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ABSTRACT: Recent transformative advances in computing
power and algorithms have made computational chemistry
central to the discovery and design of new molecules and
materials. First-principles simulations are increasingly accurate
and applicable to large systems with the speed needed for
high-throughput computational screening. Despite these
strides, the combinatorial challenges associated with the
vastness of chemical space mean that more than just fast and
accurate computational tools are needed for accelerated
chemical discovery. In transition-metal chemistry and
catalysis, unique challenges arise. The variable spin, oxidation
state, and coordination environments favored by elements
with well-localized d or f electrons provide great opportunity
for tailoring properties in catalytic or functional (e.g., magnetic) materials but also add layers of uncertainty to any design
strategy. We outline five key mandates for realizing computationally driven accelerated discovery in inorganic chemistry: (i)
fully automated simulation of new compounds, (ii) knowledge of prediction sensitivity or accuracy, (iii) faster-than-fast
property prediction methods, (iv) maps for rapid chemical space traversal, and (v) a means to reveal design rules on the
kilocompound scale. Through case studies in open-shell transition-metal chemistry, we describe how advances in methodology
and software in each of these areas bring about new chemical insights. We conclude with our outlook on the next steps in this
process toward realizing fully autonomous discovery in inorganic chemistry using computational chemistry.

1. INTRODUCTION

Thanks to transformative advances in computing power and
algorithms,1−13 computational chemistry has become central to
the discovery and design of new molecules14−18 and
materials.19−25 Fully first-principles simulations of length or
time scales that would have been inconceivable a little over a
decade ago in the biological13,26,27 and materials28,29 sciences
are increasingly routine. The hardware and strategies that have
enabled these advances are far-ranging but include simplifica-
tion of the complexity or number of quantum-mechanical
electron-repulsion integral evaluations.1−13 Regardless of the
flavor of improvement, the practical effect is profound: a
simulation that would have taken a week a little over a decade
ago now takes less than an hour.3 Alongside computational
cost reductions, the accuracy of practical first-principles
methods has improved dramatically through new functional
forms that tackle long-range physics.30−36 Within widely
applied density functional theory (DFT), recent years have
brought new insight about the interplay between delocalization
(i.e., self-interaction) error37,38 and static correlation error39−41

and the relationship between density and energetic errors42−47

relevant to transition-metal chemistry.40,48 The same advances
that have made widely employed DFT applicable to ever-larger

systems have transformed gold standard correlated wave
function theory (WFT) methods as well.9−11,49 WFT methods
that were once applicable to only a handful of atoms can now
be employed to study hundreds.12,50 Statistical techniques have
also started51,52 to make these WFT methods as “black box” as
DFT.
Despite these great strides, the accelerated discovery of new

catalysts53−57 and materials58−63 requires a different approach
to realize computation’s full potential. The orders of
magnitude advance in speed and accuracy has not translated
directly to an equivalent acceleration in developing new
chemical insight. These observations motivate us to focus on a
distinct, larger problem: only a tiny fraction (ca. 1 part in
1050)64,65 of chemical space has ever been explored. This
chemical space contains all of the as-yet unknown catalysts,
materials, and therapeutic drugs or otherwise useful molecules.
The effort to uncover these molecules and materials unites the
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efforts of thousands of researchers in chemistry, materials
science, and engineering worldwide. However, over the course
of the lifetimes of these researchers, only a small dent will likely
be made with traditional Edisonian approaches applied to this
vast unexplored chemical space. Unique challenges arise in
transition-metal chemistry and catalysis. The variable spin,
oxidation state, and coordination environments favored by
elements with well-localized d or f electrons provide great
opportunity for tailoring properties in catalysis17,66−72 or
functional (e.g., magnetic) materials.73−81 At the same time,
this combinatorial challenge increases the uncertainty in how
to best explore this vast chemical space to satisfy design
objectives.
Although the need for accelerated exploration of chemical

space is shared by experimental and computational researchers,
the recent advances outlined here have poised computational
chemistry to make important contributions to discovery efforts.
Over the past few years, our group’s focus on how to tackle
inorganic chemistry design challenges through advances in
computation has been shaped by addressing five key
mandates:
(1) Automate the simulation of new compounds. Until

recently, it was not uncommon for new transition-metal
complex and catalyst simulation candidates to be built by hand.
Accelerated discovery requires tools that enable the automated
generation of high-quality structures for rapid simulation, both
to eliminate a potential source of human error and to remove
bottlenecks to the large-scale discovery of new molecules and
materials.
(2) Quantify prediction sensitivity or accuracy. Even as

methods become more and more accurate, small changes in a
computational method choice can have a substantial effect on
the predicted activity of a catalyst or promise of a material. In
most practical cases, where systematic improvement to
chemical accuracy may be beyond reach, a design effort must
operate with an awareness of the prediction sensitivity of the
chosen method.

(3) Develop faster-than-fast property predictions. Despite
orders-of-magnitude acceleration of first-principles simulation
in recent years, direct combinatorial simulation will barely
scratch the surface of the vast challenge that is unexplored
chemical space. An alternative approach that can predict
molecular or materials properties without first-principles
computational cost is essential to advancing rapid chemical
discovery.
(4) Map and traverse chemical space. To overcome

combinatorial challenges, a “map” of where compounds sit
with respect to each other in chemical space is needed. This
map can help researchers identify what the most promising
regions are for a particular target functionality and focus on
only a small fraction of an otherwise unexplorable space.
(5) Reveal design rules on the kilocompound scale. The

output of any high-throughput screen should never be a single
molecule as the only promising candidate to solve an
outstanding challenge. There are far too many unforeseen
limitations, such as synthesizability, stability, and market-
sensitive cost of materials, that cannot be anticipated
completely beforehand. Computational high-throughput
screening will be most valuable when it reveals the design
features that improve a molecule’s performance. As data set
sizes get larger, the tools that can reveal and encapsulate design
rules will necessarily differ from simpler models that could be
used for smaller, narrower data sets studied in the past.
To begin to solve these challenges in inorganic chemistry,

we first take inspiration from organic chemistry. Here,
machine-readable representations such as the simplified
molecular input line entry system82 (SMILES) string tell us
nearly all we need to know about a molecule. With a SMILES
string, precise three-dimensional (3D) structures can be
generated,83 leading to routine force-field,84,85 semiempiri-
cal,86−88 or first-principles characterization with high accu-
racy.89 Such representations also lend themselves to
quantitative structure−property relationship (QSPR) mod-
els90,91 that enable even more complex mappings between the
chemical composition and physicochemical properties (e.g.,

Figure 1. Differences between computational high-throughput screening in organic chemistry (top) and inorganic chemistry (bottom). From left to
right: structure generation, simulation methodology, database accessibility, and concepts of molecular similarity.
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bioavailability92,93). For this reason, it is not surprising that
machine learning (ML) models have excelled in encapsulating
organic molecule chemical bonding.94−98 Large multimillion
molecule databases of organic compounds99,100 are an
excellent source for chemical discovery. To avoid exhaustive
study of that entire space, concepts of molecular similarity may
be exploited to identify the most diverse subset of compounds
within such databases.101 Applications in organic chemistry
also benefit from all of these concepts being distilled in open-
source tools, such as RDkit102 and OpenBabel.83,103

Conversely, in inorganic chemistry, accurate generation of a
3D structure from a SMILES string must be carried out in a
spin- and oxidation-state-dependent manner. Few force
fields104,105 or semiempirical methods106 have been developed
to be predictive for inorganic chemistry, mandating more
computationally demanding first-principles simulation with
results that are very sensitive to method parameters.107−116

Here, QSPRs are often specific to a single metal, oxidation
state, and spin state, thus enabling focus on properties of the
ligand rather than metal-specific properties.58,117−120 Reposi-
tories such as the Cambridge Structural Database121 only have
thousands of inorganic complex structures, and these represent
compounds that have been characterized, crystallized, and
published, limiting their promise as a resource for the discovery
of truly new chemistry. Concepts of molecular similarity are
less well-defined: a homoleptic manganese(II) ethylenedi-
amine complex and hexaaqua iron(III) behave more similarly
to each other than either does to an FeIII(acac) complex,
despite the latter two sharing the same metal, oxidation state,
and immediate coordination environment (Figure 1).
Advances beyond each of these limitations in inorganic
chemistry are essential to addressing the broader challenges
we have outlined.
We have taken a divide-and-conquer approach to address

this challenge: using techniques that work in organic chemistry
and devising new syntax and tools where conventional
approaches would fail because of the uncertainty of inorganic
complex modeling. The rest of this manuscript is as follows. In
section 2, we provide the computational details of the
calculations employed in this work. In section 3, we present
case studies illustrating successes and remaining opportunities
for improvement that arise in tackling the five key challenges
that we have outlined here. Finally, in section 4, we provide
our conclusions and outlook for the most important obstacles
that remain toward realizing the goal of fully autonomous,
accelerated computational discovery in inorganic chemistry.

2. COMPUTATIONAL DETAILS
In this work, we carry out original analysis of DFT data sets and
trained ML models generated in prior work.18,122−124 We concisely
summarize some of the details of these efforts here but refer the
reader to the original work for more detail. The compounds in section
3a are homoleptic complexes generated in ref 124. The 5664
compound space was generated in ref 18, characterized with an
artificial neural network (ANN) from ref 123, as well as with DFT, as
outlined in sections 3b and 3d. The revised autocorrelation (RAC)
feature selection and kernel ridge regression (KRR) models detailed
in sections 3c and 3e are from ref 122. ML models introduced in this
work include (i) an ANN that separately predicts equatorial and axial
metal−ligand (M−L) bond lengths, trained on data from refs 122 and
123, and (ii) ANNs trained on MCDL-25 descriptors that predict the
redox and ionization (IP) potentials. These new ML models that
facilitate analysis are freely available online as part of the
molSimplify125 code and are detailed further in the Supporting

Information (SI). The complete-active-space perturbation theory
(CASPT2) benchmarks and Perdew−Burke−Ernzerhof (PBE) func-
tional tuning results are derived from prior work126 and outlined in
the SI.

For all other simulations, a consistent workflow was employed. The
molSimplif y125 toolkit was used to generate octahedral transition-
metal complex structures from a pool of organic ligands common in
inorganic chemistry with enforced equatorial symmetry but allowing
up to two distinct axial ligands. DFT geometry optimizations were
then carried out using TeraChem1,127 with the B3LYP128−130 hybrid
DFT functional, occasionally varying the fraction of Hartree−Fock
(HF) exchange from its default 20% value, as indicated in the text.
The LANL2DZ131 effective core potential was employed for
transition metals with the 6-31G* basis set for all other atoms. The
effect of using a modest basis set, which enables larger data-set
generation for ML models, was found to be limited in prior work on
the relative energies of interest.132 The metals studied throughout
were Cr, Mn, Fe, and Co in MII and MIII oxidation states. The high-
spin/low-spin definitions are generally quintet-singlet for d6 CoIII/FeII,
sextet-doublet for d5 FeIII/MnII, quintet-singlet for d4 MnIII/CrII, and
quartet-doublet for both d3 CrIII and d7 CoII. The ground-state spin of
the MII ion was used to select a MIII spin state that differed by a single
electron ionization, and the relaxed MIII complex energy was used to
compute the adiabatic IPs reported in this work. Reported redox
potentials refer to these IPs corrected by thermodynamic corrections
and solvent single-point energies with the conductor-like solvent
model,133,134 as evaluated through a thermodynamic cycle
approach.135−137 Relevant details for specific data sets and ML
models are also provided in the SI.

3. RESULTS AND DISCUSSION
3a. Automating Simulation. To conduct a high-

throughput computational screen of transition-metal com-
plexes, thousands of precise structures must be generated. The
universal force field (UFF)105 is one of the few force
fields104,105 to provide support for transition-metal coordina-
tion environments, e.g., for preoptimization prior to DFT
simulation. Even then, the UFF parameters are only available
for a single spin state in limited metal, oxidation state, and
coordination geometries; e.g., CrIII, MnII, FeII, and CoIII are in
the UFF, but CrII, MnIII, FeIII, and CoII are not. Force-field
optimization requires that all M−L bonds are properly sensed
from reading in a structure or SMILES string and have valid
force-field parameters associated with them. Thus, for
automation in inorganic chemistry, UFF optimization follow-
ing structure generation can be expected to be unsatisfactory
because of (i) difficulty in assigning bond order in metal
complexes that will limit the scope of automation and (ii) a
dearth of oxidation- and spin-state-dependent parameters that
will limit accuracy.
To this end, we have developed a divide-and-conquer

approach in our open-source toolkit molSimplif y.124,125,132,138

In this approach, force fields are applied only to the organic
ligands, whereas the M−L bond lengths are assigned in a data-
driven manner to reproduce final DFT-optimized bond lengths
as much as possible. The code generates both starting
coordinates and input files to enable fully automated
simulation of transition-metal complexes. In its original
incarnation, the data-driven approach corresponded to a
database of prior DFT calculations.125 We have since
generalized this approach to use an ANN to predict the M−
L bond length in a spin- and oxidation-state-dependent
manner.123

To illustrate the benefit of this divide-and-conquer approach,
we now compare the structural properties of a set of 66
homoleptic octahedral complexes for which we also have full
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DFT geometry optimizations. These complexes consist of
CrII/III, MnII/III, FeII/III, and CoII/III metals in their low and high
spin states complexed with water, carbonyl, methylisocyanide
(misc), furan, and pyridine (pyr) ligands, as outlined in prior
work122,124 (see the Computational Details). For each metal
and ligand combination, a single UFF bond length is available,
and M−L bond-length absolute (abs.) errors are distributed
over a wide range from 0.00 to 0.37 Å (Figure 2). There is little

correlation between the metal oxidation state for which the
parameters were defined in the UFF and the complexes for
which the M−L bond-length errors are lowest (Tables S1−
S6). For example, the UFF has parameters for FeII, but the Fe−
C bond length predicted by the UFF agrees best with the
doublet iron(III) hexacarbonyl complex and most poorly with
the quintet iron(II) hexacarbonyl complex (Table S2).
A typical abs. bond-length error for the UFF in this data set

of 0.10 Å is observed for singlet FeII(misc)6 (Figure 2). Here,
the UFF overestimates the uniform, DFT-optimized bond
length of 1.93 Å, instead predicting a 2.03 Å bond, whereas the
ANN predicts the 1.93 Å bond length to within model
precision (Table S3). One of the key advantages of the ANN
introduced in this work is that it separately predicts equatorial
and axial ligand bond lengths, which will be identical in
symmetric complexes or differ in cases of Jahn−Teller
distortion. For example, the ANN correctly predicts that the
shortest and longest M−L bonds differ by 0.18 Å (0.20 Å for
DFT) in quintet MnIII(CO)6, but it also predicts a much

smaller distortion in the singlet MnIII(CO)6 of 0.05 Å (0.03 Å
for DFT; Table S2). This leads to much smaller abs. errors
from the ANN with a narrower 0.00−0.09 Å range and a lower
median abs. error (0.01 vs 0.10 Å for the UFF; Figure 2). A
compound with an ANN M−L bond length prediction error
close to the median abs. error of 0.01Å is quintet FeII(pyr)6
(Figure 2). The ANN predicts distinct equatorial 2.29 Å and
axial 2.36 Å bond lengths in excellent agreement with DFT
values (2.29 and 2.35 Å), whereas the UFF predicts a
symmetric compound with much too short 2.13 Å M−L bonds
for an abs. error of 0.18 Å (Table S5). Overall, significant UFF
M−L errors can be attributed to both over- and under-
estimation, and large errors are observed in both symmetric
and Jahn−Teller distorted complexes.
Because we only employ the force field for the organic

ligands in automated structure generation with molSimpli-
f y,124,125 more sophisticated force fields designed only for
organic chemistry, such as MMFF94,139 can also be employed.
We first consider whether the UFF performance on organic
bonds in the inorganic complexes is more robust than the M−
L bond-length prediction. Indeed, abs. errors of the UFF on
the organic ligand bond lengths are much lower, spanning a
0.00−0.05 Å range with a 0.01 Å median (Figure 2). For each
inorganic complex, deviations of the organic ligand bond
lengths are modest and fall within the expected ranges for
organic bond lengths, meaning that one set of UFF parameters
can perform well for all structures (Tables S1−S6).
We can also systematically improve upon the UFF results

with MMFF94, which outperforms the already good perform-
ance of the UFF for organic bonds except in the case of the
carbonyl triple bond (Tables S1−S6). For example, MMFF94
correctly differentiates a longer 1.41 Å C−C and a shorter 1.37
Å CC bond in furan (1.40 and 1.35 Å in DFT), where the
UFF predicts identical 1.38 Å bond lengths for both the CC
and C−C bonds (Table S4). MMFF94 also performs better at
predicting heteroatom angles (e.g., C−O−C in furan or C−
N−C in pyridine). In pyridine, the C−N−C angle should be
below the 120° value for benzene, a phenomenon captured by
DFT (117°) and MMFF94 (119°), but it is instead larger with
the UFF at 122° (Table S5). Overall, a data-driven divide-and-
conquer approach automates structure generation with the
accuracy needed for inorganic complex simulation with DFT.

3b. Quantifying Prediction Sensitivity. Within high-
throughput computational screening, a simulation method
should be black box and efficient, often making DFT the
method of choice for materials where a single functional can be
expected to perform reliably. At the same time, DFT
predictions in transition-metal chemistry are highly sensitive
to the exchange-correlation approximation.109−116 In studies
that cover a large number of metals and ligands, it can be
challenging to confidently select an exchange-correlation
approximation because the best one can vary strongly with
the coordination environment.109−113,140,141 Uncertainty quan-
tification is one technique that has been pursued, e.g., through
Bayesian142−144 and other statistical145−148 methodologies, but
the transition-metal chemistry of interest in this work
motivates us to focus instead on sensitivity analysis. Although
a large number of functional parameters can influence
predictions in transition-metal chemistry, the degree of
incorporation of HF exchange generally has the most
significant effect42,109,110,112,113,115,116,140,149,150 on transition-
metal complex property prediction because of its penalization
of unphysical delocalization.40,42,48,127,151

Figure 2. Unnormalized histogram of geometric structure absolute
errors (in Å) for 66 MII/III homoleptic octahedral complexes with M =
Cr, Mn, Fe, or Co. (top) Absolute errors in M−L bond-length
prediction with an ANN, (middle) absolute errors in M−L bond-
length prediction with the UFF, and (bottom) absolute errors for the
organic bond lengths in ligands over the same subset with the UFF.
Representative compounds with median errors for M−L prediction
are shown in the inset: 0.01 Å abs. error for the ANN example of
quintet FeII(pyr)6 and 0.10 Å abs. error for the UFF example of singlet
FeII(misc)6.
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As a demonstration, we computed the properties of
transition-metal complexes using DFT functionals with varying
HF exchange fractions and with higher-level, multireference
CASPT2, a correlated WFT approach. We selected homoleptic
hexaaqua and hexaammine octahedral MII (M = Cr, Mn, or
Fe) and MIII (M = Mn, Fe, or Co) complexes with four to six
nominal 3d electrons in the three accessible high, intermediate,
and low spin states (see the Computational Details). These
complexes were selected for their modest size, which makes
large-active-space CASPT2 tractable (see the Computational
Details and Table S7). For all complexes, we computed the
exchange fraction in a hybrid functional needed to recover the
CASPT2 high-spin/low-spin or high-spin/intermediate-spin
splitting energies (Figure 3 and Table S7). Aside from the

high-spin/low-spin gaps of CrII(H2O)6 and MnIII(NH3)6,
nearly all complexes require a significant HF exchange fraction
to recover the CASPT2 spin splitting (Figure 3). However, the
optimal degree of exchange is very metal- and spin-state-
specific. For example, the optimal exchange fractions to predict
high-spin/low-spin and high-spin/intermediate-spin energetics
in MnII(NH3)6 and FeII(NH3)6 are similar, but the two values
differ substantially for FeIII(NH3)6 (Figure 3). Similarly, within
a single nominal d filling, optimal exchange fractions are
comparable at around 40% for all d4 high-spin/intermediate
spin splitting energies, but they have a large 40−85% range for
the same quantity in d5 complexes (Figure 3).
Because no single functional will predict optimal energetics,

quantifying the sensitivity of identified leads to functional
parameters provides essential insight into the uncertainties
inherent in a DFT-led computational screen. We recently18

studied a space of 5664 complexes to discover candidate spin-
crossover (SCO) complexes. This pool of candidates consisted
of octahedral complexes with MII/III centers, where M = Cr,
Mn, Fe, or Co, which we studied using both DFT and an ANN
that predicts high-spin/low-spin splitting,123 i.e., ΔEH−L. Now,
we leverage the fact that the ANN is trained to predict ΔEH−L
over a range of HF exchange fractions and can make these
predictions over all 5664 compounds in minutes, allowing us
to understand how lead SCOs differ with varying HF exchange.

As in previous work,18 we define SCO lead compounds as
those with |ΔEH−L| < 5 kcal/mol, as judged through electronic
energy differences. Incorporating thermodynamic and solvent
corrections will shift some of these compounds from this SCO
definition, but it generally preserves most SCO leads observed
in the gas phase.18 We can evaluate where leads sit on a map of
the full compound space obtained through dimensionality
reduction. Specifically, we reduce a predictive ca. 40-dimen-
sional representation of the complexes to the two most
informative dimensions with t-stochastic neighbor embedding
(t-SNE)152 (Table S8). t-SNE takes all complexes defined by
their multidimensional representation and attempts to preserve
the pairwise distribution of distances between complexes in a
two-dimensional mapping.152 This approach improves upon
principal-component analysis, which takes only the first two
combinations of descriptors in a representation but can make
complexes that are distant only in higher components appear
close to each other. When we color the t-SNE map by the
properties of the complexes, we can observe trends. With this
map, we observe that lead compounds are distributed in
different portions of the space as the HF exchange fraction is
varied (Figure 4). Higher HF exchange (20%) leads populate

stronger field (i.e., ligands with a coordinating carbon) regions
of space, whereas low HF exchange (5%) leads reside more
frequently in weak field (i.e., ligands with a coordinating
oxygen) regions of the space (Figure 4). These observations
are to be expected: pure DFT functionals or those with low HF
exchange fractions have a low-spin bias,44,115,138,153 which
would cause only weak ligand fields to correspond to SCOs.
Regardless, even a small change in HF exchange from 20% to
15% (e.g., as in B3LYP*109) also shifts the distribution of leads,
demonstrating high sensitivity of ΔEH−L to HF exchange
(Figure 4).
An example 5% exchange SCO lead is a homoleptic complex

with weak-field 4-cyanopyridine ligands, whereas at 20%
exchange, this SCO lead has been replaced by a similar
compound with axial ligands substituted for strong-field tert-
butylisocyanide (Figure 5). On the basis of our analysis of the

Figure 3. Optimal exchange fractions (HF exchange, from 0 to 100%)
in a modified PBE0 functional with the def2-TZVP basis set to match
the CASPT2 results for ΔEH−L (left symbols) or ΔEH−I (right
symbols). The results are shown for hexaaqua (circles) or
hexaammine (triangles) complexes in MII (i.e., Cr, Mn, and Fe)
and MIII (i.e., Mn, Fe, and Co) oxidation states grouped by nominal d
filling and colored as in the inset legend.

Figure 4. t-SNE152 plot of the full compound space colored by the
connecting-atom ligand field from weak (white) to strong (black).
Lead SCO complexes (i.e., |ΔEH−L| < 5 kcal/mol) are shown as circle
symbols at three HF exchange fractions: 5% (red circles), 15% (green
circles), and 20% (blue circles). One-dimensional stacked histograms
of lead compounds are shown for a projection of the two t-SNE
dimensions with the same coloring by the exchange fraction as the
circle symbols and also shown in the inset legend.
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CASPT2 agreement with hybrid functionals, we anticipate the
20% exchange result to be in better agreement for FeII

complexes, but across a broader compound space, the optimal
functional will vary. For example, 15% exchange in B3LYP*
has been previously motivated for other FeII complexes.109

One 15% exchange lead has a porphine equatorial macrocyclic
ligand, which is a stronger field ligand than 4-cyanopyridine,
but this effect is balanced by weaker-field water axial ligands, in
line with the expected intermediate behavior of 15% HF
exchange (Figure 5).
Spin splitting remains one of the properties most sensitive to

functional choice, but some catalyst energetics have com-
parable sensitivities when strong changes in delocalization
occur across the reaction coordinate.113,154 Although there is
no universally optimal functional, the relationship between the
functional choice and chemical composition is inherently
learnable in these data-driven models.113,116,123 For any design
objective, data-driven methods such as those described here
can both predict the uncertainty of the design landscape with
changing functional and estimate derivatives of the properties
to functional parameter variation.123

3c. Faster-Than-Fast Property Prediction. Now we
consider the extent to which these ML models can replace
DFT during high-throughput screening efforts in open-shell
transition-metal chemistry. A DFT simulation that would
require at least an hour for a single evaluation should require
less than a second for evaluation with an ML model, enabling
faster-than-fast property prediction. For data-driven property
prediction, three essential ingredients are (i) training data-set
size, (ii) ML model architecture, and (iii) the representation
provided as inputs to the ML model. In inorganic chemistry
ML, it is challenging to generate data-set sizes as large as small
molecule sets that have been developed155 for organic
chemistry ML. The smallest nontrivial octahedral transition-
metal complex has seven heavy atoms, whereas many organic
chemistry data sets consist of C-, N-, O-, and F-containing
compounds with only nine heavy atoms or less and many fewer
electrons than a transition-metal complex. Thus, it becomes
essential to make careful choices122,123 of the representation
and ML model to ensure that models can be predictive when
trained on smaller data sets.
We recently used two distinct approaches to develop

representations specifically for open-shell transition-metal
chemistry. In both cases, we required that only heuristic
information related to the connectivity and composition be
part of the representation so that the structure could be
predicted (see section 3a) and to account for the fact that no
low-level theory could be used to generate an initial structure
to provide as input, unlike organic chemistry. First, we

developed a combination of 25 mixed continuous and discrete
local (MCDL-25) features123 (Table S9). Guided by chemical
intuition, we selected features that focused on the metal and
the surrounding ligand-field environment using simple,
regularized linear regression models to evaluate the predictive
capability of candidate features. The selected features included
metal identity; connecting atom identity, electronegativity, and
bond order; and the truncated Kier shape index,156 a nonlocal
feature that characterizes the topology of atoms within three
bonds of the atom coordinating to the metal. Most organic
chemistry representations focus on the whole molecule, but
transition-metal chemistry properties are inherently local. For
example, iron(II) methylisocyanide octahedral complexes have
spin splitting within 3 kcal/mol of the analogous phenyl-
isocyanide complexes, despite the latter molecule having
around 4 times as many atoms.122

Using this representation, we trained123 our first-generation
ANN to predict ΔEH−L, in addition to the M−L bond lengths
and sensitivity to exchange on a data set of five metals (Cr−
Ni) in 2+ and 3+ oxidation states in high and low spin states at
a number of HF exchange fractions. By using varying dropout
realizations, we regularized our models (i.e., avoided over-
fitting) and also generated credible intervals on predictions.123

Overall, the MCDL-25-trained ANN could predict ΔEH−L to
within 2.5 kcal/mol on set-aside test complexes and the correct
qualitative ground-state spin (i.e., high or low) in 97% of the
cases, where the remaining 3% of the cases were challenging
because of near-degeneracy of the two spin states.123 We note
here that beyond the ability of the ANN to predict properties
at arbitrary percent HF exchange, these varying exchange
fractions also served to improve the model accuracy. These
distinct energetic results on similar structures serve as a
perturbation, much as geometric distortions are carried out in
organic chemistry ML model training.94,157 Predictions at
intermediate exchange are supported by lower or higher
fractions (abs. errors <2 kcal/mol), whereas errors for extreme
exchange values are higher (abs. errors >2 kcal/mol; Figure
S1). The model readily reproduces the DFT results, such as
the spectrochemical series of homoleptic FeII complexes
(Figure 6). Here, the ML model learns the B3LYP*109 DFT
answers, not the “exact” experimental observations, as
indicated by the nonmonotonic spin splitting observed in
FeII when the ligands are ordered by their nominal field
strength (Figure 6). The MCDL-25/ANN model is
predictive18 for chemical discovery applications when paired
with a constraint on high feature-space-distance-to-train
points18,123 in a genetic algorithm. Such an approach allowed
us to score new compounds with an ANN in minutes instead
of the days or weeks that full DFT evaluation would have
required.18 Despite applying the ANN to nearly all new
complexes, i.e., only 2% were in the training set, the mean
absolute errors (MAEs) remained close to the baseline (4.5
kcal/mol) in this discovery effort compared to the DFT
results.18

In an attempt to remove bias from the feature set, we
introduced modified autocorrelation158 descriptors that we
refer to as RACs.122 RACs were designed to be a complete set
of features that ranged from metal-local (as in MCDL-25) to
whole-complex (as in typical organic representations) proper-
ties. Through feature selection or model-based feature
engineering, the most relevant subset of the features from
RACs could then be used without a priori assumptions about
the most relevant length scales for property prediction.

Figure 5. Example FeII complex leads at different percentages of HF
exchange: a homoleptic 4-cyanopyridine complex at 5% (left),
equatorial porphine with two axial water ligands at 15% (middle),
and a heteroleptic complex with equatorial 4-cyanopyridine and axial
tert-butylisocyanide ligands at 20% (right).
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Specifically, RACs have been defined122 as the sum of products
and differences on the molecular graph of five quantities:
nuclear charge, electronegativity, covalent radius, topology, and
identity. For inorganic chemistry, we define metal- and ligand-
centered RACs, in which one of the atoms in the product or
difference is the metal or ligand connecting atom, respectively.
These products or differences involve two atoms separated by
a certain number of bond paths; e.g., zero depth is simply the
sum of the products of atomic properties. In prior work, we
found no benefit to correlating atoms more than three bond
paths away and therefore typically terminated RAC depths at 3,
leading to a total of 155 features for octahedral complexes (i.e.,
RAC-155). However, this truncation does not mean that the
whole molecule is not included in the representation because
any RAC not centered on the metal or ligand is defined as the
sum of the products or differences of atomic properties over
the full complex.
To test the RAC performance and feature subsets, we

employed the KRR ML model.122 If specific complexes are
close in the representation to a test complex, they will generally
contribute most strongly to the KRR model property
prediction on this test complex. The disadvantage of the
KRR is that if a test complex is too far from any available
training data, the KRR model will make no prediction, unlike
an ANN. Thus, KRR is a good model for testing
representations because it may be thought of as a data-
clustering model. We determined the RAC/KRR performance
for ΔEH−L, gas-phase adiabatic IP, solvent-corrected and
thermodynamically corrected redox potential, and M−L
bond lengths (Figure 7).
Although both representations were previously devel-

oped,122,123 we provide a direct comparison between RAC-
155 and MCDL-25 here for the first time. In all cases, the
RAC-155/KRR performance improves upon equivalent
MCDL-25/ANN models (Figure 7). Spin-splitting MAEs of
2.5 kcal/mol in MCDL-25/ANN were reduced to subkiloca-
lories per mole with RAC-155/KRR, and M−L bond-length
errors of 0.025 Å were reduced to around 0.005 Å (Figure 7).
We now present newly trained MCDL-25/ANN models to
predict the redox potential and IP and observe these to also

perform more poorly at around 0.41 and 0.53 eV MAE,
respectively, than the 0.32 and 0.35 eV errors for the RAC-
155/KRR model (Figure 7 and Table S10). We observe that
the redox potential, which is evaluated by combining gas-phase
adiabatic IP with solvent and thermodynamic corrections, is no
more challenging to predict than the individual IP, although
the RAC-155/KRR relative performance improvement over
MCDL-25/ANN is larger for the IP prediction.
By combining RAC-155 with feature-selection techniques,

we could identify the most predictive subset of the RAC
features. Using such feature-selection techniques, we were able
to down-select to the ca. 40 or so most important features
(feature-selected RAC, FSRAC) for each property without
significant loss in predictive accuracy, ensuring that RAC-155
performance improvement was not simply due to the larger
number of features (Figure 7 and Table S11). We have
recently trained models124 on related properties, specifically
orbital energies, such as the highest occupied molecular orbital
(HOMO) or HOMO−lowest unoccupied molecular orbital
(LUMO) gap. We showed that these orbital energies could be
predicted with comparable accuracy to the IP and redox
potential models as well.124 We also found124 that RAC-155/
ANN and FSRAC/KRR models performed comparably,
highlighting the complementarity of the two approaches
outlined here.

Figure 6. High-spin/low-spin splitting (ΔEH−L, in kcal/mol) for
representative ligands sorted from left to right by increasing
experimental ligand-field strength obtained from an ANN and from
DFT. Here, DFT corresponds to 15% exchange in B3LYP, i.e.,
B3LYP*.109 All complexes are homoleptic FeII complexes, as shown
schematically in the inset. The error bars are credible intervals on the
ANN predictions.

Figure 7. MAE for the redox potential and IP (eV; top), low-spin
(LS) M−L bond length (pm; middle), and ΔEH−L (kcal/mol;
bottom). Comparisons are for the MCDL-25 feature set with an ANN
along with KRR models trained with the full RAC-155, a FSRAC
subset that performs best for each property as described in ref 122,
and URAC, which was a 26 feature set selected by random forest on
ΔEH−L and found to perform best overall for multiple predictions.
The redox potential and IP predictions are shaded with high and low
saturation, as indicated in inset legend.
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Rather than carrying out a feature selection on one property
to build a single model, feature-selected subsets are often
transferable to other properties. After a comparison of the test
set performance122 of features selected on bond length, redox
potential, and ΔEH−L, the best performing (i.e., most-
transferable) set was determined to be the 26 features most
relevant for ΔEH−L

122 (Figure 7 and Table S11). A KRR model
trained with this universal RAC (URAC) set outperforms the
full RAC-155 for redox potential prediction and performs
comparably on other prediction tasks (Figure 7). Examining
the metal-proximal versus whole-complex nature of MCDL-25,
RAC-155, and URAC helps to rationalize these observations
(Figure 8). On the molecular graph, we define proximal

features as those that only involve either the metal or its first
coordination sphere, middle features as those involving atoms
up to two bonds away from the metal, and distal features as
anything involving atoms three bonds or more away (Figure
8). The MCDL-25 subset we created from intuition has more
than 50% proximal features and the fewest distal features of the
three categories. Conversely, RAC-155, by definition, is heavily
weighted toward metal-distal, whole-complex features. Feature
selection to form the 26 features in the URAC subset recovers
a distribution consistent with MCDL-25: nearly 50% of the
features are proximal, and the distal fraction is still the smallest
(Figure 8). Thus, URAC systematically recovers metal-centric
characteristics of MCDL-25 at the same time reducing the
uncertainty in the representation choice through the use of
rigorous feature-selection techniques.
3d. Mapping Transition-Metal Chemical Space. Care-

ful tailoring of representations not only improves property
predictions in data-clustering KRR models but also defines
molecular similarity and provides a map of relevant chemical
space. In prior work,122 we showed that ligand substitution to
transform homoleptic complexes into each other through
related heteroleptic complexes followed simple paths in
reduced dimensionality representations (i.e., with principle-
component analysis) based on the feature sets described earlier
(section 3c). When these reduced dimensions capture essential
features about the transition-metal complex, they provide a
path to visualizing molecular similarity.

Returning to the 5664 compounds18 that we described
earlier, we can examine the reduced dimensionality (i.e., t-
SNE152) map of properties distinguished by the metal or spin
splitting to identify trends among SCO complexes (Figure 9).

This analysis reveals that Fe and Co cluster together
surrounded by islands of more distinct Mn and Cr complexes
(Figure 9). For example, FeII(acac)2(tbisc)2 and
CoII(acac)2(benzisc)2 are both predicted18 by the ANN to
be SCO complexes (−3.9 and 0.1 kcal/mol) at a good level of
agreement with DFT (−5.8 and −3.2 kcal/mol; Table S12).
These Fe and Co complexes contain the same coordinating
environment and differ by only metal-distant functionalization
of the axial isocyanide ligands. Because regions of high and low
spin are generally smoothly localized, it suggests that
complexes are well clustered according to their primary
properties by the t-SNE map (see section 3b). Although Fe
complexes span regions of both low spin and high spin, Cr
complexes are more universally low spin (Figure 9). Thus,
regions of Mn and Cr that are intermingled with the associated
Fe/Co complexes are similar to the Fe/Co complexes in both
properties and representations (Figure 9). For example, an
MnII(CO)4(misc)2 SCO (ANN, 3.1 kcal/mol; DFT, 4.7 kcal/
mol) has properties comparable to those of an FeIII(4-CN-
pyr)4(pisc)2 complex (ANN, 3.1 kcal/mol; DFT, 4.1 kcal/
mol) with only slightly weaker field equatorial ligands (Table
S12). The 2−3 kcal/mol error of the ANN with respect to the
DFT reference on these example complexes is comparable to
the performance described for the overall test set errors in
section 3c, but the model performance can degrade if the
complex is very different from the training data (see Figures 6
and 7). As long as complexes not too distinct from the training
data are being visualized, these maps can be used to reduce the
uncertainty associated with meeting the design objectives, for
instance, by suggesting substitutions of metals to those with
reduced functional sensitivity.

3e. Revealing Design Rules. Analysis of the most
essential atomic and connectivity features that give rise to a
property in large data sets, e.g., from feature selection, enables
us to reveal design rules on a kilocompound scale. Here, our
goal is not simply to obtain accurate predictions but to
understand which substituent RAC length scale and character
is most essential for predicting the redox potential or ΔEH−L.

Figure 8. Pie-chart distribution of features in representative feature
sets: proximal, which includes the metal and first coordination sphere;
middle, which includes up to the second coordination sphere; distal,
which includes the third coordination sphere and beyond. The three
feature sets compared are MCDL-25, full RAC-155, and URAC,
which is a 26 feature set selected by a random forest for its balanced
performance across several features. The three feature classes are also
shown schematically on the equatorial plane of a complex with two
oxalate ligands, where atoms are colored by the feature type, as
indicated in the inset legend.

Figure 9. Side-by-side t-SNE plot of the full compound space. The
plot is colored in the left panel by the metal center: chromium in gray,
manganese in yellow, iron in maroon, and cobalt in purple. The right
panel shows the same t-SNE plot with only Fe compounds shown in
the background in maroon and full data spin-splitting contours
overlaid. The spin-splitting contours range from +40 kcal/mol in red
to −40 kcal/mol in blue, passing through white at 0 kcal/mol, as
shown in the inset colorbar.

Inorganic Chemistry Forum Article

DOI: 10.1021/acs.inorgchem.9b00109
Inorg. Chem. 2019, 58, 10592−10606

10599

http://pubs.acs.org/doi/suppl/10.1021/acs.inorgchem.9b00109/suppl_file/ic9b00109_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.inorgchem.9b00109/suppl_file/ic9b00109_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.inorgchem.9b00109/suppl_file/ic9b00109_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.inorgchem.9b00109/suppl_file/ic9b00109_si_001.pdf
http://dx.doi.org/10.1021/acs.inorgchem.9b00109


The KRR model is invariant to the choice of feature sets
because molecules still cluster similarly enough to give
comparable test set performances (see section 3c), but a
random forest model provides a ranked importance of the
features toward making these predictions that can provide
additional chemical insights (Tables S8 and S13). Both
selected subsets are about 25% of the original RAC feature
set (38 for the redox potential and 39 for ΔEH−L). We first
divide the selected RACs by the most metal-distant atom
participating in the feature: metal-only, first, second, and third
coordination spheres, or more distant features (Figure 10).

Although both spin-splitting and redox subsets have features
that range from metal-only to whole-complex, the relative
weight of these features differs dramatically (Figure 10). Where
70% of the spin-splitting features are within the first three
coordination spheres, the opposite is true for the redox
potential, with over 60% of the features being wholly nonlocal.
Observations similar to those for the redox potential hold for
the related IP122 or frontier orbital energetics124 quantities.
Beyond length scales, we can also review the nature of each

RAC descriptor to identify the most essential heuristic atomic
properties that relate back to the overall property prediction
task (Figure 10). The spin-splitting subset contains almost no
features that depend only on the connectivity (i.e., topology or
identity), whereas nearly half of the fully nonlocal RACs in the
redox subset are of this type as well as a significant fraction of
the second coordination sphere redox RACs (Figure 10 and

Tables S8 and S13). The majority of spin-splitting-selected
RACs are instead correlations of nuclear charges or electro-
negativity, with the third most common fraction corresponding
to the covalent radius. The metal identity also has a larger
overall weight in spin splitting because the metal-only nuclear
charge, electronegativity, and covalent radius all contribute,
whereas the nuclear charge is the single metal-only RAC
present in the redox subset (Figure 10 and Table S13). The
nuclear charge, electronegativity, and covalent radius, in
principle, encode information about the elemental identity of
the atoms in the complex, but the nuclear charge linearly
distinguishes each element, whereas moving across the
periodic table leads to nonmonotonic changes in the
electronegativity or covalent radius.
Overall, the design rules implied by these feature-selected

subsets indicate that it should be possible to tailor metal-
proximal features, especially those that relate to atomwise
electronegativity, to alter the spin-splitting properties. Such an
observation is simply a recasting of well-known principles in
ligand-field theory. In the case of the redox potential, our
descriptors suggest that the relative rigidity and branching of
the complex should play an important role in controlling the
redox potential. For example, MnII(CO)6 and FeII(CO)6 have
high, comparable redox potentials of 10.3 and 10.4 eV,
respectively, owing to the rigid, small CO ligand (Figure 11).

However, the overriding influence of the metal- and ligand-
field interactions means that the spin splitting of these same
two compounds differs much more significantly because the
FeII complex is low spin by 30 kcal/mol and the MnII complex
has a ΔEH−L of −6.6 kcal/mol (Figure 11 and Table S14).
Replacing the carbonyl ligands with misc ligands in a
homoleptic FeII complex preserves the low-spin character
(ΔEH−L = 42 kcal/mol) by leaving the first two coordination
sphere atoms largely unchanged, whereas the increased
branching and number of atoms at the third and fourth
coordination sphere lower the redox potential to 6.8 eV
(Figure 11 and Table S14).
Strongly high-spin-directing MnII combined with weak-field

ligands leads to comparable spin-splitting energetics for furan
(ΔEH−L = −52 kcal/mol) or water (ΔEH−L = −48 kcal/mol)
again because of the similarity in the direct M−L coordination
spheres. Unsaturation of the C atoms in the furan ligand means

Figure 10. Normalized distribution of selected features for the redox
potential (top) and ΔEH−L (bottom). Features are grouped by the
most distant atoms present: metal-only, first, second, and third
coordination sphere or beyond, and fully nonlocal features (All).
Within each length scale, features are decomposed into nuclear charge
in green, electronegativity in blue, covalent radius in orange, and
topology in red (i.e., connectivity-only), as shown in the inset legend.

Figure 11. Redox potential (eV) and gas-phase ΔEH−L (kcal/mol)
values for representative homoleptic complexes: MnII(CO)6 (blue
square), FeII(CO)6 (red square), FeII(misc)6 (red diamond),
MnII(furan)6 (blue circle), and MnII(H2O)6 (blue triangle). The
structures are shown in the insets.
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that a higher redox potential is observed than that for water
(8.3 vs 7.3 eV), despite the larger ligand size, highlighting that
topological descriptors are relevant for distinguishing not just
the overall size but also the overall connectivity (Figures 10
and 11). Thus, using these design principles, one could tailor
ligand chemistry to tune the redox potential while making
more limited metal-centered substitutions to tailor the spin
state in an orthogonal multiobjective design approach.

4. CONCLUSIONS AND OUTLOOK

In this work, we laid out five key mandates for computationally
accelerated discovery in inorganic chemistry: (i) to automate
the simulation of new compounds including through structure
generation and calculation automation, (ii) to quantify the
sensitivity or accuracy of any computational predictions made,
(iii) to develop models that enable faster-than-fast property
prediction to overcome bottlenecks in first-principles charac-
terization, (iv) to devise ways to map and rapidly traverse
interesting regions of chemical space, and (v) to reveal design
rules on the kilocompound scale.
We have described how progress in each of these areas has

provided new chemical insights and pathways to accelerated
transition-metal complex design in the face of uncertainty. We
described how ML models can improve structure prediction,
enable an understanding of the prediction sensitivity to the
DFT functional, and replace DFT entirely for chemical space
exploration. We also showed how data science tools such as
new representations tailored for inorganic chemistry yield new
chemical insight. These representations combined with
dimensionality reduction revealed chemical similarity in
open-shell transition-metal chemistry as well as design rules
for independently tailoring multiple properties atom-by-atom
in transition-metal complexes.
Despite this progress in achieving the five mandates laid out

here, outstanding challenges remain in the effort toward the
accelerated computational discovery of new inorganic com-
plexes and materials. We now highlight just a few that we
believe to be most essential toward furthering this goal.
Beyond automated simulation, fully autonomous workflows
become essential in reducing human intervention in computa-
tional design efforts. On its own, simply automating simulation
can lead to an increased number of failed and uninformative
calculations because the researcher is no longer supervising and
interacting with each simulation. We envision that the same
data-driven models developed for property predictions could
instead be developed to replace the basic decisions employed
by a computational researcher when deciding which simu-
lations to carry out. This could involve training a model to
predict if a simulation will fail or detect a simulation failure in
progress, for instance, as judged through whether a molecule
stays intact. More sophisticated models could be developed to
detect when one method (e.g., DFT) is not sufficiently
accurate or predictive for a region of chemical space of interest,
prompting automatic adaptation to systematically improved
but more computationally costly methods. Here, additional
challenges will arise in developing sufficient training sets that
contain molecules small enough for even the most accurate
methods. Alternatively, experimental data sets could be curated
to guide data-driven method accuracy models. With these
efforts, additional uncertainty metrics will necessarily be
developed for both ML and theoretical models. With sufficient
data, many of the decisions that require years of training in

computational chemistry could instead be encapsulated in an
artificial intelligence engine that drives simulation.
Despite the challenges outlined here, the most straightfor-

ward application of computational chemistry is in the tailoring
of energetics, e.g., to search for catalysts with optimal activity
by tuning an activation energy, to optimize materials to have a
specific band gap, or to design new SCO materials. In most
practical design challenges, the requirements of a new material
are much more multifaceted. Synthetic feasibility or cost may
be a concern, both in terms of the use of rare elements or in
terms of requiring many laborious steps. Environmental
conditions also remain a challenge: the best redox couple for
a redox flow battery may lack solubility in the optimal solvent
in which it would operate. Interactions with a multitude of
species generated during operating conditions could lead to
catalyst inactivation and materials degradation. Thus, descrip-
tors of the stability and feasibility are as essential as the
energetic descriptors of activity. These, in turn, could be used
for multiobjective strategies to design materials that are not
just active but also stable or inexpensive. To minimize
computational overhead when searching such large spaces,
active learning approaches that maximize new information to
the model will also be necessary. Although multiobjective
optimization strategies are well developed in other research
fields, embracing and adapting these strategies in computa-
tional chemistry will become essential as computing power and
new models make it increasingly feasible to explore large
regions of chemical space.
We have outlined just a handful of next steps toward

realizing the goal of end-to-end design of transition-metal
complexes. We envision the challenge of discovery in inorganic
chemistry as one best addressed by a broad software and
methodological toolset that can readily adapt to the properties
and design objectives beyond those discussed in this work. As
new critical challenges in resource and energy utilization arise,
we expect such a flexible toolset to be readily adapted.
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(30) Kümmel, S.; Kronik, L. Orbital-Dependent Density Func-
tionals: Theory and Applications. Rev. Mod. Phys. 2008, 80, 3−60.
(31) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A Consistent and
Accurate Ab Initio Parametrization of Density Functional Dispersion
Correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys. 2010,
132, 154104.
(32) Livshits, E.; Baer, R. A Well-Tempered Density Functional
Theory of Electrons in Molecules. Phys. Chem. Chem. Phys. 2007, 9,
2932−2941.

Inorganic Chemistry Forum Article

DOI: 10.1021/acs.inorgchem.9b00109
Inorg. Chem. 2019, 58, 10592−10606

10602

http://orcid.org/0000-0003-1322-4997
http://orcid.org/0000-0001-7137-5449
http://orcid.org/0000-0003-2592-4237
http://orcid.org/0000-0002-6751-9806
http://orcid.org/0000-0001-9342-0191
http://dx.doi.org/10.1021/acs.chemrev.8b00361
http://dx.doi.org/10.1021/acs.inorgchem.9b00109


(33) Stein, T.; Kronik, L.; Baer, R. Reliable Prediction of Charge
Transfer Excitations in Molecular Complexes Using Time-Dependent
Density Functional Theory. J. Am. Chem. Soc. 2009, 131, 2818−2820.
(34) Körzdörfer, T.; Bred́as, J.-L. Organic Electronic Materials:
Recent Advances in the DFT Description of the Ground and Excited
States Using Tuned Range-Separated Hybrid Functionals. Acc. Chem.
Res. 2014, 47, 3284−3291.
(35) Autschbach, J.; Srebro, M. Delocalization Error and “Functional
Tuning” in Kohn−Sham Calculations of Molecular Properties. Acc.
Chem. Res. 2014, 47, 2592−2602.
(36) Dion, M.; Rydberg, H.; Schröder, E.; Langreth, D. C.;
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