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1. Introduction 

The US Army Combat Capabilities Development Command (CCDC) Army 
Research Laboratory (ARL) has developed a high-maneuverability airframe (HMA) 
in support of the long-range precision fires’ modernization priority.1 Prior research 
explored under-actuated solutions with reduced actuator requirements that dithered 
canards in phase with projectile rotation.2 In order to increase maneuverability, 
HMA uses four independent actuators, requiring four independent quadrature 
decoders. This presents a problem. The Texas Instruments (TI) C2000 
microcontroller family that the CCDC Army Research Laboratory uses for real-
time control possesses a maximum of three decoders.3 So, what is the simplest, 
most cost-effective way to add an extra decoder to the system? 

The solution is to use a powerful capability that has been added to several 
microcontroller families in recent years: on-chip configurable logic.4–6 TI’s 
configurable logic block (CLB) can implement custom logic and augment existing 
peripherals like pulse-width modulators, quadrature encoders, and general-purpose 
input/outputs (GPIO), eliminating external programmable logic components. Even 
though there has been a long history of combining processors and programmable 
logic on a single chip,7,8 current products that augment the functionality of 
mainstream microcontrollers using programmable logic are relatively new and not 
well documented. In addition, the custom digital-design capabilities offered by 
configurable logic are outside the purview of typical microcontroller-programmer 
expertise. This makes it difficult to find advice and examples from standard 
resources that are usually extremely helpful when attempting to utilize new 
microcontroller functionality. Thus, besides providing an elegant, low-cost solution 
for HMA’s hardware requirements, this technical note is also important as an 
example of adding complex functionality to a microcontroller using on-chip 
configurable logic. 

This note is organized as follows. First, the concept of quadrature encoding is 
explained. Next, the Very High Speed Integrated Circuit Hardware Description 
Language (VHDL) decoder design is presented. Finally, the decoder 
implementation using TI’s CLB is described. 

2. Quadrature Encoding 

A rotary encoder translates the angular position into an analog or digital signal.9 A 
quadrature encoder is a type of rotary encoder that uses two signals in quadrature 
(90° out of phase) to encode angular position. Figure 1 shows a representation of a 
quadrature encoder. As the encoder rotates, Tracks A and B produce square waves 
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90° out of phase. Channel A leads Channel B when the shaft rotates clockwise, and 
Channel B leads Channel A when the rotation is counterclockwise. 

 

Fig. 1 Quadrature encoder operation 

3. VHDL Design 

A quadrature decoder measures the rotational angle by counting the pulses on A 
and B and detecting the relative phases of the signals. (A VHDL description of the 
decoder logic and test program is included in the Appendix.) A block diagram of 
the synthesized design is shown in Fig. 2. The ar_reg and br_reg blocks are 
shift registers that create delayed versions of the input signals. When there is a 
change in Channel A or B, the position counter is enabled using a counter enable 
signal (ce). Lookup Table (LUT) 4 implements this logic as 

ce = a(0) ⨁ a(1) + b(0) ⨁ b(1). 
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Fig. 2 VHDL quadrature decoder diagram 

The control of the counter’s direction is less intuitive than the enable signal.  
Figure 3 shows a simulation of the quadrature encoder with B leading A in the first 
pair of pulses and A leading B in the second pair of pulses. Each pulse consists of 
two transitions, giving a total of eight ce assertions for the four pulses that are 
numbered in red on the figure. Table 1 relates the time period of the ce signal, the 
values of a(0) and b(1), and the counter’s direction signal (up). This assumes the 
convention that the counter counts up when Channel B leads A. Examining the 
table, it is evident that a(0) and b(1) are different during the ce assertion when 
counting up, and the same when counting down. Thus, the logic for the counter’s 
up input is 

up = a(0) ⨁ b(1), 

which is implemented in LUT2, shown in Fig. 2. 

 

Fig. 3 Quadrature encoder simulation 
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Table 1. Direction signal logic 

ce number a(0) b(1) Direction 
1 1 0 up 
2 1 0 up 
3 0 1 up 
4 0 1 up 
5 0 0 down 
6 1 1 down 
7 1 1 down 
8 0 0 down 

4. TI CLB Design 

TI’s C2000 series microcontrollers have four CLB tiles, each consisting of eight 
inputs, three LUT4s, three finite-state machine (FSM) blocks, three counters, eight 
LUT3s, and a high-level controller (HLC).10 Inputs can be chosen from GPIOs, 
peripherals, central processor unit (CPU) signals, or other tiles. Outputs can be sent 
to GPIOs or other tiles. The HLC provides an interface between the CLB and CPU 
memory. 

Figure 4 shows a block diagram of the CLB implementation of the quadrature 
decoder, which mirrors the VHDL design in Fig. 2. The in0 and in1 are Channels 
A and B, respectively. Each FSM has contains two registers. Two FSMs are 
connected together to create the input shift registers for Channels A and B. The next 
state logic simply passes through the input signals (i.e. eqn_s0 = e0 and  
eqn_s1 = e1) for both FSM_0 and FSM_1. The LUT_0.OUT is the ce signal and 
LUT_1.OUT is the up indicator, giving 

LUT_0. OUT =  i0 ⨁ i1 + i2 ⨁ i3. 

and 
LUT_1. OUT =  i0 ⨁ i1. 

The value of the counter can be accessed by the processor through the HLC. 

CLB simulation with custom input signals is undocumented, but square wave inputs 
can be easily configured. Figure 5 shows a simulation using a square wave with  
9 cycles high and 10 cycles low as in0, and 10 cycles high and 10 low as in1. The 
difference in frequencies gradually causes the phases to shift from in1 leading in0 
to in0 leading in1, causing a change in the up signal. An analogous simulation 
shown in Fig. 6 was performed in VHDL. The results are the same as the CLB 
simulation, verifying the CLB logic design. VHDL test source code is included in 
the Appendix. 
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Fig. 4 CLB quadrature decoder diagram 

 

Fig. 5 CLB logic simulation 

 

Fig. 6 VHDL logic simulation 

5. Conclusion 

ARL has developed HMA to provide a maneuverable airframe for long-range 
precision munitions research. This new design requires four quadrature encoders, 
more than the number available on the real-time microcontroller ARL employs for 
actuator control. TI’s CLB was used to provide a low-cost, elegant solution using 
on-chip configurable logic to construct an additional decoder. In addition, since 
microcontroller on-chip configurable logic is relatively new and is outside the scope 
of typical programming expertise, this note serves as a valuable example for future 
designs.  
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Appendix. Very High Speed Integrated Circuit Hardware 
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This appendix comprises two VHDL files: quadrature_decoder2.vhd is the code for 
the quadrature decoder and testbench.vhd is the test bench. 

 
quadrature_decoder2.vhd: 
 
LIBRARY ieee; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
ENTITY quadrature_decoder2 IS 
 PORT( 
  clk : IN   STD_LOGIC;       
  a  : IN   STD_LOGIC;       
  b  : IN   STD_LOGIC;        
  set_origin_n : IN STD_LOGIC;  --active-low position clear 
  position  : OUT STD_LOGIC_VECTOR(15 DOWNTO 0)); --position cnt 
END quadrature_decoder2; 
 
ARCHITECTURE logic OF quadrature_decoder2 IS 
 
    component c_counter_binary_0 IS 
      PORT ( 
        CLK : IN STD_LOGIC; 
        CE : IN STD_LOGIC; 
        SCLR : IN STD_LOGIC; 
        UP : IN STD_LOGIC; 
        Q : OUT STD_LOGIC_VECTOR(15 DOWNTO 0) 
      ); 
    END component; 
 
 SIGNAL ar  : STD_LOGIC_VECTOR(1 DOWNTO 0); -- a register 
 SIGNAL br  : STD_LOGIC_VECTOR(1 DOWNTO 0); -- b register 
 SIGNAL dir_i,cnt_en,set_origin  : STD_LOGIC; 
     
BEGIN 
 
--shift in a and b values 
PROCESS(clk) 
BEGIN 
    IF(clk'EVENT AND clk = '1') THEN      
        
        ar <= ar(0) & a;        
         
        br <= br(0) & b;        
         
    END IF;  
END PROCESS; 
 
--counter control logic 
cnt_en<=(ar(1) XOR ar(0)) OR (br(1) XOR br(0)); 
dir_i<=br(1) XOR ar(0); 
set_origin<=not(set_origin_n); 
 
--counter  
c_counter_binary_0_1 : c_counter_binary_0 port map (clk=>clk, ce=>cnt_en, 
sclr=>set_origin, up=>dir_i, q=>position);      
 
END logic;  
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testbench.vhd: 
 
LIBRARY ieee; 
USE ieee.std_logic_1164.ALL; 
  
ENTITY testbench IS 
END testbench; 
  
ARCHITECTURE behavior OF testbench IS  
 
component quadrature_decoder2 IS 
 PORT( 
    clk             : IN            STD_LOGIC;                                        
    a               : IN            STD_LOGIC;                                        
    b               : IN            STD_LOGIC;                                     
    set_origin_n    : IN            STD_LOGIC;                                     
    position        : out    STD_LOGIC_VECTOR(15 DOWNTO 0));     
END component; 
 
   constant sys_clk_in_period : time := 50 ns;   
   signal sys_clk_in : std_logic := '0'; 
   signal qa,qb,set_o_n,dir : std_logic; --controlled inputs 
   signal qas,qbs : std_logic;  --square waves   
    
BEGIN 
 
--clk 
sys_clk_in_process :process 
begin 
    sys_clk_in <= '0'; 
    wait for sys_clk_in_period/2; 
    sys_clk_in <= '1'; 
    wait for sys_clk_in_period/2; 
end process; 
 
--square wave a 
a_process :process 
begin 
    qas <= '0'; 
    wait for sys_clk_in_period*10; 
    qas <= '1'; 
    wait for sys_clk_in_period*10; 
end process; 
 
--square wave b 
b_process :process 
begin 
    qbs <= '0'; 
    wait for sys_clk_in_period*10; 
    qbs <= '1'; 
    wait for sys_clk_in_period*9; 
end process; 
 
--use controlled a and b inputs 
quadrature_decoder_2 : quadrature_decoder2 port map ( 
       clk=>sys_clk_in, 
       a=>qa,             
       b=>qb,                 
       set_origin_n=>set_o_n,                  
       position=>open 
       );     
 
--use square wave a and b inputs 
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quadrature_decoder_3 : quadrature_decoder2 port map ( 
     clk=>sys_clk_in, 
     a=>qas,             
     b=>qbs,                 
     set_origin_n=>set_o_n,                  
     position=>open 
     );     
   
stimulus_en : process  
begin     
            
qa<='0'; 
qb<='0'; 
set_o_n<='0'; 
wait for 50 ns; 
set_o_n<='1'; --reset counter 
 
--count up 
for i in 0 to 2 loop 
    wait for 500 ns; 
    qa<='1'; 
    wait for 500 ns; 
    qb<='1'; 
    wait for 500 ns; 
    qa<='0'; 
    wait for 500 ns; 
    qb<='0'; 
end loop; 
 
--count down 
for i in 0 to 6 loop 
    wait for 500 ns; 
    qb<='1'; 
    wait for 500 ns; 
    qa<='1'; 
    wait for 500 ns; 
    qb<='0'; 
    wait for 500 ns; 
    qa<='0'; 
end loop; 
 
--count up 
for i in 0 to 2 loop 
    wait for 500 ns; 
    qa<='1'; 
    wait for 500 ns; 
    qb<='1'; 
    wait for 500 ns; 
    qa<='0'; 
    wait for 500 ns; 
    qb<='0'; 
end loop; 
 
end process; 
 
END; 
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List of Symbols, Abbreviations, and Acronyms 

ARL Army Research Laboratory 

CCDC US Army Combat Capabilities Development Command 

CLB configurable logic block 

CPU central processing unit 

FSM finite-state machine 

GPIO general-purpose input/output 

HLC high-level controller 

HMA high-maneuverability airframe 

LUT lookup table 

TI Texas Instruments 

VHDL Very High Speed Integrated Circuit Hardware Description Language 
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