
AFRL-AFOSR-VA-TR-2020-0094

Alvin: A Strongly Consistent and Highly Scalable Geo-Distributed Transactional Software System

Binoy Ravindran
VIRGINIA POLYTECHNIC INST AND STATE UNIVERSITY

Final Report
12/19/2019

DISTRIBUTION A: Distribution approved for public release.

AF Office Of Scientific Research (AFOSR)/ RTA2
Arlington, Virginia 22203

Air Force Research Laboratory

Air Force Materiel Command

DISTRIBUTION A: Distribution approved for public release.



  a. REPORT

Unclassified

  b. ABSTRACT

Unclassified

  c. THIS PAGE

Unclassified

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing 
  data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or 
  any other aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Executive Services, Directorate (0704-0188). 
  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information 
  if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ORGANIZATION.
1.  REPORT DATE (DD-MM-YYYY)
     14-07-2020

2.  REPORT TYPE
     Final Performance

3.  DATES COVERED (From - To)
     31 Mar 2015 to 30 Sep 2019

4.  TITLE AND SUBTITLE
Alvin: A Strongly Consistent and Highly Scalable Geo-Distributed Transactional 
Software System

5a.  CONTRACT NUMBER

5b.  GRANT NUMBER
FA9550-15-1-0098

5c.  PROGRAM ELEMENT NUMBER
61102F

6.  AUTHOR(S)
Binoy Ravindran 

5d.  PROJECT NUMBER

5e.  TASK NUMBER

5f.  WORK UNIT NUMBER

7.  PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
VIRGINIA POLYTECHNIC INST AND STATE UNIVERSITY
300 TURNER ST NW, SUITE 4200
BLACKSBURG, VA 24061-0001 US

8.  PERFORMING ORGANIZATION
     REPORT NUMBER

9.  SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
AF Office of Scientific Research
875 N. Randolph St. Room 3112
Arlington, VA 22203

10.  SPONSOR/MONITOR'S ACRONYM(S)
AFRL/AFOSR RTA2

11.  SPONSOR/MONITOR'S REPORT
      NUMBER(S)
AFRL-AFOSR-VA-TR-2020-0094      

12.  DISTRIBUTION/AVAILABILITY STATEMENT
A DISTRIBUTION UNLIMITED: PB Public Release

13.  SUPPLEMENTARY NOTES

14.  ABSTRACT
Cloud computing's ubiquitous infrastructure-as-a-service (IaaS) model has enabled a broad range of enterprise organizations
to roll out online services at low cost. Cloud's multi-region support allows computational resources to be instantiated from
different data centers around the world, enabling new classes of geographical-scale (or 'geo-scale') applications.
State machine replication (SMR) is the de facto standard for building highly scalable and available distributed applications
and services. SMR replicates a service across a set of nodes, and executes client operations on the replicas in an agreedupon
total order, ensuring consistency of the replicated state. The problem of determining a total order reduces to one of
consensus.

15.  SUBJECT TERMS
Geo-Distributed, Transactional Software

16.  SECURITY CLASSIFICATION OF: 17.  LIMITATION OF
      ABSTRACT

UU

18.  NUMBER
       OF
       PAGES

19a.  NAME OF RESPONSIBLE PERSON
NGUYEN, TRISTAN

19b.  TELEPHONE NUMBER (Include area code)
703-696-7796

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

Page 1 of 1FORM SF 298

7/16/2020https://livelink.ebs.afrl.af.mil/livelink/llisapi.dll

DISTRIBUTION A: Distribution approved for public release.



1

Final Report

AFOSR Grant FA9550-15-1-0098

Alvin: A Strongly Consistent and Highly Scalable
Geo-Distributed Transactional Software System

Program Officer: Dr. Tristan Nguyen, tristan.nguyen@us.af.mil
Program: Systems and Software, RTC-10

Institution:
Virginia Polytechnic Institute and State University

North End Center, Suite 4200
300 Turner Street, NW

Blacksburg, VA 24061-0001

Principal Investigator:
Binoy Ravindran

Department of Electrical and Computer Engineering
1991 Kraft Dr. SW, Suite 2001, Blacksburg, VA 24061

Phone: 540-231-3777, Fax: 540-231-3362, E-mail: binoy@vt.edu

DISTRIBUTION A: Distribution approved for public release.



Abstract

Cloud computing’s ubiquitous infrastructure-as-a-service (IaaS) model has enabled a broad
range of enterprise organizations to roll out online services at low cost. Cloud’s multi-region
support allows computational resources to be instantiated from different data centers around the
world, enabling new classes of geographical-scale (or “geo-scale”) applications.

State machine replication (SMR) is the de facto standard for building highly scalable and
available distributed applications and services. SMR replicates a service across a set of nodes,
and executes client operations on the replicas in an agreed-upon total order, ensuring consistency
of the replicated state. The problem of determining a total order reduces to one of consensus.

State-of-the-art consensus protocols are inadequate for newer classes of applications such
as blockchains and for geo-scale infrastructures. To overcome these limitations, the project has
developed a family of leaderless consensus protocols for a variety of fault models and geographical
deployment conditions. The project’s key achievements are:
• Dester: Leaderless Hybrid Fault-tolerant Consensus.
• ezBFT: Fast, Leaderless Byzantine Fault-Tolerant (BFT) Consensus.
• Spectrum: Contention-agnostic Consensus Framework
• Caesar: Fast, Leaderless Crash Fault-Tolerant (CFT) Consensus
• Alvin: Leaderless Crash Fault-Tolerant (CFT) Transactional System

Dester is a leaderless hybrid state machine replication protocol that incorporates a novel
trusted subsystem, called TruDep, for achieving high performance in geo-scale deployments.
Dester allows any replica to propose and commit client commands in two communication steps
in most practical situations, while clients minimize latency by sending commands to the closest
replica.

ezBFT solves leaderless BFT consensus, in which an operation is executed on all repli-
cas in three communication steps under low contention. The client sends the request to the
geographically-closest replica who proposes an initial execution order for that request along with
its dependencies. ezBFT achieves this by performing speculative execution of submitted requests
after the execution of their dependencies, which are requests that must be executed in the same
order across all replicas to ensure consistency. When the client observes inconsistencies during
speculative execution, it enforces the right execution order, which the replicas execute.

Spectrum is a novel consensus framework that enables a consensus-based system to become
contention-agnostic by providing the ability to switch between different consensus protocols at
runtime in a way completely oblivious to the users. Spectrum is best fit for use cases where there
is a need to adapt protocols to serve workloads with varying conflicts over time. Spectrum can
provide the best possible performance under any contentious workload generated by applications,
thus giving the user a perception that the system is actually contention-agnostic.

Caesar is a consensus protocol designed for geo-scale deployments that is able to maintain
high performance in the presence of both mostly non-conflicting workloads (named as such if less
than 5% of conflicting commands are issued) and conflicting workloads (where at most 40% of
commands conflict with each other). Caesar can agree on the order for an operation in one RTT,
called fast decision, when the workload is non-conflicting. Under conflicting workloads, Caesar
maximizes the number of fast decisions using a novel wait condition.

Alvin is a geo-replicated transactional system that finds an effective tradeoff between perfor-
mance and strong consistency. At the core of Alvin is a novel Partial Order Broadcast protocol
(POB) that globally orders only conflicting transactions and minimizes the number of commu-
nication steps for non-conflicting transactions. Alvin’s prototype is designed to be generic and
customizable. It provides an API for its reliable ordering layer as well as an API for executing
high performance distributed transactions.

The outcomes of the project has been published at various peer-reviewed conferences and
journals, and has developed many Master’s and PhD theses.
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I. Overview of Project Achievements

The last decade has witnessed an ever increasing proliferation of online services enabled by
ubiquitous cloud platforms. Cloud providers charge for per unit of computation resource utilized,
thus minimizing the total cost of ownership of cloud resources. This has enabled businesses ranging
from startups to large-scale enterprises to take advantage of cloud’s flexibility to develop highly
available (i.e., round-the-clock) applications and services. Moreover, cloud’s multi-region support
allows computational resources to be instantiated from different data centers around the world,
enabling new classes of geographical-scale (“geo-scale”) applications [1], [2].

Historically, developers have relied on replication to build highly scalable and available services,
because a single host cannot handle the many millions of client requests issued per second.
Moreover, distributed systems, in general, are prone to faults such as machine crashes, network
outages, and software bugs. Replication has been perhaps the most viable solution to increase
scalability and availability of applications for many decades. Developers have used replication to
build mission-critical services such as databases [3], key-value stores and coordination systems [4].

State Machine Replication (SMR) is a common technique employed in today’s distributed
applications to tolerate server failures and maintain high availability [5]. The replication servers,
or replicas, employ consensus (or agreement) protocols (e.g., Raft [6], Paxos [7]) to replicate the
application state and ensure that the same sequence of client commands is executed on the shared
state in the same order (i.e., a total order), ensuring consistency of the replicated state.

Consensus solutions can be broadly classified as Crash Fault-Tolerant (CFT) and Byzantine
Fault-Tolerant (BFT), with the former being a subset of the latter. While CFT protocols have
found their niche in datacenter applications [8], [3] of a single enterprise-class organization, BFT
protocols are increasingly used in applications involving multiple independent organizations. For
example, for distributed ledger or blockchain-based applications in the permissioned setting,
consensus need to be reached among a set of known participants (e.g., independent organizations),
despite no complete trust among them. In such cases, BFT protocols can ensure replica state
consistency while withstanding malicious actors and other non-crash related faults. An example
of a permissioned blockchain system that uses a BFT protocol is the Hyperledger Fabric [9].

Between the BFT and the CFT models, there exists a fault model, called the hybrid fault toler-
ance model, enables construction of byzantine fault tolerant protocols with replication resources
similar to CFT protocols – namely 2f + 1 nodes – by incorporate a small trusted subsystem
that can only fail by crashing. Though some early solutions used ASICs and FPGAs resulting
in very low performance [10], [11], the advent of trusted execution environments (TEEs) within
commodity hardware such as Intel SGX [12] and ARM Trustzone [13] significantly reduces the
performance overheads for hybrid protocols [14]. A software-based subsystem can be protected
by such trusted environments providing the required level of trust.

Many consensus-based distributed systems are increasingly deployed in geographically dis-
tributed settings to cater to different application needs. Geographical-scale (or“geo-scale”) deploy-
ments of such systems have an additional challenge: achieving low client-side latencies and high
server-side throughput under the high communication latencies of a WAN. Since replicas need to
communicate with each other and the clients to reach consensus, the number of communication
steps incurred directly impacts the latency, as each step involves sending messages to potentially
distant nodes. State-of-the-art protocols [15], [16] use various techniques to reduce communication
steps, but they do so only in certain cases, often leading to poor performance in many plausible
situations. Furthermore, no existing BFT consensus protocol reduce client-side latencies in a
geo-scale setting, where, the latency per communication step is as important as the number of
communication steps. In other words, a protocol can achieve significant cost savings if the latency
incurred during a communication step can be reduced.
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The downside of such lack of optimization is most manifest for single-leader or primary -based
consensus protocols such as Multi-Paxos [7], PBFT [17], and Zyzzyva [15]: a replica is bestowed the
primary status and is responsible for proposing the total-order for all client requests. While the
clients that are geographically nearest to the primary may observe optimal client-side latency,
the same is not true for distant clients. A distant client will incur higher latency for the first
communication step (of sending the request to the primary). Additionally, the primary-based
design limits throughput as the primary carries significantly higher load.

A leaderless protocol can solve the aforementioned problems. A client can send its requests
to the nearest replica and can continue to do so as long as the replica is correct. The replica
can undertake the task of finding an order among all the concurrent requests in the system,
executing the request on the shared state, and return the result. Leaderless protocols [18], [19]
have been previously proposed for the CFT model. However, to the best of our knowledge, such
investigations have not been made for the BFT model.

The project’s achievements include the design and development of a family of leaderless consen-
sus protocols for a variety of fault models and geographical deployment conditions. To summarize,
we developed leaderless consensus protocols for three fault models: Dester in the Hybrid Fault
Tolerance model, ezBFT in the Byzantine Fault Tolerance model and Caesar and Alvin in the
Crash Fault Tolerance model. Furthermore, the project also developed Spectrum, a contention
framework that acknowledges that there is no one-size-fits-all consensus solution and provides
a mechanism to switch consensus protocols at runtime to adapt to workloads with changing
contention over time. The rest of this section summarizes the key findings of the project.

A. Dester

One of the outcomes of the project is the design, implementation, and evaluation of Dester, a
leaderless hybrid fault-tolerant state machine replication protocol built ground-up for achieving
high performance in the geo-scale environments. The leaderless nature allows every replica to
process client commands by only relying on a set of closest replicas, thus providing low client-
side latencies and high system throughput. Dester is, in part, made possible by a novel trusted
subsystem called TruDep that provides the necessary trust required to ensure secure, leaderless
operation. TruDep was designed specifically for trusted execution environments (such as Intel
SGX) with a goal of having as few lines of trusted code as possible, such that the possibility of
bugs in the subsystem tends to zero.

Fig. 1: Average latencies for Experiment 1. All
primaries are in North Central US region. The
latency is shown per region as recorded by the
clients in that region.

We implemented Dester and evaluated
it against state-of-the-art systems including
Hybster and PBFT. For geo-scale deployment,
we leverage SGX-capable virtual machine in-
stances available in the Azure cloud plat-
form [20]. The systems were deployed on three
each located in different geographical region.
Our trusted subsystem TruDep and Hybster’s
trusted counter TrInx were implemented in C
using Intel SGX SDK and interfaced with the
Go application.

One of the experiments to understand
Dester’s effectiveness in achieving optimal la-
tency at each geographical region is presented
in Figure 1. It shows the average latency (in
milliseconds) experienced by clients located at
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each region (shown on x-axis) for each of the protocols. For this experiment, we co-located a
client at each node that sends requests to the replicas. For leader-based protocols (Hybster and
PBFT), the leader was set to East US replica; thus, clients in other regions send their requests
to the leader. For Dester, the client sends its requests to the nearest replica (which is in the same
region). The clients send requests in closed-loop, meaning that a client will wait for a reply to its
previous request before sending another one.

For Dester, the latency was measured at different contention levels: 0%, 5%, and 100%; the
suffix in the legend indicates the contention. Among leader-based protocols, PBFT suffers the
highest latency, by contacting an additional faraway replica and taking three communications
steps. Hybster only provides optimal latency at leader-site. Dester in contrast is able to provide
optimal latencies at every site, thus achieving huge latency savings of up to 50%. Dester’s worst
case behavior is evident when contention is 100%, which is an extreme case unlikely in practice.
Regardless, Dester performs better than PBFT.

In summary, our experimental evaluations reveal that Dester provides up to 50% lower latency
and 30% more throughput than Hybster in a geo-replicated setting. Complete details of Dester,
including design and implementation details, theoretical results, experimental evaluation results,
and full source codes are available at: http://www.hyflow.org.

B. ezBFT

Another outcome of the project includes the design, implementation, and evaluation of the
ezBFT leaderless Byzantine Fault Tolerant (BFT) consensus protocol. ezBFT enables every
replica in the system to process the requests received from the clients. Doing so (i) significantly
reduces the client-side latency, (ii) distributes the load across replicas, and (iii) tolerates faults
more effectively. ezBFT is the first BFT protocol to provide decentralized, deterministic consensus
in the eventually synchronous model. It delivers requests in three communication steps in normal
operating conditions. By minimizing the latency at each communication step, ezBFT provides a
highly effective BFT solution for geo-scale deployments.

To enable leaderless operation, ezBFT exploits a particular characteristic of client commands:
interference. In the absence of concurrent interfering commands, ezBFT’s clients receive a reply
in an optimal three communication steps. When commands interfere, both clients and replicas
coherently communicate to establish a consistent total-order, consuming an additional zero or
two communication steps. ezBFT employs additional techniques such as client-side validation of
replica messages and speculative execution to reduce communication steps in the common case.

Fig. 2: Average latencies as recorded by the clients
per region. All primaries are in Virginia.

Figure 2 presents the results of an exper-
iment that shows ezBFT’s effectiveness in
achieving optimal latency at each geographical
region. For this experiment, we deployed the
protocols in four AWS regions and co-located
a client that sends requests to the replica. For
single primary-based protocols (PBFT, FaB,
Zyzzyva), the primary was set to the replica
in Virginia; thus, clients in other replicas send
their requests to the primary. For ezBFT, the
client sends its requests to the nearest replica
(which is in the same region). The clients send
requests in closed-loop, meaning that a client
will wait for a reply to its previous request before sending another one.

To understand how ezBFT fares against state-of-the-art BFT protocols, we implemented
ezBFT in Go as part of the Hyflow transactional/concurrency control middleware infrastructure
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(www.hyflow.org), and conducted an experimental evaluation using a key-value store benchmark.
The systems were deployed using the AWS EC2 infrastructure in different geographical regions.

Figure 2 shows the average latency (in milliseconds) observed by the clients located in their
respective regions (shown on x-axis) for each of the four protocols. For ezBFT, the latency was
measured at different contention levels: 0%, 2%, 50%, and 100%; the suffix in the legend indicates
the contention. Among primary-based protocols, PBFT suffers the highest latency, because it
takes five communication steps to deliver a request. FaB performs better than PBFT with four
communication steps, but Zyzzyva performs the best among primary-based protocols using only
three communication steps. Overall, ezBFT performs as good as or better than Zyzzyva, for up
to 50% contention. In the Virginia region, both Zyzzyva and ezBFT have about the same latency
because they have the same number of communication steps and their primaries are located in
the same region. However, for the remaining regions, Zyzzva clients must forward their requests
to Virginia, while ezBFT clients simply send their requests to their local replica, which orders
them.

In summary, our evaluation reveals that ezBFT improves client-side latency by as much as 40%
over PBFT, FaB, and Zyzzyva. Complete details of ezBFT, including design and implementation
details, theoretical results, experimental evaluation results, and full source codes are available at:
http://www.hyflow.org.

C. Spectrum

The project’s achievements include the design, implementation, and evaluation of Spectrum,
a novel consensus framework that enables a consensus system to become contention-agnostic
by providing the ability to switch between different consensus protocols at runtime in a way
completely oblivious to the users. Spectrum is best fit for use cases where there is a need to
adapt protocols to serve workloads with varying conflicts over time. Spectrum can provide the
best possible performance under any contentious workload generated by applications, thus giving
the user a perception that the system is actually contention-agnostic.

Its main features include: i) A switching mechanism that is able to coordinate among supported
consensus protocols to enable an oblivious transition, and capable of reaching a non-blocking
agreement among nodes on the specific switch to be performed. ii) Specific methodologies, each
specialized for the switch from a consensus protocol to another one. These include switching from
single leader-based consensus to leaderless consensus, and vice versa. iii) Common interfaces for
existing and future consensus protocols to enable the usage of those protocols as plugins in the
framework, and a simple oracle to detect and react to a change of the workload.
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Fig. 3: Effectiveness of Spectrum in providing minimum possible latency for any conflicting workload.

Spectrum framework was implemented in Java as part of the Hyflow transactional/concurrency
control middleware infrastructure (http://www.hyflow.org). The framework incorporated the fol-
lowing consensus protocols: Multi-Paxos, Caesar, and M2Paxos. These three protocols cover
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the majority of the conflict spectrum and allow to demonstrate the ability of the framework to
cope with various amounts of conflicting workloads.

To demonstrate the effectiveness of the approach, we conducted experiments by deploying the
framework in five Amazon AWS data center sites around the world using the AWS EC2 service.
One experiment, as shown in Figure 3, is meant to show that Spectrum’s ability to switch
at runtime enables to provide the minimum possible user-perceived latency for any conflicting
workload. The experiment was conducted by increasing the amount of conflicts over time in order
to provoke a switch. The x-axis presents the time in seconds since the beginning of the experiment,
and the y-axis shows user-perceived latency in milliseconds.

Spectrum was initialized with M2Paxos as the starting consensus protocol and a running non-
conflicting workload. In this case, the oracle does not trigger any switch as M2Paxos is the best
protocol for this workload. At time t = 30s, the amount of conflicts in the workload is increased to
10%. At this point, M2Paxos experiences a livelock caused by conflicting ownership acquisitions,
and thus the client requests timeout. The oracle steps in at t = 65s and switches to Caesar, and
in few seconds, Spectrum responds and delivers commands to the client. At t = 95s, the conflict
was increased to 50%, and Caesar starts performing poorly, but not as worse as M2Paxos at
10% conflict. The oracle triggers the switch to Multi-Paxos at t = 130s, and this reduces the
latency as at this amount of conflict, a leader-based protocol is better than any other group of
protocols.

Complete details of Spectrum, including design and implementation details, theoretical results,
experimental evaluation results, and full source codes are available at: http://www.hyflow.org.

D. Caesar

We developed Caesar, a Consensus protocol designed for geo-scale deployments that is able
to maintain high performance in the presence of both mostly non-conflicting workloads (named
as such if less than 5% of conflicting commands are issued) and conflicting workloads (where at
most 40% of commands conflict with each other).
Caesar solves consensus by taking into account the various scenarios that occur when messages

are delivered asynchronously. Caesar inherits the advantages of existing approaches – Mencius [5]
and EPaxos [16] – and overcomes the inherent pitfalls in these existing approaches. In summary,
Caesar can agree on the order for an operation in one RTT, called fast decision, when the
workload is non-conflicting. Under conflicting workloads, Caesar maximizes the number of fast
decisions using a novel wait condition. Under scenarios where a fast decision is not possible despite
the presence of the wait condition, one more RTT is taken to decide on the order for the operation,
and this is called slow decision.
Caesar was implemented in Java as part of the Hyflow transactional/concurrency control mid-

dleware infrastructure (http://www.hyflow.org), and evaluated using the key-value store bench-
mark. Using the key-value store interfaces, different workloads were injected by varying the
percentage of conflicting commands, and various performance parameters were measured.
Caesar was contrasted against state-of-the-art Consensus protocols including EPaxos [16],

M2Paxos [21], Mencius [5]; and Multi-Paxos [22]. For evaluation, the systems were deployed
using the Amazon EC2 infrastructure in five geographical regions around the world.

In Figure 4, we report the average latency incurred in each site by Caesar, EPaxos, and
M2Paxos to order and execute a command. Each cluster of data shows the behavior of a system
while increasing the percentage of conflicts in the range of {0% – no conflict, 2%, 10%, 30%,
50%, 100%}. At 0% of conflicts, EPaxos and M2Paxos provide comparable performance because
both employ two communication steps to order commands and the same size for quorums, with
EPaxos slightly faster because it does not need to acquire the ownership on submitted commands
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Fig. 4: Average latency for ordering and processing commands by changing the percentage of
conflicting commands. Batching disabled. Given a percentage value, bars of competitors are
overlapped: e.g., in the case of 30% conflicting commands and the node in Virginia, latency
values are 90 msec, 108 msec, and 127 msec, for Caesar, EPaxos, and M2Paxos, respectively.

before ordering. The performance of Caesar is slightly slower than EPaxos because of the need
to contact one additional node to reach consensus. However, this overhead is on average 18%.

When the percentage of conflicting commands increases up to 50%, Caesar sustains its perfor-
mance by providing an almost constant latency; all other competitors degrade their performance
visibly. The latency provided by the node in India is higher than other nodes. Here, Caesar is
50% slower than EPaxos only when conflicts are low, because Caesar has to contact one more
faraway node (e.g., Virginia) to deliver fast.

Complete details of Caesar, including design and implementation details, theoretical results,
experimental evaluation results, and full source codes are available at: http://www.hyflow.org.

E. Alvin: High-Performance Geo-Replicated Transactional System

Geo-replicated concurrency control protocols can be classified under two approaches. The first
approach ensures high consistency, but restricts the type of transactions that are allowed [23], [16].
This enables exploiting specific protocol optimizations to achieve high performance. The second
approach allows general-purpose transactions, but weakens the consistency criterion for better
performance [24]. This has the negative effect of reduced programmability, as programmers must
cope with potential inconsistent states in application behaviors.

Motivated by this gap between strong consistency/poor performance and weak consistency/-
good performance, we developed a geo-replicated transactional system called Alvin [25], which
finds an effective tradeoff between performance and strong consistency. At the core of Alvin lies a
novel Partial Order Broadcast protocol (POB) that globally orders only conflicting transactions
and minimizes the number of communication steps for non-conflicting transactions.

While the idea of defining the agreement of consensus on the basis of message semantics is not
new and has been previously introduced in Generalized Consensus [26] and Generic Broadcast [27],
POB encompasses a novel approach for ordering transactions’ commits that overcomes the lim-
itations of existing single leader-based solutions (i.e., Generalized Paxos [26]) when deployed
geographically. POB does not rely on a designated leader to either order transactions or support
conflict resolution in case of conflicting concurrent transactions.

POB has been designed to inherit the benefits of state-of-the-art, multi-leader, state machine
replication protocols specifically proposed for GDS such as Mencius [5] and EPaxos [16], and,
at the same time, to overcome their limitations. In particular, POB, like Mencius [5], has the
advantages of defining the final order of messages on the sender nodes. Typically, this technique
avoids expensive distributed decisions by determining an a priori assignment of delivered positions
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to messages. This approach suffers from potentially expensive waiting conditions that are needed
to ensure that the delivery of a message in position p does not precede the delivery of a message in
position p′ < p. However, POB, unlike Mencius, relies on a quorum of replies, instead of waiting
for the information about delivered positions from all nodes. This makes POB’s performance
robust even in scenarios where nodes are far apart (as is often the case in GDS), or when the
message sending rate is unbalanced among nodes.

Furthermore, Alvin exports design choices to programmers to customize the POB and P-CC
according to the needs of the application and system at hand. As an example, Alvin offers
two strong consistency criteria that programmers can select: Serializability (SR) [28], which
requires all transactions including read-only ones to be broadcast via POB; and Extended Update
Serializability (EUS) [29], [30] (i.e., PL-3U [29]), which allows read-only transactions to execute
locally at the cost of generating some non-serializable schedules that are usually silent to the
application.

We built the Alvin prototype in the Go programming language and evaluated it on the Amazon
EC2 infrastructure using up to 7 geographically distributed sites with benchmarks including
Bank [31] and TPC-C [32]. As competitors, we implemented two certification-based transactional
systems [33] that rely on MultiPaxos [7] and EPaxos [16] for their ordering layer. Our experi-
ments reveal that, when configured to exploit EUS, Alvin provides significant speedup for seven-
datacenter with TPC-C workloads by as much as 4.8× compared to EPaxos. This significant gain
is due to a more efficient execution of read-only workload, which is enabled by EUS’s semantics.
If Alvin runs under SR, it gains up to 26% over EPaxos because it does not pay the cost of graph
analysis needed by EPaxos for delivering transactions. On Bank, due to its small transactions and
trivial dependency graphs, that cost is not significant, thus EPaxos behaves similarly to Alvin.
MultiPaxos highlights the drawbacks of having a single leader in GDS, thus its performance is
lower than other (multi-leader) competitors.

Complete details of Alvin, including design and implementation details, theoretical results,
experimental evaluation results, and full source codes are available at: http://www.hyflow.org.

II. Summary of Project’s Software and Publications1

i) “Achieving Decentralization in Hybrid Fault Tolerance,” B. Arun, and B. Ravindran, The
40th IEEE International Conference on Distributed Computing Systems (ICDCS 2020), July
2020, Singapore. Under Review.

ii) “Taming the Contention in Consensus-based Distributed Systems,” B. Arun, S. Peluso, R.
Palmieri, G. Losa, and B. Ravindran, IEEE Transactions On Dependable and Secure Com-
puting. Minor Revision Under Review.

iii) “Generalized Consensus for Practical Fault Tolerance ,” M. Garg, S. Peluso, B. Arun, and B.
Ravindran, The 20th ACM/IFIP/USENIX International Middleware Conference, December
2019, Davis, CA, USA.

iv) “ezBFT: Decentralizing Byzantine Fault-Tolerant State Machine Replication,” B. Arun, S.
Peluso, and B. Ravindran, The 39th IEEE International Conference on Distributed Computing
Systems (ICDCS 2019), July 2019, Dallas, Texas, USA.

v) “Speeding up Consensus by Chasing Fast Decisions,”B. Arun, S. Peluso, R. Palmieri, G. Losa,
and B. Ravindran, The 47th IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN 2017), June 2017, Denver, CO, USA, To appear.

vi) “A Low-latency Consensus Algorithm for Geographically Distributed Systems,” Balaji Arun,
MS Thesis, Virginia Tech, February 2017.

1Publications reported here include papers and theses published, accepted, and in progress for the reporting
period. All publications are available at http://www.hyflow.org.
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vii) “Optimizing Distributed Transactions: Speculative Client Execution, Certified Serializability,
and High Performance Run-Time,” Utkarsh Pandey, MS Thesis, Virginia Tech, August 2016.

viii) “Brief Announcement: A Family of Leaderless Generalized-Consensus Algorithms,” G. Losa,
S. Peluso, and B. Ravindran, The 35th ACM SIGACT-SIGOPS Symposium on Principles of
Distributed Computing (PODC 2016), July 25-28, 2016, Chicago, Illinois, USA.

ix) “Exploiting Parallelism of Distributed Nested Transactions,” D. Niles, R. Palmieri, and B.
Ravindran, The 9th ACM International Systems and Storage Conference (SYSTOR 2016),
June 6-8, 2016, Haifa, Israel.

x) “Making Fast Consensus Generally Faster,” S. Peluso, A. Turcu, R. Palmieri, G. Losa, and B.
Ravindran. The 46th Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN 2016), June 28 – July 1st, 2016, Toulouse, France.

xi) “Be General and Don’t Give Up Consistency in Geo-Replicated Transactional Systems”, A.
Turcu, S. Peluso, R. Palmieri, B. Ravindran, In proceeding of the 18th International Confer-
ence on Principles of Distributed Systems (OPODIS), December 15-19, 2014, Cortina, Italy.

xii) “Improving Performance of Highly-Programmable Concurrent Applications by Leveraging Par-
allel Nesting and Weaker Isolation Levels”, Duane F. Niles, Jr., MS Thesis, June 2015.
URL: https://vtechworks.lib.vt.edu/bitstream/handle/10919/54557/Niles DF T 2015.pdf

xiii) “On the Fault-tolerance and High Performance of Replicated Transactional Systems”, Sachin
Hirve, PhD Dissertation, September 2015.
URL: http://vtechworks.lib.vt.edu/bitstream/handle/10919/56668/Hirve S D 2015.pdf

xiv) “On Improving Distributed Transactional Memory through Nesting, Partitioning and Order-
ing”, Alexandru Turcu, PhD Dissertation, January 2015.
URL: https://vtechworks.lib.vt.edu/bitstream/handle/10919/51593/Turcu A D 2015.pdf

xv) “Exploiting Parallelism of Distributed Nested Transactions”, D. Niles, R. Palmieri, B. Ravin-
dran, Under review at the 9th ACM International Systems and Storage Conference (SYS-
TOR), June 6 – 8, 2016, Haifa, Israel.
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