.5 

 

 
Figure 24. Fitting error comparison for mode4-mach12 with local linear and cubic slope 

mode independent model 
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(a)                                                                          (b) 

Figure 25. Comparison of CFL3D Cp and reconstructed Cp with local linear slope and 
local cubic slope mode independent model (a) mode4 mach12 amp-1.5 (b) mode4 

mach12 amp-0.5 

 

2.2 Global Linear and Cubic Slope model  

2.2.1 Mode independent model 

The critical feature of phase difference between CFD solution and local Piston Theory 

reconstruction in section 3.1 leads to the thought that the upstream parameters can have 

impact on pressure developed downstream. In the current section contribution of global 

terms (upstream) are studied. Important thing is to keep an optimal number of nodes in 

the equation corresponding to the correlation length of the system of equation. 

Considering higher number of nodes may lead to nonphysical solution (for example, 

nodes at the beginning of the beam may not have a considerable impact on solution of 

end nodes) and on the other hand smaller number of nodes may not lead required fitting. 

Global linear slope, Cp (ii) = (a11M + b11M2 + c11) (dw(ii)/dx) + ….  + (a1nM + b1nM2 + 
c1n) (dw (ii - n)/dx) + (a2M + b2M2 + c2) 

Global cubic slope, Cp (ii) = (a11M + b11M2 + c11) (dw(ii)/dx) + ….  + (a1nM + b1nM2 + 
c1n) (dw (ii - n)/dx) + (a21M + b21M2 + c21) * (dw(ii)/dx)2 + …. + (a2nM + b2nM2 + c2n) 
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(dw(ii-n)/dx)2 + (a31M + b31M2 + c31) * (dw(ii)/dx)3 + …. + (a3nM + b3nM2 + c3n) (dw(ii-
n)/dx)3+(a3M + b3M2 + c3) 

Global formulation for linear and cubic piston theory leads to ill-conditioned matrices of 

parameter hence the effect of global terms cannot be studied. The issue is due to the fine 

mesh which leads to almost equal values on adjacent nodes. The component of global 

terms can now be inspected by examining (i) Reconstruction error v/s distance of global 

node (only 1 global node considered) and (ii) Reconstruction error v/s number of global 

nodes.   

The error and reconstruction is compared for node 101 to 1001 (highest global term is 

100 so the reconstruction can only start from node101 onwards). Referring to the error 

plot for mode1 (Figure 21.), introducing global term in linear slope formulation doesn’t 

mitigate the issue of offset reconstruction as seen in previous section.   

 
Figure 26. Fitting error comparison for mode1-mach12 with local linear and global linear 

slope mode independent model 

DISTRIBUTION A: Distribution approved for public release.



31 
 

 

On the other hand, reconstructed result with local cubic formulation has phase difference 

with CFD Cp. By using a global term the phase difference is improved (not completely 

corrected) and because this formulation has an extra variable the fitting improves.  As the 

distance of global node is increased, fitting further improves but this change is minimal 

(refer Figure 22). In case of mode 2, Cp for large positive amplitude is highly nonlinear 

hence the reconstruction worsens as amplitude increases. Observations and characteristics 

for mode 3 and mode 4 are like mode 1. As observed with local model, the error 

increases with mode number. For the ongoing section, global term will be analyzed for 

cubic slope model only.  

 

Figure 27. Fitting error comparison for mode1-mach12 with local cubic slope and global 
cubic slope (various configuration) mode independent model 
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(a)                                                                          (b) 

Figure 28. Comparison of CFL3D Cp and reconstructed Cp with local cubic slope and 
global cubic slope mode independent model (a) mode1 mach12 amp-2 (b) mode1 mach12 

amp1 

 

 

Figure 29. Fitting error comparison for mode2-mach12 with local cubic slope and global 
cubic slope (various configuration) mode independent model 
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(a)                                                                          (b) 

Figure 30. Comparison of CFL3D Cp and reconstructed Cp with local cubic slope and 
global cubic slope mode independent model (a) mode2 mach12 amp-2 (b) mode1 mach12 

amp7 

 

Figure 31. Fitting error comparison for mode3-mach12 with local cubic slope and global 
cubic slope (various configuration) mode independent model 

 

DISTRIBUTION A: Distribution approved for public release.



34 
 

 
(a)                                                                          (b) 

Figure 32. Comparison of CFL3D Cp and reconstructed Cp with local cubic slope and 
global cubic slope mode independent model (a) mode3 mach12 amp-1.5 (b) mode3 

mach12 amp3 

 

Figure 33. Fitting error comparison for mode4-mach12 with local cubic slope and global 
cubic slope (various configuration) mode independent model 
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(a)                                                                          (b) 

Figure 34. Comparison of CFL3D Cp and reconstructed Cp with local cubic slope and 
global cubic slope mode independent model (a) mode4 mach12 amp1.5 (b) mode4 

mach12 amp-1.5 

 

2.2.1.1 Reconstruction with added global nodes  

For this subsection, 100th node global model will be further analyzed as it gives most 

accurate prediction of pressure coefficient. To analyze effect of number of global terms 

25th, 50th and 75th will be considered in addition to 1st and 100th term. In general, referring 

to Figure 30., 32, 33, 34 reconstruction error decreases with number of global terms 

involved in formulation due to increased number of variables except for mode 4 where 

best fit is attained by only adding 50th term to default global model. Reconstructed Cp are 

compared in figure 37 for mode4 which shows that final configuration is distorted (but 

the computation it is still conditioned). 
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Figure 35. Fitting error comparison for mode1-mach12 with local cubic slope and global 
cubic slope (various configuration) mode independent model 

 
Figure 36. Comparison of CFL3D Cp and reconstructed Cp with global cubic slope (node 
1, 50 & 100) and global cubic slope (node 1, 25, 50, 75 & 100) mode independent model 

for mode1 mach12 amp-1 
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Figure 37. Fitting error comparison for mode2-mach12 with local cubic slope and global 
cubic slope (various configuration) mode independent model  

 
Figure 38. Fitting error comparison for mode3-mach12 with local cubic slope and global 

cubic slope (various configuration) mode independent model 
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Figure 39. Fitting error comparison for mode4-mach12 with local cubic slope and global 

cubic slope (various configuration) mode independent model 

 
Figure 40. Comparison of CFL3D Cp and reconstructed Cp with global cubic slope (node 
1, 50 & 100) and global cubic slope (node 1, 25, 50, 75 & 100) mode independent model 

for mode4 mach12 amp-0.5 
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2.3 Local and global linear dsci model 

Considering the limitation of previous model of cubic slope if a linear model is used then 

modal superposition can applied. Introducing displacement, curvature and displacement-

integral with linear slope in the model. 

Local linear dsci, Cp = (a1M + b1M2 + c1) w + (a2M + b2M2 + c2) (dw/dx) + (a3M + b3M2 

+ c3) (d2w/dx2) + (a4M + b4M2 + c4) ( 
x

wdx
0

)   + (a5M + b5M2 + c5) 

3.3.1 Mode independent 

Local and global linear dsci model has similar characteristic as linear slope model of 

offsetting of reconstructed result for smaller amplitude. But it improves the phase 

difference observed in linear slope model.  

 

Figure 41. Fitting error comparison for mode1-mach12 with local linear slope, local 
linear dsci and global linear dsci (1 & 100 node) mode independent model 
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Referring to Figure 36, the decrease in fitting error is accounted to increase in parameters 
involved. 

(a)                                                                                        (b) 

Figure 42. Comparison of CFL3D Cp and reconstructed Cp with local linear dsci, global 
linear dsci (node 1& 100), local linear slope and global linear slope (node 1 & 100) mode 

independent model (a) mode1 mach12 amp-1 and (b) mode1 mach12 amp6 

 

 

Figure 43. Fitting error comparison for mode2-mach12 with local linear slope, local 
linear dsci and global linear dsci (1 & 100 node) mode independent model 

 

DISTRIBUTION A: Distribution approved for public release.



41 
 

 

(a)                                                                                        (b) 

Figure 44. Comparison of CFL3D Cp and reconstructed Cp with local linear dsci, global 
linear dsci (node 1& 100), local linear slope and global linear slope (node 1 & 100) mode 

independent model (a) mode2 mach12 amp1 and (b) mode2 mach12 amp-2 

 

 

Figure 45. Fitting error comparison for mode3-mach12 with local linear slope, local 
linear dsci and global linear dsci (1 & 100 node) mode independent model 
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(a)                                                                                        (b) 

Figure 46. Comparison of CFL3D Cp and reconstructed Cp with local linear dsci, global 
linear dsci (node 1& 100), local linear slope and global linear slope (node 1 & 100) mode 

independent model (a) mode3 mach12 amp-0.5 and (b) mode3 mach12 amp2.5 

 

 

 

Figure 47. Fitting error comparison for mode4-mach12 with local linear slope, local 
linear dsci and global linear dsci (1 & 100 node) mode independent model 
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(a)                                                                                        (b) 

Figure 48. Comparison of CFL3D Cp and reconstructed Cp with local linear dsci, global 
linear dsci (node 1& 100), local linear slope and global linear slope (node 1 & 100) mode 

independent model (a) mode1 mach12 amp-1 and (b) mode1 mach12 amp6 

 

 

2.4 Local and Global Non-linear dsci model 

The issue of phase difference can be solved either by using global model or adding linear 

d, c & i to slope in the model. And issue of offsetting can be solved only by including 

nonlinear terms in the model. In this section, we will look at reconstruction with local and 

global nonlinear dsci formulation.   

Local non-linear dsci model, Cp = (a1M + b1M2 + c1) w + (a2M + b2M2 + c2) (dw/dx) + 

(a3M + b3M2 + c3) (d2w/dx2) + (a4M + b4M2 + c4) ( 
x

wdx
0

)  + (a5M + b5M2 + c5) w2 + 

(a6M + b6M2 + c6) w (dw/dx) + (a7M + b7M2 + c7) w (d2w/dx2) + (a8M + b8M2 + c8) w (


x

wdx
0

) + (a9M + b9M2 + c9) (dw/dx)2 + (a10M + b10M2 + c10) (dw/dx) (d2w/dx2)  + (a11M 

+ b11M2 + c11) (dw/dx) ( 
x

wdx
0

) + (a12M + b12M2 + c12) (d2w/dx2)2 + (a13M + b13M2 + c13) 

(d2w/dx2) ( 
x

wdx
0

) + (a14M + b14M2 + c14) ( 
x

wdx
0

)2 + (a15M + b15M2 + c15) 
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There are 14 factors to be considered, not all the parameters contribute to the 

reconstruction. To make decision on elimination of non-contributing factor out of the 

above formulation weightage of each factor in reconstruction must be calculated. 

Individual factor is removed and error in reconstruction is compared to full configuration. 

 
Figure 49. Comparison of contribution of each term of Non-linear dsci formulation to 

reconstruction error 

 

Based on Figure 44., the dominating factors are d, s, s2, c, i, d*s, d*c, s*I and constant. 

Further analysis is conducted on this formulation only. Like linear dsci analysis, not all 

nodes can be used for global formulation so contribution of global terms is studied 

keeping constraint on conditioning of the matrix.  As expected the offsetting of 

reconstructed Cp for small amplitude is eradicated by introduction of non-linear terms. 
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For mode 1 (Figure 45) and mode 2 (Figure 46) global terms do not contribute largely to 

the efficient construction. As distance between nodes increases reconstruction error 

reduces but the improvement is not significant because the error for local formulation is 

already small reducing priority in mode independent least square solution. 

 

Figure 50. Fitting error comparison for mode1-mach12 with local non-linear dsci and 
global non-linear dsci (only 1 global term - various configurations of distance) mode 

independent model 

 

In contrary to mode 1 and 2, for mode 3 (Figure 47) and mode 4 (Figure 48) 

reconstruction improves with addition of global nodes. And further fitting improves with 

increasing distance of global node. This indicates that using 100th global nodal parameter 

with local parameter would give the best fit across the modes.   
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Figure 51. Fitting error comparison for mode2-mach12 with local non-linear dsci and 
global non-linear dsci (only 1 global term - various configurations of distance) mode 

independent model 

 

Figure 52. Fitting error comparison for mode3-mach12 with local non-linear dsci and 
global non-linear dsci (only 1 global term - various configurations of distance) mode 

independent model 
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Figure 53. Fitting error comparison for mode4-mach12 with local non-linear dsci and 
global non-linear dsci (only 1 global term - various configurations of distance) mode 

independent model 

 

2.4.1.1 Reconstruction with multiple global nodes 

Continuing from the conclusion of previous section, more global nodes are added to 100th 

node keeping constraint of conditioning of the system. For other configurations, similar 

fit is achieved for mode 1 (Figure 49) and mode 2 (Figure 50). But for mode 3 (Figure 

51) and mode 4 (Figure 52) improvement is achieved due to higher base error compared 

to lower modes.  
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Figure 54. Fitting error comparison for mode1-mach12 with local non-linear dsci and 
global non-linear dsci (various configurations of number of nodes) mode independent 

model 

 

Figure 55. Fitting error comparison for mode2-mach12 with local non-linear dsci and 
global non-linear dsci (various configurations of number of nodes) mode independent 

model 
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Figure 56. Fitting error comparison for mode3-mach12 with local non-linear dsci and 
global non-linear dsci (various configurations of number of nodes) mode independent 

model 

 

Figure 57. Fitting error comparison for mode4-mach12 with local non-linear dsci and 
global non-linear dsci (various configurations of number of nodes) mode independent 

model 
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With global nodes (25, 50, 100) in addition to local node the error across the modes are 

reduced considerably. Average error across the modes with global non-linear dsci is 16%. 

 

2.5 Auto -regressive Moving-average (Nonlinear dsci) model 

Liu [4] relates pressure coefficient under supersonic flow to classical piston theory which 

is formulated with previous Cp values as well. Taking inspiration from that formulation, 

in this section Cp for each node is reconstructed with moving average of global nonlinear 

dsci and Cp for upstream nodes. The matrix system in this case is also ill-conditioned 

(RCOND=5e-26) but like global model with 10 previous nodes here as well the 

coefficients are realistic and the results match. But this doesn’t guarantee that this 

methodology will be stable for any system. So, it is important to study if we need all the 

nodes in the problem because spacing the nodes would make the system conditioned. 

Using the similar strategy as in previous section of using only 1 global node for both auto 

regressive and moving average term, iterations are conducted with 5th, 10th, 20th, 50th and 

100th in addition to 1st (local) node. Impact of global terms is seen clearly as higher 

modes are reconstructed (Figure 52-55) and reconstruction error reduces as distance of 

global node increases. Additionally, if only local values are used either for regressive 

term or moving average reconstruction worsens.  
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Figure 58. Fitting error comparison for different configuration of mode independent 

ARMA model with moving average of nonlinear dsci for mode 1 mach12 

 
Figure 59. Fitting error comparison for different configuration of mode independent 

ARMA model with moving average of nonlinear dsci for mode 2 mach12 
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Figure 60. Fitting error comparison for different configuration of mode independent 

ARMA model with moving average of nonlinear dsci for mode 3 mach12 

 

 
Figure 61. Fitting error comparison for different configuration of mode independent 

ARMA model with moving average of nonlinear dsci for mode 4 mach12 
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2.6 Auto -regressive Moving-average (Cubic Slope) model 

Taking inspiration from the nonlinear term based ARMA model in previous section, it is 

important if similar formulation can be achieved with cubic piston theory also. The 

disadvantage of a nonlinear dsci model is that it would be cumbersome to create the 

formulation for higher dimensions and strategy regarding integration of displacement. 

Another advantage of global cubic slope model over global nonlinear dsci model is that 

more closely spaced global terms can be used which improves the fit. Figure 57-60 shows 

the fitting error for each mode with mode independent ARMA (global cubic slope) model 

having 20th, 50th, 100th node in addition to local slope. The fit is further enhanced with 

addition of closely spaced global node keeping the system well-conditioned. 

 
Figure 62. Fitting error comparison for different configuration of mode independent 

ARMA model with moving average of cubic slope for mode 1 mach12 
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Figure 63. Fitting error comparison for different configuration of mode independent 

ARMA model with moving average of cubic slope for mode 2 mach12 

 

 
Figure 64. Fitting error comparison for different configuration of mode independent 

ARMA model with moving average of cubic slope for mode 3 mach12 
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Figure 65. Fitting error comparison for different configuration of mode independent 

ARMA model with moving average of cubic slope for mode 4 mach12 

 

Conclusively a cubic slope based ARMA model with 1st, 25th, 50th, 75th and 100th node 

for regressive and moving average terms can give comparable results to nonlinear dsci 

based ARMA formulation with significantly lower computation effort.  

Section 3.5 and 3.6 have been reconstruction for node 101 to 1001, which leads to next 

obvious thought about the reconstruction of node 1 to 100 and the addition to the 

reconstruction error for node 101 to 1001 due to prediction of those nodes. The simplest 

models of local cubic slope and local nonlinear dsci provide decent fit for initial nodes of 

the beam with small phase difference until the first peak.  

 

 

 

DISTRIBUTION A: Distribution approved for public release.



56 
 

2.7 Composite modelling with local nonlinear dsci and ARMA cubic slope 

In this section node 1 to 100 will be first modelled with local nonlinear dsci formulation 

from Section 3.4 and then further used to propagate with cubic slope based ARMA model 

(discussed in section 3.6) to reconstruct Cp for the beam. Figure 62 shows that except for 

larger amplitudes for mode2 all the data can be reconstructed within acceptable error 

range.     

 
Figure 70. Fitting error comparison for node 1 to 100 reconstructed with mode 

independent local nonlinear dsci model 
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Figure 71. Fitting error comparison for reconstructed with mode independent local 

nonlinear dsci model (1 to 100 node) and cubic slope based ARMA model (101 to 1001 
node) 
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Figure 72. Comparison of Cp from CFL3D (blue) and reconstructed Cp with composite 

model (red) for mode1 mach12 amp8, amp1; mode2 mach12 amp7, amp1; mode3 
mach12 amp3, amp0.5; mode4 mach12 amp1.5, amp0.5 
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2.8 Two-level composite model 

Based on the above iterations, increasing nonlinearity in the data causes increased error in 

reconstruction. Eyeballing on the residual of the mode independent local cubic slope 

model gives an increasing linear behavior with respect to polarity of amplitude. Utilizing 

this behavior, model can be further trimmed down from composite model in Section 3.7. 

Figure 64-67 shows the residual after fitting mode independent local cubic slope model. 

The residual become increasing linear with respect to polarity of the amplitude as higher 

modes are considered. This feature negates the increasing complexity of the higher order 

mode data. These residuals will now be fitted with mode independent global cubic slope 

based ARMA model. Hence Cp for node 1 to 100 are fitted with local cubic slope model 

and the residual for node 101 to 1001 are fitted with global cubic slope ARMA model 

(node 1st, 25th, 50th, 75th, 100th).  

 
Figure 73. Residual of Cp from fitting mode independent local cubic slope model for 

mode1 mach12 
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Figure 74. Residual of Cp from fitting mode independent local cubic slope model for 

mode2 mach12 

 
Figure 75. Residual of Cp from fitting mode independent local cubic slope model for 

mode3 mach12 
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Figure 76. Residual of Cp from fitting mode independent local cubic slope model for 

mode4 mach12 

 

Compared to previous composite model, error reduces for large amplitudes of mode2 and 

others remains in the acceptable range. 
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Figure 77. Fitting error comparison for reconstructed with mode independent local cubic 
slope model (1 to 1001 node) and residual with cubic slope based ARMA model (101 to 

1001 node) 
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Figure 78. Comparison of Cp from CFL3D (blue) and reconstructed Cp with composite 

model (red) for mode1 mach12 amp8, amp1; mode2 mach12 amp7, amp1; mode3 
mach12 amp3, amp0.5; mode4 mach12 amp1.5, amp0.5 
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2.9 Modelling Unsteady Cp with two-level composite model 

 

Considering the similarities of Steady and Unsteady Cp, in this section Cp is 

reconstructed with the same model based on )1(
t

w

Ux

w

Dt

Dw













 instead of 
dx

dw . 
Dt

Dw

has time dependent component which helps in modelling phase difference between time 

steps of increasing displacements. Note that coefficients of steady model with the same 

amplitudes as unsteady data are considered which is a subset of all the steady data. 

 

(a)                                                                  (b) 

 

( c)                                                                  (d) 

Figure 79. Comparison of CFD unsteady Cp (blue) and reconstructed with two-level 
model (red) for mode1 mach12 amp6 freq160 (a) t = 2.5e-05 s (b) t = 0.00025 s (c) t = 
0.00052 s (d) t = 0.00077 s 
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The reconstructed Cp have a offset and phase difference for smaller displacement (Figure 

70 (a)( c)) but as the displacement increases fitting improves. In comparison to steady Cp 

where error increases with amplitude here the error decreases. Since the same coefficients 

are utilized to generate unsteady Cp this is due to nature of 
Dt

Dw  over time. This is further 

proved by reconstruction for lower amplitudes which similar pattern as steady Cp. For 

example, Figure 71 shows reconstruction of mode3 amp3 where the fitting is 

substantially better.       

 
(a)                                                                  (b) 

 
                                  (c )                                                                  (d) 

Figure 80. Comparison of CFD unsteady Cp (blue) and reconstructed with two-level 
model (red) for mode3 mach12 amp3 freq160 (a) t = 2.5e-05 s (b) t = 0.00025 s (c) t = 
0.00052 s (d) t = 0.00077 s  
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3 Piston Theory based surrogate model for Hypersonic flow: Stochastic model  

From Chapter 2, Cp can be modelled closely with a two-level model where ARMA (1st, 

25th, 50th, 75th and 100th node cubic slope) model reconstructs residual after fitting local 

cubic slope model. This model is the simplest model among the tested options. This 

model also gives the flexibility of modelling uncertainty with either local, ARMA or both 

models. In ensuing section analysis on component of each layer in the reconstruction is 

conducted. Section 3.2 discusses randomizing Auto regressive coefficients of the mean 

model with the Non-Parametric method defined by Mignolet et. al. [5]. Further on same 

principle, Section 3.3 discusses randomizing coefficients of moving average of slope and 

reconstruction achieved. Modelling model uncertainty through the local model is 

described in Section 3.4 where randomization is also achieved by Non-Parametric 

method and ensuing issue.   

3.1 Contribution of Local and Global component of the model 

In the reconstructed result, local component is the major contributor and global 

component provides corrections to the phase difference and peak. Figure 63-66 shows the 

comparative plots of local and ARMA component for a mode independent model.   
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Figure 81. Comparative plot of local and global component of the reconstruction for 

mode1 mach12 amp4 Cp in two-layer mode independent model 

 

 
Figure 82. Comparative plot of local and global component of the reconstruction for 

mode2 mach12 amp4 Cp in two-layer mode independent model 
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Figure 83. Comparative plot of local and global component of the reconstruction for 

mode3 mach12 amp3 Cp in two-layer mode independent model 

 

 
Figure 84. Comparative plot of local and global component of the reconstruction for 

mode4 mach12 amp1.5 Cp in two-layer mode independent model 
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3.2 Random AR coefficients 

Reflection coefficients are derived from autoregressive coefficients for the mean model 

and are randomized with maximum entropy approach [5]. Figure 67 shows the roots of 

100 samples of random ARMA model (delta = 0.1). Both mean and stochastic ARMA 

formulation are stable with roots less than 1.  

  
(a)                                                                    (b) 

Figure 85. (a) Roots of mean (red) and stochastic (blue) ARMA model (b) Autoregressive 
coefficients of mean (red) and stochastic (blue) ARMA model 

 

In terms of autoregressive coefficients, all the coefficients are zero except 1, 25, 50, 75 

and 100 for mean model. But for stochastic model, all the coefficients are non-zero. 

Figure 68 shows the random auto regressive coefficient corresponding to non-zero mean 

coefficients. The random samples of Cp are reconstructed with the random AR 

coefficients are smooth. Figure 69 – 72 shows the 5th and 95th percentile band of 100 

random Cp. For node 1 to 100, there is no band as it is constructed solely with local 

component. Uncertainty band grows slowly from node 101 onwards and remains constant 
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throughout the length of beam indicating the stability of formulation and poles close to 1. 

This feature of the band does not help in the current situation, ideally we would want 

band to be proportional to the magnitude of Cp so that the peaks are captured well.       

 
Figure 86. Uncertainty band obtained with random autoregressive coefficients for 

reconstructed Cp for mode1 mach12 amp4   

 
Figure 87. Uncertainty band for reconstructed Cp with random autoregressive 

coefficients for mode2 mach12 amp4 

DISTRIBUTION A: Distribution approved for public release.



71 
 

 

 
Figure 88. Uncertainty band for reconstructed Cp with random autoregressive 

coefficients for mode3 mach12 amp3 

 
Figure 89. Uncertainty band for reconstructed Cp with random autoregressive 

coefficients for mode4 mach12 amp1.5 
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3.3 Random local coefficient 

The uncertainty band in previous section is stable but it is inefficient in capturing the 

peaks of the Cp. This leads us to thought of modelling uncertainty on local component. 

There are couple of reasons, (i) Local component resembles the shape of given Cp and 

hence would be more effective in capturing peak and (ii) Local component solely 

constructs node 1 to 100, unlike random AR coefficients uncertainty band can be 

constructed for the complete beam. The approach is like randomizing AR coefficients; 

each local coefficient is randomized with max entropy approach to generate 100 samples 

and hence random local component is constructed. Figure 73-76 shows the uncertainty 

band constructed for each mode. 

 
Figure 90. Uncertainty band for reconstructed Cp with random local coefficients for 

mode1 mach12 amp4 
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The constructed band width is proportional to magnitude of mean local reconstruction. 

As result of this correlation, the band width is high close to peak of CFL3D Cp (not 

matching exactly due to phase difference of local component). Further this also leads to 

narrow or zero width at the nodes with small or zero local component (for example, mid 

node of the beam for mode 1 in Figure 73). Significant effect can be seen on higher 

modes, where there are multiple nodes of zero width of band.    

 
 

Figure 91. Uncertainty band for reconstructed Cp with random local coefficients for 
mode2 mach12 amp4  
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Figure 92. Uncertainty band for reconstructed Cp with random local coefficients for 

mode3 mach12 amp3 

 
Figure 93. Uncertainty band for reconstructed Cp with random local coefficients for 

mode4 mach12 amp1.5 
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Local component of the construction is a direct product of slope and coefficients, it can 

be given by the equation below  
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The coefficient matrices are positive definite, symmetric and mean is prescribed which 

maximum entropy to be applicable to it. Randomization of individual coefficients and 

coefficient matrix form two alternative technique to obtain randomized local system. 

Figure 76 shows the 5th and 95th percentile uncertainty band for the later approach for 

mode1 mach12 amp8. Using the former approach results in band proportional to the 

magnitude of local component. But unlike former approach, if matrices are randomized 

then the band is uniform across the length of the beam. This is a globalization behavior 

(like band characteristics of random ARMA model) which is due to global coupling 

caused by non-zero non-diagonal elements in random matrices. The global coupling in a 

local problem is further investigated in Chapter 4. Further samples constructed are erratic 

making this approach unrealistic.  
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Figure 94. 5th and 95th percentile uncertainty band with random local coefficient matrix 

 

3.4 Random local and ARMA coefficients 

 

Due to the shortcomings explained in Section 3.2 and 3.3, In this section both 

autoregressive and local coefficients are randomized with delta = 0.1 and random 

samples of total solutions are constructed.  
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(a)                                                                   (b) 

Figure 95. (a) Uncertainty band for reconstructed Cp with random local and AR 
coefficients (b) Comparison of random samples with CFL3D Cp for mode1 mach12 

amp4 

 

 

  
(a)                                                                   (b) 

Figure 96. (a) Uncertainty band for reconstructed Cp with random local and AR 
coefficients (b) Comparison of random samples with CFL3D Cp for mode2 mach12 

amp6 

DISTRIBUTION A: Distribution approved for public release.



78 
 

  
(a)                                                                   (b) 

Figure 97. (a) Uncertainty band for reconstructed Cp with random local and AR 
coefficients (b) Comparison of random samples with CFL3D Cp for mode3 mach12 

amp3 

 

 
(a)                                                                   (b) 

Figure 98. (a) Uncertainty band for reconstructed Cp with random local and AR 
coefficients (b) Comparison of random samples with CFL3D Cp for mode4 mach12 

amp1.5 
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4 Assessment of Non-Parametric Approach on local system 

In the previous chapter, local model randomized with Non-Parametric method in addition 

to global ARMA model but there are global effects for the reconstructed results of the 

beam. The local model can be written as equation (3) where coefficient matrices are 

diagonal. To analyze this feature of Non-Parametric approach a one dimensional beam 

discretized with 39 nodes is considered. The Stiffness matrix is tri-diagonal like the local 

component of mean model. To study the effect of maximum entropy approach, the 

random stiffness matrices generated from mean matrix would be correlated to equivalent 

tridiagonal matrices. The analysis is extended to reduced order matrix which reduces the 

number of constraints in the optimization problem and establishes relation of 

reconstruction with number of terms. Further the response to a localized force (point 

load) on the configuration for full and reduced order random stiffness matrix with 

Winkler foundation boundary condition for uniformity of response. 

 
Figure 99. Beam under consideration (L = 1m, k = kg = 10 N/m) (Image Credits: 

Mohammad A. R. et. al [6]) 

 

Reconstruction cannot be directly carried out because modal matrix for order reduction 

are not square matrices hence not invertible. Following is the procedure employed for 

constructing best mean model -  
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 Calculate reduce order mean stiffness matrix (
ROMK ) to desired order using 

modal vector matrix  

 KKROM '  
Where   is matrix of eigenvectors of K  
 

 Randomize the reduced order matrix through non-parametric approach  

T

ROMROMROM HGHK   
T

ROMROMROM HHKwhere , is Cholesky decomposition 
G is random matrix with independent element (generated with Maximum 
entropy       principle defined in Chapter 1) 

 

 

The aim is to reconstruct K from given samples of ROMK , this cannot be derived 
directly as matrix of modal vectors is rectangular 
 

 Convert LHS in A * x for only lower triangular + diagonal elements  

where, x = [kg; kc] (77X1 array) 
             A = matrix of coefficients 
             kg = element stiffness of winkler foundation element 
             kc = element stiffness of beam  
  
Write RHS in b so that it only has lower triangular + diagonal elements (since 

ROMK  is symmetric) 

 

 Apply optimization techniques with xmean as starting value to get x 

 Generate Kfull from x  

 Find Error_constr = norm(A*x-b) and Error_stiffness = norm(|x-xmean|)  
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4.1 Comparison of methods of optimization  
       

In this section, optimization through Lagrange Multiplier, MATLAB OPTIMIZATION 

TOOLBOX (fminsearch and fmincon) and composite methodology are evaluated for 

performance. Optimization results are iterated for various starting values; the best results 

are obtained with mean values of kg and kc as the start point. 100 samples of ROMK are 

generated and optimized to obtain coefficients of full deterministic stiffness matrix by 

Lagrange multiplier, Lagrange multiplier + fmincon, fmincon only and fminsearch only. 

Figure 80 gives the 5th and 95th percentile band of respective norm error in reconstruction 

of stiffness. The constraint violation error for each method is comparable with Lagrange 

multiplier constructing better for lower order. Exact stiffness matrix is not constructed 

because applying maximum entropy principle induce non-zero independent elements at 

non-diagonal locations in the matrix. Disadvantage with Lagrange multiplier method 

being that constraint cannot be applied on physical feasibility on values of parameters, 

i.e. kg and kc must be positive or zero values, but in below results Lagrange gives few 

negative values of nodal stiffness yielding lower error. Comparing fmincon and 

fminsearch yields positive elemental stiffness with fminsearch being computationally 

inexpensive. 
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Figure 100. Comparison of constraint violation 5th and 95th percentile band (log-log 
scale) with Lagrange multiplier (yellow), Lagrange + fmincon (cyan), fmincon (red) 

and fminsearch (blue) 
 

 

Similarly, lagrange multiplier gives better overall proximity of stiffness coefficients to 

the mean values but with the above stated disadvantage of converging to negative 

(unfeasible) values (Figure 81). Further analysis will be conducted with results of 

fminsearch optimization. 
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Figure 101. Comparison of deviation of elemental stiffness 5th and 95th percentile band 
(log-log scale) with Lagrange multiplier (yellow), Lagrange + fmincon (cyan), fmincon 

(red) and fminsearch (blue) 
 

4.2 Analysis of Error in reconstruction  

The mean stiffness coefficients are not recoverable from the random stiffness matrix 

generated with maximum entropy principle because of global coupling established by 

introducing non-diagonal elements into tridiagonal mean matrix. This correlation depends 

on the magnitude of non-diagonal elements, to analyze this behavior delta (magnitude of 

uncertainty) is varied to get range of randomness in the mode. The reconstruction is 

compared for delta = 1e-1, 1e-3 and 1e-5. Figure 82-84 shows the absolute reconstruction 

error with decreasing magnitude of uncertainty (delta). With less constraints on lower 

order matrices, it can reconstruct the equivalent mean reduced order matrix but as 

constraints increases the error climbs steeply. For delta = 0.1, only matrix of order 2 can 

be reconstructed completely indicating the magnitude of global coupling in the matrix. 

As delta is reduced, global coupling gets weaker and reconstruction error reduces 

significantly. But even for delta as small as 1e-5 exact reconstruction is not possible 

indicating even small global coupling would give global components in the response of 

the beam if analyzed with these random stiffness matrices.  
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Figure 102. Variation of Absolute reconstruction error 5th and 95th percentile band 

with order of reduction for delta = 0.1 
 

 

 
Figure 103. Variation of absolute reconstruction error 5th and 95th percentile band 

with order of reduction for delta = 0.001 
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Figure 104. Variation of absolute reconstruction error 5th and 95th percentile band 

with order of reduction for delta = 0.00001 
 

 

4.3 Error in response to localized forces 

Since the random matrices have global coupling unlike mean full matrix, the response of 

localized force on these random matrices must produce response on global nodes 

proportional to the non-diagonal terms. Figure 83-85 shows the error on static response 

obtained with random reduced stiffness matrices with respect to mean reduced stiffness 

matrix. Agreeing to results of previous section, here as well error increases with 

increasing reduction order and uncertainty level.    
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(a)                                                                       (b) 

 

Figure 105. (a) Variation of absolute response error 5th and 95th percentile band with 
order of reduction for delta = 0.1 for localized force (point load at mid node) (b) 

samples of response with random reduced order stiffness matrix 
 

 
Figure 106. Variation of absolute response error 5th and 95th percentile band with 
order of reduction for delta = 0.001 for localized force (point load at mid node) 

 

DISTRIBUTION A: Distribution approved for public release.



87 
 

 
Figure 107. Variation of absolute response error 5th and 95th percentile band with 
order of reduction for delta = 0.00001 for localized force (point load at mid node) 
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