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Project objectives 
 
The goal of this project is to uncover the effects of robust associative learning and long-term 
memory storage on synaptic connectivity, thus, creating the basis for quantitative analyses of 
these fundamental brain functions. The following objectives were proposed. (1) Develop a 
biologically-realistic model of robust associative learning by cortical circuits. The model must be 
derived from the hypothesis that synaptic connectivity in a given circuit of the adult cortex is 
functioning in a steady-state in which the associative memory storage capacity of the circuit is 
maximal and learning of new associations is accompanied by forgetting some of the old ones. 
The model must integrate the current knowledge of excitatory and inhibitory neuron classes, with 
structural connectivity constraints imposed by the morphologies of axonal and dendritic arbors of 
cortical neurons, with homeostatic constraints on numbers and strengths of synaptic connections. 
(2) Simulate steady-state learning based on one of the best-studied networks in the mammalian 
neocortex – the barrel-centered column of rodent somatosensory cortex. The simulations must be 
embedded in the structural connectivity of the column built from the morphologies of neurons 
reconstructed in three-dimensions from various cortical depths. (3) Validate the structural and 
dynamical properties of the steady-state circuits with a large dataset of experimental studies 
reporting probabilities of connections between neurons, probabilities of specific higher-order 
connectivity motifs, distributions of unitary postsynaptic potentials, and strengths of laminar and 
inter-laminar projections in rodent barrel cortex. The dataset, created as part of the project, must 
encompass connectivity of major excitatory and inhibitory neuron classes from different cortical 
layers.  
 
 
 

DISTRIBUTION A: Distribution approved for public release.



2 
 

Summary of major accomplishments and results 
 
1. The associative memory storage model (Objective 1) 
 
We developed a model of associative learning and memory storage based on the knowledge of 
connectivity in the cerebral cortex. The model includes multiple classes of inhibitory and 
excitatory neurons and incorporates various types of homeostatic and sign-constraints on 
connection weights. The model neural networks can learn temporal sequences and entire basins 
of network states, which is believed to be the foundation of all cognitive functions of the brain. 
One of the main advantages of the model is that the memory storage capacity of the network and 
the properties of its connectivity can be determined analytically. This makes it possible to 
explore the effects of model parameters and constraints on the network functions. 
 
We used a McCulloch and Pitts neural network to model a local cortical circuit in which Ninh 
inhibitory neurons and (N ‒ Ninh) excitatory neurons are all-to-all potentially connected (Figure 
1A). Associative memory in the model is a connected graph of successive network states 

(directed edges termed associations),  X X  , in which every node has no more than one 

daughter node (Figure 1B). Vectors X   and X  contain binary activities (0 or 1) of individual 
neurons within an association μ. In general, an associative memory can be in the form of a point 
attractor, an associative sequence, a limit cycle, and an entire basin of attraction.  
 
Learning in the network is mediated by changes in connection weights of individual neurons, Jij, 
in the presence of several biologically inspired constraints. (1) The input connection weights of 
each neuron are sign-constrained to be non-negative if the presynaptic neuron is excitatory and 
non-positive if it is inhibitory (Dale’s principle). (2) The input weights of each neuron are 
homeostatically constrained to have a predefined l1-norm. (3) Each neuron attempts to learn its 
associations robustly so that they can be recalled correctly in the presence of postsynaptic noise.  
 
Each neuron in the network (e.g. neuron i), independently from other neurons, attempts to learn a 

set of input-output associations  iX X  , in which a vector X   represents the neuron’s 

input for an association μ, and a scalar iX   is the desired output of the neuron derived from the 

subsequent network state X   (orange boxes in Figure 1B). To simplify the notation, in the 

following expressions we drop index i, replace iX   with y , and summarize the learning 

problem like so:  
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  (1) 

 
In these expressions, θ denotes the Heaviside step-function, h is the neuron’s firing threshold, 

and η denotes its postsynaptic noise, which is bounded by the robustness parameter κ, i.e.   . 

To enforce sign-constraints on the neuron’s presynaptic connection weights, we introduced 
parameters {gj} and set gj to 1 if the connection j is excitatory and –1 if it is inhibitory.  
Parameter w, referred to as the average absolute connection weight, is introduced to impose the 

l1-norm constraint on the weights of presynaptic connections. Binary input and output states, jX   

and y , are randomly drawn from the Bernoulli probability distribution: 0 with probability 1 – f 

and 1 with probability f.  
 
The above network model is governed by the following parameters: number of neurons in the 
network, N, fraction of inhibitory neurons, Ninh/N, threshold of firing, h, firing probability of 
neurons in the associative states, f, average absolute connection weight, w, robustness parameter 
κ, and memory load, α = m/N.  
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Figure 1: Associative memory storage in recurrent networks of excitatory and inhibitory 
neurons. A. A recurrent network of various classes (color) of all-to-all potentially connected 
excitatory and inhibitory neurons. Note that the arrows indicate actual (or functional) 
connections. B. Associative memory in the model is a connected graph of successive network 

states (directed edges termed associations),  X X  , in which every node has no more than 

one daughter node. Each neuron in the network (e.g. neuron i) must learn a set of input-output 
associations derived from the memory (orange boxes) by modifying the strengths of its input 
connections, Jij, under the constraints on connection signs and l1-norm. 
 
 
2. Theoretical solution of the model (Objective 1) 
 
We used the replica theory from statistical physics to solve the above model analytically, in its 
most general formulation. This solution is described in detail in Zhang, et al., J Neuroscience, 
(2019). It yields the neuron’s critical (maximum) capacity, α, the probabilities of excitatory and 

inhibitory connections, /
con

exc inhP , and the probability densities of non-zero excitatory and inhibitory 

connection weights, /
PSP
exc inhp : 

 

DISTRIBUTION A: Distribution approved for public release.



5 
 

 

 
   
    

 

 

 
 

2

2

2 22

2

(1 )2
, , ,

(1 )

, , ,

, , ,

| , , ,
2

| , , ,

inh

con inh
inh

con inh
exc

J
v

PSP winh
inh

PSP inh
exc

fD u f D uN
w f

N u u fE u f E u

N
P w f E v

N

N
P w f E v

N

JN
p J w f e

N wE v

N
p J w f

N



 















 

   





 
  
 



    
    

   
 
   
 

   
 
















 



 
 

 

2

2

2

J
v

w
J

e
wE v







 

  
 



 









 (2) 

 
These quantities are expressed as functions of five latent variables, u+, u−, ν+, ν −, and σ, which 
can be obtained by solving the following system of equations and inequalities:  
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We note that the distributions of inhibitory and excitatory connection weights are composed of 
Gaussian functions (standard deviation σ) truncated at zero and finite fractions of zero-weight 
connections. MATLAB code for generating the replica theory solution of the associative 
memory storage model is available at https://github.com/neurogeometry/AssociativeLearning.  
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3. Numerical solution of the associative memory model with a method based on convex 
optimization (Objective 1)  
 
While the above theoretical solution can describe a network in the N → ∞ limit at its maximum 
memory storage capacity, numerical methods are required for the analyses of finite networks and 
for the account of the learning process. For these reasons, we developed two numerical 
algorithms: first, based on the primal-dual, convex optimization formulation of the problem, and 
second, based on a biologically more plausible, perceptron-type learning rule.  
 

For the first algorithm, we made the problem feasible by introducing a slack variable 0s    for 
every association and chose the solution that minimizes the sum of these variables by solving the 
following linear optimization problem:    
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The code is available at https://github.com/neurogeometry/AssociativeLearning.  
 
 
4. Numerical solutions of the model with a perceptron-type learning rule (Objective 1) 
 
For the second algorithm, the sum of slack variables was minimized online yielding a 
perceptron-type learning rule, which is biologically more plausible. Here, a single not yet learned 
association is chosen at random and the synaptic weights of the neuron are updated in four 
consecutive steps: 
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Unlike the standard perceptron learning rule, Eqs. (5) enforce the sign and homeostatic l1-norm 
constraints during learning. The first update in Eqs. (5) is a standard perceptron learning step, in 
which parameter β is referred to as the learning rate. The second step was introduced to enforce 
the sign constraints, while the last two steps combined implement the homeostatic l1-norm 
constraint and are equivalent to the soft thresholding used in LASSO regression. MATLAB 
implementation of the perceptron-type learning rule is available at 
https://github.com/neurogeometry/AssociativeLearning.  
 
 
5. Dataset of cortical connectivity (Objective 3) 
 
We created a dataset of features of synaptic connectivity in local cortical circuits. The dataset 
describes a total of 856 projections based on 152 articles published in peer-reviewed journals 
since 1990. It includes detailed information about probabilities of connection and connection 
strengths in various animals and brain regions, for various laminar projections, classes of pre- 
and postsynaptic neurons, ages, experimental conditions, and recording techniques. The dataset 
is available at the Neurogeometry group website, 
http://www.neurogeometry.net/resources/datasets. 
 
 
6. Experimental analysis of learning and circuit plasticity (Objective 3) 
 
We collaborated with the laboratories of Anthony Holtmaat from the University of Geneva and 
Graham Knott from EPFL, to detect and interpret circuit changes that accompany learning and 
long-term memory formation in vivo. To that end, we developed BoutonAnalizer software which 
makes it possible to measure structural changes in connectivity during perceptual learning based 
on time-lapse, 2-photon microscopy imaging of axonal boutons. The software was validated on a 
dataset of boutons imaged and reconstructed at both light and electron microscopy levels. 
BoutonAnalizer was used to create a large dataset of connectivity changes in the barrel cortex of 
mice involved in long-term, perceptual learning tasks. More than 5,000 synaptic boutons were 
tracked in five animals over a period of two months. This unprecedented dataset was used to 
constrain and guide our theoretical efforts. One article resulting from this collaboration was 
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published, Gala, et al., eLife (2017), and another is in preparation. BoutonAnalizer software is 
available for download at https://github.com/neurogeometry/BoutonAnalyzer. The dataset used 
to validate the software is available for download at the Neurogeometry group website, 
http://www.neurogeometry.net/resources/datasets. 
 
 
7. Properties of networks as functions of memory load and robustness (Objective 3) 
 
We performed numerical simulations for networks of up to 1000 neurons and also solved the 
problem theoretically in the thermodynamic limit to study the effects of memory load and 
robustness on structural and dynamical properties of networks. Our results show that when a 
network is robustly loaded with associative memories up to capacity, it develops features like 
those observed in many cortical systems. These features include (1) probabilities of excitatory 
and inhibitory connections, (2) shapes of connection weight distributions, (3) overrepresentations 
of specific three-neuron motifs, (4) distributions of connection numbers in clusters of 3 to 8 
neurons, (5) sustained, irregular, and correlated firing activity, and (6) tight balance of excitatory 
and inhibitory postsynaptic potentials. The confluence of these results serves as a validation of 
the proposed associative memory storage model.  
 
 
8. Generalization of the theory on the case of unreliable signal transmission (extension of 
Objective 1) 
 
An important aspect of associative learning in the brain that has not been fully explored is that 
memories are recalled in the presence of noise. It is well known that sources of noise are present 
at every step of signal transmission through the network. These sources include errors in the 
presynaptic input to the neurons, noise in synaptic transmission, and fluctuations in the neurons’ 
postsynaptic potentials. Collectively they lead to errors in the neurons’ outputs which are, in 
turn, injected into the network, completing the noise propagation cycle. In our original model, all 
sources of noise were described by way of a generic robustness parameter. Subsequently, we 
solved a more general formulation of the associative memory storage model, in which memories 
are retrieved in the presence of the noise propagation cycle. Interestingly, our results show that 
errors and noise during learning increase the probability of memory recall. There is a tradeoff 
between the capacity and reliability of stored memories, and the information contained in the 
retrieved memories is maximal when the level of noise during learning exceeds that during 
memory retrieval. As before, networks loaded with associative memories to capacity display 
many structural and dynamical features observed in local cortical circuits. The manuscript 
describing these results was submitted for publication. The numerical algorithms developed for 
the solution of the associative memory storage model in the presence of errors and noise are 
available at https://github.com/neurogeometry/Associative_Learning_with_Noise. 
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9. Associative learning in a structurally-constrained cortical column (Objective 2) 
 
Inspired by the results of the associative memory storage model for local networks, we extended 
the model to a structurally constrained network of the cortical column. To that end, we used 55 
morphological types from the Blue Brain Project and constructed an instance of structurally 
(potentially) connected cortical column. The column includes 31,346 neurons, totaling 
~40,000,000 potential connections. We loaded associative memory sequences into the column 
and obtained its connectivity. We showed that as in the case of local networks, associative 
learning alone is enough to explain the bulk of experimental knowledge about connectivity 
between different neuron classes and network dynamics in the column. The manuscript related to 
these results is in preparation. 
 

 
Figure 2: Functional connectivity results from biologically-constrained associative learning in a 
morphologically-constrained neural network.  
 
 
10. Online learning without catastrophic forgetting (new objective) 
 
Long-term memories in the brain are stored in patterns and strengths of synaptic connections, 
and it is believed that a single memory is written into a large population of synapses and that 
each synapse is involved in multiple memories. Due to this distributed and shared nature of 
memory representation, new learning can affect synapses involved in existing memories, leading 
to indiscriminate, or catastrophic, forgetting. How catastrophic forgetting is avoided in the brain 
is not known, and there are no adequate strategies for dealing with this problem in artificial 
neural networks. We use numerical simulations to show that, in the associative memory storage 
model, memory lifetime increases super-linearly with robustness. Therefore, it is possible to 
substantially extend the lifetimes of high-priority memories by loading them into the network 
with relatively high values of robustness. This will minimize the need for memory maintenance 
or retraining.  
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Neuroscience Meeting, Lisbon, Portugal, March 2019 

 Danke Zhang, Chi Zhang, and Armen Stepanyants, “Structural and dynamical properties of 
local cortical networks result from robust associative learning”, Organization for 
Computational Neuroscience Annual Meeting, Seattle, WA, July 2018 

 Chi Zhang, Danke Zhang, and Armen Stepanyants, “Robustness to fluctuations in neural 
activity is reflected in the structure of critical associative memory networks”, Society for 
Neuroscience Annual Meeting, Washington DC, November 2017 

 Danke Zhang, Chi Zhang, and Armen Stepanyants, “Structural and dynamical properties of 
critical memory networks”, Society for Neuroscience Annual Meeting, Washington DC, 
November 2017 

 Danke Zhang, Chi Zhang, and Armen Stepanyants, “Properties of recurrent networks at 
maximum capacity for storing sequences of network states”, Organization for Computational 
Neuroscience Annual Meeting, Antwerp, Belgium, July 2017 

 Chi Zhang, Danke Zhang, and Armen Stepanyants, “Structural and dynamic properties of 
neural networks with robust associative memory recall in the presence of fluctuations in 
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neuron firing”, International Conference on Mathematical Neuroscience, Boulder, CO, June 
2017 

 Danke Zhang, Chi Zhang, and Armen Stepanyants, “Order-to-chaos phase transition in 
recurrent networks operating at maximum capacity for storing sequences of network states”, 
International Conference on Mathematical Neuroscience, Boulder, CO, June 2017 

 Rohan Gala, Daniel Lebrecht, Daniela Sahlender, Anne Jorstad, Graham Knott, Anthony 
Holtmaat, and Armen Stepanyants, “Detection of structural changes in axonal boutons in 
time-lapse in vivo imaging experiments”, Wiring the Brain, Cold Spring Harbor, NY, April 
2017 

 Danke Zhang, Chi Zhang, and Armen Stepanyants, “Structure and dynamics of robust 
associative networks operating at maximum capacity”, Computational and Systems 
Neuroscience Meeting, Salt Lake City, UT, February 2017 

 Rohan Gala, Daniel Lebrecht, Marta-Milena Dimanico, Stephane Pages, Daniela Sahlender, 
Karin Morandell, Graham Knott, Daniel Huber, Anthony Holtmaat, and Armen Stepanyants, 
“Tracking boutons and analyzing their structural plasticity to reveal correlates of perceptual 
learning”, Neural Circuits, Cold Spring Harbor NY, April 2016 

 Rohan Gala, Daniel Lebrecht, Anthony Holtmaat, and Armen Stepanyants, “A three-state 
model helps to find anatomical correlates of perceptual learning”, Computational and 
Systems Neuroscience Meeting, Salt Lake City UT, February 2016 

 Rohan Gala, Daniel Lebrecht, Anthony Holtmaat, and Armen Stepanyants, “Tracking 
structural changes in chronic in vivo images of neurites”, Society for Neuroscience Annual 
Meeting, Chicago IL, October 2015 

 Julio Chapeton, Rohan Gala, and Armen Stepanyants, “Associative memory storage and 
synaptic connectivity in homeostatically constrained networks of excitatory and inhibitory 
neurons”, Society for Neuroscience Annual Meeting, Chicago IL, October 2015 

 Daniel Lebrecht, Rohan Gala, Marta-Milena Dimanico, Stéphane Pagès, Karin Morandell, 
Daniel Huber, Armen Stepanyants, Anthony Holtmaat, “Anatomical correlates of perceptual 
learning in mouse barrel cortex”, Society for Neuroscience Annual Meeting, Chicago IL, 
October 2015 
 

 

Other products 
 

 Dataset of connection probabilities and strengths in local brain circuits in mammals. 
This dataset is a compilation of 152 articles published in peer-reviewed journals from 1990 to 
2016, describing a total of 856 projections. It includes detailed information about 
probabilities of connection and connection strengths in various animals and brain regions, for 
various laminar projections, classes of pre- and postsynaptic neurons, ages, experimental 
conditions, and recording techniques. The dataset is available at the Neurogeometry group 
website, http://www.neurogeometry.net/resources/datasets. 
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 Dataset of correlative light and electron microscopy images of cortical axons. This 
dataset includes (1) an image volume, acquired with two-photon laser scanning microscopy 
in vivo (2PLSM), showing axons of GFP expressing cortical neurons, (2) 3D electron 
microscopy reconstruction of these axons, their boutons, postsynaptic densities, axon 
centerlines and cross-sections, and (3) traces of the same axons reconstructed with NCTracer 
from the 2PLSM image. The dataset is available at the Neurogeometry group website, 
http://www.neurogeometry.net/resources/datasets.  
 

 BoutonAnalyzer software for detection and tracking of structural changes in boutons. 
BoutonAnalizer was used to measure structural changes in en passant boutons during 
perceptual learning. The software can: (1) optimize traces of axons, (2) generate axon 
intensity profiles, (3) register traces across multiple imaging sessions, (4) annotate traces, (5) 
detect, edit, and match boutons in multiple imaging sessions, and (6) measure bouton 
weights. It is available for download on GitHub, 
https://github.com/neurogeometry/BoutonAnalyzer. 
 

 The associative memory storage model. Two numerical algorithms were developed for the 
solution of the associative learning model. The algorithms are designed for loading large 
associative memory sequences of various topologies (Figure 1B) into recurrent networks of 
inhibitory and excitatory neurons. The first algorithm is based on the solution of Eqs. 4 with 
a method of convex optimization and the second on the perceptron-type learning rule 
described in Eqs. 5. The algorithms are available at 
https://github.com/neurogeometry/AssociativeLearning.  

 

 The associative memory storage model in the presence of errors and noise. The 
numerical algorithms developed for the storage of associative memories into recurrent 
networks of inhibitory and excitatory neurons in the presence of errors and noise are 
available at https://github.com/neurogeometry/Associative_Learning_with_Noise. 

 
 

Scientific impact and DoD benefits  
 
We developed a model of a biologically-inspired recurrent neural network, capable of storing 
and robustly retrieving temporal sequences of network states. Based on this model, we showed 
that neural networks in the brain operate in a state of maximum memory storage capacity, thus 
also proving that there is a local learning rule capable of attaining optimal performance. We 
examined the effects of resource constraints and robustness to noise on network memory storage 
capacity, connectivity, and dynamics. We embedded the associative memory storage model in a 
morphologically constrained network of the cortical column, which includes 31,346 neurons and 
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40 million potential connections. These theoretical and computational results can help guide the 
development of neuromorphic hardware.  
 
Signal transmission in the brain is accompanied by many sources of errors and noise, and yet, 
neural networks can reliably process sensory information, store and retrieve memories. We 
developed a way to incorporate various sources of noise into our model, without jeopardizing its 
theoretical tractability. Our results reveal that errors and noise should not be viewed as a 
nuisance, but that they are essential components of the reliable learning mechanism implemented 
by the brain. There is a tradeoff between the capacity and reliability of stored memories, and the 
optimal retrieval of stored information is achieved when the level of noise present during 
learning is larger than that during memory retrieval. This result shows how a biological system 
can harness noise, which is both free and inescapable, and use this power to enhance the 
reliability of its basic functions. The result parallels ideas from machine learning, where an 
augmentation of training examples with noise and dropping out neurons and connections during 
training have been shown to significantly reduce overfitting and training time. 
 
Because associative learning of temporal sequences is the foundation of many cognitive 
functions of the brain, our results are also expected to have a profound impact on neuroscience. 
We have uncovered a direct link between learning and synaptic connectivity. Therefore, by 
measuring connection probabilities between neurons and recording connection strength in 
routine electrophysiological experiments, one can determine the memory load of the brain area 
and gauge the reliability of stored memories. We think that such knowledge can be used to 
understand the hierarchy of brain areas and to assess the effects of neurological disorders and 
aging on learning and memory. 
 
The proposed associative memory storage model incorporates basic elements of local 
connectivity in the mammalian neocortex. It accounts for excitatory and inhibitory neurons, 
neuron morphology and structural connectivity, the homeostatic constraint on connection 
weights, and four types of errors and noise which accompany signal transmission in the brain. 
The model has been extensively validated against experimental measurements. The developed 
perceptron-type learning rule makes it possible to load associative memory sequences into the 
network in a biologically-plausible online manner. It serves as a proof of principle that a similar 
mechanism may be implemented in the brain. Therefore, we believe that the derived learning 
rule has profound implications for neuroscience, machine learning, neuromorphic computing, 
and, consequently, the capabilities of the DOD.   
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