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EXECUTIVE SUMMARY

The overall focus of this investigation was on the modeling and management of
uncertainties, both epistemic and aleatoric, in reduced order models for the nonlinear
geometric response of heated structures. This effort was motivated by and in strong support
of the design and operation of the future hypersonic vehicles envisioned by the Air Force.
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The prediction of the structural response, temperature distribution, and aeroelastic
behavior of these vehicles will require fully coupled structural-thermal-aerodynamic
analyses, at least, with the possible addition of material and servo/control analyses. The high
temperature and large aerodynamic loads that are expected on these vehicles will induce
“large” structural deformations that require the inclusion of nonlinear geometric effects so
that all 3 fields (structural, thermal, aerodynamic) will involve nonlinear solutions. While the
combination of finite element and computational fluid dynamic (CFD) solution methods can
be used to tackle this multi-physics problem, the expected computational effort will be very
large and will be unsuitable at the design phase and/or for the large time span computations
that are required for mission analyses and fatigue life prediction. Accordingly, it is well
expected that reduced order and surrogate models will play an important role for these more
demanding situations. Of particular interest here are the structural-thermal reduced order
models that the PI’s group has spearheaded over the last 17 years.

Uncertainties will also be present when analyzing hypersonic vehicles and should be
accounted for in the design and thus in the reduced order modeling strategy. The uncertainties
will certainly originate from variations from vehicle to vehicle and also over time for the same
vehicle, owing to the appearance and progression of damage and material changes. Besides
these aleatoric uncertainties, there will also be epistemic ones originating from
aerodynamic/structural modeling assumptions as well as from the approximation of the
corresponding full order models by reduced order ones.

In the context of the present effort, uncertainty management is the recognition that it is
not efficient to carry out all computations with minimal epistemic uncertainty (i.e., the most
accurate computational models) when aleatoric uncertainty is present (e.g., vehicle-to-vehicle
variability). Rather, it is computationally advantageous to reduce somewhat the model
complexity, i.e., allow epistemic uncertainty to increase until it becomes measurable with
respect to its aleatoric counterpart.

Following the proposal, this investigation was divided into the three thrusts stated below
and the work carried out under each thrust will be summarized. The technical details of the
work are presented in the Appendices which contain the work of [J1]-[J3], [C1]-[CS8], [T1]-
[T2], and [A1]. A brief summary of the reduced order modeling strategy is first included to
clarify the issues and contributions of the various thrusts.

Reduced Order Modeling Background
The reduced order models used in this research are based on a representation of the vectors
of structural displacements U and temperature T on underlying finite element meshes as

expansions — one for displacements and one for temperature - on fixed basis functions but with
time/loading varying generalized coordinates. That is,

W)= a0 (©) T()= 3 ra(0) 6 0
n=l1 n=l1

where ¢(”) and W(n) are the time-independent thermal and structural basis functions, or

modes, while t,(t) and q,(t) are the time-dependent thermal and structural generalized

coordinates.
The governing equations for these coordinates can be derived from finite deformation
thermoelasticity as
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temperature-dependent linear, quadratic, and cubic stiffness coefficients and F, are the modal

In Eq. (2), Mjj and Djj denote mass and damping terms while K are

forces involving both purely mechanical/aerodynamic loads and thermally induced ones. In Eq.

(3), B; j and Kij are capacitance and conductance coefficients, which are generally dependent

on temperature. Finally, the source term P, represents the combined effects of an applied flux,

non-zero homogenous boundary conditions, radiation, latency, etc., as applicable.
When the material properties are independent of temperature, all parameters in Eqs (2) and

(3) are constant except for the linear stiffnesses Ki(jl) and modal forces F, which are linearly

dependent on the thermal generalized coordinates t,(t). If the Young’s modulus and coefficient

of thermal expansion are linearly dependent on temperature, then the linear stiffness and modal
forces become cubic polynomial of the 1, (t) while the quadratic and cubic stiffnesses depend

linearly on them.

The reduced order modeling strategy used here is based on underlying finite element models
developed in commercial software and thus all components of it, i.e., basis functions and
parameters, must determined from them through standard outputs of these codes. In this light,
one key aspect of the structural reduced order model of Eqs (1) and (2) is the number of stiffness
parameters that it involves which is of order M 4/6 in the absence of thermal effects but rises to

(n+1H) M 46 + H3 M 2/6 when linear variations of the properties with temperature are included.
The best approach currently available to identify these parameters from the underlying finite
element model is through the outputting of the tangent stiffness matrix of static solutions. Thus,
for each finite element static solution, a maximum of M (M +1)/2 equations can be derived. The
number of such static solutions is then at best M %/3 in the absence of thermal effects but rises

to(u+r1) M 23 + u3 /3 with linear dependence on temperature.

To provide perspective for this identification effort, note that the largest model considered
to date involved M = 85 modes for a structural-only problem (i.e. p=0) leading to approximately
8.7 10° coefficients and requiring 3655 static solutions for the identification of the linear and
nonlinear stiffnesses. With temperature effects, the largest model considered is M =44 and p =
42 leading to 5.08 107 coefficients and requiring over 50,000 static solutions for the
identification of the linear and nonlinear stiffnesses. It is concluded that the stiffness coefficients
identification is a computationally important effort for ROMs with large bases.

A final important point regarding the stiffness coefficients is that Eq. (2) is exact under a
particular constitutive law, i.e., for a Kirchhoff — St Venant material. However, this is typically
not the stress-strain relation adopted in most commercial finite element codes for beam and
plate models in large deformations (details are not available as proprietary). In that sense, Eq.
(2) is only an approximation of the finite element results and thus the identification of the
stiffness coefficients exhibits computational inaccuracies.
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Research Thrust #1: Modeling of Aleatoric and Epistemic Uncertainties within Multi-Physics
ROMs

Since the present reduced order modeling formulation is based on underlying finite element
models, it could be envisioned that the uncertainty would be modeled directly at the finite
element level using standard approaches. Then, finite element samples would be generated and
the corresponding samples of the reduced order model would be obtained one at a time using
the identification procedure developed for the mean model. This approach may be acceptable
for ROMs with small bases corresponding to simple structures but not for the realistic
structures/large bases considered here as the identification effort of all ROM samples would be
daunting. It was thus critical to develop a strategy to model the uncertainty directly at the ROM
level, i.e., in which the ROM samples would be directly generated from the mean ROM.

Such a strategy was proposed by the PI and a co-author several years ago [1] and was
successfully validated but only for a simple straight clamped-clamped beam. More complex
validations were later found to be very difficult to achieve owing to (i) an indeterminacy and
(i1) numerical issues induced by the inaccuracies of the stiffness coefficients discussed above.
These issues led to the key matrix not being positive definite as expected using the ROM
formulation. For the beam example of [1], the indeterminacy could be resolved and the
numerical issues were mild and the matrix could be made positive semi definite without
affecting the ROM accuracy.

In this light, the first key contribution to the Thrust #1 is the paper [J1] and [C8], see
Appendix A, in which we resolved both the indeterminacy — through an optimization process —
and the numerical issues — through various small modifications of the methodology - and
successfully applied the approach to several ROMs of complex structures.

Relying on the success of [J1], the introduction of uncertainty in structural and thermal
ROMs was next investigated and resolved, see journal paper [J2] and Appendix B. These two
efforts provided the core methodology for the uncertainty modeling and management used in
the rest of the project.

In parallel to the above efforts, two aspects of the mean model ROM construction were also
addressed to prepare for the Thrust #2 work. The first of these aspects focused on better defining
a set of “enrichments”, i.e., structural basis functions the role of which is to allow a good
prediction of the structural response under thermal loading. These enrichments are necessary
because the rest of the structural basis relies on low frequency linear modes and related
nonlinear deformations (referred to as dual modes) which capture well the response to
transverse mechanical loads. However, heating of the structure induces different, mostly in
plane displacements and thus a separate set of basis functions is necessary. This study, published
in [C2] (see Appendix C), clarified several construction procedures of these enrichments.
Among the structures considered to exemplify these concepts is a beam subjected to a uniform
temperature over a limited spatial domain of the beam. Interestingly, this structure is
mathematically equivalent to a simple model of an energy harvester demonstrating that the
current work has far ranging applications, well beyond hypersonic vehicles panels.

The second aspect of the mean ROM construction considered under Thrust #1 is the
identification of the stiffness coefficients. As discussed in the ROM background section, these
coefficients may be subject to inaccuracies due to constitutive law differences between the finite
element formulation and the one of the ROM. To address this issue, a novel identification
approach was defined in [C6], see Appendix D, that relies on multiple static solutions at
different response levels to obtain improved estimates of the coefficients. This approach was
accordingly referred to as “multi level” and has since been used very successfully in connection
with other structures considered here and in two other contracts.
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The inaccuracies of the stiffness coefficients which can be quantified in the multi level
identification approach were considered as uncertainties in the ensuing study [C1], see
Appendix E, and it was demonstrated there that the uncertainty model of [J1] is fully applicable
to this situation. This study provides, to the PI’s knowledge, the first assessment of epistemic
uncertainty and its modeling in nonlinear ROMs.

The final effort carried out under Thrust #1 focused on extending the energy harvester
application of the current ROMs which came to light in [C2]. More specifically, it was desired
to assess the effects of uncertainty, modeled as in [J2], on the benefits of the harvester. That
effort was initiated by considering first the linear regime which had received only scant
consideration. This preliminary work was published as [J3], See Appendix F. It is hoped that
this study will be continued in the near future with the application of the methodology of [J2]
in the nonlinear regime.

Research Thrust 2: Uncertainty Management in Structural/Thermal ROM Governing
Equations — Sparse Uncertain ROMs

This second research thrust relied heavily on the first one and more specifically on the
uncertainty modeling approaches of [J1] and [J2] to address the epistemic uncertainty that
results from (i) incomplete bases and (ii) “sparse” sets of stiffnesses.

The construction of the structural and thermal bases are key steps of the mean ROM but are
not always straightforward. Two of the challenges that may be encountered are that:

(i) the basis necessary to achieve a specific error level in the predicted
displacements/temperatures is large with many of the basis functions contributing little to the
improvement in prediction, and/or

(i1) the processes in place for the basis construction do not lead to predictions that satisfy
the desired error levels.

Note that the first case can in fact reduce to the second one if it is decided, for computational
efficiency, to not take all the basis functions but rather only those that provide significant error
reduction. In such cases, the basis is incomplete and there exists an epistemic uncertainty. The
work carried out in [Al], see Appendix G, addresses this issue and demonstrates that this
epistemic uncertainty can be modeled as done in [J1] and [J2] whether the basis is incomplete
in enrichments, thermal basis functions, or dual modes.

The second component of Thrust #2 focused on addressing the computational challenge
associated with the very large number of stiffness coefficients, especially when temperature
variations exist, as discussed in the ROM background section. One approach to resolve this
issue is to optimize the basis functions so that the corresponding ROM achieves a specific
accuracy with a minimum number of basis functions. This issue has been successfully
investigated in [C5], [C7], and [T2], see Appendix H.

Another approach to address the above computational challenge is to use “sparse” ROMs,
i.e., ROMs in which a series of stiffness coefficients are neglected. As discussed in [C3] and
[2], this strategy can be extremely efficient as a very large number of nonlinear stiffness
coefficients have very little effect on the response. Formally though, this approach induces
epistemic uncertainty and it was thus desired to be able to quantify and model this uncertainty.
This was achieved successfully using once again the modeling of [J1] and [J2], see [C3] and
Appendix I.

Research Thrust 3: Uncertain Aero-Structure Interface Modeling
While the research thrusts 1 and 2 are structure-focused, the aerodynamics is nevertheless
strongly present providing both forces and heat flux. What is really needed from
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aerodynamics is to relate the surface displacements, velocities, and temperatures to the
aerodynamic forces and heat flux. Such relations can be obtained analytically assuming a
linear aerodynamic model, either using piston theory or a linearized solver. At the opposite
end of the computational complexity spectrum are full Navier-Stokes CFD computations
which require very fine grids and much smaller time steps than those used for the structural
response and temperature computations, thereby rendering the aerodynamic solution as the
computational bottleneck. The high relative cost of the aerodynamic computations is
especially true when using the thermo-structural ROM from Egs. (2)-(3) which are notably
less computationally intensive than their finite elements counterparts.

To address the aecrodynamic computational bottleneck, it was proposed here to investigate
the modeling of the epistemic uncertainty on the structural loads that is induced by the
adoption of a lower fidelity aerodynamic model. The availability of such a representation
would permit the designer to adapt the choice of the aerodynamic model to the level of
structural uncertainty present.

This effort was achieved in [C4] and [T1] by starting from piston theory aerodynamics
and enriching it with terms that model the downstream propagation of upstream structural
deformations. The surrogates formed in this process provided a good approximation of the
pressure distributions obtained by CFD on a simple deforming panel. Then, the epistemic
uncertainty was modeled within the surrogates leading to a stochastic model of the
aerodynamic forces that can be used in conjunction with uncertain ROMs to obtain, in a
computationally very efficient way, the fully coupled structural-thermal-aerodynamic
response.

Additional References
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[2] Perez, R.A., Smarslok, B.P., and Mignolet, M.P., “Deterministic and Stochastic Partial
Linearization Approach for Nonlinear Reduced Order Models of Structures,” Proceedings of
the AIAA Science and Technology Forum and Exposition (SciTech2015), Orlando, Florida,
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ABSTRACT

The focus of the present investigation is on the introduction of uncertainty directly in reduced order models
of the nonlinear geometric response of structures following maximum entropy concepts. While the approach
was formulated and preliminary validated in an earlier paper, its broad application to a variety of structures
based on their finite element models from commercial software was impeded by two key challenges. The first
of these involves an indeterminacy in the mapping of the nonlinear stiffness coefficients identified from the
finite element model to those of the reduced order model form that is suitable for the uncertainty analysis. The
second challenge is that a key matrix in the uncertainty modeling was expected to be positive definite but was
numerically observed not to be. This latter issue is shown here to be rooted in differences in nonlinear finite
element modeling between the commercial software and the theoretical developments. Both of these challenges
are successfully resolved and applications examples are presented that confirm the broad applicability of the

methodology.

1. Introduction

Over the last two decades, maximum entropy concepts have been
broadly and very successfully used to model uncertainties in structures
directly at the level of reduced order models (ROMs) constructed from
the finite element model of the mean structure, see [1,2] for reviews. In
addition to its capability to account for some epistemic uncertainty, this
approach is computationally much more expedient than its alternative,
which is to first introduce uncertainty in the finite element model then
construct a ROM for each sample of the random structure. The com-
putational saving is particularly significant for large size linear finite
element models but also for nonlinear geometric problems where the
ROM:s include a large number of linear, quadratic, and cubic stiffness
coefficients, see [3] for an overview. These coefficients must either
be identified from a standard (e.g., commercial) finite element model
using nonintrusive techniques [3-5] or computed using a dedicated
finite element formulation [6-9] based on the reduced order modeling
results of [10]. The latter of these two approaches lends itself naturally
to the introduction of uncertainty at the ROM level using the maximum
entropy concepts as originally discussed in [10]. The application of this
strategy to the ROMs identified nonintrusively [3-5] from a commercial
finite element code has been exemplified in [10] on a simple flat
beam structure. More complex applications of this approach have been
impeded by two key challenges, of decomposition and non-positive def-
initeness, in transforming the identified ROM into one that is suitable

* Corresponding author.

for the uncertainty analysis. The focus of the present investigation is
on efficiently resolving these two challenges and applying them to a
representative set of structures in the nonlinear geometric regime.

2. Reduced order models of nonlinear geometric structural re-
sponse

The reduced order models considered in the present study are based
on a representation of the nonlinear geometric response of the structure
in the form

M
u@®) = g, U" @
n=1

where u () denotes the vector of displacements of the finite element
degrees of freedom, U™ are basis functions (modes) of the ROM
specified in the spatial domain of the finite element mesh, and g, (1)
are the time dependent generalized coordinates.

To obtain a set of nonlinear ordinary differential equations for
the generalized coordinates g, (f), it is convenient to consider the
continuum equivalent of Eq. (1), i.e.,

M
WX, =Y ¢, U (X), i=1.23, @)

n=1
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where X denotes an arbitrary point of the structure in its undeformed
configuration. Then, introducing Eq. (2) in the equations of finite defor-
mation elasticity and proceeding with a Galerkin approach provides the
desired equations. This process was accomplished in [10] considering a
Kirchhoff-Saint Venant type material in which the 2nd Piola—Kirchhoff
stress tensor S is linearly related to the Green strain tensor E by

Sij = C[jkl Ey 3

where C denotes the deformation independent 4th order elasticity
tensor. Under this material assumption, it was shown in [10] that the
generalized coordinates g, (¢) satisfy the equations

.. . (1) ) 3) —
M;;d4; + Dijd; + Kj;'a; + Kijjay a + Kppdy a4, 9, = Fs “4)
where summation over repeated indices is implied. In the above equa-

tion, M;; denote the elements of the mass matrix, K.(.l), K.@, K® are
ij ij ijl ijlp

the linear, quadratic, and cubic stiffness coefficients and F; are the
modal forces. Note that a damping matrix D was also introduced in
Eq. (4) to model dissipation.

Note in Eq. (4) that a series of terms involve the same monomials
of the generalized coordinates, e.g. K,.(jzl) and K,.(Izj), and thus these terms
may naturally be regrouped leading to

. . 1) —(2) —3)
M;; d4; + Dij4; + K;j'a; + Kijpa; a0+ Kyjy,4; 409, = B ©)
which is very similar to Eq. (4) except that there is no repetition in the

— —@3
monomials because K,(-  and K,(. j,)p are nonzero only for j <landj <1
< p. Then, comparing Egs. (4) and (5) yields

0 fori <n
—©2)
KEMI = K,(f,},, forl =n (6a)
K? +K®  forl>n
mnl mln
and
0 unlessp>1>n
3
Kr(nrgnn forp=I1=n
-3 3) 3) 3) _
mnlp = Kmnll + Km[nl + Kml/n fOI'p =Il>n (6b)
3) 3) 3) _
Kmp” + Kmlpl + Km”p forp>1l=n
2k® 12og® 4 og® forp>1>n
mnlp mpln mlpn

As discussed in [10], the symmetry properties of the elasticity tensor
also imply that
K® _k® _g® _g® @

mnlp nmlp = “mnpl — lpmn®

While Egs. (4) and (5) were derived based on the continuum rep-
resentation of Eq. (2), they are assumed here to be valid as well
for a discrete, finite element model. In fact, the identification of the

. . —(2) —(3) . . .
coefficients K, and K;;, from nonintrusive outputs of commercial
finite element software (e.g., Nastran) has been studied and can be
achieved in different ways, see discussions in [3-5], given the basis
functions U®™. The selection of these vectors is discussed in details

in [3,5] and references therein and is not repeated here for brevity.

3. Maximum entropy uncertainty modeling at the ROM level

The modeling of uncertainty at a ROM level has been developed,
see [1,2], as a constrained optimization problem in which the entropy
of the random parameters of the ROM is maximized under constraints
which correspond to (i) physical requirements that these parameters
must satisfy and (ii) conditions imposed by the user. To exemplify this
strategy, consider the important case in which the ROM involves one or
multiple positive definite symmetric matrices as occurs for example in
linear structural dynamics. Let A be that random matrix and denote by
P4 () its probability density function which is defined over the domain
of support @2 such that A is positive definite and symmetric, i.e., with

A=A ®
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Fig. 1. Structure of the random H matrices with n =38, i =2, and 4, =1 and 10.

Then, the entropy is

S:—LpA(a) In py (a) da 9
Q

where p, (a) must satisfy

/7pA(a) da=1. (10)
Q

In addition to the physical requirements of symmetry and positive
definiteness, it is also required that the mean of A, denoted as A is
known, that is,

/7apA(a)da=z an
Q
and moreover that

/7111 [det (a)] p4 (a) da = v finite 12)
Q2

which guaranties that the inverse matrix A~! of A, which exists almost
surely, is a second-order random variable (mean-square integrable).

The probability density function p, (¢) maximizing S given the
constraints of Egs. (8), (10)-(12) can be derived by calculus of variation
and is found to be

pa (@) = C [det (@) exp [~tr (7 a)] 13)

where C is the appropriate constant to satisfy the normalization con-
dition, Eq. (10) and u and A, are the Lagrange multipliers associated
with the constraints of Egs. (11) and (12), respectively. After a change
of random variables, it is found that the matrices A of joint probability
density function p, (a), Eq. (13), can be generated as

— —T
A=LHH"L as
where T is any decomposition, e.g., Cholesky, of X, ie.,
A=1L. 1s)
Moreover, H is a lower triangular matrix such that (see also Fig. 1)

(1) all of its non-zero elements H;, are independent random vari-

ables,
(2) its off-diagonal elements H;, i # [, are normally distributed
(Gaussian) random variables with standard deviation ¢ = 1/

v2u, and
(3) its diagonal elements H;; are obtained as H;; = 1/Y;;/u where Y};
is Gamma distributed with parameter (p (i) — 1) /2 where

p(y=n—i+2ig—1land p=(n+24g—1)/2 (16)
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In the above equations, n is the size of the matrices and the parameter
Ao > 0 is the free parameter of the statistical distribution of the random
matrices A. An alternative parametrization is through the dispersion
parameter 6 defined as

2 n+1
s Ton424-1 a7
As stated above, a key component of the maximum entropy for-
mulation is the satisfaction of the physical constraints that the ROM
parameters must satisfy. While this issue is well understood for the
stiffness matrix of linear structural dynamics, it is not as obvious for
the combination of linear, quadratic, and cubic stiffness coefficients of
the ROM of Eq. (4). The derivation of such a condition was achieved
in [10] based on integral expressions of the stiffness coefficients of
Eq. (4) obtained as a by-product of the derivation of this governing
equation. Specifically, it was found that

(m) (n)
K“):/ ﬂcki aU_’dx (18)
= Jo, 0X, HP7oX,
) _1lge o2 o2
K2, =3 [R2),+ KD, + KD, 19)
where
(m) (n) (p)
N U. oU,"” aU,
Kr(r12r3p=/ —C i =~ —dX (20)
o, 0X; 0X, 0X,
and

m 5y ) 377
K(3) _1/ an an al]r' aUr (21)
Q

== —C,yy—
mne 2 Jo, 0X; 0X, MY oX; 0X,

In these equations, £, denotes the domain of the structure in the
undeformed configuration, X € £,

Next, a reshaping was performed to transform the M x M x M third
order tensor K into a M x M2 rectangular array ®? and the M x M
X M x M fourth order tensor K® into a M2 x M? square matrix &?.
These operations are achieved as follows:

RO _ g wi =
Ko7 =K\ with J=@-1DM+p (22)
and

23 _ 03 ;
K=K with

msnp

I=m—-1)M+sand J =(n—-1)M + p. (23)

With these operations, it was shown that the matrix K , defined as

_ KO kO
Kp=1|. - 24)
B |:K(2)T 2k®
is positive definite.

Having established the above property, it seems that the modeling
of uncertainty of the ROM level for nonlinear geometric structure is
now well defined. Specifically [10],

(1) from a finite element model of the structure, identify the param-
o @ —3)
eters K[j s Kl.j, and K,-,-/p
(2) determine the coefficients Ki(jz,) and Ki(j31)p by “inverting” the Egs.
(6a) and (6b) with Eq. (7)

(3) determine the coefficients K @ from Eq. (19)

mnp

(4) form the matrices I~((2) and 12(3) from Egs. (22) and (23), then
EB from Eq. (24)

(5) set A = EB and follow Egs. (14)-(16) and Fig. 1 to generate
random samples of the matrix A = K

(6) proceed with steps (4), (3), (2) and (1) in reverse with each
sample of K to obtain realizations of the uncertain linear,
quadratic, and cubic stiffnesses Kl.(jl), ffj,) and El('jl)p denoted as
T(f.Jl.), Kfl) and Kfj.l)p from which the samples of the uncertain
response can be determined.
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4. The challenges

The process defined by steps (1)-(6) above seems well character-
ized but after a closer inspection and trials, two key challenges were
encountered:

(I) the determination of the parameters I%,(,?,,)p and Kﬁ) cannot be

uniquely performed from Egs. (6a), (6b), (7), and (19) as there
are more unknowns than equations.

(II) when the above determination can be carried out, the resulting
mean model matrix K ; may not be positive definite when the
ROM parameters Kfjl), Ef,) and ES,),, are identified from some

finite element codes, e.g., from Nastran.

The positive definiteness of EB stems, see [10], from the positive
definiteness of the potential energy in the structure, it is thus an
essential property and its violation may lead to unphysical behavior.

An example of this situation has been encountered with a flat can-
tilevered beam, see [11] and details below, for which a 2-basis function
model was derived. The first of these basis function was selected as
the first linear mode of the beam and the second as its associated
dual (see definition/discussion in [3,5,12]) which exhibits only inplane
motions. Performing the identification of this model nonintrusively
from a Nastran finite element model using the approaches of [4,5]
led to stiffness parameters that were very robust with respect to the
identification details. Among these parameters, it was found that E(ISI)ZZ
was rather large and negative [12]. However, from Egs. (6b) and (7)
this parameter should equal K 531;2 +2K S)lz where K 8)12 must be positive
(it is a diagonal term of K ) and K 531)22 should be positive according to
Eq. (21). Interestingly, the parameter K ,,, identified using the finite
element formulation of [13] is positive.

This example clearly demonstrates that there may be an inconsis-

tency between the expressions of Egs. (6), (7), (18)-(21) and the ROM
parameters identified from the finite element software that may affect
the positive definiteness of K but can also have significant implica-
tions regarding the accuracy of the ROM. For example, shown in Fig. 2
are the modal force along mode 1 vs. tip displacement predictions from
Nastran and two identified ROMs for the cantilevered beam subjected
to a uniform transverse load along its span. The Nastran nonlinear static
predictions (from SOL 106) show an almost perfectly linear relation.
However, the ROM identified from this software, with the negative
—3) s . . .
K| |,, exhibits an unphysical behavior: there exists a peak of the force at
a certain displacement level and thus, for sufficiently large load down,
the tip of the beam is predicted to move up! This situation does not
happen with the nonlinear finite element code Bobtran implementing
the formulation of [13] and for which E(131)22 is slightly positive. Those
prediction lead to a slight stiffening of the beam in the load range
considered.

5. Resolution of the challenges
5.1. Overall perspective

The two challenges (I) and (II) above were addressed jointly as
follows.

(a) Stiffness parameters for which the “inversion” of Egs. (6a), (6b),
(7), and (19) could not be accomplished uniquely were opti-
mized to render the matrix K  as positive definite as possible.

(b) If the resulting matrix EB was not positive definite, its “least
important” elements were modified as little as possible to make
it positive definite. After the matrix K ; has been modified, the
modified mean model predictions were determined and com-
pared with the ones resulting from the originally identified
parameters. The modified matrix K , was accepted if the differ-
ence in predictions was found small enough. The introduction of
uncertainty then followed as in Egs. (14)-(16) and Fig. 1.
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Fig. 2. Modal force along mode 1 vs. tip transverse displacement for a flat cantilevered
beam. Results from Nastran nonlinear static (SOL 106), the ROM identified from the
Nastran model (“ROM(Nastran)”) and from the Air Force code Bobtran (“ROM(AF
FEM)”) implementing [13].

(c) If the predictions obtained from the modified mean model dif-
fered too significantly from those obtained with the originally
identified parameters, a modified simulation approach was de-
fined that relies on the EB matrix resulting from step (a) above.

5.2. Optimized decomposition

The first step, (a), of the above process focused on the extraction of
>(2) 3) . ‘e —(2) —((3)
the parameters K7 and K-, from the identified ones K., and K., as
ijl ijlp ijl ijlp
to render the matrix Ky as positive definite as possible.
Consider first the parameters for which all indices are equal, i.e.,

2

N —2 3
R® = gKE“.) and o

3 _
i Kiii = Kiii- (25)

For coefficients depending on two mode indices i and j > i, the inde-
terminacy exists as there are 4 new quadratic coefficients, I%I(sz), I?l.(,.zj),
KJ(.?}, 1%;’.21), Si, Kl(fj)J, KI.(/?I,)]., K,.(fj?j, considering
the symmetry of Eq. (7) as well as the property 12,(]2} = I&l(lzl) resulting
from Eq. (19). There are however only 5 independent equations relating
them:

and 4 new cubic ones, K

73 _,p@ , p@ Z@ _1lz0, 2@
K, =2K;+K; and K = 3K + K

G _ 20 ) ©) =3 _ 0
iij = 3K K, =K, +2K;, and K. . =K:. (26)

K

To resolve the indeterminacy, it is desired that the matrix K 5 be made

as positive definite as possible given the constraints of Egs. (26). Since
—2 R A

the split of say K z('i; into Kl.(‘.zj) and K;l.zi) should not be dependent on

the coefficients of other modes than i and j, it is more specifically

imposed that the unknown coefficients maximize the lowest eigenvalue of
—2 —
K(B),.j which is the 6 X 6 Kz matrix built using the coefficients relevant

to modes i and j only. This optimization is performed for all distinct
combinations of i and j > i modes which then leads to all parameters
I%i(_zl) and KS,) with 2 different indices.

For the coefficients involving 3 different indices, i, j > i and k > j,
a similar effort is carried out: 3 new quadratic coefficients related by 1
independent equation, and 2 new cubic ones related by 1 independent
equation and the indeterminacy is resolved by maximizing the lowest
eigenvalue of K(;)L ik which is the 12 x 12 K matrix built using

Probabilistic Engineering Mechanics 60 (2020) 103033

the coefficients relevant to modes i, j, and k only. This effort is then
repeated for all distinct combinations of k > j > i modes which then
leads to all parameters I?l.(f]) and Kf:,)p with 3 different indices.

It remains to address the determination of the parameters K:.Sl)p with
all 4 indices different. For each set of the 4 indices, there are only 3

such distinct parameters taking into account Eq. (7), i.e., Kf;l)p, Kffj)p,
Kfj;, assuming p > [ > j > i but only 1 independent equation

7@ _5p® ©) ©)

K, = ZKUIP + 2Kiljp + 2Kipj1. 27)

As before, the indeterminacy is resolved by maximizing the lowest
eigenvalue of f(;),. ilp which is the 20 x 20 K matrix built using the
coefficients relevant to modes i, j, L and p only. This effort is then
repeated for all distinct combinations of p > [ > j > i modes to yield

the remaining cubic parameters K© .
ijlp

5.3. Rendering K p, positive definite

After the series of optimization efforts carried out in the previous

section, the resulting matrix K z may be positive definite in which case
the uncertainty modeling can proceed as in Egs. (14)-(16) and Fig. 1. If
this matrix is not positive definite, it will be modified in this second step
to become positive definite. This modification will be accomplished:
(a) without affecting the part of EB that is positive definite, e.g., the
linear stiffness matrix K", and
(b) inducing the smallest changes possible to this matrix.
The task (a) has been achieved iteratively by constructing the biggest
block of the original matrix K  that is positive definite. This block is at
least of size N since the linear stiffness matrix K" is positive definite.
Accordingly, the top left block of K of size N + 1 is first considered
and it is checked for positive definiteness (e.g., by constructing its
Cholesky decomposition). If it is positive definite, the algorithm moves
to the top left block of size N + 2 and the process is repeated.

Otherwise, a permutation of the rows and columns N + 1 and N + 2
is performed. If the top left block of size N + 1 is now positive definite,
the algorithm accepts the permutation and moves forward to the top
left block of size N + 2. On the contrary, the permutation between
rows N + 1 and N + 2 is reversed and a permutation of rows N + 1
and N + 3 is performed followed by a positive definiteness check. This
process concludes when no permutation of rows and columns achieves
an increase in the size of the top left block of K which is positive
definite.

At that point, the matrix K ; has been transformed in a symmetric
matrix K which has the form

_ K K
K= [ 11 12] (28)

K Tz K 22

where K, is positive definite and of size N,xN,, K, is of size N ,xN,,
and Ky, is of size N,xN, where N, = N>+ N - N,
The task (b) above then proceeds with replacing the matrix K 5 by

. K, Kp [0 Al] .
Kp= + =Kp+A (29)
’ [Ksz Kyp| AT A ’

where the matrix A will be selected to have the minimum Frobenius
norm under the constraint that K is at least positive semidefinite.
The solution of this nonlinear optimization problem will be obtained
iteratively through a sequence of linear optimization problems in which
the positive definiteness constraint is enforced linearly. To this end,
note that a symmetric perturbation dA of a symmetric matrix A leads
to a first order perturbation of any of its non repeated eigenvalues A
by [14]

sa=yT dAy (30)

DISTRIBUTION A: Distributioh approved for public release.



X.Q. Wang, M.P. Mignolet and C. Soize

Fig. 3. Cantilevered straight beam with uniform loading.

where V is the normalized, Yy = 1, eigenvector of A corresponding
to the eigenvalue A. Then, assuming that A is small enough for Eq. (30)
to apply, the eigenvalues 1, of K can be expressed as

=1 +v Ay, (31

where J; and ; are the eigenvalues and corresponding normalized
eigenvectors of K. Then, the positive semidefinite requirement can
be approximately written as

YT AW, > -1, for all i such that 1; <0. (32)

Adopting these linearized constraints, the determination of A can be
rewritten as the minimization of

A -2 3w [0 A, + 7] (33)
1;<0

where ||-|| denotes the Frobenius norm and y; are the Lagrange

multiplier associated to the equality constraints of Eq. (32).

Differentiating the objective function of Eq. (33) yields the linear
system of equations

A=Y gy [\Ifﬁ”]T (34)
7;<0

and

A=Y wi? [v°] (35)
7;<0

; . " : (1) (2)

where the eigenvectors ; are partitioned into vectors \J; z;nd v, Tof
: I (1 - (2

N, and N, components, respectively. That is, gyl = [[‘I’f )] [‘I’f )] ]

Finally, the constraints of Eq. (32) yield

]T

e . ~ ~ - T
Z (2[1”- bri + bz,) Hr = _Ai with apg = [lll(yl) ‘ng and brx = [w&z)] ‘V?)

2,<0
(36)
Solving the linear system of Egs. (36) yields the values of the Lagrange

multipliers y; which can then be reintroduced in Egs. (34) and (35) to
yield the unknown partitions A; and A, of A.

40 w w ‘

(@)

Uncertainty band
— 5th percentile
— 95th percentile
—e— Nastran

- € - Mean model
-40 s ‘

Transverse Tz/Span (%)
o

-2 -1 0 1
Load (N/m)
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The resulting matrix K ; will then in general not be positive definite
but the process can be repeated with a new K, = K until a matrix
K positive definite/semidefinite is finally obtained. At that point,
the rows/columns permutations performed to obtain the largest block
positive definite are reversed leading to a matrix K', which is positive
definite and thus could serve as the basis for the uncertainty modeling
according to Egs. (14)—(16) and Fig. 1.

It remains however to assess if rendering the matrix positive definite
has changed “significantly” the mean model to the point that the
uncertainty analysis may not be relevant to the original mean model.
To this end, the quadratic and cubic stiffness coefficients 12’/(12) and

K[’;Zj are extracted from K;? and used, with the linear coefficients KI.(}),
which have not been modified by the modification of the matrix K , to
compute a set of representative responses of this modified mean model.
These responses can then be compared with those from the identified
model to assess whether the matrix K', is appropriate to carry out the

uncertainty analysis.
5.4. EB cannot be made positive definite without affecting the model

For most of the structural models investigated so far, see the ap-
plication section for details, the procedure described in the previous
section yielded a matrix K, that closely represents the originally
identified mean model and thus can be used to carry out the uncertainty
analysis. When this is not the case, however, it is proposed here to
modify the modeling approach of Egs. (14) and (15) using a LD LT
decomposition [15] in place of the Cholesky one so that it can be
applied to the matrix K , resulting from the optimized decomposition.
Specifically, this matrix is first rewritten as

- = —T
Kp=LgDLy 37)
then, the uncertain matrices are obtained as

— =T
Ky=LgHDH'L, (38)

where H is the same matrix as in Eq. (14) and Fig. 1. Note in Eq. (37)
that the diagonal matrix D will be selected to only carry a sign, i.e., its
elements are either +1 or —1 only.

5.5. Uncertainty modeling of the largest positive block only

An alternative to the modifications of Sections 5.3 and 5.4 is to
proceed with the modeling of uncertainty only on the largest part
of the model that is consistent with the theory of Egs. (18)-(24)
leaving the rest of it equal to the mean model. That is, uncertainty is
introduced on the positive definite block K, of Eq. (28) while leaving
the corresponding matrices K;, and K,, unchanged, equal to their

Uncertainty band
—— 5th percentile
— 95th percentile
—&— Nastran
- 8 - Mean model

Inplane Tx/Span (%)

-8 ‘ ‘ ‘
2 -1 0 1 2

Load (N/m)

Fig. 4. Static displacement of the cantilevered straight beam tip under a uniform loading. (a) Transverse and (b) inplane displacements (percent of span) vs. load. Mean and

uncertain models.
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Fig. 5. Cantilevered curved beam with uniform loading.

values resulting for example from the optimization of Egs. (29)—(36)
or as the initial conditions of this process. When the eigenvalues of
the matrices K 5 and K differ from those of K, only mostly by the
addition of small, positive or negative, eigenvalues, this process could
be viewed as similar to the approach of [9] in focusing the uncertainty
on the dominant component of the model only.

6. Applications

The above developments were applied to a series of structures
for which mean NLROM were obtained in prior investigations. While
all of these applications focus on static responses, uncertain dynamic
responses could be computed with the same set of uncertain stiffness
coefficients as those used for the static problems.

The first example considered is the cantilevered straight beam of
Fig. 3 discussed earlier, see Fig. 2, in the context of the positive defi-
niteness of K ; and the existence of inconsistencies between the stiffness
coefficients obtained from commercial finite element software (Nastran
here) and Egs. (18)—(21). The mean model selected here includes 8
basis functions — the first 4 linear modes and 4 duals as constructed
in [16]. The matrix K obtained after the optimized decomposition

40 ‘ \ \
301 (a) ]
X
~ 201 |
c
S
% 10r 1
=
s O ’
§ 10t Uncertainty band |
2 —— bth percentile
g 207 —— 95th percentile

230} =—8— Nastran I

Mean model
-40 , \ :
-0.4 0.2 0 0.2 04
Load (Ib/in)
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was not positive definite. The application of the procedure of Egs.
(28)—(36) did render it positive definite and the predictions obtained
from that modified mean model were found to be very close to those
from the originally identified model. The uncertainty analysis was then
performed using Egs. (14) and (15) with an overall uncertainty level
selected to be § = 0.30 and shown in Fig. 4 are the transverse and
inplane displacements at the tip vs. load level for the mean model as
well as 5th-95th percentile uncertainty band.

The process was next repeated with the curved cantilevered beam
of Fig. 5 the response of which was modeled using 9 basis functions
— the first 3 linear modes and 6 duals. As for the straight cantilevered
beam, the matrix K ; obtained after the optimized decomposition was
not positive definite. Again, the application of the procedure of Egs.
(28)—(36) did render it positive definite and the predictions obtained
from that modified mean model were found to be very close to those
from the originally identified model. The uncertainty analysis was
then performed using Egs. (14) and (15) with an overall uncertainty
level selected to be 5§ = 0.15 and shown in Fig. 6 are the transverse
(vertical) and inplane (horizontal) displacements at the tip vs. load
level for the mean model as well as 5th-95th percentile uncertainty
band. Comparing these results with those of Fig. 4, it is concluded that
the response of the curved beam is much less sensitive to uncertainty
than its straight counterpart.

The above process was also repeated for the orthogrid panel of
Fig. 7 [17] modeled using 17 basis functions — the first 8 linear
modes and 9 duals. The uncertainty analysis was carried out as for the
two previous examples with a value § = 0.31. Then, shown in Fig. 8
are the displacements at a quarter point along the three directions for
the mean and uncertain models. It is interesting to observe that the
inplane displacements are much more sensitive to the uncertainty than
the transverse ones.

The application of the above concepts was also performed on the
clamped-clamped curved beam of Fig. 9 in a range of displacements

1 ‘ : ‘

ol b
£ |
G -2t 1
Q.

Q
X -3t 1
|_
% 4! Uncertainty band 1
3 — 5th percentile
£ 57 ——95th percentile |
5! =& Nastran b
Mean model
7 : :
0.4 -0.2 0 0.2 04
Load (Ib/in)

Fig. 6. Static displacement of the cantilevered curved beam tip under uniform loading. (a) Transverse and (b) inplane displacements (percent of span) vs. load. Mean and uncertain

models.

Fig. 7. Orthogrid panel considered in [16] (a) Perspective view and (b) cross-section.
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- (a)
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0041 95tn percentile %
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] (=
002 e -0.015 Uncertainty band b
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< 002 —— 95th percentile i
0 b =—@— Nastran
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Fig. 9. Clamped-clamped curved beam with uniform loading.
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that includes its snap-through. Proceeding as before, the matrix K
obtained after the optimized decomposition was not positive definite
but the application of the procedure of Egs. (28)-(36) did render it
positive definite. However, the predictions obtained from that modified
mean model were found to be too different from those from the
originally identified model, in particular that modified model did not
snap through as predicted by either the original NLROM or the finite
element model. In this light, the revised uncertainty modeling of Egs.
(37) and (38) was applied with 5 = 0.026. Then, shown in Fig. 10 are the
transverse (vertical) and inplane (horizontal) displacements at a beam
quarter point vs. load level for the mean model as well as 5th-95th
percentile uncertainty band. As already observed in connection with
the two previous examples, the inplane response of the curved beam
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Fig. 10. Static displacement of the clamped-clamped curved beam under a uniform loading. (a) Transverse and (b) inplane displacements (in percent of span) of a beam quarter
point vs. load. Mean and uncertain models.
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Fig. 11. Static displacement of the clamped-clamped curved beam under a uniform loading. (a) Transverse and (b) inplane displacements (in percent of span) of a beam quarter

point vs. load. Mean and uncertain models, approach of Section 5.5.
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Fig. 12. Static displacement of the orthogrid panel under a uniform loading. (a) Inplane x, (b) inplane y, and (c) transverse z displacements at a quarter point divided by the

panel thickness vs. load. Mean and uncertain models, approach of Section 5.5.

appears more sensitive to uncertainty than its transverse counterpart.
Note as well the large increase in the uncertainty band post snap
through, in both directions, with much smaller variations of the snap
through load which are nevertheless much larger than the variability
of the response prior to snap through.

The above results were all obtained using the modifications of
Sections 5.3 and 5.4 but an assessment of the approach of Section 5.5,
i.e., the uncertainty modeling of the matrix K, of Eq. (28), was also
performed for the clamped-clamped curved beam of Fig. 9, see Fig. 11
with the same value of § = 0.026 as in Fig. 10. The strong similarity
of the uncertainty bands shown in Figs. 10 and 11 suggests that the

introduction of uncertainty on the largest positive definite block K, is
an appropriate strategy that is additionally simpler. Another validation
was performed on the orthogrid panel of Fig. 7, see Fig. 12 for the
results corresponding to 5 = 0.28. While the uncertainty band is visibly
wider than in Fig. 8, it exhibits the same features again supporting the
applicability of the approach of Section 5.5.

7. Summary

The focus of the present investigation was on resolving two key chal-
lenges encountered in the introduction of uncertainty in reduced order
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models of the nonlinear geometric response following an approach
proposed earlier by the authors. The first of these challenges was the
indeterminacy of the mapping of the nonlinear stiffness coefficients
identified from the finite element model, fle) and Efjl)p,

suitable for the uncertainty analysis, i.e., I?,(,,z,zp and K,.(fI)P, see Egs. (6),

to those

(7), and (19). The second challenge was that the matrix K p constructed
with these coefficients (and the linear stiffness ones) is not positive
definite as showed in the original paper because of differences in non-
linear finite element modeling between the commercial software and
the theoretical developments. These challenges were jointly addressed.
First, the indeterminacy was resolved by selecting the coefficients to
maximize EB while satisfying the constraints of Egs. (6), (7), and (19).
In general, the resulting matrix K ; was found not positive definite but
a strategy was devised to modify it in a minimal manner to achieve
this property. In most of the cases investigated, this modification did
not significantly change the predictions of the mean response and thus
the uncertainty modeling could proceed from it. In one example, a
clamped-clamped curved beam undergoing snap throughs, the changes
of mean were large enough. For such situations, a modification of
the uncertainty modeling was proposed that handles the non positive
definite matrix K » with a LDLT decomposition vs. a Cholesky one. A
final alternative to the above modifications was also proposed in which
the uncertainty is only introduced on the largest block of the K  that
is positive definite.

The above methods were applied to 4 different structural models
of various complexity and the uncertain response to static loading was
determined. These efforts first demonstrated the broad applicability of
the above methodology but they also suggested that strong nonlinear
features of the response, such as inplane displacements due to trans-
verse loading and post-snap through behavior, are particularly sensitive
to uncertainty.
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The focus of the present investigation is on the introduction of uncertainty directly in reduced
order models of the nonlinear geometric response of structures following maximum entropy
concepts. While the approach was formulated and preliminary validated in an earlier paper, its
broad application to a variety of structures based on their finite element models from
commercial software was impeded by two key challenges. The first of these involves an
indeterminacy in the mapping of the nonlinear stiffness coefficients identified from the finite
element model to those of the reduced order model form that is suitable for the uncertainty
analysis. The second challenge is that a key matrix in the uncertainty modeling was expected to
be positive definite but was numerically observed not to be. This latter issue is shown here to be
rooted in differences in nonlinear finite element modeling between the commercial software and
the theoretical developments. Both of these challenges are successfully resolved and
applications examples are presented that confirm the broad applicability of the methodology.

Keywords: Uncertainty modeling, maximum entropy, uncertain structure, nonlinear geometric

structural response, reduced order modeling.

1 Introduction

Over the last two decades, maximum entropy
concepts have been broadly and very
successfully used to model uncertainties in
structures directly at the level of reduced order
models (ROMs) constructed from the finite
element model of the mean structure, see
Soize (2016, 2017) for reviews. In addition to
its capability to account for some epistemic
uncertainty, this approach is computationally
much more expedient than its alternative,
which is to first introduce uncertainty in the
finite element model then construct a ROM
for each sample of the random structure. The
computational ~ saving is  particularly

significant for large size linear finite element
models but also for nonlinear geometric
problems where the ROMs include a large
number of linear, quadratic, and cubic
stiffness coefficients, see Mignolet et al.
(2013) for an overview. These coefficients
must either be identified from a standard (e.g.,
commercial) finite element model using
nonintrusive techniques (Mignolet et al. 2013,
Muravyov and Rizzi 2003, Perez et al. 2014)
or computed using a dedicated finite element
formulation (Capiez-Lernout et al. 2012,
2014, Capiez-Lernout and Soize 2015, 2017)
based on the reduced order modeling results
of Mignolet and Soize (2008)]. The latter of
these two approaches lends itself naturally to
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the introduction of uncertainty at the ROM
level using the maximum entropy concepts as
originally discussed in Mignolet and Soize
(2008). The application of this strategy to the
ROMs identified nonintrusively (Mignolet et
al. 2013, Muravyov and Rizzi 2003, Perez et
al. 2014) from a commercial finite element
code has been exemplified in Mignolet and
Soize (2008) on a simple flat beam structure.
More complex applications of this approach
have been impeded by two key challenges, of
decomposition and non-positive definiteness,
in transforming the identified ROM into one
that is suitable for the uncertainty analysis.
The focus of the present investigation is on
efficiently resolving these two challenges and
applying them to a representative set of
structures in the nonlinear geometric regimes.

2 Reduced Order Models of
Nonlinear Geometric Structural
Response

The reduced order models considered in the
present study are based on a representation of
the nonlinear geometric response of the
structure in the form

M
u(t)=> gy (t)u™ (1)
n=1
where  U(t)denotes  the  vector  of

displacements of the finite element degrees of
freedom, U™ are basis functions (modes) of
the ROM specified in the spatial domain of
the finite element mesh, and ( (t) are the
time dependent generalized coordinates.

To obtaining a set of nonlinear ordinary
differential equations for the generalized

coordinates @y (t), it is convenient to

consider the continuum equivalent of Eq. (1),
ie.,

W (XD=SuOUM(X) 0

for i = 1, 2, 3, where X denotes an arbitrary
point of the structure in its undeformed

configuration. Then, introducing Eq. (2) in
the equations of finite deformations elasticity
and proceeding with a Galerkin approach
provides the desired equations. This process
was accomplished in Mignolet and Soize
(2008) considering a Kirchhoff-Saint Venant
type material in which the second Piola-
Kirchhoff stress tensor S is linearly related to
the Green strain tensor E by

Sij =Ciju B 3)

where C denotes the deformation independent
4th order elasticity tensor. Under this material
assumption, it was shown in Mignolet and
Soize (2008) that the generalized coordinates

O (t) satisfy the equations

.. . 1
Mij i + Dy dj +Ki

2 3
+Ki a0+ K a5 0 ap =F,
where summation over repeated indices is
implied. In the above equation, Mij denote

(4)

the elements of the mass matrix, Ki(jl) , Ki(jf),
Kl(ﬁg are the linear, quadratic, and cubic

stiffness coefficients and F are the modal

forces. Note that a damping matrix D was
also introduced in Eq. (4) to model
dissipation.

Note in Eq. (4) that a series of terms
involve the same monomials of the

generalized coordinates, e.g. Ki(j%) and Ki(ljz)’

and thus these terms may naturally be
regrouped leading to

.. . 1

Mij g + Dy 4 + K’ a; )

(3
aj q +Kip aj adp =F
which is very similar to Eq. (4) except that
there is no repetition in the monomials

because Ki(jf) and K,ﬁg

<landj<I1<p. Then, comparing Egs (4) and
(5) yields

i (2)
+Kiji

are nonzero only for j
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0 for I<n
IZr(nzn)l = Kr(nzn)n for I =n
(2) (2)
Kmnl + Kmin for I >n
0 unlessp>12>n
Kf(“?”“ for p=l=n
v 3) 3) 3) B
Klfn3r:|p = Kmn" + Km1n| + Km||n for p=I>n
3) 3 3 ~
Kf("P“ + Kr(nl)pl + Kr(n|)|p for p>l=n
(3) 3) 3)
2Kimnip + 2Kppin +2Kipn for p>1>n
(6)

As discussed in Mignolet and Soize (2008),
the symmetry properties of the elasticity
tensor also imply that

3 3 3 3
Kol = Kimip = Kooy =Kl (1)

mnlp nmlp mnpl
While Eqgs (4) and (5) were derived based on
the continuum representation of Eq. (2), they
are assumed here to be valid as well for a
discrete, finite element model. In fact, the

identification of the coefficients Ki(j%) and
Ki(jfg outputs of
commercial finite element software (e.g.,
Nastran) has been studied and can be achieved
in different ways, see discussions in (Mignolet
et al. 2013, Muravyov and Rizzi 2003, Perez

et al. 2014), given the basis functions um,
The selection of these vectors is discussed in
details in (Capiez-Lernout et al. 2012,
Capiez-Lernout and Soize 2015, 2017) and
references therein and is not repeated here for
brevity.

from nonintrusive

3  Maximum Entropy Uncertainty
Modeling at the ROM Level

The modeling of uncertainty at a ROM level
has been developed, see Soize (2012, 2017),
as a constrained optimization problem in
which the entropy of the random parameters
of the ROM is maximized under constraints
which correspond to (i) physical requirements
that these parameters must satisfy and (ii)

conditions imposed by the user. To exemplify
this strategy, consider the important case in
which the ROM involves one or multiple
positive definite symmetric matrices as occurs
for example in linear structural dynamics. Let
A be that random matrix and denote by

Pa (a) its probability density function which
is defined over the domain of support Q such

that A is positive definite and symmetric.
Then, the entropy is

S:—I pa(a)ln pa(a)da (8)
Q

In addition to the physical requirements of
symmetry and positive definiteness, it is also
required that the total probability equal 1 and

that the mean of A, denoted as 4 is known,
that is,

J' pa(a)da=1 _[a pa(a)da=A (9),(10)
Q Q
and moreover that

[In[det(a)]pa(a)da =v finite (1)
9

which guaranties that the inverse matrix A7l
of A, which exists almost surely, is a second-
order random  variable (mean-square
integrable).

The probability density function pa(a)
maximizing S given the constraints symmetry

and of Eqgs (9)-(11) can be derived by calculus
of variation and is found to be

pa(a)=C[det(a)] Fol exp[—tr( ﬁTa)} (12)

where C is the appropriate constant to satisfy
the normalization condition, Eq. (9) and p and
Ao are the Lagrange multipliers associated
with the constraints of Eqs (10) and (11),
respectively.  After a change of random
variables, it is found that the matrices A of
joint probability density function pa(a), Eq.

(12), can be generated as
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A=LHHTL (13)

where L is any decomposition, e.g.,
Cholesky, of A, i.e.,

A=LL . (14)

Moreover, H is a lower triangular matrix such
that (see also Fig. 1)
(1) all of its non-zero elements H; are

independent random variables,

(2) its off-diagonal elements Hj , i=l, are
normally distributed (Gaussian) random
variables with standard deviation
c=1/42u,and

(3) its diagonal elements H;; are obtained as

Hii = W'Yii /p, where Yii is

distributed with parameter (p(i)—l)/ 2

Gamma

where
p(i)=n—i+2ho—1 p=(n+2x,—1)/2(15)
In the above equations, n is the size of the
matrices and the parameter Ay > 0 is the free

parameter of the statistical distribution of the
random matrices A. An alternative
parametrization is through the dispersion
parameter § defined as
g2+l (16)
n+ 27\,0 -1
As stated above, a key component of the
maximum entropy formulation is the
satisfaction of the physical constraints that the
ROM parameters must satisfy. While this
issue is well understood for the stiffness
matrix of linear structural dynamics, it is not
as obvious for the combination of linear,
quadratic, and cubic stiffness coefficients of
the ROM of Eq. (4). The derivation of such a
condition was achieved in Mignolet and Soize
(2008) based on integral expressions off the
stiffness coefficients of Eq. (4) obtained as a
by-product of the derivation of this governing
equation. Specifically, it was found that
K = | oo™ .oy

mn

C;

dX 17
6Xk iklp 6Xp (17)

Q

Figure 1. Structure of the random H matrices with
n=38,i=2,and A=l and 10.

2 2 (2 2
Kr(T1r1)p_2[K§nr1)p K%) Krﬁp?n} (18)

where

(m)
ke - [ G} ou(™ au (P

Cijg —y 9% (19)

mnp ~
o, X Xy X
and
(3) 1 I U(m) aU (s) 8U,§n) 8U§p) dxX
msnp 2 jle le 8XW
(20)

In these equations, Q, denotes the domain of

the structure in the undeformed configuration,
X e QO .

Next, a reshaping was first performed to
transforms the MxMxM third order tensor

K@ into a MxM 2 rectangular array K@
and the MxMxMxM fourth order tensor K )

into a M *xM ? square matrix K®) . These
operations are achieved as follows:
RS =K@, with  I=(n-)M+p (21)

Kiy = Kihp 5 I5M-DM+s I=(n-DM-+p (22)

With these operations, it was shown that the
matrix Kg defined as
_ KO  g@
Kg =
KB
is positive definite.
Having established the above property, it

23
K T (23)
seems that the modeling of uncertainty of the
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ROM level for nonlinear geometric structure
is now well defined. Specifically, (Mignolet
and Soize, 2008),

(1) from a finite element model of the

KO

structure, identify the parameters ij

(2 w3
KiD and KD

i(j%) and Kl(ﬁ;))
by “inverting” the Eqgs (6) with Eq. (7)

(3) determine the coefficients Kﬁ%r?p from Eq.
(18)
(4) form the matrices K@ and K® from
Eqgs (21) and (22), then Kg from Eq. (23)
(5) set A=Kpg and follow Eqgs (13)-(15) and
Fig. 1 to generate random samples of the
matrix A=Kpg

(6) proceed with steps (4), (3), (2) and (1) in
reverse with each sample of Kg to obtain

(2) determine the coefficients K

realizations of the wuncertain linear,
quadratic, and cubic stiffnesses Ki(jl) , Ki(jf)

and Kl(ﬁg denoted as Ki(jl), Ki(j%) and Kl(ﬁg
from which the sample of the uncertain
response can be determined.

4 The Challenges

The process defined by steps (1)-(6) above
seems well defined but after a closer
inspection and trials, two key challenges were
encountered:

(I) the determination of the parameters Kr(nzn)p

and Ki(j?r)) cannot be uniquely performed

from Eqgs (6), (7), and (18) as there are
more unknowns than equations.

(IT) when the above determination can be
carried out, the resulting mean model
matrix Kg may not be positive definite

K2

when the ROM parameters Ki(jl) , ijl

—(3
and Kijlp))

element codes, e.g., from Nastran.
The positiveness of Kg stems (Mignolet

are identified from some finite

and Soize, 2008) from the positiveness of the
potential energy in the structure, it is thus an
essential property and its violation may lead to
unphysical behavior. An example of this
situation has been encountered with a flat
cantilevered beam, see Wang et al. (2013).

5 Resolution of the Challenges

5.1 Overall perspective

The two challenges (I) and (II) above were

addressed jointly as follows.

(a) Stiffness parameters for which the
“inversion” of Eqgs (6), (7), and (18) could
not be accomplished uniquely were
optimized to render the matrix Kpg as
positive definite as possible.

(b) If the resulting matrix KB is not positive

definite, its “least important” elements were
modified as little as possible to make it

positive definite. After the matrix Kg has

been modified, the modified mean model
predictions were determined and compared
with the ones resulting from the originally
identified parameters. The modified matrix
Kg was accepted if the difference in

predictions was found small enough. The
introduction of uncertainty then followed as
in Eqs (13)-(15) and Fig. 1.

(c) If the predictions obtained from the
modified mean model differed too
significantly from those obtained with the
originally identified parameters, a modified
simulation approach was defined that relies
on the KB matrix resulting from step (a)

above.

5.2 Optimized decomposition
The first step, (a), of the above process
focused on the extraction of the parameters

DISTRIBUTION A: Distribution approved for public release.



X.Q. Wang, Marc P. Mignolet and Christian Soize

K 16 o e et s

and Ki(jfr)) as to render the matrix Kg as
positive definite as possible. Consider first
the parameters for which all indices are equal,

ie., Ki(i%) and KI(I?I) . For these, no
indeterminacy exists and

2(2) 2=z 3) _ 70

K ZgKi(ii) and K =KE . @4

For coefficients depending on two mode
indices i and j > i, the indeterminacy exists as

there are 4 new quadratic coefficients, KI(”z) ,
Ki(ijg)» Kgizj), K%izi), and 4 new cubic ones,
Ki(i?j): Ki(i]?j), Ki(j?j), Ki(j?j), considering the

symmetry of Eq. (7) as well as the property

(2 _r®
Kiji” = Kijj
are however only 5 independent equations
relating them:

resulting from Eq. (18). There

=2 ) @ w2 1o e
—(3 3 =3 3 3
Ki(iij):3Ki(iij) Ki(ijj) = Ki(ijj) +2Ki(jij)

and Kfﬂ?j) = Kfjﬁ) . (25)

To resolve the indeterminacy, it is desired
that the matrix Kg be made as positive
definite as possible given the constraints of

Eqgs (25). Since the split of say K(2)

i J into

Ki(ijg) and K2 should not be dependent on

ju
the coefficients of other modes than i and j, it
is more specifically imposed that the unknown
coefficients maximize the lowest eigenvalue of

IZ(BZi)j which is the 6x6 Kg matrix built using

the coefficients relevant to modes i and j only.
This optimization is performed for all distinct
combinations of i and j > i modes leading to

(2) and K with 2 different

all parameters Ki il iilp

indices.
For the coefficients involving 3 different

indices, i, j > i and k > |, a similar effort is
carried out: 3 new quadratic coefficients
related by 1 independent equation, and 2 new
cubic ones related by 1 independent equation

and the indeterminacy is resolved by
maximizing the lowest eigenvalue of K|(33?jk

which is the 12x12 K matrix built using the

coefficients relevant to modes i, j, and k only.
This effort is then repeated for all distinct
combinations of k > j > i modes which then

leads to all parameters Ki(jf) and Ki(j?% with 3
different indices.

It remains to address the determination of

KD with all 4

different. For each set of the 4 indices, there
are only 3 such distinct parameters taking into

3 (3) (3)
Kijip> Kiiip> Kipjl
assuming p > | > j>i but only 1 independent
equation

=03 3 3 3
Kiia = 2K +2K{ +2K . (26)

As before, the indeterminacy is resolved by
K.

B.ijlp
which is the 20x20 Kg matrix built using the
coefficients relevant to modes i, j, | and p
only. This effort is then repeated for all
distinct combinations of p > | > j> i modes to

3)
ijlp -

the parameters indices

account Eq. (7), ie.,

maximizing the lowest eigenvalue of

yield the remaining cubic parameters K

5.3 Rendering Kg positive definite

After the series of optimization efforts carried
out in the previous section, the resulting
matrix IZB may be positive definite in which

case the uncertainty modeling can proceed as
in Eqgs (13)-(15) and Fig. 1. If this matrix is
not positive definite, it will be modified in this
second step to become positive definite. This
modification will be accomplished:

(a) without affecting the part of KB that is

positive definite, e.g., the linear stiffness
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matrix K(l),and
(b) inducing the smallest changes possible to
this matrix.
The task (a) has been achieved iteratively
by constructing the biggest block of the

original matrix Kp that is positive definite.
This block is at least of size N since the linear

stiffness matrix KU is positive definite.
Accordingly, the top left block of IZB of size

N+1 is first considered and it is checked for
positive definiteness (e.g., by constructing its
Cholesky decomposition). If it is positive
definite, the algorithm moves to the top left
block of size N+2 and the process is repeated.
Otherwise, a permutation of the rows and
columns N+1 and N+2 is performed. If the
top left block of size N+1 is now positive
definite, the algorithm accepts the permutation
and moves forward to the top left block of size
N+2. On the contrary, the permutation
between rows N+1 and N+2 is reversed and a
permutation of rows N+1 and N+3 is
performed followed by a positive definiteness
check. This process concludes when no
permutation of rows and columns achieves an
increase in the size of the top left block of

Ky which is positive definite.
At that point, the matrix Kg has been

transformed in a symmetric matrix Kg which
has the form

. Kii Kz
KB = T
Ko Ky

where K is positive definite and of size N,

@7

» Kip isof size Ny x Ny, and Ky, is of size
Nex Ny, Np=N2+N-N,.

The task (b) above then proceeds with
replacing the matrix Kg by

. K K 0 A -
KB =|: }rl 12i|+|: T l:i:KB+A (28)
Kiz Kyl [A1 A

where the matrix A will be selected to have
the minimum Frobenius norm under the
constraint that KB is at least positive
semidefinite. The solution of this nonlinear
optimization problem will be obtained
iteratively through a sequence of linear
optimization problems in which the positive
definiteness constraint is enforced linearly.
To this end, note that a symmetric
perturbation A of a symmetric matrix A leads
to a first order perturbation of any of its non
repeated eigenvalues A by

L=y Ay (29)

where w is the normalized, WT\V:I,
eigenvector of A corresponding to the
eigenvalue L. Then, assuming that A is small
enough for Eq. (29) to apply, the positive
semidefinite requirement can be
approximately written as

Wl A = -4, foralli suchthat &; <0.(30)
Adopting these linearized constraints, the

determination of A can be rewritten as the
minimization of

AR 23w [ A+
;<0

€2))

where || ||F denotes the Frobenius norm and

u; are the Lagrange multiplier associated to

the equality constraints of Eq. (30).
Differentiating the objective function of

Eq. (31) yields the linear system of equations

d
a= Y wwl W 6
Ai<0
.
Ay= D Hi o [\T’i(z)J (33)
%<0

where the eigenvectors ; are partitioned into

vectors \T/i(l) and \Ili(z) of N, and N,
That s,

components,  respectively.
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T T
¥l = [[\T/i(lq [\TJE”J } . Finally, the
constraints of Eq. (30) yield
z (zari bri +br2i)Hr =_Xi (34)

Xr<0
with
T T
~ (1 ~ (1 ~ (2 ~(2
s :[‘Ih(')} ‘I’g) Brs :[‘I’(r )J ‘I’g )
Solving the linear system of equations (34)

yields the values of the Lagrange multipliers
pj which can then be reintroduced in Eq. (32)

and (33) to yield the unknown partitions A;
and A, of A.

The resulting matrix Kg will then in
general not be positive definite but the process
can be repeated with a new Kg=Kg until a

matrix Kpg positive definite/semidefinite is

finally obtained. At that point, the
rows/columns permutations performed to
obtain the largest block positive definite are
reversed leading to a matrix Kg which is

positive definite and thus could serve as the
basis for the uncertainty modeling according
to Eqgs (13)-(15) and Fig. 1.

It remains however to assess if rendering
the matrix positive definite has changed
“significantly” the mean model to the point
that the uncertainty analysis may not be
relevant to the original mean model. To this
end, the quadratic and cubic stiffness

coefficients K/ and K are extracted

ijl ijlp
from Kg and wused, with the linear

coefficients Ki(j])» which have not been

modified by the modification of the matrix
Kg, to compute a set of representative

responses of this modified mean model.
These responses can then be compared with
those from the identified model to assess
whether the matrix Kg is appropriate to carry

out the uncertainty analysis.

5.4 Kpg cannot be made positive definite

without affecting the model

For most of the structural models investigated
so far, see the application section for details,
the procedure described in the previous
section yielded a matrix Kpg that closely

represents the originally identified mean
model and thus can be used to carry out the
uncertainty analysis. When this is not the
case, however, it is proposed here to modify
the modeling approach of Eqs (13) and (14)

using a LDL" decomposition (Golub and
van Loan 1966) in place of the Cholesky one
so that it can be applied to the matrix IZB

resulting from the optimized decomposition.
Specifically, this matrix is first rewritten as

Kg =Ly DLk (35)

then, the uncertain matrices are obtained as
Kg=Lx HDHT Lk (36)
where H is the same matrix as in Eq. (14) and
Fig. 1. Note in Eq. (35) that the diagonal

matrix D will be selected to only carry a sign,
i.e., its elements are either +1 or -1 only.

6 Applications

The above developments were applied to a
series of structures for which mean NLROM
were obtained in prior investigations two of
which are presented. = While these two
applications focus on static responses,
uncertain dynamic responses could be
computed with the same set of uncertain
stiffness coefficients as those used for the
static problems.

The first example considered is the
orthogrid panel of Fig. 2 (Gogulapati et al.
2017) modeled using 17 basis function — the
first 8 linear modes and 9 duals. The matrix
Kg after the  optimized

decomposition was not positive definite. The
application of the procedure of Eqs (27)-(34)
did render it positive definite and the
predictions obtained from that modified mean
model were found to be very close to those

obtained
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Figure 2. Orthogrid panel considered in
(Gogulapati et al. 2017) (a) Perspective view
and (b) cross-section.

from the originally identified model. The
uncertainty analysis was then performed using
Egs (13) and (14) with an overall uncertainty
level selected to be 6=0.31. Then, shown in
Fig. 3 are the displacements at a quarter point
along the three directions for the mean and
uncertain models. It is interesting to observe
that the inplane displacements are much more
sensitive to the uncertainty than the transverse
ones.

A second application of the above concepts
focused on the clamped-clamped curved beam
of Fig. 4 in a range of displacements that
includes its snap-through. Proceeding as
before, the matrix Kg obtained after the

optimized decomposition was not positive
definite but the application of the procedure of
Egs (27)-(34) did render it positive definite.
However, the predictions obtained from that
modified mean model were found to be too
different from those from the originally
identified model, in particular that modified
model did not snap through as predicted by
either the original NLROM or the finite
element model. In this light, the revised
uncertainty modeling of Egs. (35) and (36)
was applied with 6=0.026. Then, shown in
Fig. 5 are the transverse (vertical) and inplane

0.06
” 0.05f Uncertainty band D
o —— 5th percentile
2 0.04f ;
g ——95th percentile
o
£ o003l =—— Nastran
- —&— Mean model
& 002}
S
a
< 001}
£
of (a)
0.01 - : :
o 2 0 2 4
Pressure (Pa) x10*
of ;
@ -0.005
c
X
]
'—E -0.01
>
s
@ -0.015 Uncertainty band 'y
%‘;_ — 5th percentile
£ .0 —— 95th percentile e
=—— Nastran
—&— Mean model
0.025 - .
4 -2 0 2 4
Pressure (Pa) x10*
8
6 Uncertainty band

— 5th percentile
— 95th percentile
=@ Nastran
—5— Mean model

Transverse Tz / Thickness

0 4
2 i
-4 (c)
-6 L L L

4 2 0 2 4

Pressure (Pa) x 10*

Figure 3. Static displacement of the orthogrid
panel under a uniform loading. (a) Inplane X, (b)
inplane y, and (c) transverse z displacements at a
quarter point, divided by the panel thickness vs.

load. Mean and uncertain models.

(horizontal) displacements at a beam quarter
point vs. load level for the mean model as
well as 5th-95th percentile uncertainty band.
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Figure 4. Clamped-clamped curved beam with
uniform loading.

—

Uncertainty band |
— 5th percentile
—— 95th percentile

Transverse Ty / Thickness

=& Nastran i
=#= Mean model
0 1 2 3 4 5

Load (Ib/in)

-0.02¢

-0.04¢

-0.061 .
Uncertainty band

Inplane Tx / Thickness

-0.08}| — 5th percentile
— 95th percentile
-0.1| =—@= Nastran
=#= Mean model
-0.12 ; ; - ;
0 1 2 3 4

Load(lb/in)

Figure 5. Static displacement of the clamped-
clamped curved beam under uniform loading. (a)
Transverse and (b) inplane displacements (in
percent of span) at beam quarter point vs. load.
Mean and uncertain models.

As already observed in connection with the
two previous examples, the inplane response
of the curved beam appears more sensitive to
uncertainty than its transverse counterpart.
Note as well the large increase in the
uncertainty band post snap through, in both
directions, with much smaller variations of the
snap through load which are nevertheless
much larger than the wvariability of the
response prior to snap through.

10

7 Summary

The focus of the present investigation was on
resolving two key challenges encountered in
the introduction of uncertainty in reduced
order models of the nonlinear geometric
response following an approach proposed
earlier by the authors. The first of these
challenges was the indeterminacy of the
mapping of the nonlinear stiffness coefficients
identified from the finite element model,

Ki(jf) and Izi(ﬁg , to those suitable for the
uncertainty analysis, i.e., Kr(n2n)p and Ki(j?r))’ see

Eqgs (6),(7), and (18). The second challenge
was that the matrix Kg constructed with

these coefficients (and the linear stiffness
ones) is not positive definite as showed in the
original paper because of differences in
nonlinear finite element modeling between the
commercial software and the theoretical
developments. These challenges were jointly
addressed.  First, the indeterminacy was
resolved by selecting the coefficients to
maximize KB while satisfying the constraints
of Egs (6), (7), and (18). In general, the
resulting matrix Kg was found not positive

definite but a strategy was devised to modify
it in a minimal manner to achieve this
property. In most of the cases investigated,
this modification did not significantly change
the predictions of the mean response and thus
the uncertainty modeling could proceed from
it  In one example, a clamped-clamped
curved beam undergoing snap throughs, the
changes of mean were large enough. For such
situations, a modification of the uncertainty
modeling was proposed that handles the non

positive definite matrix Kg with a LDL'

decomposition vs. a Cholesky one.

The above methods were applied to two
different structural models of various
complexity and the uncertain response to
static loading was determined. These efforts
first demonstrated the broad applicability of
the above methodology but they also
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suggested that strong nonlinear features of the
response, such as inplane displacements due
to transverse loading and post-snap through
behavior, are particularly sensitive to
uncertainty.
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ABSTRACT

The focus of this investigation is on modeling uncertainties on the structural and thermal
properties of heated structures and assessing their effects on the resulting temperature
distributions and structural response. This effort is accomplished within the framework of
reduced order models (ROMs) of both the thermal (heat conduction) and structural (nonlinear
geometric response) problems relying on the maximum entropy nonparametric approach.
Uncertainties are introduced on both the heat conduction and the structural response
problems. In the latter, it is in particular shown that the purely structural terms of the ROM
governing equations and those associated with the structural-thermal coupling should be
randomized jointly. Moreover, this can be done through the construction of a large matrix that
includes all of them and is shown to be symmetric and positive definite. Several challenges in
applying this approach are identified and resolved. Finally, the applicability of the
methodology is demonstrated on the response of a simple panel subjected to an oscillating

heating flux as an example of strongly coupled thermal-structural problems.

NOMENCLATURE

A : mean of a random matrix A

Bjj : element of modal capacitance matrix
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C: 4th order elasticity tensor

Djj : element of modal damping matrix

F.: modal mechanical forces.

F“(th) : modal force induced by thermal mode |

H,Hy , Ht, Hg: triangular random matrices

Ki(jl) , Ki(j%) , Kl(ﬁ;)) . linear, quadratic, and cubic stiffness coefficients

Ki(jtlh) : linear stiffness coefficients induced by thermal mode |

Ri i element of modal conductance matrix

Kpg, K¢ : random matrices composed of structural coefficients and structural and coupling

coefficients

Mj; : element of modal mass matrix
P, : modal heat flux

PAa (a) : joint probability density functions of the elements of a random matrix A

0n(t): generalized structural coordinates

T (™ thermal basis functions
a: coefficient of thermal expansion tensor

d: uncertainty level

1, (t): generalized thermal coordinates

Q) : structural domain in the undeformed configuration
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w(n) : structural basis functions

INTRODUCTION

A significant challenge in the prediction of the response of real structures is the lack of
precise information on their geometry and/or material properties. If they were accurately
known, then standard analysis tools such as finite elements could in principle be used to
determine the structural response under specified loads. These observations have led in
particular to the modeling of the uncertainty in the geometry and/or material properties
through probabilistic concepts, i.e. by treating them as random variables, stochastic processes
and fields. This approach permits the consideration of the variability in geometry and/or
material properties from one nominally identical structure to another which is referred to as
aleatoric uncertainty.

Invariably, computational models approximate or ignore particular features of the
problem, e.g. grain structure, anisotropy, curvature of a nominally straight structure, three-
dimensionality modeled through plates and beams models, etc. These approximations lead in
the predicted response to another form of uncertainty, i.e., epistemic uncertainty, which is
typically challenging to model.

A particularly elegant strategy to incorporate both aleatoric and epistemic uncertainties is
the maximum entropy based nonparametric method, e.g. see [1-3]. This approach relies on the
modeling of the fields of interest, e.g. structural displacements, in a reduced order model
format in which the basis is fixed, determined from the mean model. The uncertainty in the
structural model is then entirely regrouped into the parameters (stiffness matrix, mass matrix,
...) of the governing equations for the generalized coordinates of this reduced order model. To

complete the uncertainty modeling process, it remains to postulate or derive the joint
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probability density function of these parameters and a way to simulate them. The approach
proposed in [1-3] and adopted here is to derive this joint probability density function to
maximize the corresponding entropy under the physical constraints that these parameters must
satisfy, such as symmetry, positive definiteness, etc. Moreover, simulating the random
parameters/matrices according to this distribution was shown [1-3] to be fast and
straightforward. Then, Monte Carlo analyses can be carried out to obtain any desired statistics
of the response and they are performed in a particular efficient manner since they only involve
the reduced order model. It should be noted that the maximum entropy based nonparametric
method does account for aleatoric but also some epistemic uncertainty. It has been used in a
variety of different contexts within structural dynamics, e.g., linear structural dynamics [1,4-
7], vibro-acoustics [8,9], rotor dynamics [10-12], nonlinear structural dynamics [13,14], linear
viscoelastic structures [15], etc., but also in rigid body dynamics [16,17] and micromechanics
and multiscale modeling, see [3] for extensive review.

The present investigation focuses on effects of uncertainty on the response of heated
structures. In such multidisciplinary problems, the uncertainty may be associated with each
discipline and/or with their coupling. Since the consideration of uncertainty on the structural
properties alone has been discussed extensively before, this investigation will focus on the
novel aspects of the uncertainty on the thermal properties (capacitance, conductance) and the
thermal-structural coupling induced by the coefficient of thermal expansion. The propagation
of these uncertainties to both temperature distribution and structural response will be
determined. In this regard, note that thermal-structural coupling is effectively a one-way
interaction. Indeed, the temperature distribution induces stresses in the structure that result in
thermal loads and changes in its natural frequencies and mode shapes. In reverse however, the

structural deformations directly affect the temperature distribution only through the very weak
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latency term which is ignored here. A stronger coupling between the structural deformations
and the temperature distribution may however exist in aero-structural-thermal problems since
the structural motion will affect the aerodynamics and especially the aeroheating which drives
the temperature distribution. This situation is not considered here. Moreover, it will mostly be
assumed that all properties are independent of temperature. However, the extension of the
proposed formulation to the case where the coefficient of thermal expansion is linearly
dependent on temperature is presented in [18] to highlight the process of such extensions.
Owing to the potential or actual occurrence of thermal buckling, it is highly desirable to
carry out the structural analysis in a nonlinear geometric format which, unfortunately, leads to
a significant increase in computational effort especially when considering dynamic situations.
These conflicting requirements have led to the formulation and development of nonlinear
thermal-structural reduced order modeling strategies for the temperature and displacements,
see [19,20], which are based on similar developments for structural only models, see [21-23].

This reduced order modeling strategy is adopted here and briefly reviewed below.

OVERALL CHALLEGES AND PLAN

The above discussion has motivated the use of reduced order models for the consideration of
uncertainties in heated structures because of (i) their computational efficiency but also (ii) of
the capability of such models to include both aleatoric and epistemic uncertainties. To benefit
from these advantages, it is key that the uncertain reduced order models be constructed
directly from their equivalent for the mean model without returning to the underlying finite
element model, in particular to avoid the computational cost of constructing the reduced order
model for each finite element sample. Modeling uncertainties directly within reduced order
models has been done for several problems in the past, including nonlinear reduced order

models but of non heated structures. Heated structures however include additional terms in
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the governing equations that reflect the coupling of the displacements with the temperature
field. A key question addressed here is then how these coupling terms should be randomized
to account for the uncertainties. That is, can they be considered separate of the purely
structural terms or should they all be randomized together and, either way, how should one
proceed?

It is demonstrated in the sequel that the purely structural and structural-thermal coupling

terms should be randomized jointly through their grouping in a large matrix K¢ that is

symmetric and theoretically positive definite. Then, the randomization of this matrix can be
achieved using the maximum entropy nonparametric approach.

Several challenges are however encountered in the implementation of this overall strategy.
First, as formed, the matrix K¢ involves a smaller size matrix that does not exist in the reduced
order model and which has been found to be difficult to determine accurately from the underlying
finite element model. This issue is resolved here by appealing to the maximum entropy principle from
which it is found that the matrix can be selected as proportional to the identity matrix. A second novel
challenge arises from the desire to control separately the levels of uncertainties on the purely structural

terms and on the structural-thermal terms. To this end, a multiplicative decomposition of the

uncertainty is proposed. Finally, it is observed that the present formulation shares with its counterpart
for non heated structures the potential for the matrix K to not be positive definite owing to
differences in nonlinear formulation between finite element and reduced order modeling. Fortunately,
strategies developed very recently to mitigate this issue are shown to be applicable. With all
theoretical and implementation issues resolved, the methodology is demonstrated on an example.

The plan of this paper is as follows. The next two sections provide reviews of (a) the reduced
order modeling methods on which uncertainty is introduced and (b) the maximum entropy

nonparametric approach. In fact, two versions of this approach are described which are used
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for different aspects of the uncertainty modeling. The construction of the matrix K¢ is

achieved next followed by the detailed strategies proposed for the resolution of the implementation

challenges described above. Finally, the applicability of the methodology is demonstrated.

COUPLED STRUCTURAL-THERMAL REDUCED ORDER MODEL (ROM)
The coupled structural-thermal reduced order models employed here are the extension to
geometrically nonlinear problems of the modal models used in linear analysis. They are based
on the representation of the temperature and displacements of the finite element nodes,
stacked in the time varying vectors T(t) and u(t), in expansion forms, i.e.
3 n
T(t)= YT (1)
n=1
d n
u(t)= X dn(t) v )
n=1
In these equations, T and w(n) are the thermal and structural basis functions, or modes,

while t,(t) and g, (t) are the time-dependent thermal and structural generalized coordinates.

Assuming that the material properties (elasticity tensor, coefficient of thermal expansion) do
not vary with temperature, it is found, e.g. [19], for the structural generalized coordinates that

(summation over repeated indices assumed)

M'Jql + Dquj +[Ki(jl) + K-(th) ‘C|:| qJ + K(z)qJC“ + K(3)

th
it ijl fipdjadp =F+F"Vn . Q)

0 k@ kO

ij o Kijis Kijip are linear,

In this equation, M;; denotes the elements of the mass matrix, K

quadratic, and cubic stiffness coefficients and F are the modal mechanical forces. The

parameters Ki(jtlh) and F“(th) represent the sole coupling terms with the temperature field

which is described by the governing equations [19,20]
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Bij ‘.Cj+|2ij’tj=|:’i (4)

where Bjj and Kij are the capacitance and conductance matrices of the finite element model,

which are assumed here not to depend on temperature. The source term P represents the

combined effects of an applied flux, nonzero homogenous boundary conditions, radiation,
latency, etc., as applicable.

Having established the forms of the governing equations, i.e., Eqs (3) and (4), it remains to

address (i) the selection of the basis functions T (M and \y(n) and (ii) the identification of all

stiffness, mass, conductance, and capacitance parameters from commercial finite element
software. The latter effort is detailed in [19,21-23] for temperature independent structural
properties and has been extended in [20] when they vary linearly with the local temperature.
The former issue has also been addressed, in [22] for the structural problem, see also [21,23]
for the linear + dual modes basis selected here. The construction of the thermal basis has been
investigated in a series of papers [19,24-27] and can be achieved from a series snapshots of
the temperature distribution, e.g., [24], a priori from the conductance and capacitance matrices
[19], or using a combination of a priori information and a few snapshots [25-27].

The above discussion demonstrates that coupled nonlinear structural-thermal reduced
order models can be constructed from well characterized finite element models. Given this
state of the art, it is then timely to consider the introduction of uncertainty in these models to
bridge the gap between designed and realized structures and assess the effects of the

differences between them.

UNCERTAINTY MODELING
Basis: Random or Deterministic

When introducing uncertainty in an analysis carried out in a reduced order modeling

DISTRIBUTION A: Distribution approved for public release.



framework, as in Eqs (1)-(4), the first question to address is whether the basis functions T ()

and w(n) can be kept the same as in the mean model (i.e., the model without uncertainty) or

whether they need to be modified. The latter strategy is necessary when the uncertainty
triggers a new physical behavior (e.g., buckling not anticipated in the mean model) that is not
appropriately captured with the mean model basis. This issue can be prevented by adopting at
the onset a basis that addresses not just the mean model behavior but also a broader physics.
This is the approach selected here so that the basis functions will remain constant through the
uncertainty analysis.
Maximum Entropy Nonparametric Modeling

As described in the introduction, the maximum entropy-based nonparametric stochastic
modeling approach initially proposed by Soize [1], see [2,3] for recent comprehensive
reviews, is an elegant alternative to the randomization of several parameters/properties of the
computational model. It proceeds directly from the mean model matrices, randomizing them
so that they always satisfy physical requirements (positive definiteness, symmetry, etc.) and
that the joint distribution of their elements achieves the maximum of the entropy. Moreover,
as discussed in [1-3], this approach not only permits the modeling of aleatoric (or
parameter/data) uncertainty but also some epistemic (or model) uncertainty.

The original formulation of this method [1] focuses on symmetric positive definite NxN

matrices A for which it assumes that the mean A is known. This limited information is not

sufficient to uniquely define the joint probability density function of the elements of A,

denoted as p A(a). Faced with this issue, Soize proposed in [1] that this joint probability

density function be selected as the one that maximizes the entropy S given the available

information. That is, pp (a) should maximize
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S=—[ pa(a)in pa(a)da (5)

Q

under the constraints of

Unit total probability: I pa(a)da=1 (6)
Q

Given mean: I apa(a)da=A. (7)
Q

In addition to the above constraints, it is also imposed that (see discussion in the sequel)

Iln[det(a)] pa(a)da = v finite. (®)
Q
In the above equations, the support Q of the probability density function is then such that the
matrix A is positive definite, or equivalently that it admits a Cholesky decomposition, i.e.,
~ST o~ L ~ .. ~
Q:{a: LL ;L0 j=L..,N i[l—ij e(—oo,+oo),| > J:|m[Lii 6[0,4—00)}}. )

The probability density function p A(a) maximizing S given the constraints of Eqs (6)-
(8) can be derived by calculus of variations and is found to be

pA(a):(f[det(a)]kO_1 eXp|:—tr( ﬂTa)} (10)

where C is the appropriate constant to satisfy the normalization condition, Eq. (6) and p and
Lo are the Lagrange multipliers associated with the constraints of Eqs (7) and (8),
respectively. After a change of random variables, it is found that the matrices A of joint

probability density function pp(a), Eq. (10), can be generated as follows. First, the mean

matrix A is decomposed as

A=LL" (11)
e.g., by Cholesky factorization. Then, random matrices A are generated as
A=LHHTL" (12)
where H is a lower triangular matrix such that (see also Fig. 1)
(1) its off-diagonal elements Hj; , i=l, are normally distributed (Gaussian) random
10
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variables with standard deviation o =1/,/2u , and
(2) its diagonal elements H;; are obtained as Hjj =,/Yjj/p where Yj; is Gamma
distributed with parameter (p(i)— 1)/ 2 where

p(i)=n—i+2xy—1land p=(n+2xy—-1)/2 (13)

Figure 1. Structure of the random H matrices with N =8, 1 =2, and Ay=1 and 10.
In the above equations, the parameter Ay > 0 is the free parameter of the statistical

distribution of the random matrices A. An alternative parametrization is through the
dispersion parameter & defined as

52 = N +1
N+2hg—1"

(14)
Maximum Entropy Nonparametric Modeling for Localized Responses

A modification of the nonparametric approach has recently [28] been proposed which is
applicable to problems that exhibit a localized response and will be used in the sequel. For

such problems, the approach described in the previous section may lead, as part of its

epistemic uncertainty modeling, to a more extended response that can be expected. The

11
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recapture of the local behavior can be achieved by first splitting the matrices A and their mean

A into components that promote the local response and global components of the response,
modeling them separately to maintain their characters, and finally reassembling the two

components. Specifically, see [28] for details, let
N TN T
AL =2 0 0 (15)
i
where A is the smallest eigenvalue of A and ¢; the ith eigenvector of that matrix. Then, the

global matrix Ag is obtained as

Ag=A-A_ . (16)
Random matrices A are then generated as

A=Ag+AL. (17)
where, given its global character, Ag is modeled using the nonparametric approach described

in the previous section, i.e., following Egs (5)-(8) and Fig. 1, and with a specified value of o.
Moreover, to maintain its local character, the matrix A is expressed as
T~ I
AL=AY i 6 (18)
i
where the random variable A is

A=aY, (19)

with Y| is a Gamma random variable with coefficient of variation §; and o is a deterministic
coefficient such that
E[A]=. (20)
Modeling of Conductance and Capacitance Matrices
Uncertainty in the conductance and capacitance properties of the structure can be included

in the reduced order model by modeling the corresponding ROM matrices (conductance

and/or capacitance) using the above nonparametric approaches as these matrices are

12
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symmetric and positive definite.

Modeling of the Structural and Coupling Properties
The next task is the modeling of uncertainties in the material properties that affect the
structural ROM, e.g., the tensor of elasticity, coefficient of thermal expansion. The intent here

(2) (3) (th) (th)
il - Kijip» Kiji > and Fy

is on generating random values of the parameters Ki(jl) , K
directly, as opposed to simulating the material properties in the finite element then mapping
them to the ROM. To proceed in this manner, it is necessary to first establish the
mathematical/physical properties that those parameters must satisfy, then construct simulation
algorithms that maintain these properties for every sample.

Such an effort was carried out in [13] for the structural alone problem, i.e., the simulation

KO

ijlp - More specifically, it was shown that a matrix Kg

of the parameters KD, KD and

ij > ijl
composed of these stiffnesses is positive definite. This property was derived from the

following expressions (see [13,21])

ou™  auy™
K = [ —3—Cikp —— X (21)
QJO Xy X
174 . .
KB = 1R + KR + RiZh )
where
. ouM sy sy (P
Kr%zn)p=f —Cijk —dX (23)
oX | Xy X
Q
and
k@ _1 [ ou{™ au{® " UM au P (24)
W ok oy MM oax) Xy

Qg
In these equations, Q denotes the domain of the structure in the undeformed configuration,

Ui(m)(X) is the mth basis function for the representation of the ith component of the

13
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displacement vector over the continuous domain X € Q. Moreover, Cjyp is the elasticity
tensor.
Next, a reshaping was first performed to transforms the MxMxM third order tensor K®

into a MxM 2 rectangular array K@ and the MxMxMxM fourth order tensor K into a M

2xM 2 square matrix K® | These operations are achieved as follows:

K& =R with  I=(n-DM+p (25)
and
K =Ky  with I=(m-DM+s and J=(n-1)M-+p. (26)

Construct next the expression

(2)

B wy vy +2K5) v vy (27

where Wy, and V| are the components m and | of arbitrary vectors W and V. Then, from Eqs

Eg =K wy wy, +2K

(21)-(24) one finds

(m) (n) (m)
W, Lui Cikio | Wn il +2| W, Lui Ciikl (vJZ(J))+(v| Z(-l))C-MW(vJ Z(J)) dx
OXk P oX X ] ki jk /7] Iw

Q p j
ou(™ ou ™
_ M |~ k @) _ O
_I(Wm a>é- +V) Z§ quk, [wn o +vy 2y |dX = jB,J Ciju By dX
Q Q
(28)
where for notational convenience
(N AP ou (M
2P =D T g By =y oy, Z) (29)
X X X .

Since the elasticity tensor Ciyp is positive definite, it is seen from the last equality of Eq.

(28) that Eg is positive for any vectors W and V. Rewriting this quantity as

®H  g@
T T K K W
Es _[w v ]LZ(Z)T 2IZ(3)HV} (30)

it is seen that the PxP (P =M + M 2) symmetric matrix Kpg defined as

14
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KO KO
“g :LZ(Z)T 2R G1)
is positive definite.

To extend this discussion to include the structural-thermal coupling terms KI5| ), and

F”(th), note first that these parameters can be expressed as [19]

U(m) aU (n) (0
j Cjar oy, TP dX (32)
Q, k
and
ou (™
FO = | axl Cikr oy, T dX . 33)
o, 7k

which are of the same form as Eqs (21)-(24) but involve the strain term o T M Where a is

the coefficient of thermal expansion tensor and T(n)(X) is the nth basis function for the
temperature in the continuous domain X € Q.

Next, proceed in reverse of Eqs (27)-(28) and define
(m)

£ J- W oU;
Cc~— m
% 6Xj

M ou ™
+V| Zij +Zm OLijT(m) Cijkl W X

vy 2D vz g TO [dX (34)

which is positive for all wy,, V|, and z,,. Expanding the products in the integrand leads to

KO  g@  gth)]ry,
Ec=w' v’ ZT] RAT Hg® gy (35)
T g ()|,

where K(”‘) is the M 2xp rectangular array obtained by reshaping the third order tensor K (th)

according to

RV =R with  I=(i-1)M+] (36)

and K (tt) is the uxp symmetric, positive definite matrix of components

15
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KD~ jajkT(m)cjk"aer(”) dx (37)
Q
Since the expression E¢ of Eq. (34) is positive for all wy,, v, and z,, it is concluded that

the QxQ (Q=M +p+M 2) symmetric matrix K¢

KO RO g(th)
Ke =| KOT 2@ gt (38)
pT g ()

is positive definite.

The above property provides a clear path for the simulation of parameters Ki(jl) , Ki(j%) ,

KO K

ijlp > Kiji > and Fifth) within the maximum entropy nonparametric approach. Specifically,

form first the matrix KC of the mean model from the parameters Ki(jl) , Ki(j%)’ Ki(j?;)) , Ki(jtlh) ,

Fifth), and K,(Tﬁ]) of the finite element model of the mean structure. Then, proceed with the

simulation of random matrices K according to Eqs (11)-(14) and Fig. 1, i.e.,

Ke = Lk [k and Ke =Lk Hk Hk Lk~ (39),(40)

where (assuming a Cholesky decomposition of K¢ )

) o o HY o o
L= ) o and  He=|HEY HY o | @n@)
Y oY o i 1) He

where the subscripts S and T refer to the structural and thermal part of the model.

Finally, decompose the random matrices K of Eq. (40) according to the partition of Eq.

(38) and identify the random parameters Ki(jl) , Ki(j%) , Kl(ﬁg , Ki(jtlh) , and Fifth). It is

interesting to note in the above format that the simulation of the thermal-structural coupling

16
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properties Ki(jtlh) and Fifth) is achieved in conjunction with the structural only model but
independently of the thermal properties, e.g., capacitance, conductance.

In the context of unheated linear structures, the constraint of Eq. (8) guarantees that the

mean squared response is finite, see [1-3]. Since these structures are a subset of the nonlinear
geometric ones subjected to temperature considered here, i.e., the matrix K¢ reduces to KM

, Eq. (8) will once again be imposed. Note however that no theoretical result regarding the
finiteness of the mean square response in the nonlinear heated case is currently available.
While the above developments assumed that the elasticity tensor and thermal expansion
were independent of temperature, linear variations of these properties can also be considered
in a deterministic ROM formulation, see [20], and in an uncertain one, see [19] for the
extension of Egs (3), (32)-(38) to the case of the thermal expansion varying with temperature

as an example of the process.

IMPLEMENTATION CHALLENGES

The above process seems clear and well defined but after a closer inspection and trials,
three key challenges were encountered. They are described below separately and their
solutions briefly discussed, see Appendix A and B for details.
(A) Identified coefficients vs. symmetric coefficients

The first challenge in applying the above methodology is that the stiffness coefficients

present in the mean matrix K¢ are neither directly not fully identifiable by the standard
methods discussed in [19-23]. To clarify this issue, it should first be recognized that a series

of terms in Eq. (3) involve the same monomials of the generalized coordinates, e.g. Ki(j%) and

17
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K2

ilj and thus these terms may naturally be regrouped leading to the ROM governing

equations

Mquj + Dquj +[Ki(jl) + KI(JtIh) ’t|i| q] + Kl(j%)qjch + KI(J?[)Jqulqp = Fi + Figth) T - (43)

This equation is very similar to Eq. (3) except that there is no repetition in the monomials

because Ki(j%) and Kfﬁ% are nonzero only for j < | and j < | < p. Note further that the

identification methods discussed in [19-23] yield the coefficients Ki(j%) and Ki(j?p)) not Ki(jIZ)

and Ki(j‘;’g but it is these latter ones which are necessary in Eq. (38). Accordingly, an

intermediate step in the simulation process is to transform one set of quadratic and cubic

2 ~(3
(2) and KO ijl ijlp >

coefficients ( Kiii ijlp *

referred to as “identified”) into another ( K

referred to as “symmetric”). To this end, comparing Egs (3) and (43) it is found that

0 unless p>1>n
0 for I <n Kr(n3r2nn for p=I1=n
Ko = 1 K for I=n K = Kioit + Kinhot +Kily -~ for p=1>n
Kr(nzn)l + Kﬁﬁ% for 1>n K,(n?’g" + Kr(ﬁo])m + Kr(r?ﬂp for p>l=n
2K +2KS +2K ) for p>1>n

(44)
Moreover, as discussed in [13], the symmetry properties of the elasticity tensor and the form

of Eqs (23) and (24) also imply that

s (2 2(2
Ki(jl) = Ki(lj) (45)
and
A _k® _k® _kO
Kmnlp - Knmlp - Kmnpl - Klpmn‘ (46)

Unfortunately, Eqs (44) and (45) are not sufficient to yield a unique set of values of Ki(jIZ)

and K3

ijip from given values of K2 and K&

il iilp except for the one mode situation, i.e., all

18
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indices equal. The problem is further compounded by a similar issue in the transformation of
the quadratic parameters Ki(jlz) to their related coefficients Ki(j%) using Eq. (22). It is thus not
possible to uniquely map the identified coefficients Ki(jlz) and Ki(j?p)) to the corresponding
blocks of the matrix K¢ .

This problem is not specific to the matrix K¢, it is also encountered in the purely

structural situation, i.e., when constructing the matrix Kg, and it has recently been addressed

[29] based on the following observations:

(a) the decomposition of the identified coefficients Ki(jf) and Ki(j?;)) into the parameters Ki(j%)
and Ki(jfg should only be a function of the modes i, j, | and i, j, I, p, respectively.

(b) the decomposition should ensure that the matrix Kg corresponding to the M selected

modes or any subset of these modes, is positive definite, or as close as possible to it.

Accordingly, it was proposed in [29] to proceed in steps, resolving the indeterminacy on

all distinct two-mode coefficients, i.e., KI(JJZ) , KI(IJZ) , KSIZJ) , KSIZI) , Ki(i?j)’ Ki(i?j)’ Ki(j?j)’ and

Ki(j?j) , by enforcing that they satisfy Eqs (22) and (44) and lead to a maximum of the lowest

eigenvalue of the matrix Kp corresponding to the two modes i and j > i.

Next, the indeterminacy on all distinct three-mode coefficients, i.e., Ki(j%) , Kgizl)’ K|(ijz) ,

K, and K

ilp ilip » Was similarly resolved by enforcing that they satisfy Eqs (22) and (44) and

lead to a maximum of the lowest eigenvalue of the matrix Kg corresponding to the three

modes p> 1> j>1.

19

DISTRIBUTION A: Distribution approved for public release.



Finally, the indeterminacy on all distinct four-mode coefficients, i.e., Kl(ﬁg , I(Sg , and

Ki(p?j)l , was again resolved by enforcing that they satisfy Eqs (22) and (44) and lead to a

maximum of the lowest eigenvalue of the matrix Kpg corresponding to the four modes i and |

>1iand | > j > i. Note that the above operations do not alter the mean model, they are only
necessary to introduce the uncertainty.

(B) Lack of positive definiteness of the matrix Kg

After the series of optimization efforts carried out in the previous section, it was found

that the resulting matrix Kg may not be positive definite, see [29] for justification and

examples. In such cases, it was proposed that this matrix either be modified to become
positive definite or that only its positive definite part be randomized. These options proposed

in [29] are summarized here in Appendix A and their applicability to the matrix K¢

discussed. In performing this operation, it is important that the response of the mean model

not be altered visibly, see discussion of Appendix A and [29] for options.
(C) The matrix K (tt) is not well identifiable
An unusual feature of the matrix K¢ is that it involves the matrix K (tt) which does not

appear in the reduced order model equations, Eqs (3) or (43), and thus its
identification/selection requires further discussions.

At first, it was intended to identify the mean value of this matrix. An indirect approach

was devised in which the terms o, T™M and C jKir r T™ were recognized as components

Ir and jk of the thermal only strain tensor sgh) and the corresponding stress tensor cgh) both

induced by the thermal mode n. Then, the coefficient Kr(rftn) corresponds to the integral

20
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(summation over all nodes/elements) of the product sgh) :cgh) . It remained then to
determine the thermal strain and stresses. This was accomplished by applying temperature
along mode n on the structure with all of its nodes restrained, the resulting stress distribution
would then equal cgh) and the corresponding strains agh) could then be obtained using the

tensor of elasticity.
The implementation of this identification approach within Nastran was not successful,

leading, even for very small reduced order models, to matrices K that were not positive

definite. Accordingly, another strategy was devised. Specifically, since K(tt) is only present

in K¢, not in Eqs (3) and (43), its determination is effectively part of the stochastic modeling

effort. Then, its value being unclear, it was argued that K(tt) should be determined by the

entropy optimization effort. It is shown in Appendix B that this condition leads to Lyt , in Eq.

(41), is equal to the identity matrix.

This result completes the determination of the lower triangular matrix Ly , its structural

only blocks E(Sls) , [(525), and E(S3s) are determined by the Cholesky decomposition of the

positive definite Kg resulting of the steps (A) and (B) above. Moreover, from Eqs (38) and

(39),
e T
e ()] e (RO ] e

IMPLEMENTATION OF SEPARATE UNCERTAINTY LEVELS

The matrix K¢ involves two different properties of the structure: its elasticity tensor and

its coefficient of thermal expansion the level of variability of which may be different. This

situation is somewhat similar to the maximum entropy modeling of uncertainties achieved in
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[12] (for a rotordynamics application) and [30] (for an implementation focused on material
properties). In these investigations, it was proposed to compound the effects, i.e., H matrices,
induced by the two types of uncertainties present, i.e., those who maintain a high level
symmetry and those who do not.

In the present context, the compounding of the uncertainties in the elasticity and thermal

expansion tensors can be achieved by expressing Hy as

Hyx =Hy Hg (49)
where
(1)
Hr=| 0 I 0 and Hg = Hgé) HSS) 0| (50), (51)
H(l) H(Z) * 0 0 |

TS TS

In the above equations, | denotes the identity matrix of appropriate dimensions and the *

designates a matrix partition which is irrelevant as it does not arise further in the

computations, affecting only the matrix K(tt) of the random structures. Rewriting Eq. (40)

with (49) yields

Ke =Lk Hr Hs HL HT Ok =(Lk Hr)Hs HE (T Hr ) (52)

it is seen that the randomization of the structural properties is a two-step process. First, is the
randomization by Hy transforming the mean model matrix K¢ into the random one

Ke = Lk Hr HT Tk =(Tx Hr)(Lk H )’ (53)

which serves as a mean model for the further randomization by Hg .

Note in the above process that the random matrix Hy only affects the ST blocks of K¢,

ie., Ki(jtlh) and Fifth) , and thus it models the uncertainty associated with the thermal
expansion which is present only in those terms. On the contrary, the components of the

random matrix Hg will affect all blocks of the K¢ matrix and thus is appropriate for the

22

DISTRIBUTION A: Distribution approved for public release.



modeling of the uncertainty in the elasticity tensor which is present in all elements of K¢ .
The selection of blocks of the Hg and Ht matrices as the identity or the zero matrix

does not conform with the discussion of Eqgs (5)-(14) and Fig. 1 but it is consistent with the
extended nonparametric formulation developed in [4] in which the uncertainty associated with

the corresponding eigenvalues is set to zero while no constraint is imposed on the variability

of the other eigenvalues. Accordingly, the block H1(-ls) and H%) are simulated as off-

diagonal elements of the matrix H of Fig. 1, i.e., as independent identically distributed zero

mean Gaussian random variables with standard deviation o related to a uncertainty level &t .

Finally, the 2x2 top left block of Hg is simulated as in Eqs (5)-(14) and Fig. 1 with the

appropriate matrix size, i.e., M + M 2 , and uncertainty level dg .

EXAMPLE OF APPLICATION
Mean Model
The panel of [20] was considered to demonstrate the application of the above uncertainty
modeling strategies and provide a first assessment of the effects of on the structural-thermal
response uncertainty on the thermal properties and/or on the coefficient of thermal expansion.
Following [20], the panel was modeled as an isotropic clamped-clamped beam with
properties given in Table 1 and was modeled by finite elements in MSC.Nastran. Structurally,
the beam was considered as one-dimensional and was discretized using 40 beam elements
(“CBEAM?” within Nastran). Thermally, the structure was considered as a two-dimensional
object discretized with 40 4-node elements (“CQUAD4” within Nastran) along its length and
6 through the thickness thereby allowing the capture of the temperature distribution along the

beam and across its thickness.
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Table 1. Clamped-Clamped Beam Mean Properties

Beam Length (L) 0.2286 m
Cross-section Width (w) 0.0127 m
Cross-section Thickness (h) | 7.88 10* m
Density 2700 kg/m?
Young’s Modulus 73,000 MPa
Shear Modulus 27,730 MPa
Coeff. Thermal Expansion 25107 /°C
Mesh (CBEAM) 40

The beam was subjected to a triangular flux of width 2A=0.4 L, see Fig. 2, oscillating

about the middle of the beam (ay = L/2) with a frequency Q and an amplitude 5=0.075 L.

The peak heat flux was selected so that the peak temperature on the upper surface of the beam
would be 10°C for the steady problem (Q = 0) while the bottom surface was maintained at
0°C. The ends of the beam were also maintained at 0°C. This thermal loading led to a tip
static deflection of 0.65 thickness and thus to a nonlinear geometric behavior.

A reduced order model of the panel was constructed using 17 structural modes and 12
thermal basis functions, see [20] for details, which led to an excellent prediction of the full
Nastran results. Of particular interest here is the peak response vs. frequency (2 which
displays a peak for QQ approximately equal to 1/2 of the first linear natural frequency of the

beam, see Fig. 3.

Figure 2. Beam panel subjected to an oscillating flux.
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Figure 3. Maximum transverse deflection on the beam and at the beam middle as a function of

the flux oscillation frequency Q as determined from the ROM and Nastran computations.

Uncertainty Modeling and Analysis

The consideration of uncertainty on the conductance properties was first carried out. In
selecting the simulation strategy, Egs (5)-(14) or Eqgs (15)-(20), it was first noted in the results
presented in [20] that the temperature distribution rapidly decayed to zero away from the zone
heated by the triangular flux. This observation suggested that the temperature distribution
exhibited a localized behavior. To confirm this expectation, a concentrated flux was applied to
the beam and the resulting steady temperature was determined using a full finite element
analysis, see Fig. 4(a). It is clearly seen that the temperature is strongly localized. In fact, this
behavior results from the fixed temperature boundary condition on the bottom. If this
condition was replaced by an adiabatic one, the temperature distribution would be the one
shown in Fig. 4(b) which is extended to the entire panel, i.e., exhibits a global behavior.

X X
(a) (b)

Figure 4. Distribution of temperature in a beam due to a single heat flux at the location

marked by X. (a) Adiabatic boundary condition on beam top but zero temperature on bottom.
(b) Adiabatic boundary conditions throughout.
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The localized vs. global character of the temperature distribution can also be assessed
from the eigenvalues of the conductance-capacitance problem as shown in Fig. 5. A localized
character is associated with a series of close eigenvalues occurring at a nonzero value, see Fig.
5(a), while a global problem results when these values are spread in relative values. The
existence of these two opposite behaviors for the mean model suggests that the uncertainty
modeling strategy of the conductance and capacitance matrices should similarly be able to
induce mostly global or mostly local variations. On this basis, the maximum entropy approach
for localized responses, Eqs (15)-(20), is proposed here to model these uncertain matrices

regardless of the thermal boundary conditions.

40 T T T T T T 30

25+

201

Eigenvalues
N}
[=}
Eigenvalues
=

(a)

40 60 80 100 120 o 20 40 60 80 100 120
Mode Number Mode Number

25

05¢ —— K Original
— Adiabatic

0

(©)

0 5 10 15 20 25 30 35
Mode Number

Figure 5. Comparisons of eigenvalues of the conductance-capacitance problem. (a) Case (a)
of Fig. 4, (b) Case (b) of Fig. 4. (c) Comparison.
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Given the localized behavior of the current example problem (with the fixed temperature

boundary conditions), see Fig. 4(a) or 5(a), it was expected that the uncertainty would mostly

be introduced on the local component of the model, i.c., IZL. Nevertheless, the effects of
introducing the uncertainty on IZG and IZL were separately assessed first then jointly. The

overall uncertainty level was quantified as in [2] by the dispersion parameter 6 of Eq. (14).
Then, shown in Fig. 6 is the temperature distribution on the beam at a representative time
induced by the flux oscillating at Q =27 x 40rad/sec (or 40Hz). The yellow band represents

the range of values between the 5th and 95th percentile of the temperature obtained at each

node point for a value of =0.05 on the global component of the conductance matrix, IzG , and

no uncertainty on its local counterpart, IZL . Note that the uncertainty band extends very far
reaching the boundaries as expected from a global behavior. On the contrary, the temperature
induced by a similar uncertainty in IZL remains very localized to the middle of the beam
where the flux is defined, see Fig. 7. Combining these two uncertainties leads to the results of
Fig. 8 which exhibit a broad band near the flux and only a very small band away from it as
would be physically expected.

Having successfully produced random samples of the temperature distribution, it was next
desired to propagate this uncertainty to the structural response. Each sample of the
temperature was input to the structural ROM to determine the response over the range of
oscillation frequencies 2 corresponding to the peak in Fig. 3(b). The resulting uncertainty
band corresponding to the 5th-95th percentile was then evaluated for each frequency and is
shown in Fig. 9. Note the broad range of frequencies over which the peak is observed and that
the width of the (yellow) uncertainty band in the response at peak is wider than the one on the

temperature, i.e., about £ 10% of the mean value vs. + 5% in Fig. 8.
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Figure 6. Uncertainty band induced by introducing uncertainty only in the global component

of the ROM conductance matrix. 40Hz oscillating triangular heat flux.
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10 20 30 40
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Figure 7. Uncertainty band induced by introducing uncertainty only in the local component of

the ROM conductance matrix. 40Hz oscillating triangular heat flux.
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Figure 8. Uncertainty band induced by introducing uncertainty on both local and global
components of the ROM conductance matrix. 40Hz oscillating triangular heat flux.
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Figure 10. Uncertainty band on peak structural (transverse) response as a function of the flux

oscillating frequency. Uncertainty on thermal-structural coupling parameters only.
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Uncertainty in the structural model was considered next and it was first observed that the

mean model matrix Kgwas found to be not positive definite. This observation triggered the

application of one of the remedies described in Appendix A. More specifically, the

uncertainty analysis was carried out according to Eq. (A.11)-(A.13) with the matrix K;; of
size Np= 20. This approach guarantees that the mean model predictions are not modified.

Uncertainty in the thermal expansion, i.e., on the thermal-structural coupling, was introduced
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first through the matrix Hy with Hg set to the identity matrix. This effort was carried out
with a value of & = 2x10. This value seems very small but it gives rise to coefficients of

variation of 0.51% (I =1), 0.29% (I =3), 0.73% (I =5) on the parameters K" and 0.48% (I

=1), 2.53% (1 =3), 7.09% (I =5) on Fl(lth) which are the key driving terms to the first and

dominant structural mode. Then, shown in Fig. 10 is the uncertainty band and mean model
prediction of the peak beam (transverse) response as a function of frequency. Note that the
width of the band is larger than the above coefficients of variation of the parameters
demonstrating a definite sensitivity of the response with respect to the coefficient of thermal

expansion and thus the importance of carrying such uncertainty analyses.
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Figure 11. Uncertainty band on peak structural (transverse) response as a function of the flux
oscillating frequency. Uncertainty on structural parameters only.

The uncertainty on the structural part only was also considered and implemented through

the matrix Hg with Hy set to the identity matrix. This effort was carried out with a value of

O = 0.03 which corresponds to a coefficient of variation of the first natural frequency of

0.34%. Then, shown in Fig. 11 are the uncertainty band and mean model prediction of the
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peak beam (transverse) response as a function of frequency. Once again, it is seen that the
uncertainty level on the response is much larger than it is for the model coefficients,
confirming the sensitivity of the response. Finally, shown in Fig. 12 is uncertainty band
induced by both structural and thermal expansion uncertainties. As expected, this band is

wider than the ones seen in Figs. 10 and 11 and corresponding to each uncertainty separately.
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Figure 12. Uncertainty band on peak structural (transverse) response as a function of the flux
oscillating frequency. Uncertainty on structural and thermal-structural coupling parameters.

SUMMARY

The focus of this investigation has been on the comprehensive modeling and assessment
of uncertainty on thermal and structural properties on the temperature and response of heated
structures. This study was conducted directly on coupled thermal-structural reduced order
models using maximum entropy concepts to randomize the associated matrices. Moreover,
nonlinear geometric effects were included in the structural ROM. The resulting analysis is
thus carried out very efficiently as compared to a similar effort involving a modeling of
uncertainty at the finite element model level.

The uncertainty on the conductance properties was considered first. Using a particular
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beam example, it was shown that the behavior of the temperature distribution may be strongly
dependent on the boundary conditions, i.e., being localized near the applied flux or very
global. Then, the simulation strategy chosen for the uncertain ROM conductance matrices is a
recent extension of the nonparametric approach in which the local and global characters of the
uncertainty on the temperature can be separately controlled. Accordingly, this approach is
applicable to the various types of thermal boundary conditions. This uncertainty on the
thermal properties was propagated to the nonlinear structural response by imposing the
random temperature distributions on the panel. The results demonstrate a level of variability
of the response that is similar to that of the temperature distributions.

The uncertainties on the structural, i.e., structural and thermal-structural coupling (thermal
expansion) properties was considered next. It was shown that these uncertainties may indeed
be modeled directly at the ROM level and both appear through the positive definite matrix

Kc of Eq. (38). Yet, the formulation permits the imposition of uncertainties on either

properties separately or together through their compounding in Eq. (49). Further, practical
implementation details that appear when the mean ROM is identified from a black box finite
element code were pointed out and resolved in a general setting. The application of these
concepts to the beam example was finally performed and it was observed that a coefficient of
variation around 0.5% of the key structural-thermal coupling terms led to an increased
variability, of the order of £2%, of the structural response near its peak demonstrating a
significant sensitivity of this response with respect to the coefficient of thermal expansion
uncertainty. A similar sensitivity was also observed with respect to the structural only

parameters of the model.
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APPENDIX A
As stated in the main text, the process to render the matrix Kg positive definite was
achieved in [29]

(a) without affecting the part of Kpg that is positive definite, e.g., the linear stiffness matrix

K(l), and
(b) inducing the smallest changes possible to this matrix.
The condition (a) has been achieved iteratively by constructing the biggest block of the

original matrix Kg that is positive definite. This block is at least of size M since the linear

stiffness matrix K is positive definite. Accordingly, the top left block of Kg of size M+1

is first considered and it is checked for positive definiteness (e.g., by constructing its
Cholesky decomposition). If it is positive definite, the algorithm moves to the top left block of
size M+2 and the process is repeated.

Otherwise, a permutation of the rows and columns M+1 and M+2 is performed. If the top
left block of size M+1 is now positive definite, the algorithm accepts the permutation and
moves forward to the top left block of size M+2. On the contrary, the permutation between
rows M+1 and M+2 is reversed and a permutation of rows M+1 and M+3 is performed

followed by a positive definiteness check. This process concludes when no permutation of
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rows and columns achieves an increase in the size of the top left block of Kg which is
positive definite.
At that point, the matrix Kpg has been transformed in a symmetric matrix KB which has

the form

T
Ki2 Ko

where Kjj is positive definite and of size Ny, Ky, is of size Npx Ny, and Ky, is of size

K, K
KB{ 1 12} (A1)

Ny x Ny where Ny =M?+M - N,.

The task (b) above then proceeds with replacing the matrix Kg by

R Kir Kz 0 A
KB = T + T = KB +A (A2)
Ki2 Ko | [A1 Ay

where the matrix A will be selected to have the minimum Frobenius norm under the constraint
that Kpg is at least positive semidefinite. The solution of this nonlinear optimization problem

will be obtained iteratively through a sequence of linear optimization problems in which the

positive definiteness constraint is enforced linearly. This process leads at iteration m to [29]

T T

~D[ ~ ~(2)| ~(2

A=Y i )[wi( )J Ay= Y wi¥ )[wi( )} (A3)(A4)
7\.i<0 }\.i<0

where j; and A; are the eigenvalues of the matrix RB at iteration m. Moreover, the

eigenvectors are partitioned into vectors \T/i(l) and \T/i(z) of Np and N, components,

. T - (1) U - (2) T . : .
respectively. That is, i =|| ¥; \z . Finally, the coefficients p; are solutions of
i i [ i

the linear system of equations

- T T
NZ (Zari bri "'brzi )Hr =—Aj with a :[\T’(rlq \T’gl) and byg :[\T’gq \T’gz) (A.5)
Ap<0
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Solving the linear system of equations (A.5) yields the values of the coefficients p; which
can then be reintroduced in Eq. (A.3) and (A.4) to yield the unknown partitions A; and A, of
A.

The resulting matrix KB will then in general not be positive definite but the process can

be repeated with a new KB = KB until a matrix KB positive definite/semidefinite is finally

obtained. At that point, the rows/columns permutations performed to obtain the largest block

positive definite are reversed leading to a matrix Kg which is positive definite and thus could

serve as the basis for the structural uncertainty modeling.

A second option was investigated in [29] in which the uncertainty is introduced only on
the largest part of the model that is consistent with the theory of Eqs (21)-(31) leaving the rest
of it equal to the mean model. That is, uncertainty is introduced on the positive definite block
K;j of Eq. (A.1) while leaving the corresponding matrices K;, and K,, unchanged, equal
to their values resulting for example from the above optimization of Eqs (A.13)-(A.5) or as
the initial conditions of this process.

In principle, achieving the positive definiteness of the structural only component of the

matrix K¢c (i.e., Kpg) is sufficient to enable the stochastic modeling process as defined in

Eqgs (39)-(42). Unfortunately, barely achieving positive definiteness or semidefiniteness

induces ill conditioning in the propagation of the uncertainty to the structural-thermal

matrices of the model. Indeed, if Kpg is singular, then so is [(333) (see Eq. (41) and it is not

possible to determine [%) which should satisfy (see Eq. (39) and (41))

T ) T k) =
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If the matrix Kpg is not singular but has very small eigenvalues, [(TZS) will have large
terms that depend strongly on these small eigenvalues. Considering further that they probably
result from the introduction of the matrix A; and A,, not from an actual property of the
structure, it is concluded that the values of E(TZS) will be large and unphysical.

Another perspective on the same issue is that the existence of a nonzero difference
K (th) _ E(SZS) [QS?T is inconsistent with the theory of Eqgs (32)-(35). Then, proceeding as done

in [29], it is proposed here to introduce the uncertainty only on the part of the model

consistent with the theory leaving any inconsistencies as in the mean model.

To formalize this perspective, note first that if K (th) _ ':(szs) [QS)T is imposed to vanish

then [%) can be selected as zero to satisfy Eq. (A.6). Next, rewriting the matrix K¢ in a
partition consistent with Eq. (A.1) leads to

K11 Kio+41  Kyz

Ke=|Kh+A] Ky+A, Koy =KD +KE. (A.7)
K3 <Lk
In this equation,
Ki Kio+Ar Kz 0 0 0
KO =KL +A] Kyp+a, R | and KP=[0 0 Ky;—R| (AS8)
KT RT k@ 0 KL-RT 0
where R is a matrix such that the Cholesky decomposition of K((:l) is of the form
L; 0 o
CY=|5; Ly o0 (A.9)
Ly, 0 |

in which the presence of the identity matrix in the 33 block results from the discussion of
Appendix B. Moreover, the null matrix in the 32 block is the vanishing block [(TZS)

Performing the product of Eq. (39) leads to
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OiLy=Kyps 0y =G [Kip +4]; By = 07Ky3; and finally R=105, 5 . (A.10)
which fully defines E(Ii) . Uncertainty can then be introduced by randomizing the matrix Kg)

only, keeping Kéz) as a deterministic addition to each random sample.

Note in the above discussion that the matrix L,, is typically very small as a result of the

modification process of Eq. (A.2)-(A.5) which aims at only reaching positive definiteness for

the matrix Kg. A simplification of the approach of Eqs (A.7)-(A.10) can then be conceived

that simply assumes L,, = 0 leading to the matrix

L, 00
LY = Ly 0 0f. (A.11)
Ly 0 |

Since the matrix E22 is no longer of concern, the modification process of Eq. (A.2)-(A.5) can

be further sidestepped and the blocks L,; and Ls; evaluated directly from their counterparts

Ki2 and K3 before Eqs (A.2)-(A.5). That is,
L0, =Ky ; Oby=CiKyp; Lty = D iKya; and finally R =Ly L4 A12
b1 =Kyps Ly =L1Kyps L3y =L1Ky3; and finally R=15; Lg; . (A.12)

To avoid a change of the mean model, the matrix K((:2) is then selected as

0 0 0
2 = T
K& =|0 Ky-Lylh; Ky-R (A.13)
0 KI-RT 0

and is not randomized.
A further modification of this approach can be conceived that combines the above
discussion with the alternative approach of [29]. That is, the structural uncertainty modeling is

limited to the block K;; leaving the corresponding matrices K;, and K,, unchanged. In this
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final framework, only the blocks K;;, K;3, and K are affected by the uncertainty. Then,

the matrix K¢ can be reduced, for the uncertainty modeling, to

Kii  Kis
KS = (A.14)
Cc {KL K(tt)

all other terms in K¢ remaining equal to their tuned counterparts. The random samples of

K C(:S) can then be obtained as

< < T RO HE HET WO [T A1s)
where
= I 0 (s)
[(KS)Z[':“ O]; HO = and H® = Ass 01 (a16), (A.17), (A18)
L31 I HTS * 0 |

consistently with Eqgs (A.9), (50), and (51).

APPENDIX B

This appendix focuses on the determination of the deterministic matrix Lyt yielding a

maximum entropy of the random matrices K¢ as defined by

Sk =] P (k) In py (k)dk. (A.16)
Q

To this end, rewrite first Eq. (40) as

Ke=LxGLk where G=HygHg (A.17),(A.18)
and note that Eq. (A.17) can be viewed as a linear transformation of the random elements of

the matrix G into the random components of K . Accordingly, the joint probability density
functions of the elements of these two matrices are related by the equation

Pke (K)=Pg (9)/|det(J)| and  dk =|det(J)|dg (A.19),(A.20)
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where J is the Jacobian of the transformation. To evaluate this matrix from Eq. (A.7), it is

convenient to rewrite it first stacking the columns of the matrix K¢ below each other and

proceeding similarly with the matrix G consistently with the vec operation. Then, one obtains

vec(KC)zvec([KGEL)z(EK®[K)vec(G) (A21)

where ® denotes the Kronecker product owing to the property

vec(ABC)=(CT ® A)vec(B) (A.22)

for any matrices A, B, and C with consistent dimensions.
From Eq. (A.21), it is found that
J=Lg ®Lg so that det (J) =det Ly )2 =Ttk (A23),(A24)
i
where the last equality holds owing to the triangular structure of Ly .

Next, combining Eq. (A.16), (A.19), and (A.20), it is found that

Sk == | Pe(9)In| pe (9)/|det(3)]dg. (A25)
Qc
where Qg is the appropriate domain of variations of the matrices ¢. Since J is a constant

matrix (independent of g), Eq. (A.25) reduces to

Sk =In[[det(I)[] [ pe(9)dg— [ ps(9)in[pg(g)]dg=In[|det(3)|]+Sc (A26)

where Sg is the entropy of the matrices G and is independent of Ly . Recognizing that

det(3) =[det(x )] = [det(t(sls) )det([(;s)jdet(fﬂ- )T (A27)

it is concluded that maximizing the entropy Sk is achieved when the determinant of Lyy is

as large as possible, implying that some scaling constraint should be added to the problem.

In this regard, consider the effect of Lyt on the simulated reduced order model

coefficients. This matrix affects only the random coefficients Ki(jtlh) and F“(th) through the
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products Lyt H1(-ls) and Lyp H%), i.e., Ly7 provides a scaling of the effects of Hy which
are all proportional to the standard deviation . So, increasing uniformly Ly7 is equivalent to

increasing o. Accordingly, it is not possible to specify or identify both a uniform scaling of

Ly7 and the standard deviation 6. The approach chosen here is then to constraint the uniform

scaling so that ¢ can be a true parameter of the model. Thus, to the maximization of the

entropy is now added the scaling constraint

|Crr |z =h- (A.28)

The lower triangular matrix L1 sought leads to a maximum value of its determinant while

satisfying Eq. (A.28). Proceeding with a Lagrange multiplier, it is desired to find the elements

Eij ,i>], of Ly7 such that ;>0 and

no u —
Y=[1Li+y| 22 Lj—u (A.29)
i=1 i=1j<i
is maximum where y is the Lagrange multiplier. Differentiating Eq. (A.29) with respect to Eij

i # j demonstrates first that these components must all be zero and thus the matrix Ly7 is

diagonal. Then, differentiating Eq. (A.29) with respect to Ejj yields

ne _ uo
[T Gi+2vCj=0  or  J]Gi+2yC=0 (A30),(A31)
i=Li#] i=1

where Eq. (A.31) results from (A.30) by multiplication by Ej j# 0. Since the product term in
Eq. (A.31) is independent of Ejj , it is concluded that E%j is independent of the index j and

thus, from Eq. (A.28), E%j = 1. Since the diagonal terms Ejj must be positive, one obtains Ejj

= 1 for all j and thus the lower triangular matrix Lyt sought equals the identity matrix.
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ABSTRACT

The non-intrusive construction of reduced order models (ROMs) for the prediction of the response of structures
undergoing large deformations has received significant attention, and new challenges are arising when it is extended
to the coupled structural-thermal or structural-thermal-aerodynamic problems. One such challenge is the
construction of the basis functions. In the present investigation, a detailed analysis of possible enrichments that
could be used and their performance is carried out. This study is first on a piezoelectric beam which exhibits a
thermal-piezoelectric analogy. The potential enrichments can be differentiated based on which effects they include
of:

(i) the equivalent forces (right-hand-side of governing equations),

(i1) the change in structural behavior due to induced thermal stresses (left-hand-side of governing equations), and
(iii) nonlinear geometric effects (left-hand-side of governing equations).

Enrichments that include 1, 2, or all 3 of the above effects are constructed and their usefulness to capture the
response of the beam is studied. It is found that the enrichment has to include all the three effects, and the one
derived from the nonlinear response data corresponding to the applied temperature field as a single thermal mode,
has the optimal performance. A similar study is repeated in connection with a curved panel subjected to local
heating, and similar behavior is observed.

Keywords: heated structures, nonlinear reduced order modeling, enrichment for thermal effects

INTRODUCTION

The non-intrusive construction of reduced order models (ROMs) for the prediction of the response of structures
undergoing large deformations, i.e., with nonlinear geometric effects, due to mechanical loading has received
significant attention in the last two decades. The key components of this modeling, i.e., (i) the form of the ROM
governing equations, (ii) the selection of the basis functions to approximate the response, and (iii) identification
strategies of the ROM coefficients from commercial finite element software have all been well developed and are
still progressing.

In recent years, this non-intrusive ROM has been extended to the coupled structural-thermal or structural-thermal-
aerodynamic problems, especially in the context of hypersonic vehicles [1-5]. The high-temperature thermal loading
arising from the hypersonic environment brings new challenges to the development of the ROM, particularly for the
construction of the basis functions. Appropriate bases have been devised by adding enrichments that capture the
effects of the thermal loading to the basis constructed for mechanical loads only. However, the form of these
enrichments has varied with the particular application.

In this light, the focus of the present investigation is on a detailed analysis of the possible enrichments that could be
used and their potential benefits. A beam with a piezoelectric actuating patch [6] is studied first since the
piezoelectric effect shows similar behavior as the thermal effect. Potential effects are identified for the enrichment to
take into account, and possible enrichment options including part or all of these effects are constructed and their
usefulness to capture the structural response is studied. A similar investigation is repeated for the curved panel of [7]
subjected to local heating.

COUPLED STRUCTURAL-THERMAL NLROM
In the coupled structural-thermal nonlinear reduced order model (NLROM), structural displacement field u and the
temperature field T are expressed as
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where the functions ¢™(x) and T™(X) are structural and thermal basis functions (modes) defined in the

-3 ()T (%)

n=1

undeformed configuration, respectively. They satisfy the corresponding boundary conditions.

Using the Galerkin approach, the governing equations of the coupled structural-thermal NLROM have been derived
based on the thermoelasticity theory. The detail of the formulation can be found in [3]. When the structural
properties are independent of the temperature and the effects of the latency and the change of geometry are small
hence ignored, the governing equation for the structural part is expressed as

. . 1 th 2 3 th

Mijd + Dy dj + K~ Km0+ KD aj 0+ K aj arap =F + R )
The thermal effects on the structural deformation are two-folds: one is the term Ki(jtlh)rl on the left hand side (LHS)

of the equation, which alters the linear stiffness of the structure, usually inducing a softening effect responsible for
thermal buckling; the other is the term Fifth)Tl on the right hand side (RHS) of the equation, which gives rise to an

applied force inducing inplane deformation. This inplane deformation is different from the membrane stretching
effect due to the geometric nonlinear effect of large deformation as shown later.
The current investigation is focused on the construction of the structural basis, 4™ (X), in the coupled structural-

thermal ROM. It can be seen from Eq.(3) that the structural basis has to capture the LHS and the RHS thermal
effects, in addition to the nonlinear geometric effect due to large structural deformation.

The general construction strategy for the structural basis is an “enrichment” approach, that is, some enrichment
modes will be sought as the addition to an isothermal (cold) structural basis which is assumed to be available. In the
current investigation, various enrichment options are studied to see whether a nonlinear enrichment could be
successful without the need of the data having all three effects. To help classify these enrichment options, a triplet of
I’s or 0’s will be attached to them. The first number in the triplet refers to whether the RHS thermal effect is
included, 1 if it is, O otherwise. The second number refers to whether the LHS thermal effect is included, 1 if it is, O
otherwise. Finally, the third number of the triplet refers to the presence of geometric nonlinearity, it is a 1 if the
enrichment is computed with nonlinearity, 0 otherwise.

To assess the quality of the enriched basis, the representation error is employed, defined as:

£e = |uasis —Unastran | «100% > 4)
"HNastran "

where Uy.ran 1S the vector of structural response (i.e., Nastran displacement), and U, .. is its best approximation

for a given basis @, expressed as

Upasis = P - Aproj > ®)

where Uproj is the vector of projection coefficients, which is obtained by the least squares method. The

displacement vector U could be the vector of displacements in all six DOFs or in a single DOF (usually a translation
DOF, transverse or inplane).

INVESTIGATION OF ENRICHMENT OPTIONS

Beam with piezoelectric actuating patch

The first structure to study is a beam with a piezoelectric actuating patch as shown in Fig. 1. The properties of the
beam are listed in Table 1.
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Figure 1. Beam with a piezoelectric patch [6].

The width of the beam for the built-up components (layers 3-7) is slightly less than that for the bottom two layers.
Each layer is assumed to be made of a linearly elastic material of Young’s modulus (E), Poisson’s ratio (v), and

density (p) as listed in Table 1. Also given in the table are the piezoelectric properties €;;; and &3;3 of the PZT layer.
The beam is fully clamped on both sides.

Table 1. Properties of the layers of the beam (bottom to top) [6]

Layer Material Width Thick. E v p €311 8
um nm GPa kg/m3 C/m? 33
F/m
1 Si 1 340 169 0.3 2500 - -
2 SiO, 1 10 70 0.17 2150 - -
3 Ti 0.9 10 110 0.32 4510 - -
4 Pt 0.9 80 145 0.35 21450 - -
5 PZT 0.9 110 96 0.45 7800 17.16 2.1210°
6 Ti 0.9 10 145 0.32 4510 - -
7 Pt 0.9 80 96 0.35 21450 - -

A finite element model of the beam was created in Nastran with 40 (along length) x 4 (across width) standard shell
elements (CQUAD4). To model the layup of the composite cross-section across the beam, PCOMP cards were used.
Since Nastran does not include piezoelectric elements in its library, the thermal analogy was employed with a
coefficient of thermal expansion nonzero along the beam axis only. This anisotropy was implemented within
NASTRAN through a MATS card. Further details can be found in [6].

With the thermal analogy used for the piezoelectric effect, assuming the electric field is expressed as

Ny .

E(X,1)=2 7, ()T (%) ©)
n=l1

the governing equation of the ROM for the beam is the same as Eq.(3), except that the terms Ki(jtlh)rl and Fifth)'fl

now represent the piezoelectric effects on the structural deformation.

In order to study various enrichment options, an isothermal basis of the beam is firstly constructed. This basis has 18
structural modes including 5 linear modes and 13 duals (BasisSL13D). Before proceeding with any enrichment, it is
instructive to first assess how well (or badly) the isothermal basis represents the structural responses to the thermal
load.

For this beam structure, the thermal load is actually a static voltage applied on the piezoelectric layer, and the
nonlinear structural deformation is computed by Nastran. In Fig. 2(a) is shown the maximum transverse
displacement of the beam as function of the applied voltage. For the nonlinear static deformation with the highest
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applied voltage (150 V), the representation error of the 18-mode isothermal basis is computed by Eq. (4) and shown
in Fig. 2(b). It can be seen that the error in the transverse direction is close to 1% while the error in the inplane
direction is a few percent. It should be noted that the NLROM with this isothermal basis does not predict the
response in Fig. 2(a) well. Therefore, the enrichment is necessary.

2r : 102 5

-e-Transverse, Tz
-e-Nastran -e-Inplane, Tx

0.5

Maximum transverse displacement
(Thickness)
Representation error (%)

o

-
o
o

0 50 100 150 2 4 B8 8 10 12 14 16 18
Applied voltage (V) Number of modes
(a) (b)
Figure 2. Beam subjected to the applied voltage on the piezoelectric layer. (a) Nonlinear static response by Nastran;
(b) Representation error of the isothermal basis for the highest applied voltage.

In a previous work [6], the linear static response of the beam to the applied voltage was used as the linear

enrichment. The representation error was reduced but the prediction is still not good even at smaller applied voltage.

In the current study, this linear enrichment is retained to give a 19-mode basis (BasisSL13D1EL), and the additional

nonlinear enrichment options are implemented, summarized as follows:

(i) Hot duals from thermal modes (1,1,1): dominant POD eigenvectors out of nonlinear displacements due to
temperature loads related to thermal modes. Here the voltage load is taken as the single thermal mode, and the
displacements are computed by Nastran.

(i1) Semi-hot duals from RHS effect of thermal modes (1,0,1): dominant POD eigenvectors out of nonlinear
displacements due to the RHS effect of temperature loads related to thermal modes. The RHS effect is not
included. Same as (1), the voltage load is taken as the single thermal mode, and the displacements are computed
by Nastran.

(iii) Hot Linear-Cold duals (1,0,1): duals from the combination of cold linear modes and linear enrichment modes

(iv) Hot linear modes from thermal modes (1,1,1): linear structural modes around the deformed positions induced by
the temperature loads related to thermal modes. The computation starts as in (1) but the data contains the linear
modes around the deformation position as opposed to the displacements themselves.

(v) Hot linear responses (1,1,0): dominant POD eigenvectors out of linear structural responses due to temperature
loads related to thermal modes. These responses are computed out of the finite element solver using the finite
element linear stiffness matrix of the heated structure and the equivalent forces as computed in (2). Geometric
nonlinearity is not included.

(vi) Buckling modes from thermal modes (0,1,0): buckling modes of the heated structure. These modes include the
LHS effect of temperature loads related to thermal modes when nonlinear geometric deformation is taken into
account.

These enrichment options are implemented and the nonlinear enrichment modes derived from each option are added

to the 19-mode basis (Basis5L13D1EL, common to all options) to obtain the final enriched basis. Once the basis is

obtained, its representation error is computed by Eq. (4). The representation errors of all these options are plotted in

Fig. 3 for comparison.

DISTRIBUTION A: Distribution approved for public release.



N
N
IN

-e-Basis5L13D1EL @ -e-Basis5L13D1EL
;\;\ 1 E -o-NL Enr?chment 1 @ -o-NL Enrichment 1
< { -&-NL Enrichment 2 < 3 -2-NL Enrichment 2
SN -=-NL Enrichment 3 S \ -=-NL Enrichment 3
5 Fos8 ; NL Enrichment 4 el }% NL Enrichment 4
c g { -=-NL Enrichment 5 = 1 -=-NL Enrichment 5
25 { NL Enrichment 6 2 2> { NL Enrichment 6
5 306 g8 |
c c 1 c 14
g o EE % = 8 =i g
O 04 | @ . e T
a \ Q  q -8
© *; o “ gl
€ g5 | @ —
.
RN | ol be
20 25 30 35 20 25 30 35
Number of modes Number of modes
(a)

(b)
Figure 3. Representation error by various enriched structural bases of the nonlinear static response to the highest
applied voltage. (a) Transverse, Tz; and (b) In-plane, Tx.

The error in the transverse direction can be reduced by the linear enrichment further to very small, but the error in
the inplane direction is still a little large. Among all the nonlinear enrichment options, four options could reduce the
inplane error to be smaller than 1%, and option 1 has the most significant reduction. This is not surprising since the
enrichment of option (i) includes all the three effects and is obtained from the same temperature field as resulted
from the applied voltage but at different load levels.

Noting that the first enrichment mode of option (i) has reduced the error to a very small level, only that mode is
taken as the nonlinear enrichment, leading to the 20-mode enriched basis (BasisSL13D1ELI1ENL). The NLROM
with this basis is constructed by identifying the stiffness coefficients and the structural-thermal coupling coefficients
in Eq.(3). Validations of the NLROM are carried out for the range of applied voltages in Fig. 2(a). The comparison
between the Nastran results and the NLROM predictions is shown in Fig. 4, and the matching is quite good.

2 —
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-=-ROMS5L13D1EL1ENL

3| 0.25¢

-e-Nastran
-=-ROMS5L13D1EL1ENL

0.2
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o
o

©
-

0.5
0.05

Maximum transverse displacement
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(Thickness)

0 50 100 150 % 50 100 150
Applied voltage (V) Applied voltage (V)
(a) (b)
Figure 4. Validation of the 20-mode enriched ROM of the beam for the applied voltage load. (a) Transverse, Tz; and
(b) Inplane, Tx.

Curved panel

The second structure to study is a curved panel as shown by its FE model in Fig. 5. It was originally studied by the
AFRL researchers for geometric nonlinear response to large aero-acoustic loading with temperature [7]. The curved
panel is a part of a cylindrical shell with radius of curvature of 100 inch. A finite element model of the curved panel
is constructed using 2457 CQUADA4 shell elements (a 64-by-40 mesh) in Nastran, as shown in Fig. 5. The panel is
curved along the X-axis while straight along the z-axis. When projected on the X-z plane, its dimensions are 9.75 inch
by 15.75 inch, and its thickness is 0.048 in. The panel material is stainless steel with elastic modulus of 2.85x10° psi,
Poisson's ratio of 0.3, and density of 7.48x10™ Ib-sec’/in*. The panel is clamped along all the edges.
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Figure 5. Finite element model of the curved panel.

Similar to the beam model, an isothermal structural basis of the curved panel is firstly constructed for further
enrichment study. The basis has 19 modes including 4 linear modes and 15 duals (Basis4L15D). For the curved
panel, the thermal load is the temperature field due to a local heating shown in Fig. 6(a). The nonlinear static
response of the panel to this temperature load is computed by Nastran and shown in Fig. 6(b).

(@) (b)

Figure 6. Temperature field due to a local heating and structural response. (a) Temperature distribution. (b)
Nonlinear static response by Nastran.

For this local heating scaled at a set of load levels, the nonlinear static responses are computed by Nastran, and the
representation error of the 19-mode isothermal basis with respect to the displacements are checked as shown in Fig.
7. The isothermal basis does not represent the response to the thermal load well, hence the enrichment is necessary.
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Figure 7. Representation error of the isothermal basis.
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The linear static response to this local heating is computed and added to the isothermal basis as the linear
enrichment, then various nonlinear enrichment options are constructed and assessed in terms of the representation
error. A summary of all the options studied is as follows:

(1) Hot duals from thermal modes (1,1,1): dominant POD eigenvectors out of nonlinear displacements due to
temperature loads related to thermal modes including LHS effects. The displacements are determined from
nonlinear finite element computations with temperature field from each thermal mode applied.

(2) Semi-hot duals from RHS effect of thermal modes (1,0,1): dominant POD eigenvectors out of nonlinear
displacements due to the RHS effect of temperature loads related to thermal modes. The temperature effect on
the change of structural properties (LHS) is not included. To determine the displacements, the equivalent forces
from the RHS are fist evaluated. This is achieved by blocking all nodes of the finite element model and
applying the temperature fields. The corresponding reaction forces at the nodes are then equal to the forces on
the right hand side of Eq. (1) at these nodes (changed sign). In a second step, these forces are then applied to the
cold finite element model and scaled to mimic the temperature effect.

(3) Semi-hot linear modes from LHS effect of thermal modes (0,1,0): linear structural modes of the heated structure.
These modes include the LHS effect of temperature loads related to thermal modes taken into account

(4) Hot linear modes from thermal modes (1,1,1): linear structural modes around the deformed positions induced by
the temperature loads related to thermal modes. The computation starts as in (1) but the data contains the linear
modes around the deformation position as opposed to the displacements themselves.

(5) Hot Linear-Cold duals (1,0,1): duals from the combination of cold linear modes and linear enrichment modes

(6) Hot linear responses (1,1,0): dominant POD eigenvectors out of linear structural responses due to temperature
loads related to thermal modes. These responses are computed out of the finite element solver using the finite
element linear stiffness matrix of the heated structure and the equivalent forces as computed in (2). Geometric
nonlinearity is not included.

(7) Hot duals from linear responses (1,1,1): Hot duals from linear responses (1,1,1): these enrichments are
obtained from the nonlinear structural response of the unheated structure to a combination of (i) the force which
is the product of the temperature dependent part of the linear stiffness matrix (i.e., the one inducing the LHS
effect) and the linear response to the thermal load and (ii) the linear response to the RHS force. The logic for
considering such a loading arises from a transfer of the temperature dependent on the left-hand-side of the
equations of motion for the generalized coordinates to their right-hand-side.

Moreover, as a variation of option (3),

(3a) Buckling modes from LHS effect of thermal modes (0,1,0): buckling modes with temperature loads related to
thermal modes taken into account.

For completeness, the linear enrichment corresponds to the triplet (1,0,0) and the cold duals would be cataloged as
(0,0,1).
The above enrichment options are implemented with the quarter-heating temperature field, and the nonlinear
enrichment modes derived from each option are added to the basis of 4 linear modes, 15 (cold) duals, and 1 linear
enrichment mode (4L15D1EL, common to all options) to obtain the final enriched basis. Once the basis is obtained,
its representation error is computed by Eq. (4). The representation errors of all these options are plotted in Fig. 8 for
assessment.
Similar to the beam example, option (1) is significantly better than the other options, since it includes all the three
effects and is obtained from the same temperature field as the local heating but at different load levels within the
same range. This can be considered as the scenario that the temperature load is taken as a single and the only
thermal mode in the thermal basis, so that the temperature field is perfectly represented by this single-mode thermal
basis. In practice, the temperature field is usually complex and varying with time, and a number of thermal modes
are needed for the thermal basis. For such a scenario, it would be expected that the enrichment option (1) is still the
optimal one, but might be used with each thermal mode and/or their combinations and the enrichment modes are
assembled to obtain a good structural basis.

Having obtained the enriched basis, that is, 5 nonlinear enrichment modes from option (1) added to the 4L15D1EL

basis, leading to the final 25-mode basis (4L15D1EL5SENL), the NLROM is constructed by identifying the stiffness

coefficients and the structural-thermal coupling coefficients in Eq.(3). Validations of the NLROM are carried out for
the local heating at a set of load scales so that the maximum structural displacement is up to about 4 thicknesses.

Shown in Fig. 9 is the comparison between the Nastran results and the NLROM predictions. It can be seen that

excellent matching is achieved.
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CONCLUSION

A systematic investigation of nonlinear enrichment options for the construction of structural bases in coupled
structural-thermal reduced order models is carried out. It is identified that three features are involved in the
structural-thermal coupling, that is,

(1) the excitation force due to the thermal effect (the right-hand-side thermal effect),

(i1) the change in structural stiffness due to thermal stresses (the left-hand-side thermal effect), and

(iii) the large structural deformation (the nonlinear geometric effect)

Two example structures are studied: one is a piezoelectric beam with non-uniform asymmetric actuating load (akin
to a temperature change) and the other is a curved panel subjected to local heating. It is found that the needed
enrichments have to include all the three features, and the one derived from the nonlinear response data has optimal
performance. The NLROM with such an enriched basis gives very good predictions as compared to the finite
element (Nastran) results. The above discussion serves as foundation for the formulation of enrichments for heated
structures in which the temperature is represented as a sum of thermal modes.
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ABSTRACT

One key issue in the reduced order modeling of geometric nonlinear vibration is the identification of stiffness
coefficients of the reduced order model (ROM). For a non-intrusive ROM, the data of modal displacements and
corresponding modal forces or modal tangent stiffness matrices are needed to identify the coefficients. The usual
practice is using the data from commercial finite element software (e.g., Nastran) at an appropriate displacement
level. According to the theoretical formulation of the ROM based on the general elasticity theory, the identified
coefficients are independent of the level at which the data are obtained. In practice, however, this is not the case due
to the inconsistence between the general elasticity formulation and the finite element formulation in the commercial
software. The choice of an appropriate level for data acquisition is thus critical.

In the present study, a multiple-level (ML) identification strategy is proposed to reduce this inconsistence. The basic
idea is to obtain the data at a series of displacement levels and identify each stiffness coefficient at this series of
levels. For each coefficient, a local relative gradient metric is used to find the displacement level at which the
coefficient has the least variation (“most constant™). The value at this level is taken as the identified coefficient.

The implementation procedure of the strategy is presented, and applied to a few structures with reasonable
complexity, including a curved panel, a hat-stiffened panel, and a joined wing. As compared to the regular
identification method, the improvements in the stability and/or the prediction capability and accuracy of the ROM
are observed for each structure.

Keywords: reduced order modeling, geometric nonlinear vibration, multiple level identification of stiffness
coefficients, non-intrusive identification, commercial FE software data

INTRODUCTION

Geometric nonlinear vibration of thin-walled structures has been an active research subject in many engineering
disciplines. One example in the aerospace engineering discipline is the hypersonic aircraft structures in extreme
aerodynamic-thermal environments, e.g., large aerodynamic, thermal, and mechanical loadings with nonlinear
interactions [1-8]. Numerical methods, among which mainly the finite element method, have been developed for
structural response and life predictions [9]. Meanwhile, the computational cost and complexity associated with
numerical methods has motivated the study of reduced order modeling techniques for this subject, see a recent
review [10].

The present study is concerned with one type of the reduced order models, that is, the non-intrusive ROM in which
the nonlinear stiffness coefficients are identified indirectly from the data relating the loads and the nonlinear
displacements. One advantage of the non-intrusive ROM is that these data can be obtained from commercial finite
element software (e.g., Nastran) to address a broad set of complex geometries and boundary conditions experienced
in practice. Such reduced order models have been constructed for a large number of structures, and their strong
potentials have been demonstrated [11-25].

In a non-intrusive ROM, a modal basis is constructed to represent a given nonlinear displacement, g( X, t) ,

u(X,t)=>a,(t) 4" (X). (1)
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where g( X ,'[) denotes the vector of physical displacements defined on the finite element degrees of freedom. ¢(n)

are constant basis functions and (t) are the time dependent generalized coordinates.

The governing equation of the ROM can be obtained from the elasticity theory by the Galerkin approach [17],
expressed as

N 3 (1) (2) (3) _
Myd; + Dya; + Ky a; + Kyra;a, + Kg,0,0,0, = F, 2
where M ij denotes the elements of the mass matrix, Ki(jl), Ki(j%) , KI(J?F)) are the linear, quadratic, and cubic

stiffness coefficients, and Fi are the modal forces. The viscous damping matrix { D; i } is added to collectively

represent various dissipation mechanisms following standard practice.

It can be seen that two key issues need to be addressed for a non-intrusive ROM, i.e., the construction of the modal
basis and the identification of nonlinear stiffness coefficients. The present study is concerned with the latter issue.
The nonlinear stiffness coefficients can be directly evaluated using their integral expressions as given in [17].
However, the ROM is usually constructed using the data from commercial finite element software (e.g., Nastran) for
much broader applications, in which an indirect (non-intrusive) identification of these coefficients is desired.

One of such non-intrusive identification methods is the displacement-force method [16, 17], in which a set of
designed static displacements are imposed to the structure and the corresponding nonlinear forces are obtained. They
are then used to compute modal displacements and corresponding modal forces to identify the coefficients according
to the static version of the governing equation, written as,
Ki(jl) q; + Ki(jIZ)qqu + Kiglap) q;4,9, = F. 3

where N denotes the number of modes in the ROM basis, and p is the number of displacement-force data required to
identify the coefficients. A strategy has been developed so that these coefficients are separated into smaller groups
of coefficients and identified independently. The details can be found in [16, 17].

When the basis of a ROM is large, this displacement-force method requires a huge number of data (order of N } ). A
method using the tangent stiffness matrix (K M ) instead of the force in the identification has been developed [25].

This displacement- K™ method replies on the availability of the tangent stiffness matrix for each imposed
displacement. Its advantage is that an N x N matrix (the tangent stiffness matrix) is obtained for each solution, thus a

reduction of the computational effort to O(N 2) is achieved.

The iu element of the tangent stiffness matrix of a ROM can be derived from Eq. (3), expressed as

T 0 ) (3)
Ky’ = E[Kiﬁl) q; + Ki§|2 q;q, + Kijl:;quqlqp] @
= Ki' + [Ki(jﬁ) + Ki(u?]qj + [Kigl3u) + Kiﬁl) + Ki(ljl)]qqu

Imposing a set of designed static displacements to the structure and obtaining the corresponding K (™) matrices, the
coefficients can be identified according to Eq. (4). The details of the algorithm can be found in [25].

In the above methods, the data used in the identification are generated with a single generalized coordinate (q;

value) for each mode in the basis. In other words, each coefficient is basically identified at a single level of imposed
displacement. Theoretically this is acceptable according to the formulation of the ROM, which shows that the

identified coefficients are independent of the (; value. However, when the data from commercial FE software are

used, this is not the case due to the inconsistence between the general elasticity formulation and the finite element
formulation in the commercial software. The choice of an appropriate displacement level (( i value) for data
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acquisition is thus critical. In the present paper, a multiple-level (ML) identification strategy is proposed to reduce
this inconsistence with the objective to improve the prediction capability and/or accuracy of the ROM.

MULTIPLE-LEVEL IDNETIFICATION STRATEGY
The basic idea of the multiple-level identification strategy is described as follows. For a structure, assume a basis of
N modes has been constructed, the multiple-level identification is carried out in three steps:

(1) A setof Ujm values is selected for each mode j, where j=1,2,...,N,and m=1, 2, ..., M representing various
. values giving rise to various maximum displacements covering the range of displacements to be captured b
j giving g g y
the ROM.

(2) For each set of jm Values at the level m, the stiffness coefficients are identified by the regular identification

method (e.g., the displacement- K(T)method) independently. The coefficient is not perfectly constant but a
function of its corresponding q value, i.e., K =K(Q).

(3) Itis expected that the value of a coefficient at a displacement level where it is closest to a constant would be the
best one taken as the identified. To this end, a local relative gradient metric is proposed in the following to find

such a displacement level ((;,, value): for a given (|, value at M =M, , the ¢, values in its vicinity can be
expressed as (;, (0) =0, (1+05;). The local relative gradient of a coefficient is thus given by
dK  dK dg,,  dK
ds dq, do dag,
method, e.g., the central difference method. For each coefficient, the local relative gradient is computed, and the

value corresponding to the displacement level at which it takes the minimum absolute value is taken as the
identified value.

0, » Where the local absolute gradient

can be computed by a numerical

jm

The multiple-level identification strategy can be implemented with any other regular identification method in the
same fashion.

EXAMPLES
The multiple-level identification strategy has been applied to three structures with reasonable complexity: a curved
panel, a hat-stiffened panel, and a joined wing.

Curved panel

The curved panel was originally studied by the AFRL researchers for geometric nonlinear response to large aero-
acoustic loading with temperature [26], whose finite element model is shown in Fig.1. This curved panel is a part of
a cylindrical shell with radius of curvature of 100 inch, curved along the x-axis while straight along the z-axis. When
projected on the X-z plane, the dimension of the panel is 9.75 inch by 15.75 inch, and the thickness of the panel is
0.048 in. The panel material is stainless steel with elastic modulus of 2.85x10° psi, Poisson's ratio of 0.3, and density
of 7.48x10™ Ib-sec¥in*. The panel is clamped along all the edges. The finite element model of the panel is
constructed in MSC/Nastran, and the mesh has 39-by-63 CQUAD4 shell elements and 2560 nodes. A reduced order
model of 17 modes (11 transverse and 7 dual, 11T7D) has been constructed (see the detail in [27]) and the nonlinear

stiffness coefficients are identified using the regular displacement- K (™ method. In the present study, the same 17-
mode basis is used in the multi-level identification.

DISTRIBUTION A: Distribution approved for public release.



Figure 1. Finite element model of the curved panel.

A dynamic load case is considered to check the performance of the multi-level ROM and the regular ROM, as
compared to the Nastran results. The loading is a spatially uniform pressure of 160 dB (OASPL) and temporally
white noise with the cut-off frequency of 500 Hz. With this loading, the standard deviation of the center transverse
displacement is about 0.24 thickness. In Fig.2 are shown the power spectral density (PSD) results of the
displacements in the three directions at a quarter point of the panel. It can be seen that the multi-level ROM captures
the first frequency peak of the PSD in the transverse (y) and the dominant inplane (x) directions very well. For the
rest frequency peaks, the multi-level ROM also shows better matching with the Nastran results than the regular
ROM.

It is worth noting that the regular ROM has a convergence issue when the pressure level is further increased to 170
dB, whereas the multi-level ROM converges at this increased load level. This suggests the multiple-level
identification strategy also improve the prediction capability (stability) of the ROM.
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Figure 2. Comparison of ROM predictions of power spectral density at a quarter node. (a) Transverse displacement,
Ty; (b) Inplane displacement, Tx; and (c) Inplane displacement, Tz.
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Hat-stiffened panel

The hat-stiffened panel, whose finite element model is shown in Fig.3, is a highly asymmetric structure which
composed of a flat symmetric rectangular plate (referred to as the skin) and a U open section rigidly connected along
its entire length to the skin on only one side (referred to as the bottom). It is clamped at the two ends of the U section
and free on the other two sides. Consistently with the hat stiffener, the skin is constrained at the ends only, with the
U section remaining free. This panel is 25.4 cm long (in the X direction), 2.54 ¢cm high (in the z direction), and 12.7
cm wide (in the y direction). The thickness of the panel skin is 6.35x10™ m while the thickness of the hat section is
3.175x10™ m. The material properties are selected as follows: Young’s Modulus of 2x10'" Pa, shear modulus of
8x10'° Pa, and density of 7850 kg/m’. The finite element model of the panel is constructed in MSC/Nastran, and the
mesh has totally 360 CQUAD4 shell elements and 378 nodes. A reduced order model of 19 modes (11 transverse
and 8 dual) has been constructed (see the detail in [28]) and the nonlinear stiffness coefficients are identified using

the regular displacement- K™ method. In the present study, the same 17-mode basis is used in the multi-level
identification.

Figure 3. Finite element model of the hat stiffened panel.

The same dynamic load case as for the curved panel is considered here, and the spatially uniform pressure is applied
at a level of 143.5dB, which induces the transverse displacement of a quarter node at a free edge to be about 0.16
thickness (standard deviation). In Fig.4 are shown the power spectral density (PSD) results of the displacements in
the three directions at this free edge node. It can be seen that the multi-level ROM captures the two dominant
frequency peaks of the PSD in the transverse (z) direction very well. For the two inplane directions (X and Y), the
multi-level ROM also shows better matching with the Nastran results than the regular ROM.

The regular ROM also has a convergence issue when the pressure level is further increased to a medium and a high
nonlinear level of 150.9dB and 154.0dB, which give rise to the displacement levels of 0.35 and 0.50 thickness
(standard deviation) respectively, whereas the multi-level ROM converges at these two increased load levels [28].
Again, the multiple-level identification improves the prediction capability (stability) of the ROM.
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Figure 4. Comparison of ROM predictions of power spectral density at a free edge node. (a) Transverse

displacement, Tz; (b) Inplane displacement, Tx; and (c) Inplane displacement, Ty.

Joined wing

The joined wing is in the PrandtIPlane-like concept (box wing), see its finite element model shown in Fig.5. This
joined wing model is essentially two in parallel slender thin panels with their ends at one side joined by a vertical
thin panel, while the ends at the other side (not joined) clamped. Each slender thin panel has a span of 500 mm and a
width of 50 mm. The size of the vertical joining panel is 50 mm by 20 mm. The thickness of all the panels is 1 mm.
The material properties are assumed to be those of aluminum, i.e. Young’s modulus of 6.9x10'° Pa, Poisson's ratio
of 0.33, and density of 2700 kg/m’. The joined wing was modeled in MSC/Nastran with 704 CTRIA shell elements
and 445 nodes. A reduced order model of 22 modes (4 transverse and 18 dual) has been constructed (see the detail in

[29]) and the nonlinear stiffness coefficients are identified using the regular displacement- K™ method. The same
22-mode basis is used in the multi-level identification.

Figure 5. Finite element model of the joined wing.

A static load case is considered to check the performance of the multi-level ROM, as compared to the Nastran and
the regular ROM results. The loading is a uniform pressure downward on the upper branch of the wing, varied from
0 to about 0.27 Pa. It should be noted (as seen in Fig.6) that the joined wing buckles when the pressure is increased
to about 0.25 Pa, which induces significant increase of the displacement. Right before the buckling, the tip
transverse displacement is already quite large, at about 13% of the span. When the buckling happens, the tip
transverse displacement increases to about 27% of the span.

In Fig.6 are shown the tip displacements in the transverse (z) and the inplane (y) directions. The multi-level ROM
has a much better prediction of the pre-buckling responses than the regular ROM, in both directions. Unfortunately,
it is not able to predict the buckling behavior properly, and further refinement of the current strategy to capture such
behavior is in progress.
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CONCLUSION

A multiple-level (ML) identification strategy is proposed to identify nonlinear stiffness coefficients of a non-
intrusive type of reduced order model, when the data from a commercial finite element software (e.g. MSC/Nastran)
are used, with the objective to improve the prediction capability and/or accuracy of the ROM. The basic idea is to
find the displacement level for each coefficient, at which level the variation of this coefficient is the closest to
constant, in order to be consistent with the formulation of the ROM from the elasticity theory. The strategy is
applied to a few structures with reasonable complexity, including a curved panel, a hat-stiffened panel, and a joined
wing. As compared to the ROM identified by the regular method, the improvements in both prediction capability
(stability) and the accuracy of the ROM are achieved.
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ABSTRACT

Reduced order modeling of structures for geometric nonlinear vibration has been an active research subject due to its
advantage of reducing the computational cost associated with using traditional numerical methods. One type of
reduced order models are the non-intrusive ones, for which the ROM is built from data obtained from commercial
finite element software. Their advantage is the capability to handle a broad set of complex geometries and boundary
conditions experienced in practice. Due to inconsistencies between the ROM and commercial software formulations,
however, the constructed ROM cannot be an exact match of the finite element model. Accordingly, epistemic
uncertainty exists in the ROM modeling beside issues of truncation of the number of modes.

In the present study, the epistemic uncertainty associated with nonlinear stiffness coefficients of the non-intrusive
ROM is quantified using a clamped-clamped straight beam as a demonstration example. A Monte Carlo simulation
strategy is used first. Random samples of the optimal displacement level at which the identification is performed are
generated with their probability distribution consistent with those used in the construction of the deterministic ROM.
Random ROM samples are then identified at these random optimal levels, and the corresponding predicted response
for a particular dynamic excitation are computed. Uncertainty bands on these predictions are then calculated to
quantify the uncertainty of the ROM predictions. Furthermore, the nonparametric stochastic approach is considered
as an alternative strategy to generate these uncertainty bands. The mean ROM used is the one identified by the
multiple-level identification method, and the dispersion parameter (a measure of uncertainty level in the approach)
of the corresponding stochastic ROM is determined by the maximum likelihood principle. A number of random
samples of the mean ROM are generated, and their predictions of the same dynamic validation cases are computed,
from which the uncertainty bands of the predictions are obtained. The uncertainty band results are shown to match
the Monte Carlo simulation results very well.

Keywords: uncertainty quantification, nonparametric stochastic approach, nonlinear stiffness coefficients, non-
intrusive reduced order modeling

INTRODUCTION

Reduced order modeling of structures for geometric nonlinear vibration has been an active research subject due to its
advantage of reducing the computational cost associated with using traditional numerical methods [1-14]. One
particular class of applications are hypersonic aircraft structures in extreme aerodynamic-thermal environments, e.g.,
large aerodynamic, thermal, and mechanical loadings with nonlinear interactions [15-17].

One type of reduced order models are the non-intrusive ones, for which the ROM is built from data obtained from
commercial finite element software (e.g., Nastran, Abaqus). Their advantage is the capability to handle a broad set
of complex geometries and boundary conditions experienced in practice. Such reduced order models have been
constructed for a large number of structures, and their strong potentials have been demonstrated. The details can be
found in a recent review [18].

In a non-intrusive ROM [7], a modal basis is constructed to represent a given nonlinear displacement, y (X,t),

N

u(X,t)=3"q,(t) ¢"(X)> (1)
n=1

where u(X,t) denotes the vector of physical displacements defined on the finite element degrees of freedom. 4"

are constant basis functions and q, (t) are the time dependent generalized coordinates.

The governing equation of the ROM is derived from the elasticity theory by the Galerkin approach, expressed as
Mijqj + Dijqj + Kiﬁl) qj + Ki(jIZ)qqu + K'(s)qquqp =FK> (2)

ijlp i

DISTRIBUTION A: Distribution approved for public release.



where M i denotes the elements of the mass matrix, Ki(jl) , Ki(j%)’ Kl(ﬁr)) are the linear, quadratic, and cubic stiffness
coefficients, and F; are the modal forces. The viscous damping matrix {Dij } is added to collectively represent
various dissipation mechanisms following standard practice.

The above formulation of the ROM is not necessarily the same as the commercial finite element software, hence the
ROM built upon the data from the commercial software may show some variation from the finite element model
even if a large number of modes are taken. One example is the nonlinear stiffness coefficients. In a non-intrusive
ROM, they are identified from either nonlinear forces or tangent stiffness matrices corresponding to enforced
displacements [19]. The stiffness coefficients are supposed to be independent of the displacement level enforced, but
this is not the case, and a multi-level identification method has been developed to find the optimal displacement
level for each nonlinear stiffness coefficient [20]. The optimal displacement levels show variability from one
coefficient to another, thus the stiffness coefficients identified at these displacement levels. This variation can be
considered as an epistemic uncertainty, that is, uncertainty due to the modeling.

In the present study, this epistemic uncertainty associated with the nonlinear stiffness coefficients is quantified. The
Monte Carlo simulation is firstly carried out as follows. Random samples of optimal displacement levels will be
generated, whose probability distribution is consistent with that observed in the multi-level identification. Random
samples of nonlinear stiffness coefficients will be identified at these displacement-level samples, and structural
responses to a dynamic load are computed. The uncertainty bands of the responses are then computed to give
quantitative measure of the epistemic uncertainty. Afterwards, the nonparametric stochastic approach [21-24], which
uses a dispersion parameter determined by a small number of samples from the Monte Carlo simulation to directly
generate the large number of random samples, is employed to repeat the same uncertainty quantification and
compared to the Monte Carlo simulation results.

QUANTIFICATION OF EPISTEMIC UNCERTAINTY: MONTE CARLO SIMULATION

As a demonstration example, a clamped-clamped straight beam is considered. The beam is of rectangular cross
section and its geometric and material properties of the straight beam are given in Table 1. A finite element model of
the beam was constructed with Nastran using 40 CBEAM elements.

Table 1. Beam Properties
Beam Length 0.2286 m

Cross-section Width 0.0127 m

Cross-section Thickness | 7.75 10* m

Mass per unit length 2763 kg/m’
Young’s Modulus 73,000 MPa
Shear Modulus 27,700 MPa

A nonlinear ROM of the beam has been constructed, including the first 4 symmetric linear modes and 4
associated duals (ROMA4L4D). The stiffness coefficients were identified by the multi-level identification method [3].
Static and dynamic validations were carried out, and good matching between the ROM and the Nastran results is
obtained (the results will be shown later along with the uncertainty quantification results).

Nevertheless, there is still some discrepancy, especially for the dynamic results at higher load levels. One
observation from the multi-level identification results is that the optimal displacement level is not the same for all
the coefficients. This is not consistent with the ROM formulation and suggests that epistemic uncertainty exist in the
data used in the identification, which leads to the variation of the optimal displacement level. The uncertainty
propagates further to affect the identified stiffness coefficients and eventually the ROM predictions.

This epistemic uncertainty can be seen from the distribution of the optimal displacement levels for the quadratic
and the cubic coefficients, respectively, as shown in Fig.1. For the quadratic coefficients, the optimal displacement
levels are concentrated at a low displacement level but there are a small number of coefficients whose optimal
displacement levels distribute widely. For the cubic coefficients, the optimal displacement levels are concentrated at
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a range of higher displacement level while there are a number of coefficients whose optimal displacement levels
distribute widely.
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Figure 1. Distribution of optimal displacement levels for the quadratic and the cubic coefficients. (a) Quadratic coefficients; (b)
Cubic coefficients.

The cubic coefficients whose optimal displacement levels are at the highest displacement level are found to be the
coefficients which are small and negligible thus difficult to be identified with high accuracy. This is indicated by the
distribution of the optimal displacement levels for the remained cubic coefficients after “cleaning up” the ROM, that
is, zeroing out those negligible coefficients, as shown in Fig.2. The distribution for the quadratic coefficients
essentially does not change.
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Figure 2. Distribution of optimal displacement levels for the remained quadratic and the cubic coefficients after
“cleaning up” the ROM. (a) Quadratic coefficients; (b) Cubic coefficients.

In the present study, this epistemic uncertainty is firstly quantified using the Monte Carlo simulation:

(1) Two sets of random samples of optimal displacement levels are generated for the quadratic and the cubic
coefficients, respectively, termed as quadratic and cubic random samples thereafter. The statistic distribution
features of the two sets of random samples are made consistent with the cumulative distribution functions of the
original data by using the inverse transform sampling method. The cumulative distribution functions of the
original data and the generated random samples are shown in Fig.3, and it can be seen that the random samples
represent the original data quite well.
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Figure 3. Cumulative distribution functions of optimal displacement levels for the quadratic and the cubic coefficients. Top:
original data from multi-level identification. Bottom: random samples generated by the inverse transform sampling method. (a)
Quadratic coefficients; (b) Cubic coefficients.

(2) 100 random samples are then taken. For each random sample (a displacement level) in the two sets, the stiffness
coefficients are identified by the regular single-level identification method. The quadratic coefficients identified
using a quadratic random sample and the cubic coefficients identified from a cubic random sample are
combined and considered as a random sample of stiffness coefficients.

(3) Using the set of random samples of stiffness coefficients obtained in (2), a Monte Carlo simulation is carried
out to compute the responses of the random samples to the static and dynamic loads used in the validation. The
uncertainty bands are computed from the response data.

In Figs. 4 and 5 are shown the uncertainty band results, along with the validation results of ROM versus Nastran, for

a dynamic load case at two load levels, respectively. The dynamic load case is a uniformly distributed force along

the span, time-variant as modeled by a white noise with the cut-off frequency of 1000Hz. Firstly, the ROM

predictions match Nastran results at dominant frequency peaks very well. Secondly, the uncertainty band encloses

Nastran PSD curve in almost the whole range of frequency 0 to 1500 Hz, suggesting the epistemic uncertainty is

properly quantified.
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(a) (b)
Figure 4. Uncertainty band of the ROM predictions for the dynamic load case. Load level 130dB (OASPL) which gives standard

deviation of center transverse displacement at about 0.75 thicknesses. (a) Transverse displacement, center point; (b) Inplane
displacement, quarter point.

(a) (b)

Figure 5. Uncertainty band of the ROM predictions for the dynamic load case. Load level 145dB (OASPL) which gives standard
deviation of center transverse displacement at about 1.9 thicknesses. (a) Transverse displacement, center point; (b) Inplane
displacement, quarter point.

Uncertainty band of *“cleaned”” ROM

The above uncertainty quantification procedure is then applied to the cleaned ROM, to further understand the
behavior of epistemic uncertainty.

The sets of quadratic and cubic random samples are generated according to the cumulative distribution functions of
the data of the remained coefficients after cleaning up, using the inverse transform sampling method. The
cumulative distribution functions of the cleaned data and the generated random samples are shown in Fig.6. A
zoomed view is shown for the cubic coefficients since its CDF reaches 1 at a small value. It can be seen that the
random samples represent the data quite well.
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Figure 6. Cumulative distribution functions of optimal displacement levels for the quadratic and the cubic coefficients remained
after cleaning up. Top: cleaned data from multi-level identification. Bottom: random samples generated by the inverse transform
sampling method. (a) Quadratic coefficients; (b) Cubic coefficients, zoomed view.

Similar to the uncleaned ROM, random samples of stiffness coefficients are identified at displacement levels given
by the above random samples. Again the quadratic coefficients identified using a quadratic random sample and the
cubic coefficients identified from a cubic random sample are combined and considered as a random sample of
stiffness coefficients. Using the set of random samples of stiffness coefficients obtained, a Monte Carlo simulation is
carried out to compute the responses of the random samples to the dynamic loads used in the validation. The
uncertainty bands are computed from the response data.

In Figs. 7 and 8 are shown the uncertainty band results for the save dynamic load case at two load levels,
respectively. Compared to the uncleaned ROM, the uncertainty band of the cleaned ROM becomes broader. The
coefficients remained after cleaning up are usually considered better identified, so the broader uncertainty band
implies that the ROM has larger variation than what the uncleaned ROM has shown.
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(a) (b)
Figure 7. Uncertainty band of the cleaned ROM predictions for the dynamic load case. Load level 130dB (OASPL) which gives

standard deviation of center transverse displacement at about 0.75 thicknesses. (a) Transverse displacement, center point; (b)
Inplane displacement, quarter point.

(a) (b)
Figure 8. Uncertainty band of the cleaned ROM predictions for the dynamic load case. Load level 145dB (OASPL) which gives
standard deviation of center transverse displacement at about 1.9 thicknesses. (a) Transverse displacement, center point; (b)
Inplane displacement, quarter point.

QUANTIFICATION OF EPISTEMIC UNCERTAINTY: NONPARAMETRIC APPROACH

As shown above, in order to evaluate the uncertainty band, a number of Monte Carlo simulations with the ROM
have to be done. This requires the identification of random ROM samples, which could be time consuming when the
number of samples is large.

The nonparametric approach [21-23] has been developed to directly generate random ROM samples. It can be
accomplished using the maximum entropy approach as demonstrated in [24] for an elastic nonlinear ROM. A key
observation is that the linear, quadratic, and cubic stiffnesses cannot be varied independently, rather a bigger matrix

KD I2(2) 3)
B £(2)T 2£(3)

=<

must remain positive definite for all realizations. In this equation, the matrices K(z) and K(3) are obtained by a

reshaping of the quadratic and cubic stiffness tensors Kr(nzn)l and Kr(n?lp , see [10]. This property was instrumental in
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the uncertainty modeling which proceeds from the matrix Kg of the mean model first decomposed as (e.g.,
Cholesky decomposition)

Kg = ;K ;'}I’( ’ )
Next, lower triangular matrices H K are generated according to the following, see Fig. 1:

(i) the elements H;;, i>l, are all independent of each other and independent of the elements H;; . Further, they are
normally distributed with mean 0 and standard deviation cj =1/ m .

(ii) the elements H;; are all independent of each other and can be expressed as

|:|ii = YA ’ ©
Hii
where Y;; are Gamma random variables, and y;; is given by
m+21-1
Hij =——— > ©)

where 71 is the size of the matrix Kg and A is the free parameter of the distribution which can be used to specify a
level of uncertainty on Kg- Finally, random Kg matrices can be obtained as

= ST T
K :LKQKQKLK’ )

from which random linear, quadratic, and cubic stiffness parameters can be extracted given the form of K B

Figure 9. Structure of the random BK matrices with n =8, 1=2, and 7»0:1 and 10.

In the nonparametric approach, the parameter A needs to be determined. In practice, a dispersion parameter o is

usually used, and its relation to A is given by

§2-_ N+l (8)
n+21-1

The parameter & can be determined using the maximum likelihood principle. To this end, a set of & values are taken.

For each of them, 100 Kg samples are generated, and the PSD of the ROM responses to the dynamic load at 145dB

are computed. For each 6 value, the likelihood function of the PSD results from these Kg samples is evaluated with

respect to 10 samples from the Monte Carlo simulation as the true observations. The log of the likelihood function
value as function of § is shown in Fig. 10, from which & = 0.04 is the optimal value for the nonparametric model.
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The 100 Kg samples corresponding to 6 = 0.04 are used to compute the responses to the dynamic load at 130dB

and 145dB, then the uncertainty band of the PSD result is computed and shown in Figs. 10 and 11, respectively.
The uncertainty band results from the nonparametric approach are almost the same as the results from the Monte
Carlo simulation.

(b) (b)
Figure 10. Uncertainty band of the ROM predictions by the nonparametric approach. Dynamic load level 130dB (OASPL) which
gives standard deviation of center transverse displacement at about 0.75 thicknesses. (a) Transverse displacement, center point;
(b) Inplane displacement, quarter point.
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(a) (b)
Figure 11. Uncertainty band of the ROM predictions by the nonparametric approach. Dynamic load level 145dB (OASPL) which

gives standard deviation of center transverse displacement at about 1.9 thicknesses. (a) Transverse displacement, center point; (b)
Inplane displacement, quarter point.

CONCLUSION

The epistemic uncertainty associated with the nonlinear stiffness coefficients of the reduced order model (ROM) as
evaluated by the multi-level identification method is quantified using both the Monte Carlo simulation and the
nonparametric approach. A clamped-clamped straight beam is used as an example for demonstration. In the Monte
Carlo simulation, random ROM samples are identified at random optimal displacement levels whose probability
distribution is consistent with that observed in the multi-level identification. The responses of ROM samples to a
dynamic load at two load levels are computed, and the uncertainty bands of the power spectral density (PSD) results
are computed for uncertainty quantification. It is demonstrated that the uncertainty bands properly account for the
uncertainty of the stiffness coefficients. For the nonparametric approach, the dispersion parameter is determined by
using the maximum likelihood principle, then random ROM samples are directly generated. These ROM samples
are used to obtain the uncertainty band results for the same dynamic load. The uncertainty bands from the
nonparametric approach match the Monte Carlo simulation results very well.
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Abstract

Quantifying effects of system-wide uncertainties (i.e., affecting structural, piezoelectric, and/or electrical components)
in the analysis and design of piezoelectric vibration energy harvesters has recently been emphasized. The present
investigation proposes first a general methodology to model these uncertainties within a finite element model of the
harvester obtained from an existing finite element software. Needed from this software are the matrices relating to the
structural properties (mass, stiffness), the piezoelectric capacitance matrix, as well as the structural-piezoelectric
coupling terms of the mean harvester. The thermal analogy linking piezoelectric and temperature effects is also extended
to permit the use of finite element software that do not have piezoelectric elements but include thermal effects on
structures. The approach is applied to a beam energy harvester. Both weak and strong coupling configurations are
considered and various scenarios of load resistance tuning are considered, i.e., based on the mean model, for each
harvester sample, or based on the entire set of harvesters. The uncertainty is shown to have significant effects in all cases
even at a relatively low level and these effects are dominated by the uncertainty on the structure vs. the one on the
piezoelectric component. The strongly coupled configuration is shown to be better as it is less sensitive to the uncertainty
and its variability in power output can be significantly reduced by the adaptive optimization, and the harvested power
can even be boosted if the target excitation frequency falls into the power saturation band of the system.

1 Introduction

Piezoelectric energy harvesting has received significant attention in recent years as a viable solution to self-powered
wireless sensors for emerging applications including wearable electronics, structural health monitoring, Internet of
Things (IoT) and robotics. Ambient vibrations are abundant in many applications, for example, industrial machines,
moving vehicles and aircraft, building and bridges, and human motions, etc. Piezoelectric materials have a crystalline
structure inside which the atoms are not symmetrically arranged. Deforming the structure modifies the balance of the
electric charges and results in a net electric charge on the crystal surface, which is called the direct piezoelectric effect.
This effect has typically been used for sensor devices such as accelerometers, microphones, load cells, etc., and also
makes piezoelectrics a suitable material for vibration energy harvesting, where the piezoelectric material is strained as a
result of vibration. In addition, piezoelectrics have attractive features such as high energy density and compact and simple
architecture [1]. These all contributed to the growing interest in piezoelectric vibration energy harvesting for self-
powered microsystems. A general overview of the research and development in piezoelectric vibration energy harvesting
can be found in references [2-8].

Most of the analytical models of piezoelectric energy harvesters have been developed based on the assumption that the
vibration excitation is harmonic. Also, it is desirable to make vibration energy harvesters lightly damped to utilize their
large structural response for greater power output. As a result, the effective harvesting bandwidth is usually narrow and
the power output is very sensitive to the “matching” between the excitation frequency and the natural frequency of the
system. Though nonlinearity has been introduced to broaden the bandwidth and reduce this sensitivity [9,10] and was
shown to overperform the linear configuration by an uncertainty propagation study [11], the uncertainty in the system
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still has a significant influence on the power performance. Recognizing the uncertainty in most environmental vibration
excitations, i.e., variation of amplitude and frequency, researcher have studied the effect of excitation randomness on
harvested power and attempted to developed models in a stochastic manner. Lefeuvre et al [12] performed theoretical
and experimental studies, and compared the power performance of the standard AC-DC and Synchronous Electric Charge
Extraction (SECE) techniques in the case of broadband, random vibration. Halvorsen [13] developed a closed-form model
of linear resonant energy harvesters driven by broadband vibrations, and obtained the Fokker-Planck equation describing
the probability density function of the harvested power. Following a similar approach, Adhikari et al [14] derived
expressions for the mean normalized power of system of stack configuration subjected to Gaussian white noise base
acceleration. They studied the cases when the system was connected to a resistive load and connected to a resistive load
and inductor in parallel. Seuaciuc-Osoério and Daqaq [15] presented a theoretical analysis of the response of energy
harvesters to excitations having a time-varying frequency. Yoon and Youn [16] applied a statistical time—frequency
analysis to quantify the harvested power of a piezoelectric energy harvester under nonstationary random vibrations.
Based on a distributed-parameter electroelastic formulation, Zhao and Erturk [17] presented analytical and numerical
solutions, and experimental validations of piezoelectric energy harvesting from broadband random vibrations. Based on
the Wiener path integral technique, a methodology was developed by Petromichelakis et al [18] to determine and
optimize stochastic response of nonlinear electromechanical energy harvesters.

On the other hand, to enhance the power or energy conversion performance of the system and provide design guidance
for energy harvesters, optimization studies have been conducted on the geometrical parameters [19-22] or the electrical
parameters [23-26]. Additionally, topology optimization methods have also been applied [27-29]. However, as pointed
out by Franco and Varoto [30], most of these optimization strategies usually seek for a single optimal parameter at a time.
A piezoelectric energy harvester is an electromechanically coupled system whose performance is simultaneously affected
by multiple parameters in the materials, mechanical, and electrical domain. Moreover, during the modeling and
manufacturing processes, uncertainty is inevitably introduced into the mean model, for which the optimal parameters are
obtained. As a result, the actual performance will deviate from predictions.

While some optimization methods have been coupled to stochastic response analysis tools for the response optimization
of energy harvesters subjected to external random excitation, e.g., in [18], researchers have also recognized the
importance of quantifying the uncertainties in the system parameters and further accounting for them in the analysis and
design processes of harvesters, e.g., see [11,30-39]. These investigations have used parametric uncertainty, i.e., they have
considered variations in some of the parameters of the system which they have modeled as random variables, independent
of each other when multiple such parameters are varied. Geometrical dimensions, properties of the structural component
and/or of the piezoelectric device, and characteristics of the electrical circuits have been treated as random. Moreover,
the structural model of the harvester has typically been an equivalent SDOF although finite elements have also been used
[36,39]. These investigations have yielded two key findings. First and foremost, they have demonstrated that a small
level of uncertainty typically induces a dramatic change in power output. Relatedly they have also shown the interest of
designing under uncertainty. That is, the performance of the harvester optimally designed based on the mean model is
no longer optimum once uncertainty is introduced. These findings clearly demonstrate the need to include uncertainty in
the analysis and design of piezoelectric energy harvesters and the focus of the present investigation is on developing a
general framework to consider in such efforts the uncertainties on the geometry/material properties of the structural and
piezoelectric components.

While the above investigations have focused on introducing uncertainty on certain parameters of simple structural
models of the harvesters, the real-world uncertainty is expected to affect all components and parameters of the model in
a coupled manner. For example, uncertainty in a natural frequency originates from uncertainty on the structural properties
and/or geometry and thus also implies uncertainty in the mode shapes, in the coupling with the piezoelectric elements,
as well as in other natural frequencies. To account for all these effects, it is necessary to have a global, or nonparametric,
modeling of uncertainty and such a modeling is best performed on a finite element description of the harvester, i.e.,
structure and piezoelectric components, especially to enable the consideration of complex geometries. Such an
uncertainty modeling is proposed here based on the very recent work in [40-42], where the developed nonparametric
approach is nonintrusive to the finite element software, requiring only the capability to output finite element mass,
stiffness, electromechanical coupling, and piezoelectric capacitance matrices for the mean harvester design. The
approach in [40-42] follows the original work of Soize in [43], in which the maximum entropy principle is applied and
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the uncertainty is modeled directly at the level of a reduced order model of the structure, not within the finite element
formulation as is done with the stochastic finite element approach. In this nonparametric maximum entropy approach,
the uncertainty is lumped into the mass and/or stiffness matrix of the structure corresponding to a specified, deterministic
basis. The joint probability density function of the elements of these matrices is then selected to: (i) have means which
equal the corresponding deterministic matrices of the mean structural model, (ii) satisfy the mathematical requirements
existing for these matrices (symmetry, positive definiteness), (iii) satisfy an integrability condition which guarantees the
existence of the response in mean square, and (iv) maximize the entropy. This maximum entropy approach has been
applied to matrices and fields with a variety of properties for which the construction of realizations has been detailed
and is often very straightforward permitting a broad set of applications, see [44,45] for extensive review. The specific
formulation in [40-42], also used in the present study, is a modification of the original methodology of Soize, in which
the elemental mass and stiffness matrices are recognized as reduced order model matrices of the structure within each of
the finite elements with the interpolation functions serving as basis functions inside the elements. Once the mean model
elemental matrices have been obtained, uncertainty is introduced element per element for each sample of the uncertain
harvester, the structural-piezoelectric matrices are reassembled and the simulation, e.g., output power determination, can
be carried out. Random elemental matrices are simulated in such a way that all sources of uncertainties, material
properties and geometry, are accounted for as long as the components remain linear. The uncertainty modeling then
becomes equivalent to the random field modeling of these elemental matrices, which is described in full in section 3 of
the paper. For the broadest applicability, the use of finite element software that do not include an explicit piezoelectric
element is also considered and it is shown by extending the thermal analogy, that the modeling of the complete system
can still be accomplished if the finite element model includes thermal effects.

In the present study, the above approach is applied to a bimorph piezoelectric energy harvester (PEH), for which an
analytical model and an optimization formula have been developed [24] to obtain the optimal load resistance for the
specified maximum power output at a given excitation frequency. A finite element model of the energy harvester is first
constructed with Nastran using the piezoelectric-thermal analogy and the uncertainty modeling is implemented to allow
uncertainty in structural and/or piezoelectric properties. These capabilities are then utilized to study the effects of
uncertainty on the power output of the energy harvester, both with weak and strong coupling and with different tuning
scenarios of the resistive load to optimize the power output. Section 2 provides an overview of important power
characteristics of piezoelectric vibration energy harvesters, along with their finite element modeling, including the
thermal analogy necessary in Nastran, the finite element software chosen for this analysis. The uncertainty modeling is
reviewed in Section 3 and the application to the bimorph PEH is detailed in Section 4.

2 Modeling of piezoelectric vibration energy harvesters
2.1 Electromechanical modeling and power behavior

Using a Rayleigh-Ritz formulation and a generalized form of Hamilton’s Principle, Hagood, Chung and von Flotow [46]
derived a set of equations to model the electromechanically coupled dynamics of an elastic structure with piezoelectric
elements and passive electronics:

Mw (t)+Cw (t)+Kw(t)-0y(t) =B f(t), (1)

O w(t)+C,y(t)=B.g(t). 2)
which are called the actuator and sensor equations, respectively. There are n mechanical degrees of freedom (DOF), m
electrical voltage DOF at the electrodes, nf forces, and nqg applied electric charges. M, C, and K are the n-by-n mass,
damping, and stiffness matrices, respectively. w is the n-by-1 generalized mechanical (or displacement) coordinate vector,
and vy is the m-by-1 generalized electrical (or voltage) coordinate vector. @ is the n-by-m electromechanical coupling
matrix, and Cp the piezoelectric capacitance matrix. Finally, By is the n-by-nf force forcing matrix, Bq the m-by-nq charge
forcing matrix, f the nf-by-1 force vector, and g is the ng-by-1 charge vector. The exact definitions of these quantities
can be found in [46]. Beam harvesters subjected to base motion have received great interest because of their simplicity
in implementation and large structural response, along with the fact that base motion excitations are abundant in
environment. Following an approach similar to that of Hagood et. al, a single-mode (or equivalent SDOF) model for
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beam harvesters operating near its resonance and subjected to base motion was developed by Liao and Sodano [24] as:

IMW(t) +Cv(t) + Kw(t) -V (t) = Da(t), (3)
ow(t)+Cv(t)=q(t), (4)

where D is the equivalent input mass, a is the base motion acceleration selected here as a(t) = Acoswt, and q is the

total electric charge applied on the piezoelectric elements, V is the voltage across the elements. In the case of a fully-
covered and symmetric bimorph beam configuration where the substrate layer is sandwiched between two piezoelectric
layers, Liao and Sodano [24] derived the analytical expressions of the equivalent SDOF quantities in Egs. (3) and (4)
and they are given in the Appendix. In addition, if the energy harvesting interface circuit is simply resistive, i.e.,
connected to a resistor, the harvested power is given as
2 A2 2.2
P D°A : kr p . 5)
VKM [(1—r2)—(2;r2p)] +[(2§r)+(1—r2 +k2)l‘p}

where the short-circuit natural frequency wn, damping factor £ , frequency ratio r, and dimensionless resistance p are

defined as

K C w
wF = —, (=——+=,r=—, p=RC . w® 6
h ,/M g Nl oF o o (6)

with w and R being the excitation frequency and electrical load resistance, respectively. In addition, a very important
parameter, the electromechanically coupling coefficient k? of the system, is defined as

k? = o
C,K"’

p

(7

The general power behavior of piezoelectric vibration energy harvesters is briefly reviewed here through an example of
the energy harvester connected with a resistor. However, this behavior is also exhibited by energy harvesters with other
types of interface circuits [47]. To facilitate the discussion, a numerical beam harvester has been created and the
associated results are shown in Fig. 1. The properties of the simulated system are given in Table 1, where brass is used
for the substrate and PSI-5H is for the PZT material. The mechanical damping ratio at the first mode of 0.02 is used.
Generally, the harvested power depends on both the load resistance and excitation frequency [48]. Figure 1(a) plots the
harvested power vs. the excitation frequency at different resistance values. Unsurprisingly, for each power curve, the
peak power occurs near the structural natural frequency of the system where the structural response is large, resulting in
more mechanical strain energy for energy conversion. It can be seen that the peak frequency increases (or moves from
left to right, graphically) from the short-circuit to open-circuit frequency as the electrical load increases. This is due to
the electromechanical coupling of the piezoelectric material, which changes the effective stiffness of the system.
Furthermore, the energy harvesting process results in an additional damping effect as a part of the mechanical energy is
“removed” from the system due to energy conversion. For a given frequency, the harvested power depends on the load
resistance. This is illustrated in Fig. 2(b), where the harvested power at a given fixed frequency, i.e., 55 Hz, is plotted
against the load resistance. There is an optimal resistance that maximizes the harvester power and its theoretical
expression has been determined as [24]:

1 (Ca))2+(K—Ma)2)2
" 0C, \(Co) +(K+67/C,~Mw')

which varies as the excitation frequency changes. If the load resistance is optimally tuned for all frequencies, this results
in the power envelope of the system shown in Fig. 1(a), representing the maximum possible power through the tuning
of load resistance. Graphically, this envelope is essentially the outer profile of the power curves if we plot them for a
continuous and infinite range of load resistance instead of the five resistance values.

(7

Table 1. Properties of the simulated bimorph beam harvester in Section 2
Property Symbol Value
Length L 80 mm
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Width b 10 mm

Substrate thickness ts 0.25 mm
PZT thickness tp 0.25 mm
Substrate density Ds 8740 kg/m’
PZT density Do 7800 kg/m’
Substrate modulus Ys 101 GPa
PZT modulus £ 62 GPa
PZT dielectric constant KT; 3800

PZT piezoelectric coefficient ds -320x10"2 m/V
Damping ratio ¢ 0.02

Figure 1. (a) Power vs. frequency at constant or optimal load resistance; (b) power vs. load resistance at a fixed excitation
frequency.

In addition, the electromechanical coupling has a significant effect on the overall power behavior of the system. Figure
2 plots the power envelopes of the same system as given in Table 1 but at different levels of coupling by changing the
piezoelectric coefficient ds;. Overall, initially the harvested power increases as the coupling increases as a result of a
higher energy conversion efficiency. However, the electrically induced damping due to energy harvesting also increases,
which leads to a reduced structural response. When the coupling coefficient reaches a critical value, a balance between
the conversion efficiency and structural response is reached and the power saturates at a level called power limit, which
has been determined [49] as

P —ﬁi 8
lim \/WSQN ()

and represents the overall power ceiling of a harvester. Depending on the amount of coupling in the system, this limit
may or may not be reached. The minimum coupling to reach the power limit, i.e., critical coupling, for energy harvesters
of a resistive interface circuit is given [26,48] as

(k2)024§+4§2, 9)

which is a function of the mechanical damping ratio. A system of coupling higher than the critical coupling is defined as
strongly coupled and it is weakly coupled if the coupling is lower than the critical coupling. For damping ratio 0.02, the
critical coupling coefficient is 0.0816, and the curves for k? = 0.18 and 0.25 are of strongly coupled systems. There are
two power limit peaks in the power envelope of a strongly-coupled resistive energy harvester: one near the short-circuit
natural frequency and the other near the open-circuit natural frequency. Note that the critical coupling changes with the
type of energy harvesting circuit interface [47], which has been utilized as a method for enhanced power performance
through innovative circuit designs. However, the system is still subjected to the same power limit regardless of the
interface circuit type [49].

Even though once the coupling reaches its critical value, the power saturates and further increasing of the coupling does
not lead to enhanced power, a strongly coupled system still offers few benefits. For example, the higher coupling induces
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more damping and further reduces the structural response and stress, which helps extend the fatigue life of the system.
In addition, it can be seen from Fig. 2 that the frequency bandwidth, over which the harvested power is relatively large,
is much wider at high coupling. This allows the system to be more robust as to the change in the excitation source
frequency through a “correction” tuning of the electrical load to match the actual frequency.

Figure 2. Power envelopes of the system given in Table 1 at various coupling. Base-motion acceleration is 19 and damping
ratio is 0.02.

2.2 Finite element modeling of piezoelectric energy harvesters
2.2.1 Finite element formulation

The finite element formulation for the piezoelectric harvester can be rewritten as

M (1) +Ca™ (1) + K™ (t)-0Fv ™ (1) =1 (1), (102)
®(FE)Tu(FE) (t)+C(FE)V(FE) (t) :q(FE) (t) (10b)
—_ p — 1 >

where the actuator equation, Eq. (10a), is similar to the Rayleigh-Ritz formulation given by Eq. (1). However, it should
be noted that Eq. (1) is a reduced-order formulation with system quantities obtained by using the assumed basis functions,
e.g., mode shapes; while the quantities in Egs. (10a) and (10b) are obtained at the element level. The superscript “(FE)”

is used in Egs. (10a,b) to emphasize this difference. Denoting by Ng and N as the numbers of the structural and the

piezoelectric degrees of freedom (DOFs), respectively, Y S , K(FE), and C'™ are N; -by- Ng matrices, 0™ isa

(FE) (FE (FE)

N -by- Ng matrix, C,;" " is a Ng -by- N matrix, u™ and £ are N; -by-1 vectors, and v ) and q  area

N¢ -by-1 vectors. Applying the electrical boundary condition that the electrodes on the PZT surfaces are connected, i.e.,

Vi =V, effectively reduces the number of DOFs for the voltage to be one and the actuator equation, Eq.(10a), can be
rewritten as

M) (1) + ) (1) + K™ (1) -0 (t) =17 (1), (11a)

(FE) (FE)

where the coupling vector "~ is obtained by summing the columns of the coupling matrix @ as a result of the

electrical boundary condition. Accordingly, the sensor equation, Eq.(10b), becomes
FE)T _(FE
0 ™ (1) +Cv(t) =q(t), (11b)

where C;, is the total piezoelectric capacitance of the PZT layer, obtained by the summation of all the elements of the
6
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(FE)

capacitance matrix, Cp , and ( is the total electric charge induced on the layer, obtained by summing the columns of

the charge vector, q(FE) .

In the case of a resistive energy harvesting interface circuit, i.e., the harvester is connected to a resistor, one has

v=-R(g. (12)
Substituting this relationship into Eqgs. (11a,b) yields the governing equations
M e) (t) +C e (t) +K ™ (t) +9® R4(t) = £(FE) (1), (13a)
{Q<FE>}T u™ (t)-RC,q(t)-q(t)=0. (13b)

The set of equations can be rewritten in a state-space form as

MFE o g(FE) N C(Fe) Q(FE)R Q(FE) X K5 0 g(|:E) B £(FE) (14)
0 of § 0 -RC,|[ 4 | [{o™) 1|l g 0 |
which serves as the governing FE equations to be solved.

2.2.2 Extraction of finite element matrices

To perform the uncertainty analysis at the finite element level, the FE matrices in Egs. (10a,b) need to be obtained. A
convenient way is to extract them from a commercial FE software. However, not all commercial finite element software
allows directly modeling of piezoelectric element, which prevents piezoelectric matrices from direct extraction. This is
the case for example of MSC Nastran which is a widely-used multidisciplinary finite element package that is capable of
performing static, dynamic and thermal analysis of structures in both linear and nonlinear domains. Nevertheless, it is
possible to resort to some analogy between piezoelectric and structural or thermal properties to extract these FE matrices.
This is implemented in the present study, described as follows.

In general, the FE matrices to extract can be classified into three groups: (a) structural matrices; (b) piezoelectric-
structural coupling matrix; and (c) piezoelectric matrix.
(a) The structural mass and stiffness matrices, M and KF® , are output by using the Nastran DMAP alters, the high-
level Nastran language commands. The damping matrix C'™® is then computed by using the Rayleigh damping model,
ie.

N C™ =aM™ 4 g™, (15)
where « and £ are the Rayleigh damping coefficients, determined according to the damping ratio of the mode of

interest. The Rayleigh damping model is a widely used viscous damping model where the damping is considered to be
associated with mass and stiffness and expressed as a linear combination of the mass and the linear stiffness matrices,
which is convenient to use with a finite element model or in the modal expansion approach.

(b) The electromechanical coupling matrix 0™ is obtained by considering the following static actuation equation

which shows that when a static distributed voltage v\™™ (a N¢ -by-1 vector) is applied to the piezoelectric layer, it

induces a static distributed force f (FE) (a Ng-by-1 vector) on the structure. From Eq. (16), one can imagine when the

static voltage is such that its i element is one and the other elements are zeroes, the static structural force will be

equivalent to the in column of the matrix 0™ In this way, varying i from 1 to N_ one by one and collecting the

corresponding structural force vectors, ©™®) can be obtained. With Nastran linear static solution (SOL101), the

structural force vector can be obtained as the reaction force by applying the static voltage and fixing all the structural
degrees of freedom, where the static voltage is applied by the equivalent distributed temperature using the piezoelectric-
thermal analogy [50,51].
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To clarify this analogy, consider a piezoelectric beam harvester with direction 1 defined along the length direction and
direction 3 defined along the thickness direction (also the polarization direction). Due to the converse piezoelectric effect,
the induced normal or bending strain in the 1-direction, i.e., €1, due to an applied electrical field in the 3-direction, Es, is
given as

g =d,E, (17)
where d3; is the piezoelectric coefficient. Usually it is a negative number, meaning that application of a positive electric
field in the polarization direction, i.e., direction 3, will generate a compressive strain in direction 1. Assume the electrical

field within the PZT element is uniform and given as E3 = v/tp, where V is the voltage across the element (between the
electrodes on the top and bottom surfaces) and t is the thickness of the PZT. Equation (17) can be rewritten as

d
& =—Lv. (18)
L
On the other hand, the thermal strain induced by a temperature change is given as
a=0,(T-Ty). (19)

where a is the coefficient of thermal expansion, T the current temperature, and Ty is the reference temperature.
Comparing Eqs. (17) and (18) and setting Trer = 0 lead to the piezoelectric-thermal analogy:

V=T, =%, (20)

p
which means that the converse piezoelectric effect can be equivalently modeled by the thermoelastic effect of structures
with the temperature corresponding to the applied voltage and the equivalent thermal expansion coefficient related to
the piezoelectric properties as shown in Eq. (20).

(¢) The piezoelectric-thermal analogy only models the converse piezoelectric effect only in the mechanical domain, i.e.,

Eq. (10a) or (13a), thus can only be used to extract the electromechanical coupling matrix 0™ . To model the direct
effect on the circuit dynamics in the electrical domain and set up the other governing Eq. (10b) or (13b), the piezoelectric
capacitance matrix needs to be extracted as well. This can be achieved by an analogy between the structural mass, M,
and the total piezoelectric capacitance, Cp, expressed as, respectively,

M = [ pydv, , (21a)
Vs
C, = [v (@’ y(2)dvs , (21b)
Vs

where pq is the mass density, &° is the dielectric constant at constant strain, and (z) defines the distribution of the
piezoelectric material across the thickness of the device domain, V. From Egs. (21a,b), the capacitance matrix CLFE)
can be obtained as the mass matrix of the structure, when the mass density is set to be
g (e —d—321) 1 piezoelectric layers
psE = WT (Z)gsW(Z) = €3V t; ) (22)
0 substrate
where &, is the vacuum permittivity, &, is the relative permittivity in the 3-direction, Y, is the Young’s modulus in

the 1-direction, and t, is the thickness of the piezoelectric layer.

2.2.3 FE modeling validation

With the finite element modeling framework constructed above, fully coupled piezoelectric-structural simulations of
piezoelectric energy harvesters can be performed. For validation, a finite element model of a bimorph harvester of
properties given in Table 2 was constructed using Nastran, as shown in Fig. 3. The harvester is basically a cantilever
beam type structure, and CQUAD4 shell elements were used for the structure FE model with 1760 elements and 1887
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nodes. The composite property card (PCOMP) was used to define the substrate and the piezo layers structural properties.

Figure 3. Finite element model in NASTRAN

The validation case is that the harvester is subject to base motion at the clamped end, of 1g acceleration at a single
excitation frequency, the resultant force vector is constructed as

L(;:E)(t) _ E(FE)eia)t — [M(FE)E(FE) . g]eimt S (24)

(FE)

where @ =27z f , f is the excitation frequency, and a'~ is a Ng-by-1 acceleration vector. For a base acceleration

excitation of 1g, the components of g(FE) are zero except those associated with the transverse translation which are all

set to 1. The steady-state structural response and piezoelectric charge are computed by solving Eq. (14) using the method

of frequency response function, i.e.,
-1

u(FE) i M(FE) ol C(FE) Q(FE)R K(FE) 0 F(FE)
= ={-w +lw + T | (25)
q 0 0 0 —RCp {Q(FE)} -1 0

The solution is implemented outside of the Nastran environment. At each excitation frequency, the amplitude of
harvested power output is computed from the solution as P = (@(,)’ R, where |, denotes the amplitude of the charge.

Table 2. Properties of the cantilever piezoelectric beam for validation [24]

Property Symbol Value
Length L 66.62 mm
Width b 9.72mm
Brass thickness ts 0.76mm
PSI-5H thickness tp 0.26 mm
Brass density Ds 8740 kg/m’
PSI-5H density Do 7800 kg/m’
Brass modulus Ys 101 GPa
PSI-5H modulus Yp 62 GPa
PSI-5H dielectric constant K'; 3800
PSI-5H piezoelectric coefficient ds; -320x10"? m/V

The harvested power vs. excitation frequency is plotted in Fig. 4(a) at different load resistances. It is the same
configuration used by Liao and Sodano [24] in their experimental studies and the results are shown in Fig. 4(b). For
further comparisons, its ANSYS and analytical results are shown in Figs. 4(c) and 4(d), respectively. The analytical
results are obtained by using Eq. (5) with the effective system parameters evaluated by using the expression in the
Appendix. Overall, it can be seen that the NASTRAN derived results are in excellent agreement with other results, which
confirms the adequacy of the thermal analogy.
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Figure 4. Harvested power vs. excitation frequency for the harvester given in Table 2. Base-motion acceleration is 1g and
damping ratio is 0.019.

3. Nonparametric maximum entropy approach for uncertainty quantification at finite element level

In the present study, the finite-element-level nonparametric maximum entropy approach is used for uncertainty analysis
of the bimorph piezoelectric energy harvester. Based on the piezoelectric-thermal analogy, the approach is implemented
in a similar way to that in the uncertainty analysis of heated structures [42], where the details of the theoretical derivation
can be found. The mass, stiffness, and the electromechanical coupling matrices of the FE model are randomized in the
present uncertainty analysis to reflect the uncertainties of the parameters of the coupled system globally. Note that the
ordering of the degrees of freedom in the matrices discussed below is degree of freedom 1 for all nodes, degree of
freedom 2 for all nodes, etc.

For the mass matrix, the randomization is a single-physics one [41,42], i.e., it is performed with the matrix itself. For

each elemental mass matrix of the mean FE model, denoted as M © , its random sample is constructed as

M® = [OHOHETET (26)
where [(,&) is a decomposition of M ® satisfying
M® = [T 27)
The random matrix H (&) is obtained by
HO -HO® I, (28)

where H ©) is a m-by-m random matrix where m is the number of degrees of freedom per node and its structure is

shown in Fig. 5, |, is the r-by-r identity matrix where r is the number of nodes per element, and ® denotes the
Kronecker product operation.
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Figure 5. Structure of a random H matrix.

The randomization process is repeated for each element, but since these elements are connected to form the finite element

mesh, the matrices H(e) corresponding to different elements cannot be simulated independently of each other.

Following the procedure proposed in [41,52,53], each element Hij of the matrix H ©) is treated as the transformation

of a zero mean, unit variance Gaussian field P,J with a specified stationary autocorrelation function

R(y)=E [Rj(X)R;j(X] (29)

where Y=X-X', X and 2(' denote the coordinates of two elements (e.g., of their centers). Then,

GP'J Iij

Hii =1 __ L 30
RNFER i) G0

where F is the cumulative distribution function of the standard Gaussian random variable, F'__| 1 is the inverse of the
1

cumulative distribution function of the Gamma random variable. As shown in Figure 5, o =1/./2u where p is the
parameter controlling the uncertainty level. Usually an alternative dispersion parameter O is used (as in the present

study), which is related to u as p=(n+1) / (252) , where n is the dimension of the matrix. Once random samples of

all elemental matrices are obtained, they are assembled to construct the random sample of the mass matrix of the whole
FE model.

Different from the mass matrix, the randomization of the stiffness and the coupling matrices needs to be carried out
together as a multiple-physics one due to the electromechanical coupling, similar to the heated structure case [40,42]. To
this end, construct the matrix

K® o®©

K = 31)

T e
o K

where K(e) and ®(e) are the Ng -by-Ng structural stiffness and the Ng -by-Ng electromechanical coupling matrices
of an element, respectively. Here, Ng and Ng are the numbers of degrees of freedom of structural displacement and

electrical voltage per element, respectively. In the present application, Ng =6x I and Ng =1xTr where r = 4 as the
11
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CQUAD4 elements have 4 nodes, with 6 structural degrees of freedom and 1 electrical degree of freedom each. Finally,

( ) denotes a Ng -by- Ng matrix relating to the strain energy induced by the electromechanical coupling, see [40] for

dlscuss1on in the thermal case, and which will be discussed later in this section. The randomization of the elemental
stiffness and the elemental electromechanical coupling matrices is carried out with the mean K(Be) matrix, denoted as
< (8)

KB .

The randomization of the mean IZI(Be) is given by

KO =[OHOHDTLOT (32)

In Eq.(32), the [(Be ) matrix is obtained from a decomposition of K(e) ,
Kg =0 " . (33)
in the block triangular form
i(e) e
e _ | bkk 0 (34)
B e @
EK EE

The E(P? ) matrix includes three block matrices as shown in Eq.(34). The E(}Z)( matrix can be obtained by a

decomposition of the mean elemental stiffness matrix K(e) ,

K® =8 1O (35)
Following the algorithm in [38], the [(Eer)( matrix is computed by
where
q=[A5T"* P, and =076, (37)

that is, (T)Ige ) and I_X(S) are the matrices of eigenvectors and eigenvalues (diagonal elements) of the matrix 0®.

The third matrix, E(ISI)E , should be obtained from the matrix Kl(zeg. The thermal counterpart of K( ) has been shown

[42,53] to be difficult to accurately estimate from a commercial finite element code non-intrusively. Hence, considering
that it does not appear in the governing equation, it was proposed [42,53] that it be selected to maximize the entropy of

‘( )

the random samples, achieved by setting L=¢ to be the identity matrix.

The random part of K|(36) in Eq.(32) is represented by the lower triangular matrix H Q) , expressed as
(e) (e

H (e _ ,
SO

(38)

where H( ) only affects the K( ) block. Since the K( I% matrix does not appear in the governing equation, its value
is irrelevant and thus H (Eeg needs not be computed nor discussed. It is symbolically replaced by a * in the following.
Noting that the matrix Kée) involves two quantities, the structural stiffness and the electromechanical coupling, and

their uncertainty levels may be different, following the treatment in [42], H |(3€) is expressed as the product of two lower
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triangular matrices, one representing the uncertainty of the stiffness properties ( H ée) ) and the other of the piezoelectric
properties ( H (Ee) ), i.e.,
H (e) _ H (e) H (e) (39)

| 0 (e)
HO = o [amd HE = TRk O, (40),(41)
Heg  * 0 |

(e) (e)

Two random matrices, Hy (e) and Hgy , need to be realized. The matrix Hyy can be computed in the same way as

where

H( ) but with its own dispersion parameter 3y . Finally, the random matrix H © ) is simulated row per row as

e e
(E}% = E(EP)( i Ui, (42)
and
Ui = diag(n§ ; @3, ) - (43)

where the notation A,i denotes the ith row of the matrix A and diag is the operation taking a vector and creating the

(e)

diagonal matrix having these elements along the diagonal. Moreover in Eq. (43), hEK is a matrix of Ng -by-6

components defined as independent Gaussian random fields with a specified autocorrelation function, e.g., Eq. (29), and
J; denotes the row vector of dimension r with all elements equal to one.

Finally, the random elemental stiffness and electromechanical coupling matrices are computed by

0® T H(¢ (e) ) HS (e)T 1Ker)< HE HETTET @5)

Once random samples of all elemental matrlces are obtamed, they are a