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EXECUTIVE SUMMARY 

The 2018 National Defense Strategy emphasizes that the effective implementation of autonomy is 
essential for future engagements. Key to this implementation is the ability to test and evaluate systems that 
perform autonomous tasks. The purpose of this handbook is to equip testers with tools, approaches, and 
insights to confidently approach the testing of autonomy on air platforms. The air domain is chosen 
specifically for its applicability to the Air Force mission and to help scope the focus of this handbook. The 
intent is not to be an exhaustive reference for testing and evaluating autonomy; rather, the goal of this 
handbook is to provide a launching point for greater investigation.  

This handbook begins by outlining the purpose, key definitions, and foundational assumptions to help 
clarify what is meant by “autonomy” for the Air Force Test Center. After establishing this foundational 
understanding, the test approach for autonomy is presented. Testing autonomy on airborne platforms brings 
unique challenges and, therefore, to be successful testing should leverage the five principles of: Early User 
Involvement, Continuous and Cumulative Feedback, Streamlined Process and Products, Pilot Training 
Approach, and Human-Machine Interaction Consideration. The overarching test approach is split into two 
paradigms: three phases of test and Agile Development and Operations (DevOps). 

First, the current flight test paradigm of plan, execute, and analyze (three phases) is reexamined through 
the lens of testing autonomy. Of the three phases, executing a test of autonomy is currently the biggest 
challenge within the test community. The goal of any test, and of autonomy in particular, is that it is safe, 
secure, effective, and efficient. Therefore, the optimal test execution of an autonomous task or mission 
should include some type of run time assurance, live-virtual-constructive, open systems architecture, and a 
surrogate platform. To support the execution of autonomy testing that is responsive and timely, a close 
pairing of the planning and analysis phases is recommended. Different approaches, like design of 
experiments, human factors considerations, hardware-in-the-loop, and systems theoretic process analysis, 
are provided as tools for facilitating the needed planning and analysis capabilities for autonomy test. Within 
this paradigm, the goal is to adapt existing practices and modify to facilitate a spiral test and evaluation 
strategy of autonomy. 

The second paradigm features a more dramatic shift from the current test practices to one that 
incorporates the principles of Agile and DevOps. The Agile philosophy emphasizes individuals and 
interactions over processes and tools, working products over comprehensive documentation, customer 
collaboration over contract negotiation, and responding to change over following a plan. It has been 
instrumental in modern software development and will certainly play a role going forward with the 
development of autonomy. Additionally, DevOps is the revolutionary concept that integrates the 
development and operation functions of an organization. This process relies on continuous integration, 
continuous delivery, continuous monitoring and logging, microservices, and collaborative, cross-functional 
teams to implement high-quality products, quickly. As the Air Force begins to adopt more of the Agile and 
DevOps principles, it will be able to realize the DoD’s goals of “delivering at the speed of relevance,” 
“organize for innovation,” and “streamline rapid, iterative approaches from development to fielding.” 
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INTRODUCTION 

In an effort to maximize warfighter lethality, autonomy must be incorporated into our systems, but first 
it must be developed, tested, and fielded. The 2018 Summary of the National Defense Strategy of the United 
States of America (reference 1) and the 2019 National Defense Authorization Act (reference 2) have made 
it expressly clear that fielding systems that incorporate autonomy is essential for the United States to retain 
its competitive edge. Furthermore, both of these documents have called for reform of the DoD acquisition 
process to produce results “at the speed of relevance”. In 2019, the Air Force Chief Scientist released 
“Autonomous Horizons: The Way Forward” (reference 3) that built a roadmap and framework for 
advancing the state of the art in autonomy, while supporting its transition to existing systems. In response 
to this higher-level guidance, the Air Force Test Center (AFTC) has crafted a strategic goal to “shape future 
test and evaluation capabilities to maximize warfighter lethality.” A key tenet of this strategic goal is to 
build a capability to test systems that feature autonomy and machine learning algorithms. This handbook 
supports the AFTC strategic goal and provides a reference for the considerations and approaches which 
should be taken for the testing of autonomy on airborne platforms.  

This handbook is organized as follows: first, the specific purpose of the handbook, key terms, and 
foundational assumptions are defined. Additionally, the first section outlines the scope of the handbook. 
The next section develops the test approach for testing autonomy on airborne platforms. This section begins 
by detailing how the current test paradigm should be adapted to test autonomy. It then discusses how a new 
test paradigm, using the Agile and Development and Operations (DevOps) principles, should be 
implemented to maximize the effectiveness of the autonomy. Finally, the high points of testing autonomy 
are summarized and the path forward is highlighted. Additionally, appendices which include details about 
current autonomy test are included, as well as some other helpful references. 

PURPOSE 

The purpose of this handbook is to equip testers with tools, approaches, and insights to confidently test 
autonomy on air platforms. Due to the breadth of challenges with testing autonomy and the overall 
immaturity of existing test capabilities, the content of this handbook does not explicitly define specific best 
practices. Rather, this handbook outlines the considerations for autonomy test, which need to take place at 
each phase of the test process to ensure a safe, secure, effective, and efficient test. This handbook is intended 
to be more of a compass, than a map. 

This handbook assumes that the reader has some flight test experience and/or a technical background. 
Test and evaluation of autonomy is fundamentally a multi-disciplinary venture; therefore, this handbook 
addresses some of the diverse perspectives required to be successful. The intent is not to be an exhaustive 
reference for testing and evaluating autonomy; rather, the goal of this handbook is to provide a launching 
point for greater investigation. There exist numerous studies, performed throughout the DoD, and a large 
body of academic research that this handbook leverages and seeks to build upon. Furthermore, this 
handbook acknowledges that the testing of autonomy cannot be considered in a vacuum; it proposes 
concepts and frameworks that developers and acquirers of autonomous systems need to best integrate with 
the test community. The ultimate success of autonomy test hinges on future program offices heeding this 
handbook and appropriately planning for test early on in the program. 
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KEY DEFINITIONS 

Autonomy: a set of intelligence-based capabilities that can respond to situations that were not 
pre-programmed or anticipated prior to deployment, as defined in Autonomy Community of Interest (COI) 
Test and Evaluation (reference 4). Autonomy constitutes a degree of self-sufficiency and self-directed 
behavior (with human’s proxy for decisions) as defined in The Seven Deadly Myths of ‘Autonomous 
Systems’ (reference 5). 

Autonomy Engine: hardware onboard a platform or system which hosts autonomy software. 

Complex System: a system in which understanding the interactions between parts is equally as 
important as understanding the individual part’s function, as defined in Dynamics of Complex Systems 
(reference 6).  

Service: a stand-alone, encapsulated unit of functionality that receives inputs and gives outputs via a 
defined interface (primarily for software) as defined in Service-oriented Modelling (reference 7). 

Task: composed of one or more services that accomplishes a specific objective or action over a discrete, 
defined period of time. 

Trust: the willingness of a party to be vulnerable to the actions of another party based on the 
expectation that the other will perform a particular action important to the trustor, irrespective of the ability 
to monitor or control that party, as defined in An Integrative Model of Organizational Trust (reference 8). 
Trust is built primarily on the satisfactorily demonstrated combination of reliability and accuracy. 

FOUNDATIONAL ASSUMPTIONS 

Even though autonomy was defined in the previous section, it is important to further clarify what 
“autonomy” practically means for the purposes of this handbook. The following four foundational 
assumptions are primarily derived from the 2012 Defense Science Board study on the “Role of Autonomy 
in DoD Systems” (reference 9) and help hone the meaning of “autonomy”: 

1. “Autonomy” is fundamentally software-based.  

2. “Autonomy” is considered relative to specific tasks, over a discrete time interval, and not for 
entire systems.  

3. A “Fully Autonomous” system is a misnomer. All autonomy must interact with a human at 
some point and is therefore considered a joint human-machine cognitive system.  

4. Determining and arguing about “Levels of Autonomy” is unhelpful and counter-productive to 
testing and evaluating the system. 

HANDBOOK SCOPE 

This handbook focuses on testing and evaluating autonomy for the air domain. The air domain is chosen 
because of its pertinence to the Air Force’s mission and because of the unique challenges it brings to the 
T&E enterprise that are not as applicable to other domains. While the examples presented are for airborne 
autonomy applications, the majority of the frameworks and tools presented in this handbook are generally 
applicable to the other domains.  

For this handbook, the types of autonomy considered as the system under test (SUT) are ones that 
feature real-time applications in the physical world, often referred to as “autonomy in motion” as in Defense 
Science Board: Summer Study on Autonomy (reference 10). This is opposed to “autonomy at rest” 
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applications, which are essential for building a more lethal force and will play a vital role in testing and 
fielding “autonomy in motion” systems. Examples of “autonomy in motion” could be found in a smart 
bomb, an unmanned aerial system (UAS), or even as a subcomponent onboard a manned platform (i.e., the 
ground collision avoidance system onboard the F-16). A helpful method for determining if a system 
constitutes “autonomy in motion” is to think in terms of John Boyd’s “OODA” loop from A Discourse on 
Winning and Losing (reference 11). Autonomy in motion must: 

• Observe its surroundings to create a worldview, 

• Orient itself within the worldview, 

• Decide on an appropriate response, 

• Act on that decision. 

Figure 1 gives a hierarchical perspective that illustrates the role of autonomy for one platform. The 
missions that the platform executes are composed of a variety of tasks, which are built on lower-level 
services. When the word “autonomy” is used in this handbook, it is referring to either the actions taken at 
the task or at the mission level, which are enabled by the services. In most contexts, these actions are 
currently being performed by human operators. Traditionally, the test community does not test or evaluate 
the human operator and therefore the test paradigm must be expanded to incorporate human operator-like 
evaluation criteria for an autonomous task or mission. 

To better understand figure 1, the Suppression of Enemy Aerial Defense (SEAD) mission is used as an 
example. For a fighter platform performing SEAD, jamming the enemy radar is one of the primary tasks. 
Additionally, tasks like airspace integration, aerial refueling, and formation flying might all be required to 
successfully accomplish the mission. These tasks, in turn, will require a host of services that are responsible 
for operating the various payloads, the aircraft itself, and the command and control functionality.  

 
Figure 1  Mission Hierarchy for a Platform 

The words machine learning (ML) and artificial intelligence (AI) were intentionally avoided in this 
handbook. ML and AI are tools which enable autonomy; strategies presented in this handbook apply to the 
test of autonomous systems regardless of how the autonomy was created or how it functions. 
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TEST APPROACH 

With the emergence of new technologies and the changing nature of the world, revolutionary 
approaches must be embraced to stay relevant, credible, and timely. This section presents the path forward 
to success by splitting the test approach into two phases. The first phase features an evolution of the current 
test paradigm. The three phases of test (planning, execution, and analysis) are investigated through the lens 
of testing autonomy. Next, the paradigm shift towards an Agile DevOps approach to autonomy test is 
discussed. In this new paradigm, the traditional, siloed approaches of development, test, and operations are 
removed, and a vision for a truly integrated ecosystem of development, test, and operations is presented. 
These two test paradigms should be viewed as complimentary in nature and not antagonistic. To fully 
achieve the organizational approach of Agile DevOps, the evolutionary progress must first be made. From 
a practical perspective, the short-term emphasis will predominantly be on the first paradigm, with the long 
term goal of realizing the second paradigm.  

When considering testing of autonomy, there are several overarching principles which are essential. 
These principles are key to “delivering combat capability at the speed of relevance” (reference 1).  

1. Early User Involvement: To adequately test and evaluate autonomous tasks and missions, 
the users must be included as early as possible. This means that the traditionally distinct 
developmental test (DT) and operational test (OT) must be holistically integrated. Obtaining 
operational feedback early is pivotal to both the requirements generation process as well as the 
testing of autonomy.  

2. Continuous and Cumulative Feedback: The principle of “fail fast” is important when 
testing autonomy. Feedback on performance should be provided as soon as possible to better 
inform the development and improvements of the autonomy. 

3. Streamline Processes and Products: To enable fielding at the “speed of relevance”, the test 
team must be empowered to tailor test processes to adequately match the requirements of the 
program. Furthermore, the test team must also have the flexibility to create and design new 
processes that best meet the program’s goals.  

4. Pilot Training Approach: Perhaps the most unique facet of autonomy test is that oftentimes 
the autonomy being tested is intended to replicate pilot-like functionality. Traditionally, AFTC 
has assumed that the operator is sufficiently trained, and therefore is accustomed to testing the 
system and not the pilot. Testers will have to leverage and adapt training approaches for manned 
operators to best evaluate the performance of autonomous tasks and missions. 

5. Human Machine Interaction Consideration: The autonomous task or mission must be 
viewed within the larger context of the human interaction. Human factors elements such as trust, 
human-autonomy interface, and situational awareness are crucial to the ultimate success of an 
autonomous task or mission. 

With the emergence of ever-new autonomous capabilities, these principles must be “baked-into” each 
program from the beginning. This will help minimize any roadblocks caused by the cultural shift away from 
the traditional acquisitions and test approach. Furthermore, the testing of autonomy should not end when 
the autonomy is fielded. End users must be empowered to provide feedback to the developers. The test team 
can bridge this gap by soliciting feedback from operational units and through observing real-world data.  
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PARADIGM EVOLUTION: 3 PHASES OF TEST 

The Test Resource Management Center (TRMC)1 has strategically divided the task of testing and 
evaluating autonomy into three categories: test planning, test execution and control, and performance 
assessment, and analysis, as found in Assessment of Test and Evaluation Infrastructure and Improvements 
Required for Future Emerging Technologies (reference 12). These three categories map nicely to the 
general flight test process, and therefore provide a perfect launching point for what evolutionary steps are 
needed to best facilitate T&E of autonomy.  

For flight test in general, the safety, security, effectiveness, and efficiency considerations are the 
primary motivators for how the test is conducted. These four categories help shape all aspects of the test 
process and are the primary motivators for the testing of autonomy as well. Oftentimes, the safety and 
security considerations are in opposition to the test effectiveness and efficiency. The tension between these 
four facets is even further exacerbated when testing autonomy specifically due to the inherent complexities, 
interdependencies, and increased uncertainty of outcome. Accounting for these factors must take place in 
all three phases of test.  

The most near-term obstacle in the world of autonomy test centers on execution. The ability to integrate 
and fly an autonomous task on an air platform on a military range is a significant challenge, due to the 
relative infancy of autonomy test when compared to traditional test. Therefore, the best way forward to 
execute an autonomy test is discussed first. Once the infrastructure is in place to test autonomy, the larger 
questions of how to properly plan and analyze the test can be answered. While the planning and analysis 
phases serve as bookends in a traditional test program, for autonomy they must be more tightly coupled to 
be effective and responsive. The considerations required for test planning and analysis of autonomy are 
discussed in light of how the autonomy test should be executed. 

EXECUTION 

Currently, of the three phases of test, the biggest challenge for the T&E community is in executing an 
autonomy test. Safety tends to be the driving concern, but there are also issues with system integration, 
platform availability, accurately stimulating the autonomy in real-time, and other logistical issues of range 
space, communication networks, etc. To execute an autonomy test that is safe, secure, effective, and 
efficient, one approach is to use a test-specific middleware that facilitates four components: Run Time 
Assurance (RTA), Modeling & Simulation (M&S) to include Live-Virtual-Constructive (LVC), Open 
Systems Architecture (OSA), and implementation on surrogate test platforms. These four components are 
represented as a Venn diagram in figure 2. Each component provides a crucial function in the testing of 
autonomy, while also being a key enabler for other components. While it is possible to test autonomy with 
fewer components, this construct optimizes the balance of safety, security, effectiveness, and efficiency. 

In the proceeding subsections, the rationale for choosing each component as well as the unique impact 
that each component provides to the safe testing of autonomy is discussed. It is important to note that while 
the safety, security, effectiveness, and efficiency gains made by each component are independently 
discussed, they overlap and enable each other. The result is that this four-component framework produces 
a guide to executing an autonomy test that is greater than the sum of its individual parts2.  

                                                      
1 TRMC’s Autonomy and Artificial Intelligence Testing (AAIT) program area has compiled a database of tools, programs, and 
gaps for autonomy testing. They also provide government-owned software tools for planning, executing, and analyzing autonomy. 
Contact Vernon Panei (Vernon.panei@navy.mil) for more information and for permission to access the database. 
2This framework is more than theoretical, Appendix B contains two examples of current systems used for autonomy test that feature 
these four components. A system description, details of flight testing, and future development efforts for both the Testing of 
Autonomy in Complex Environments (TACE) and Cooperative Operations in Denied Environments (CODE) systems are included.  

mailto:Vernon.panei@navy.mil
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Figure 2  Four Components for Autonomy Test Execution 

Run Time Assurance (RTA): 

The first assumption of this handbook states that autonomy is fundamentally software-based. Therefore, 
a critical component of autonomy test is ensuring that the software running on the autonomy engine can be 
tested in a way that is safe, secure, effective, and efficient. Due to the complexities associated with 
autonomy, utilizing traditional, exhaustive, offline test approaches are intractable to verify that the 
autonomy will not exhibit emergent or undesirable behavior. One popular approach to this unique challenge 
is using RTA algorithms to provide system reliability in real time. RTA can be summarized as a 
deterministic wrapper that serves two primary functions: reliably detect problems (software or 
environmental) and switch to a recovery/safe mode in the event of a failure as described in A Study on Run 
Time Assurance for Complex Cyber Physical System (reference 13).  

The two functions of a typical RTA system are shown in figure 3. The unverified “Advanced 
Controller” is analogous to the autonomy under test. If any problem occurs with the “Advanced Controller” 
during execution, then the RTA switches to the “Recovery Controller.” This framework enables test of any 
algorithm that meets its interface requirements, regardless of complexity. Furthermore, this basic 
architecture in figure 3 can be easily extended to run multiple RTA algorithms in serial or incorporate 
multiple recovery controllers to safely enable full performance envelope recovery, as described in “Run 
Time Assurance for Complex Autonomy” (reference 14). Additionally, there can be RTA algorithms 
incorporated within the autonomy itself, as well as test-specific RTA algorithms that sit outside the 
autonomy under test. The exact application of the RTA should be tailored to meet the specific test objectives 
of the autonomous task or mission. The RTA has wide-spread applicability for autonomy test and has been 
used for vehicles operating in various domains to include ground (“A case study on runtime monitoring of 
an autonomous research vehicle (ARV) system,” reference 15), air (“Nonlinear Adaptive Control of 
Quadrotor UAVs with Run-Time Safety Assurance,” reference 16), and space (“Formally Verified Run 
Time Assurance Architecture of a 6U CubeSat Attitude Control System,” reference 17).  

The implementation of RTA is not without its challenges. As the scenarios and underlying services 
feeding the autonomous tasks become more complicated the RTA’s recovery controller must also become 
more robust. Determining the multi-dimensional, hypersurface safety boundary and interrogating it in real 
time is a significant challenge. Furthermore, the distinction between “safe” and “unsafe” is often blurry and 
hard to precisely determine a priori. Despite some of the challenges involved in developing a capable RTA, 
the use of RTA undoubtedly plays a pivotal role in the safe, secure, effective, and efficient testing 
of autonomy. 
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RTA’s Role in Test Safety. 

Safety is the primary motivation for using RTA. Testing autonomy is unique in that the behaviors are 
not explicitly known ahead of time. Typically, an autonomous task is given an objective and then chooses 
the best course of action based on its perceived worldview. Thus, when the autonomy behaves 
unexpectedly, it does not mean that behavior is “wrong”. Therefore, the balance between testing the 
autonomous behavior and ensuring test safety must be judiciously determined.  

A certified RTA system strikes this balance perfectly because it simultaneously allows unverified and 
unknown autonomous algorithms to execute while guaranteeing that certain safety of flight parameters will 
always be observed. This effectively creates a “sandbox” in which the autonomy is allowed to operate. The 
Air Force Test Pilot School has successfully used this similar concept for autonomy testing by using 
Calspan’s Variable Stability Simulator (VSS) Learjet, as documented in “A Limited Evaluation of an 
Automatic Ground Collision Avoidance System for Performance Limited Aircraft” (reference 18); 
“Operate Remote Aircraft Clairvoyantly in a Limited Evaluation (ORACLE)” (reference 19); and the 
Variable In-flight Simulator Test Aircraft (VISTA) F-16 “Flight Test Evaluation of the HAVE RAIDER II 
Autonomous Wingman Architecture” (reference 20); “Flight Test Evaluation of the AFRL Automated 
Wingman Functions” (reference 21) as manned autonomy surrogates. The use of RTA in both the VISTA 
and VSS provides an envelope protection systems that prevents the aircraft from departing controlled flight 
while flying the autonomous task. 

 
Figure 3  Run Time Assurance of Unverified Flight 

Critical Software (reference 13) 

RTA’s Role in Test Security. 

Security is crucial when it comes to testing. One of the concerns that commonly arises with unmanned 
platforms is a cyber-attack against the autonomy under test. This attack could be the result of malicious 
code within the autonomy or could come from external influences such as jamming or spoofing. The RTA 
plays a role in test security because it adds another layer of defense against an adversarial action, by 
providing a counter to corrupted code, verifying commands from the ground, and providing 
redundant control. 
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RTA’s Role in Test Effectiveness. 

The RTA also provides an effective means for testing autonomy because it allows for more aggressive 
testing of autonomy. When testing a complex system, the process of determining where the system works 
is sometimes best accomplished by discovering where it fails. Often, this “failure” is a result of failing to 
manage the quantity or quality of the information shared among numerous services. Using a trusted RTA 
allows for a more aggressive test approach because of the reliability provided by the RTA. The ability to 
pursue an aggressive approach helps the test team effectively provide feedback on the autonomy’s 
performance and rapidly identify areas of deficiency.  

RTA’s Role in Test Efficiency. 

The RTA construct promotes efficient testing as well because it allows new software updates and 
algorithms to be rapidly tested. With the rise of agile software development practices, the emphasis has 
shifted to evolutionary development, early delivery, and continuous testing as described in Manifesto for 
Agile Software Development (reference 22). The rapid pace of development of autonomous algorithms is 
hindered by the inadequacy of current test processes to test these algorithms in an appropriate time. 
Leveraging RTA provides a streamlined route to test updates in software that is responsive to the pace 
of development. 

Live-Virtual-Constructive (LVC): 

Leveraging live, virtual, and constructive entities is invaluable to Autonomy test. LVC, a form of M&S, 
is a concept that is becoming more widespread in the engineering and test vernacular. The concept allows 
for the fusion of real-world test assets (live), human-operated, simulated entities (virtual), and computer-
controlled, simulated entities (constructive) to interact seamlessly with each other as described in Modeling 
and Simulation (M&S) Glossary (reference 23). Properly implementing the virtual and constructive entities 
in the live scenario is incumbent on a robust M&S capability. The importance of LVC is two-fold in testing 
of autonomy; firstly, it is invaluable in testing the autonomous tasks themselves, and secondly, it is crucial 
in evaluating the link between the human and the machine.  

LVC’s Role in Test Safety. 

The LVC capabilities are crucial for safely testing autonomy because they leverage virtual and 
constructive effects to test the onboard autonomy while preventing the live aircraft from entering into a 
dangerous scenario. For example, safe testing of an airborne collision-avoidance task can be performed 
using a live aircraft flying towards a constructive aircraft. Since the world view of autonomy onboard the 
live aircraft is manipulated by the LVC environment, the constructive aircraft appears “real” to the live 
aircraft. Therefore, the autonomy onboard the live aircraft behaves identically as it would if the approaching 
aircraft was actually a live asset. Therefore the autonomy software, running onboard a live aircraft, is fully 
tested while simultaneously mitigating the risk of a mid-air collision. The hardware sensors, which the 
autonomy would use to detect the live aircraft, could be tested separately. 

LVC is also valuable in safely evaluating the trustworthiness of the autonomous task from a human 
perspective. The loyal wingman use case is a salient example that highlights the value of using LVC for 
evaluating the manned-unmanned interaction. Loyal wingman features an unmanned wingman acting as a 
force multiplier for a manned aircraft. The obvious safety concern with this scenario is that an unmanned 
aircraft is flying in close proximity with a manned aircraft. As part of a build-up approach, the algorithm 
could first be tested with the pilot flying in a simulator (virtual aircraft) while the live autonomous wingman 
flies in formation. Utilizing LVC capabilities in this scenario not only ensures a safer test but also gives the 
human operator a chance to interact with the autonomy and provide constructive feedback.  
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LVC’s Role in Test Security. 

LVC can play a crucial role in bolstering test security by reducing the amount of live assets and sensors 
needed to conduct a test. When trying to determine the performance of an autonomous task in an 
operationally relevant environment, it might be prudent to use LVC to negate potential security concerns. 
Oftentimes, the combination of multiple systems working together, emitting certain frequencies, using 
certain sensors or radios in a live environment might cue adversaries onto current capabilities or what the 
end goal of the technology may be. Using LVC can obfuscate the roles of the live test assets from their 
operational mission context by simulating other entities, systems, and effects that would impact the security 
classification. Additionally, LVC can bring high-fidelity red team capabilities to bear in a manner that 
would be more difficult to compromise.  

LVC’s Role in Test Effectiveness. 

The effectiveness of autonomy testing is magnified through the incorporation of virtual and 
constructive entities. Oftentimes, there are specific flight and environmental conditions that are difficult, 
costly, or impractical to achieve (e.g., GPS denial, sensor degradation, severe weather affects, multi-ship 
operations, etc.). Properly implementing LVC allows for the proper execution of these variables at specific 
test points. This is especially pertinent when testing edge cases in the autonomy logic. When trying to create 
a scenario where the autonomy might fail, the ability to augment the live environment is invaluable. Using 
the same air collision avoidance scenario as before, the test team could identify the effectiveness of the 
algorithm with degraded sensors. In real life, this would be risky, difficult, and costly to accomplish, but 
with LVC it is straightforward. Another example is testing how the air collision avoidance task performs 
in an environment with multiple aircraft. Setting up this scenario without LVC would require increased 
coordination, assets, personnel, and planning. With LVC, adding additional aircraft is only constrained by 
the hardware limitations of the simulation computers and of the network.  

LVC’s Role in Test Efficiency. 

Lastly, there are tremendous efficiencies to be gained by leveraging LVC. The future testing of 
autonomy will undoubtedly feature a blend of both live test and simulation. To be both responsive to change 
and cost-effective, the majority of the test points will have to be executed in simulation, with only the salient 
test points being flown in real life.  

An accurate LVC environment is the key to ensuring that the simulation capabilities are compatible 
with the live flight test data. Once this accuracy is assured, it opens the door for a number of efficiencies. 
A faster-than-real-time simulation capability is one of these key efficiencies that enables a large number of 
test points to be executed in a small amount of time. Additionally, LVC is an integral part of hardware in-
the-loop (HIL) simulations. Having a framework to do HIL simulation boosts efficiency by bridging the 
gap between the simulation and live test environments. This capability provides the ability to simulate the 
autonomy in a way that will be analogous to live flight. This boosts efficiency by providing an environment 
that supports an agile software development approach, allowing for new capabilities to be rapidly developed 
and tested. Most importantly, this tool is critical in maximizing the likelihood of success in live flight test. 

As mentioned earlier, LVC provides various entry points for human interaction with the autonomy 
along the various stages of development. This access promotes more efficient testing because it allows for 
human feedback earlier in the development process. The early integration of feedback on human-autonomy 
interactions bolsters efficiency by providing constant vector checks to the developers. Using LVC 
throughout the autonomy T&E process will ultimately reduce wasted time because of the ability to provide 
timely feedback on the performance of the autonomy.  
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Open Systems Architecture (OSA): 

In the past, when procuring airborne weapon systems, the government has purchased end-to-end 
solutions from prime integrators. While initially convenient, the proprietary nature of the system’s 
operational flight program makes it difficult and expensive to adapt to changing demands for the system. 
Recently, all three Service Secretaries have emphasized the vitality of using OSAs for future acquisition 
activities as documented in “Modular Open Systems Approaches for our Weapon Systems is a Warfighting 
Imperative” (reference 24). The DoD generally defines an OSA as “a structure in which system interfaces 
share common, widely accepted standards, with which conformance can be verified” as found in “Modular 
Open Systems Approach” (reference 25). There is a widespread understanding throughout the DoD that 
OSAs are an integral part in operating at the “speed of relevance” (reference 1).  

This trend towards OSAs is even more important when considering the testing of autonomy. The Air 
Force Research Laboratory (AFRL) developed the Unmanned Systems Autonomy Services (UxAS), as 
described in “A Brief Introduction to Unmanned Systems Autonomy Services (UxAS),” (reference 26) and 
the Github Repository (reference 27) to provide a modular, extensible, services-based framework for testing 
autonomy. Additionally, AFRL is currently working on the Teaming-Enabled Architectures for Manned-
Unmanned Systems (TEAMS) which is an iterative, model-based approach that will enable the rapid testing 
of future manned-unmanned teaming technologies, as described in “U.S. Air Force Research Lab Awards 
GE TEAMS Program” (reference 28). More generally, the Open Missions Systems (OMS) architecture is 
gaining more widespread traction throughout the DoD. OMS is a non-proprietary, open architecture 
standard for integrating subsystems and services into mission packages. The challenge of OSAs like OMS 
is that they are easily extensible to include a variety of functionality, but require a critical abstraction layer 
(CAL) to be implemented on a particular platform. Therefore, a particular autonomy could be compliant 
with the desired OSA, but still not work on the particular platform because of incompatibility with the CAL. 
This nuance highlights the larger challenge with OSAs, which aim to be broadly applicable to a wide array 
of functionality, while maintaining practical functionality and interoperability. Regardless of the specific 
architecture used, OSAs are a key enabler that directly supports the other three key components of the 
autonomy test infrastructure.  

It is important to note that intellectual property can still be maintained with an OSA. The OSA specifies 
the interfaces and formats that allow the data transfer to occur, but don’t require full software transparency. 
This is important because it protects the intellectual property of the developers, while simultaneously 
allowing for a more modular and interoperable approach. Using an OSA prevents the development of 
monolithic autonomy algorithms and instead steers developers to produce software geared towards specific 
capabilities, also known as services. The advantage of using an OSA that supports the use of services is 
that each algorithm is logically represented as a self-contained activity. Furthermore, orientation towards 
services facilitates a services-based testing of autonomy (SBTA) approach. This is an effective way to 
explicitly isolate, test, and evaluate the specific autonomous task of interest, as described in “Services-
Based Testing of Autonomy (SBTA)” (reference 29). Using a SBTA approach in conjunction with an OSA 
has tremendous benefits for the safety, effectiveness, and efficiency of autonomy test. 

OSA’s Role in Test Safety. 

The primary safety benefit of using an OSA is that it allows for the easy integration of the autonomy 
engine with the RTA. Once the RTA is determined to be sufficient for flight testing, that configuration can 
be used with any autonomy engine and platform that is compliant with its services-based interface. This 
guarantees the reusability of the RTA and reduces unnecessary regression testing.  

Additionally, using an OSA to execute a SBTA approach improves test safety by allowing for the test 
team to isolate and test specific services within an autonomy task. This specificity is essential for safely 
testing complex systems comprised of numerous services. Honing in on a specific service increases the 
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clarity on what exactly is being tested and what the expected outcomes should be. This also aids in 
diagnosing the root causes of problems with the autonomous task, because the various services can be 
isolated and tested independently.  

OSA’s Role in Test Security. 

There is a misconception that because software is considered “open” (i.e., access to source code or use 
of using publicly available software) it is inherently less secure. The irony with this misconception is that 
open source software is more secure precisely because the code is available. This is largely because the 
wide access helps identify vulnerabilities, which are quickly identified and mitigated. Even the National 
Security Agency, motivated by this same logic, has published a number of their encryption algorithms for 
securing Top Secret data as described in “Commercial National Security Algorithm (CNSA) Suite Profile 
of Certificate Management over CMS” (reference 30).  

Leveraging an OSA in the testing of autonomy provides greater test security from potential cyber 
threats and simultaneously allows for a more rigorous testing of cyber hardness. Firstly, an OSA allows for 
security threats to be identified and updates to be incorporated relatively seamlessly. Secondly, by using a 
services-oriented architecture, certain services can be highlighted and tested specifically for 
cyber vulnerability.  

OSA’s Role in Test Effectiveness. 

Using an OSA contributes to effective testing of autonomy in three specific ways. Firstly, it allows for 
specific testing of autonomy services. Secondly, it effectively allows for the decoupling of the autonomy 
from a specific platform. Finally, utilizing an OSA provides a process for easily testing competing 
autonomous tasks.  

Cooperative autonomous search is a good example for clarifying how a services-based approach 
improves autonomy test effectiveness. The cooperative autonomous search task could be notionally 
separated into four subcomponents: search, target identification, track, and coordination with participating 
vehicles. If a comprehensive autonomy was designed to facilitate this task, testing the autonomy would 
require a run through the full scenario. Additionally, if and when the autonomy performed poorly, it would 
be harder to diagnose the root cause of the failure.  

Conversely, if each of these subcomponents was written as an independent service, they could be 
specifically tested and evaluated independently. The integration of each of these subcomponents is 
theoretically straightforward because the OSA provides a ready framework for integration. Also, data 
logging of message traffic between services in an OSA is a powerful tool for analysis. The performance of 
the autonomy can be better characterized and analyzed through monitoring the information being passed 
between the various services during the execution of its autonomous task. This capability provides the 
framework for performing “white box” analysis, which helps answer the question, “why is the autonomy 
behaving that way?” 

The second measure of effectiveness gained by using an OSA is the effective decoupling of the 
autonomy from a specific platform. As long as the platform’s autopilot can interface with the OSA, then 
any autonomous task that is similarly compatible should work. This portability allows for the use of 
autonomy test surrogates. This is crucial for test effectiveness because it increases the number of potential 
test aircraft. It also gives the test team greater flexibility to tailor the autonomy under test to the right aircraft 
in order to capture the correct data.  

Finally, an important boost in test effectiveness is gained by using an OSA to test competing 
autonomous tasks. Having an OSA with a defined Application Program Interface (API) enables different 
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vendors to develop autonomous tasks and integrate them onto any vehicle with the same OSA. The result 
of being able to effectively test and evaluate at the granularity of services enables the government to acquire 
the most capable service that best aligns with the program’s needs.  

OSA’s Role in Test Efficiency. 

Following a SBTA approach in conjunction with an OSA allows for the sharing of services amongst 
numerous autonomous tasks. For example, the service for coordination between friendly vehicles could be 
used not only in the cooperative search algorithm, but also in a swarming or an autonomous aerial refueling 
task. The potential commonality of these services amongst numerous autonomous tasks drastically reduces 
the test time required. This is analogous to the object-oriented programming methodology that is ubiquitous 
in the software development world.  

Additional efficiencies can be gained by using the OSA’s defined interface to streamline the integration 
of 3rd party developed autonomy. The integration effort to get software to properly work on hardware is 
not trivial. The integration challenges are exacerbated when multiple, independent entities are trying to get 
their respective pieces to fit together. Having a well-defined API for the OSA mitigates much of the risk 
and greatly improves the likelihood of timely integration and test.  

The platform-agnostic advantage gained by utilizing an OSA allows for parallel testing of an autonomy 
across numerous platforms. For example, an immature autonomous task can be first flown on a small, 
group 1 UAS3 to get a quick-look at performance, as described in “Unmanned Aircraft System Airspace 
Integration Plan” (reference 31). As the autonomy matures, it can easily migrate to more advanced 
platforms because each of the test platforms are OSA-compliant. Additionally, using an LVC configuration 
allows for virtual and constructive entities to normalize the test environment to ensure continuity between 
the various platforms.  

Lastly, having a defined OSA allows the development environment to mimic both the simulation 
environment and the live test environment. Maintaining a common OSA for the development, simulation, 
and flight test allows for rapid integration and testing. This continuity across these different domains and 
air platforms emphasizes the efficiencies gained through an OSA. 

Surrogate Test Platforms: 

The capstone in executing a flight test of autonomy is flying a live aircraft running the autonomous task 
or mission. The compilation of the RTA, LVC, and OSA onboard a physical aircraft presents the 
culmination of the four components working together. Both a physical aircraft and the appropriate airspace 
and clearances to operate that aircraft are essential for testing airborne autonomy. The use of various-sized 
surrogate UAS testbeds has significant implications on the safety, security, effectiveness, and efficiency of 
the test. 

Surrogate Test Platform’s Role in Test Safety. 

Leveraging a fleet of surrogate testbeds for autonomy test is crucial for test safety, because it allows 
the test team to choose the size and performance characteristics that match the level of risk that they are 
willing to assume. For example, a maneuver that is considered high risk for a group 5 UAS could be instead 
performed on a smaller aircraft, minimizing the consequence of the risk. This allows for a build-up approach 
where the autonomy can be flown on smaller or slower UAS prior to being flown on larger or faster UAS. 

                                                      
3 See appendix C for definitions of UAS groups. 
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This risk reduction better facilitates the testing of autonomy with no detrimental impact to the objectives of 
the test plan.  

Surrogate Test Platform’s Role in Test Security. 

Oftentimes, the security classification increases when a specific mission is matched with a certain 
airframe. This is intuitive from a strategic perspective, but can be seriously limiting for a test team. 
Leveraging surrogate test aircraft that have representative dynamics, radar cross sections, or payload 
capacity would potentially allow for testing the onboard autonomy at a lower classification level. 
Regardless, decoupling the autonomy engine from the target platform helps minimize the security risk. One 
primary way this happens is by abstracting away the specific performance parameters of the target aircraft 
and instead using relevant numbers for the surrogate aircraft. This impacts not only test execution, but also 
dampens the burden on test planning and analysis. 

Surrogate Test Platform’s Role in Test Effectiveness. 

Utilizing a fleet of autonomy test surrogate aircraft of various sizes improves test effectiveness because 
it enables the matching of the autonomy under test with the appropriate aircraft. For less mature autonomy 
algorithms, flying on a smaller aircraft will provide that immediate feedback that can inform future 
development. For algorithms that are nearing operational maturity, demonstrations on operational scale 
vehicles are an essential step. It is important to note that the progression from small to large scale aircraft 
does not have to be sequential or linear. Instead, the rapid and spiral development cycles present in the 
software development world can be implemented on hardware in an analogous manner.  

The importance of the range and airspace cannot be overlooked in the effective testing of autonomy. 
The range must be able to supply the necessary airspace to adequately allow the autonomous task to be 
executed. Additionally, the range must be able to accommodate the test infrastructure, radio frequency 
spectrum environment, and all of the other logistics required to execute the autonomous test and collect the 
necessary data.  

Surrogate Test Platform’s Role in Test Efficiency. 

A major driver in test schedule slip is the limited availability of ranges and aircraft. Oftentimes, because 
of the small windows of availability, large test events are squeezed into specific times with little flexibility. 
This rigid paradigm common for flight test is incompatible with the rapid test requirements needed to fully 
test autonomy. The use of appropriately sized aircraft commensurate with the maturity and objectives of 
the autonomy being tested is the solution to this problem. Smaller UAS are cheaper to operate, more readily 
available, and require less airspace. Therefore, if certain data requirements can be met on these smaller 
aircraft, it allows for greater test flexibility. This added flexibility increases the amount of testing that can 
be performed, which preserves the test schedule without compromising on test effectiveness or safety. 
Furthermore, maximizing the use of smaller UAS to accomplish objectives can minimize the costs 
associated for both the test platform and the range. Eventually, a test of autonomy on its intended full-scale 
platform will need to occur; however, the scope of that test can be significantly reduced because of all the 
sub-scale testing that has already occurred. 
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PLANNING & ANALYSIS 

General Dwight D. Eisenhower famously said, “… plans are useless, but planning is indispensable.” 
This insight is profoundly applicable to testing autonomy. To be compatible with a responsive, agile 
development cycle, test planning should be done in such a way that favors multiple, small duration test 
events. These smaller, more frequent, test events enable testers to experience the performance of the 
autonomy quicker and provide needed data and feedback to developers sooner. Autonomy testing often 
involves many “unknown unknowns” and therefore the quickest way to figure out what to do is to try. The 
ability to successfully execute this type of test strategy hinges on the four previously discussed key 
components of RTA, LVC, OSA, and surrogate test platforms. The test infrastructure and approach to test 
execution will obviously shape the planning of the autonomy testing. Regardless, the principle of flexible 
test planning that emphasizes smaller, more focused test events remains. To maximize the success of test, 
an autonomy test plan must simultaneously provide concrete objectives while allowing for an iterative 
approach to “what” and “how” that looks like. To facilitate this iterative approach, the analysis and reporting 
procedures must likewise be flexible and responsive. Therefore, the traditional linear approach to planning, 
executing, and then analyzing must be reconfigured to a spiral approach where the analysis of a previous 
phase feeds into the planning for the next. 

Some specific considerations are presented in this section to help provide greater clarity of what a 
successful autonomy test plan and analysis process looks like. First, before even starting to plan the actual 
test, the plan for data management must be considered. Next, the concept of Design of Experiments (DOE) 
is discussed as a method for systematically figuring out what to test and what parameters matter. Following 
that, incorporating operational testing perspectives into the planning process is discussed. Included in these 
considerations is discussion on how to incorporate human factors early on and how to best leverage HIL 
simulations. Next, the importance of factoring security considerations into the planning process is covered. 
Lastly, a new approach to safety planning called systems theoretic process analysis (STPA) is presented. 

Data Management: 

While data collection is central to any test initiative, for testing autonomy it is especially important. 
Data from both simulation and flight test is crucial to training and understanding the behavior of the 
autonomy in performing a task or a mission. Particularly for autonomy test, detailed logs should be kept for 
each service for “white box” analysis to help identify why the autonomy took a particular action while 
performing a task or a mission. The large amounts of data resulting from detailed logs that are collected 
during test produces some challenges with data management and storage. If the infrastructure is not in place 
to handle this data production, then the ability to test and evaluate the autonomy will be severely hampered. 
Some questions that should be asked during the planning stage are: 

• How will the data be collected and stored? 

• Who will manage the data? 

• What security measures, classification issues might arise? 

• What are the best data formats for analysis and storage? 

• How will flight test data be relative to simulation data? 

 
Understanding and planning for test data management is an essential precondition for a successful test 

of autonomy. Doing it right initially allows for a more seamless implementation of a spiral approach of 
planning, executing, and analyzing. If the data management piece is not considered, there will be significant 
downstream implications, including not being able to accurately test and evaluate the system. 
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Design of Experiments (DOE): 

DOE is a powerful tool to optimize test and evaluation efforts. Used properly, DOE can reduce the 
number of required test points (and thus test events) while ensuring enough data is collected to identify and 
characterize statistically significant effects. DOE is especially salient for autonomy testing because of the 
complexity of the system and the unknown unknowns. Identifying which parameters are valuable from a 
test and evaluation perspective is oftentimes non-intuitive. Using DOE helps bring clarity to what testers 
need to consider and what is truly important. As the planning, execution, and analysis cycles progress, 
greater fidelity models and more specific questions can be asked. 

Properly implemented DOE consists of an iterative process where initial designs and tests are used to 
determine what factors and levels are likely important. These initial designs have a large design space with 
many factors and levels, and produce low fidelity results. These results cannot be used to characterize 
system performance without further testing; however, they are critical in reducing the design space and 
increasing the fidelity of subsequent tests. Initial test designs are best suited for the earliest test events and 
help to answer the question, “What should be tested?”  

Following initial tests, intermediate test designs are generated and executed in an effort to further refine 
the design space and maximize the impact of each test point. Intermediate designs can build upon the data 
gathered during initial tests, explore an entirely new area, or (more commonly) a mixture of both. 
Intermediate testing and design should be iterated and further refined as often as necessary to answer, “What 
factors and levels have an effect on the system?” 

Final test designs are informed by data from initial and intermediate tests. Only factors and levels that 
have a significant impact on system performance are considered, and the design space is constricted to only 
encompass the envelope where those factors and levels have a significant effect. The final tests continue to 
build upon initial and intermediate test data, filling in the blanks where necessary, and re-testing certain test 
points to verify that previously collected data is still relevant. This final testing answers the question, “What 
is the impact on system performance of these relevant factors and levels?” 

Operational Perspective: 

Traditional operational test plans are broken down into Measures of Effectiveness (MOE) and Measures 
of Suitability (MOS). The added dynamic of autonomous tasks may require MOE/MOSs that would be 
analogous to pilot evaluations, where performance measures (generally subjective in nature) are rated 
against minimum standards, and repeated until the minimum standards are met. Furthermore, test teams 
may require ratings from a number of evaluators in order to come up with a more objective measure. One 
way to do this is to gather instructors from various units to rate the system under test. As an example, 
autonomous task measures may include the following graded elements, adapted from an operational unit’s 
Mission Qualification Training (MQT) Syllabus, shown in table 1 with criteria given in table 2. 

  



16 

Table 1  Example Graded Elements for Evaluating Autonomy4 

Graded Elements Event 1 Event 2 Event 3 Event… 
1)  Safety     
2)  Crew Coordination     
3)  Communication     
4)  Risk Management     
5)  Decision Making     
6)  Navigation     
7)  Battlespace SA     
8)  Terrain/Wx/Airspace Awareness     
9)  Mission Specific TTPs  

(i.e., ISR, CAS, etc.) 
    

10)  Weapons Employment     
11)  Coordinated Attack     
12)  Emergency Management     

Note: adapted from pilot MQT syllabus. 

Table 2  Example Grading Criteria for Graded Elements  

Grade Explanation of Grade 

U Unknown; performance was not observed; element was not performed 

D Dangerous; performance was unsafe. Any element graded ‘D’ results in overall failure 
of test, and immediate termination of the test event. 

0 Performance demonstrated significant lack of ability 

1 Performed task with limited ability; required significant assistance from evaluator. 

2 Performed task, but not to the desired levels of speed, accuracy, or safety; required 
some assistance from the evaluator. Performed most tasks without assistance. 

3 Performed task at the desired level of speed, accuracy and safety; required no 
assistance from the evaluator. 

4 Performed task with high degree of ability; exceeded desired levels of speed, accuracy 
and safety. 

Note: adapted from pilot MQT syllabus. 

These measures were designed for human pilots and assumes the ability for evaluators to provide 
feedback on performance between events. They are by no means all-inclusive, but this may provide a 
framework for measuring inherently subjective measures as objectively as possible. Due to the relatively 
unpredictable nature of autonomy, test teams may need to account for failure of these measures, and plan 
for rapid design iterations for re-testing. The importance of establishing strong working relationships with 
autonomy developers cannot be overstated.  

The DT and OT organizations must work together to establish these measures. At early phases of 
autonomy testing, DT may focus primarily on safe operation (e.g., Safety, Risk Management, Emergency 
Management, General SA, etc.). Failure of these “safety of flight” measures would be analogous to a “clean 

                                                      
4 Abbreviations, acronyms, and symbols in figures and tables are defined in appendix D. 
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kill” in a human pilot checkride. Objective thresholds may be inadequate in measuring these critical areas. 
An evaluator may exercise judgment and determine that the autonomy acted in a manner that may have 
potential to cause harm in the future (e.g., too slow to make a decision, flying too close for comfort towards 
an airspace boundary, acting unpredictably around manned assets, etc.). The test team must be prepared for 
failures in these areas and ready to enable multiple cycles of updates and retesting until minimum standards, 
and comfort levels, are achieved. 

Furthermore, developing MOE/MOSs will require a level of understanding of how autonomy will be 
employed on an airborne system. Test teams must engage early with end users and enable continuous 
feedback with them as they develop or modify tactics, techniques, and procedures (TTPs) for the autonomy 
under test. These TTPs can then be used to influence the overall test plan. The level of formality (or 
informality) of this process will be at the test team’s discretion, but they must realize that the quality of 
interaction between users and developers will directly impact the quality of the autonomy under test, not to 
mention the relevance of the test itself.  

Human-System Integration: 

How the human will interact with the autonomy is pivotal (Assumption 3) and must be planned for 
early on in testing. Since the autonomous task is often replacing a specific human function, the focus is 
shifted towards the technical competence in that task and not the eventual interaction required with the 
human. While the performance in executing the task is important, the interplay between the human and the 
autonomy is equally important. This interaction between the human and the autonomy is a topic of 
widespread research within the human factors community detailed in Humans and Automation: System 
Design and Research Issues (reference 32) and Human Factors Methods: A Practical Guide for 
Engineering and Design (reference 33). 

Early on, the human and autonomy user goals must be defined and understood. Assessing and 
improving these interactions is iterative and often relies on trial and error to optimize the interface. If the 
human-system interaction becomes an afterthought, which is often the case, the autonomy is susceptible to 
disuse or misuse. Some of the human factors considerations that should be considered early on are:  

• Operational Environments: the operating environments of the autonomy and the human 
interacting with the system. Some considerations that should be made are: 

o Equipment limits (e.g., communication bandwidth and range) 

o Adversarial effects (e.g., degraded communications, GPS jamming) 

o Environmental effects (e.g., temperature effects [both for human and machine], moisture, 
pressures) 

• Human-Autonomy Interface: the method that the human will interact with the autonomy must 
be defined. Things to consider for the interface are: 

o Inputs to the Human: 

 Visual cues (e.g., light in cockpit, display on screen, visual cue from UAS [e.g., 
wing rock]) 

 Tactile cues (e.g., vibration, pressure, texture, etc.) 

 Auditory cues 
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o Outputs from the Human:

 Physical manipulations (e.g., button pushes, knob turns)

 Biophysical measurements (e.g., heart rate, eye tracking, oxygenation)

 Verbal Commands

• Usability: the ease of interaction with the autonomy, as described in Usability Assessment: How
to Measure the Usability of Products, Services, and Systems (reference 34). Some factors that
impact usability are:

o Achievability (Can the task be accomplished?)

o Efficiency

o Effectivity

o Easily learnable

o Generally satisfactory

• Workload: how hard the human has to work, mentally and physically, when interacting with the
autonomy as described in Workload Assessment: How to Diagnose Workload Issues and Enhance
Performance (reference 35). Workload is often measured by considering factors like:

o Subjective Metrics (e.g., temporal demand, spare capacity)

o Objective Metrics (e.g., biophysical measurements)

o Performance-based (e.g., task success)

• Human-Autonomy Tasking: how shared human-machine tasks are distributed and
accomplished. Some factors are:

o Task Allocation: who has responsibility for accomplishing the task (similar concept to
Crew Resource Management in the aviation world)

o Time on Task: how long it takes to complete the task. This could also measure how long
after the task has been completed that it is still being monitored or observed.

o Task Difficulty: who can do what and when.

o Task Involvement: defined by attention and arousal required to do a task. Humans do not
want either extreme (Yerkes-Dodson law)

• Situational Awareness: the awareness of agents (human and machine) within the system
including the agents which they interact with (both friend and foe). Situational awareness looks
at, among other things:

o Past, present and future events

o Local and global awareness

• Military Utility: how well the autonomy performs its intended mission. The military utility of an
autonomous task must include the human interaction as part of its calculation.
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• Human Bias and Individual Differences: not every human will respond in the same manner to 
the autonomy under test. Several things to consider for this factor are: 

o Demographics 

o Predisposition 

o Experience  

o Training 

o Cognitive Ability 

o Physical and Emotional States 

• Trust: negative outcomes could result from either over- or under-trust. Many models and scales 
have been developed to measure and quantify trust. 

Many of these factors are interdependent and are not easily isolated. This can lead to challenges in 
explicitly testing certain factors. The four components of RTA, LVC, OSA, and surrogate test platforms all 
provide different capabilities that can assist in human factors testing.  

Of all the factors, trust might be the most salient in predicting the ultimate success of the autonomous 
task. Autonomy cannot be evaluated in isolation and is fundamentally a joint human-machine enterprise 
(Assumption 3). If the human does not trust the autonomy, then it will not be able to fully achieve its 
potential (reference 4). Evaluating the human’s role in the implementation of autonomy is essential and 
must be considered early in the development process. Properly leveraging LVC creates a representative 
environment that can facilitate valuable feedback on a human’s trust towards the autonomy under test. This 
interaction can be as complicated as a human flying a virtual aircraft with a live autonomous wingman or 
as simple as a human observing a constructive simulation. The variety of ways that LVC can be applied 
greatly bolsters the test effectiveness because it gives entry points for T&E throughout the development 
process. LVC is an invaluable asset in molding and shaping the autonomy’s interaction with the human, 
which will ultimately decide its overall effectiveness. 

Role of Hardware-in-the-Loop (HIL): 

The use of HIL simulation is a common practice throughout the flight test community. The ability to 
test software on representative hardware, before flight test, is a natural first-step to mitigate risk. In most 
contexts, the HIL simulations are performed on subcomponent-level systems, often with safety-critical 
functions. While this application is still pertinent when considering how the autonomy engine will interact 
with the other system components, the real power of HIL is manifested when used for mission and task-
level planning and analysis. When testing autonomy, the hardware is the autonomy engine, itself. Therefore, 
leveraging a M&S environment that can accurately stimulate the autonomy engine provides valuable insight 
into how the system will perform in flight test. Specifically, HIL impacts the autonomy test planning by 
determining the test readiness and informing the test team of the anticipated behaviors of the autonomy. 

Subsystem integration aims to be one of the greatest barriers to testing of autonomy. Assumption 2 
proposes that a monolithic “autonomy” is not practical and therefore, future autonomy applications will be 
comprised of numerous services, possibly designed by different developers, relying on a diverse set of 
sensors and inputs. Ensuring that each subcomponent is sending and receiving the correct information is 
pivotal to a successful test. HIL provides an avenue to test and debug problems on the ground accurately 
and quickly.  

Performing a HIL event prior to flight test provides the test team with a “dress rehearsal” and displays 
what the expected performance of the autonomy will look like. This is especially pertinent, because, unlike 
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a traditional test executed by a human pilot, an autonomy test will feature a higher degree of uncertainty. 
First, the “right” action of the autonomy is not necessarily intuitive. The autonomy could make a decision 
similar to a human operator, or could choose something different based on how it’s coded. Emergent 
behaviors are inherent to complex systems. The benefit of HIL is that these emergent behaviors can be first 
encountered in a simulated environment and provide the test team with insight into how the real-world 
autonomy will function.  

The HIL also features prominently in the analysis of autonomy. The probabilistic nature of the analysis 
required for T&E of autonomy and the limitations on flight test make HIL a necessary analysis tool to 
augment live test. Once the HIL simulations are shown to be accurate enough to the real world, advances 
in supercomputing and data science can be leveraged to provide large amounts of test events. This added 
data is invaluable for evaluating the system performance and ultimately for its verification and validation. 

Security: 

Security is especially a concern when it comes to employing autonomy onboard an air platform, 
primarily because of the decision making capabilities that must reside on the system. The TTPs for any 
design reference mission (DRM) must be codified in order to design the autonomous task or mission. When 
these TTPs are coupled with a DRM and a system, this will undoubtedly invoke a higher security 
classification and could pose problems for the test and evaluation of that autonomous task. Unlike manned 
aircraft, where the human maintains and controls classified TTP information, the autonomy engine may be 
more susceptible to exploitation. To counter these risks, foresight is essential to define and identify what is 
classified early on in the process. This includes thinking through how the various autonomous tasks fits 
into the overall DRM, how the autonomy engine facilitates internal communication between the various 
tasks, how the autonomy interfaces with contributing systems, how the test data will be collected and stored, 
and how M&S assets that contribute to the LVC environment affect security classifications.  

Like safety, security holds a high priority. The best way to maintain a secure, yet rapid test approach is 
to minimize the number of items that require a higher security classification. The four components of RTA, 
LVC, OSA, and surrogate platforms help mitigate some of the associated security concerns with testing 
autonomy. In general, if proper planning is done on the front-end of a test program, then the test team can 
avoid unnecessary delays in testing due to classification and infrastructure limitations. 

Security considerations need to be also be included in the analysis phase. Many autonomy test plans 
may focus primarily on data collection for further autonomy development. In this case, protecting the raw 
data that will be used for future training and development is paramount. Additionally, the performance and 
vulnerabilities of the autonomy will be determined in the analysis phase. It is important that this information 
is protected appropriately to prevent exploitation. 

Systems Theoretic Process Analysis (STPA): 

The current flight test safety approach relies on system safety analysis, a careful study of historical 
testing, test safety plans, unexpected test events, and lessons learned from similar test programs. This 
philosophy looks at each component of a system, identifies the vulnerabilities and builds a risk profile based 
on these calculations. While this approach has its benefits, some notable downsides are the inability to 
recognize emergent properties between system interactions, the need for in-depth modelling and 
engineering analysis, and its difficulty in assessing human-machine interactions.  

A new philosophy in safety planning and mitigation called STPA has begun to gain traction in the flight 
test world. The STPA was initially designed for software, and is particularly promising in the world of 
autonomy and complex systems. The general premise of STPA is that it leverages a “top-down,” systems 
engineering approach to identify hazards in complex systems as described in System Theoretic Process 
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Analysis Handbook (reference 36) and “A Comprehensive Safety Engineering Approach for Software-
Intensive Systems based on STPA” (reference 37). The general method for using STPA is shown in figure 4 
and is comprised of four steps: 1) Define Purpose of the Analysis, 2) Model the Control Structure, 
3) Identify Unsafe Control Actions, and 4) Identify Loss Scenarios.

Figure 4  Overview of General STPA Process (reference 36) 

In step 1, the losses and hazards are identified. This can pertain specifically to safety of flight hazards, 
but also generalizes to other fields like performance, security, organizational communication, privacy, etc. 
Step 2 looks at the different components within the system and identifies what the various inputs and outputs 
are to each component. In step 3, unsafe control actions (UCAs) are developed to address how the control 
actions from step 2 could result in one of the identified hazards listed in step 1. These UCAs help derive 
functional requirements and constraints for the system. Finally, step 4 builds scenarios that help explain 
how these UCAs might occur in the system. Specifically, these scenarios identify what breakdowns in the 
flow of information (incorrect feedback, inadequate requirements, component failures, etc.) could lead to 
an UCA. Additionally, the scenarios look at areas where a correct control action could be provided but not 
properly implemented. 

Given the systems engineering nature of STPA, this method excels for complex, interconnected 
systems. Additionally, STPA is perfect for deriving system requirements and provides a holistic view of 
how each part contributes to the overall system and where potential failure states lie. This attribute allows 
for easy consideration of human-machine interactions, which is a pivotal component in autonomy testing.  

The STPA is most effectively applied during the requirements development and early design of new 
systems, as the scenarios and unsafe control actions identified may readily be mitigated by the specification 
of new requirements early enough to effect design changes to the system. In flight test, there is rarely 
capacity or appetite for implementing new requirements without adequate justification. Generally this 
justification is strongest when there is the actual evidence of the unsafe scenario; flight testers are rarely 
successful in driving new requirements prior to the occurrence of unusual test events. Furthermore, as STPA 
is not a probabilistic systems analysis, it is difficult to ascertain the likelihood of unsafe control actions. In 
traditional risk assessment and mitigation, the probability of the hazard occurring is half of the overall risk 
calculation (the other half being the consequence). The lack of a probability of occurrence/failure makes it 
hard to accurately discern which of the hazards identified by STPA should be preferentially mitigated and 
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which ones can be ignored by virtue of their low probability. On top of that, the process of implementing 
STPA is fairly rigorous and can easily be misapplied by novice users. To avoid this pitfall, a 
cross-functional team must go through the process under the direction of a skilled facilitator.  

STPA may be useful for the test and evaluation of new systems that perform autonomous tasks and 
missions. These test programs may benefit the most due to the complex nature of the system, the novel 
interaction with human operators, and the lack of historical test programs from which to draw lessons 
learned. Additionally, STPA can more broadly be applied to evaluate the factors that might contribute to 
the unsuccessful completion of the autonomous task. Instead of solely focusing on safety of flight issues, 
the STPA process could evaluate the linkages between the test planning process, the integration of different 
autonomy services, and the human interactions to identify scenarios that might result in an unsuccessful test. 

There is no “one size fits all” approach that can be magically applied to safety planning for autonomous 
and complex systems. STPA is presented in this handbook because of its unique ability to evaluate 
interactions between and among complex systems. There is still a definite need for the traditional risk 
assessment tools, but these should be considered in light of the larger, system and subsystem 
level interactions. 
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PARADIGM SHIFT: AGILE DEVOPS 

The 2018 National Defense Strategy (reference 1) calls the DoD to “build a more lethal force” and to 
“reform the DoD for greater performance and affordability.” To truly implement these directives for 
autonomy, the test community needs to integrate more fully with the autonomy development community 
(both military and contractor) and the end users who will operate these systems. Test plays a central role 
and acts as the bridge between the development of the new autonomous tasks and the fielding and operation 
on airborne systems. The new paradigm that is essential for advancing the state of autonomy T&E to the 
next level is one of continuous learning, testing, and fielding.  

In this new paradigm, the traditional, waterfall development model as an acquisition strategy becomes 
intractable and instead is replaced with an Agile strategy. Figure 5 shows how the waterfall and Agile 
approaches differ, with the emphasis on how the Agile process best manages risk in implementation of 
autonomous tasks and missions. 

 
Figure 5  Waterfall vs. Agile Software Development Risk Profiles as described in Air Force Test 

and Evaluation Guide (reference 38) 

The key to unlocking this new paradigm is the concept that “autonomy” is fundamentally software 
(Assumption 1). Once this assumption is internalized, the autonomy itself can be properly decoupled from 
a specific platform. This focus on software development, allows the test community to learn from and 
implement analogous best practices seen in industry. Agile and DevOps processes are two specific practices 
that could dramatically boost the test and evaluation capabilities for autonomy. In the proceeding 
subsections, high-level descriptions of Agile and DevOps are presented to give some context for how they 
could impact the T&E of autonomy. Implementing the principles of Agile and DevOps will be difficult, so 
the final section outlines some barriers that need to be overcome to best respond to the challenges to 
testing autonomy. 

WATERFALL 
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Agile: 

The agile software practice provides a rapid and effective means of generating software that addresses 
the warfighter’s needs. While the test community will not be developing autonomy software, it must be 
compatible with this process in order to provide an effective T&E capability. Tremendous advancements 
in modern software development have been made through the agile software development philosophy. The 
best way to define the Agile process is by citing their Manifesto (reference 22): 

• Individuals and Interactions OVER Processes and Tools

• Working Products OVER Comprehensive Documentation

• Customer Collaboration OVER Contract Negotiation

• Responding to Change OVER Following a Plan

While the emphasis of Agile runs counter to the traditional test philosophy, these principles must be 
embraced to effectively implement autonomy onboard a platform. It is important to note that Agile 
prioritizes the items on the left over the items on the right. This does not mean that processes and tools, 
comprehensive documentation, contract negotiations, and following a plan do not have their role. It does, 
however, mean that these items should not come at the expense of the items on the left.  

Adapting the three phases of test to test autonomy is a good starting point for showing how the 
Agile principles can begin to work within the context of an AFTC test framework. Figure 6 shows a 
diagram of how the test community can operate within an Agile software development environment. In 
this figure, a prioritized backlog is maintained that is based on stakeholder requirements, CONOPS, 
threats, and stable software baselines. Coupled with test strategy and resources, the backlog feeds an 
iterative software development cycle. The test team and users operate within this cycle to produce an 
intended capability. The performance of this capability serves as the launching point for the next 
cycle. The process continues indefinitely as new capabilities are continually delivered and improved.  

Figure 6  Test Relationship in ASD [38] 

DevOps: 

DevOps is defined as “an organizational shift in which, instead of distributed siloed groups performing 
functions separately, cross-functional teams work on continuous operational feature deliveries” in 
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“DevOps,” from IEEE Software (reference 39). In any organization, the development and operations 
functions have competing interests. Developers in the Air Force (i.e., program offices, contractors, and 
research organizations) constantly seek to provide new functionality that will benefit the customer (i.e., best 
complete the mission). On the other hand, the operations side seeks stability and reliability. The challenge 
for the test community is to facilitate the rapid and innovative development of new and updated autonomous 
tasks, while ensuring the operational community has reliable and trustworthy systems. DevOps was 
designed to leverage new technological advances in computing and automation to symbiotically merge 
these two competing interests. 

To better understand the DevOps concept, it is better to decompose DevOps into some of the key 
practices that help define it. Five key practices of DevOps as defined in “What is DevOps” 
(reference 40) are:  

• Continuous Integration: Instead of waiting for a new autonomy service or task to be 
completely finished before merging with the master branch, continuous integration uses a 
shared repository that is continually updated. This allows for better collaboration with other 
developers and also helps identify potential problems sooner. Unit testing and automation are 
leveraged to ensure stable code and find potential bugs. The result is that the autonomy task 
or service is produced faster without sacrificing quality. 

• Continuous Delivery: Updates to the autonomy are automatically pushed to a test 
environment once they are ready. This test environment could range from a purely simulated 
(virtual and constructive) environment to a complex LVC test using numerous live assets.  

• Microservices: This builds on the service-oriented architecture approach and allows for the 
fragmentation of complex applications. The use of microservices within an OSA allows for a 
modular approach to both design and implementation of autonomous tasks. 

• Monitoring and Logging: During both the testing and fielding of autonomy, the performance 
of the system is monitored and issues are logged. This feedback helps improve the next 
iteration of updates and developments and contributes to trend analysis. 

• Cross Functional Collaboration: The whole DevOps construct does not work if there is not 
good communication and collaboration amongst the various stakeholders. Even within the 
test community, it is essential that experts in computer science, human factors, engineering 
(aeronautical, electrical, computer, systems, etc.) and logistics be represented and effectively 
work together. 

The optimal application of DevOps is through the use of a cloud infrastructure. A cloud-based 
application is crucial for timely, secure, and effective management of software as it progresses along its 
development. Additionally, the success of DevOps is contingent on the successful use of automation for 
building, managing, testing, and analyzing new software. Functions that are repeatable, predictable, and 
time-intensive should be automated. This helps reallocate the human brain power to solving the more 
complicated and abstract problems that arise with testing autonomy. 

Barriers to Overcome: 

Fully adopting an Agile DevOps approach within the AF will be difficult to implement. However, the 
purpose of this section is to provide a vision of the optimal environment for testing and evaluating 
autonomy. In striving towards implementing a DevOps approach, there are several barriers that first must 
be overcome.  

The first is cultural barriers is the mindset within the test community. There is a temptation to rely on 
the “business as usual” approach when it comes to testing autonomy. The problem with this approach is 
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that the level of complexity involved in testing autonomy is not practically feasible using the old 
approaches. Additionally, the use of more technology and automation might alter the makeup and roles of 
the traditional test team. It is important to remember that the human plays a pivotal role in both the 
implementation and testing of autonomy. Just because a task once performed by a human (e.g., data 
analysis, mission planning) becomes automated, does not mean that the human is no longer needed. Human 
capital is a precious resource and these new concepts of Agile and DevOps are intended to first, and 
foremost, maximize human potential.  

More generally, the stove-piped approach of separate DT and OT, as well as involving the user at the 
end of the acquisition is not sufficient. Testers must be more in touch with the user communities. A future 
approach might feature embedding testers with operational units to help streamline the spiral development 
and testing of new capabilities.  

The second cultural barrier is the investment priority of the Air Force, in general, and the test 
community, in particular. Traditionally, the Air Force has had a “hardware-first” mindset and often has paid 
for state-of-the-art military hardware at the expense of its communications and information technology (IT) 
infrastructure. Facilitating an environment conducive to safely, securely, effectively, and efficiently testing 
and evaluating autonomy means that the financial investment must shift to prioritizing software and its 
corresponding infrastructure. This means a renewed prioritization is required for cloud computing 
resources, data management tools and logistics, and investing in personnel who are experienced in data 
science, computer science, and IT.  

The last barrier is the problem of vendor lock and the current acquisition paradigm. The status quo for 
most military systems is that a single contractor provides an end-to-end solution (both hardware and 
software) that provides a set of capabilities and the requirements for these capabilities must be determined 
multiple years ahead of time. It is difficult to accurately forecast what specific capabilities are needed 
multiple years in the future. Inevitably, changes to the military system must be made to stay operationally 
relevant. These changes are both time intensive and expensive because all of the system software and its 
interfaces tend to be proprietary information of the prime contractor. This model is antithetical to meeting 
the objectives of the National Defense Strategy.  

To help promote a test approach conducive to testing autonomy, the test community must advocate for 
government-owned interfaces that avoid “vendor lock”. To accomplish this task, the larger acquisition 
community needs to create a new value proposition for military contractors that makes it worthwhile for 
them to decouple the hardware and software development. A great example from the commercial sector is 
the Apple application (app) store. Apple provides the hardware (the iPhone) and a software development 
kit (SDK) for building an app compatible with their operating system. The SDK allows third party 
developers to write software that seamlessly runs on the iPhone. Through this model, the hardware 
developer (Apple), software developers, and end users all share in a symbiotic relationship that provides a 
timely and capable system. Likewise, for autonomy development, a similar construct would promote a 
mutually beneficial relationship for the military, traditional military contractors, and entrepreneurial 
software developers.  

The bottom line is that change is hard. One of the purposes of this handbook is to equip testers with 
tools to adapt the solid foundation of current test practices to best accommodate the testing of autonomy. 
The principles of the Agile and DevOps philosophies provide the ideal framework for quickly producing 
high-quality autonomy software.  
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CONCLUSIONS 

As the use of autonomy on air platforms become the new normal of warfare, it is essential that 
appropriate test and evaluation methods are embraced to maximize safety, security, effectiveness, and 
efficiency. Testing and evaluating autonomy is a complex problem that requires a holistic approach from a 
cross-functional team. This handbook outlined best practices, insights, and tools for the testing and 
evaluating of autonomy. Generally, the approach for autonomy test should feature early user involvement, 
continuous and cumulative feedback, streamlined processes and products, a pilot training approach, and 
consideration of human-machine interaction.  

The testing of autonomy was first examined using the current paradigm of the three phases of test 
(planning, execution, and analysis). The execution phase of an autonomy test was first discussed because 
of its various challenges. Leveraging Run Time Assurance, Live-Virtual-Constructive capabilities, an Open 
Systems Architecture, and surrogate platforms presents the best way of achieving a test that is safe, secure, 
effective, and efficient. These four components all individually contribute to the safety, security, 
effectiveness, and efficiency and collectively form a formidable framework for executing autonomy tests. 
The requirements to successfully execute an autonomy test informed the planning and analysis processes. 
The biggest takeaway for both of these phases is that an iterative approach is essential. The wide array of 
“unknown unknowns” makes it nearly impossible to have a one-time, linear approach to test planning and 
analysis. Instead, tools like design of experiments, hardware in the loop, operational and human factors 
considerations, and systems theoretic process analysis all provide an avenue for iteratively and successfully 
completing both phases. 

The philosophies of Agile and DevOps were presented to optimally test and evaluate autonomy. The 
concept of DevOps integrates the development and operations of autonomous capabilities using a 
cross-functional team. In this paradigm, the stove-piped acquisition, test, and operations process is replaced 
by a process with continuous integration, continuous delivery, microservices, continuous monitoring and 
logging, and cross-functional collaboration. Additionally, a test capability that is compatible with the agile 
software development process must be embraced. The key principles of an Agile test capability are favoring 
interactions and individuals, working products, customer collaboration, and responding to change. Lastly, 
several cultural barriers that will inevitably arise when implementing some of the Agile DevOps principles 
were discussed. The bottom line is that if the objectives of the 2018 National Defense Strategy are to be 
realized then hard and dramatic changes are inevitable. 

Much like the iterative nature required to properly test and evaluate autonomy, this handbook is the 
first iteration. As more autonomy programs emerge and autonomy tests are conducted, those lessons learned 
and tools will be gathered and presented in the next version.  
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APPENDIX A – BIBLIOGRAPHY 

ADDITIONAL READING 

The authors recommend the following as additional reading material. There are many groups tackling 
the concept of autonomy test, and these resources address some topics not covered within the scope of this 
handbook. 

1. DoD Directive 3000.09, Autonomy in Weapon Systems. This directive:

a. Establishes DoD policy and assigns responsibilities for the development and use of
autonomous and semi-autonomous functions in weapon systems, including manned and
unmanned platforms. (DoDD 3000.09, 1. a.)

b. Establishes guidelines designed to minimize the probability and consequences of failures
in autonomous and semi-autonomous weapon systems that could lead to unintended
engagements. (DoDD 3000.09, 1. b.)

2. DAU CLE 002, Introduction to the Test and Evaluation of Autonomous Systems

3. IDA Document NS D-9266, Operational Testing of Systems with Autonomy, Wotjon, Heather M.,
et al., Institute for Defense Analyses, March 2019

4. MP180941, PR-17-2408, Human-Machine Teaming Systems Engineering Guide, McDermott,
Patricia, et al., MITRE Corporation, December 2018

5. Murphy R., J. Shields, “The Role of Autonomy in DoD Systems,” Defense Science Board,
Washington D.C., 2012.

6. Huttermann, M., DevOps for Developers, Apress, 2012.

7. Anno, G., L. Brien, E. Fleishman, V. Gawron, E. Jones, E. Lovesey, L. McGlynn, G. McMillan,
R. McNally, and D. Meister “Proceedings of the Human Factors Society Annual Meeting,” SAGE
Publications, vol. 35, pp. 1284-1287, 1991.

8. Brewer, M., J. Eggstaff, S. Roberts, P. Sohl, and J. Tyler, Operational Test Agencies Six Core Test
Principles, Department of Defense, Washington D.C., 2019.

This list is not all-inclusive, and we recommend the reader explore all available literature. 
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1. Introduction


This document specifies a profile of the Certificate Management over CMS (CMC) protocol to comply
with the United States National Security Agency's Commercial National Security Algorithm (CNSA)
Suite [CNSSP15]. CMC is defined in [RFC5272], [RFC5273], and [RFC5274], and is updated by
[RFC6402]. This document profiles CMC to manage X.509 public key certificates in compliance with
the CNSA Suite Certificate and Certificate Revocation List (CRL) Profile [ID.cnsa-cert-profile]. This
document specifically focuses on defining CMC interactions for both initial enrollment and rekey of
CNSA Suite public key certificates between a client and a Certification Authority (CA). One or more
Registration Authorities (RAs) may act as intermediaries between the client and the CA. This profile
may be further tailored by specific communities to meet their needs. Specific communities will also
define Certificate Policies that implementations need to comply with.


2. The Commercial National Security Algorithm Suite


The National Security Agency (NSA) profiles commercial cryptographic algorithms and protocols as
part of its mission to support secure, interoperable communications for US Government National
Security Systems. To this end, it publishes guidance both to assist with the USG transition to new
algorithms, and to provide vendors - and the Internet community in general - with information
concerning their proper use and configuration.


Recently, cryptographic transition plans have become overshadowed by the prospect of the
development of a cryptographically-relevant quantum computer. NSA has established the
Commercial National Security Algorithm (CNSA) Suite to provide vendors and IT users near-term
flexibility in meeting their IA interoperability requirements. The purpose behind this flexibility is to
avoid vendors and customers making two major transitions in a relatively short timeframe, as we
anticipate a need to shift to quantum-resistant cryptography in the near future.







NSA is publishing a set of RFCs, including this one, to provide updated guidance concerning the use
of certain commonly available commercial algorithms in IETF protocols. These RFCs can be used in
conjunction with other RFCs and cryptographic guidance (e.g., NIST Special Publications) to properly
protect Internet traffic and data-at-rest for US Government National Security Systems.


3. Terminology


The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD
NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be
interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
capitals, as shown here.


The terminology in [RFC5272] Section 2.1 applies to this profile.


The term "Certificate Request" is used to refer to a single PKCS #10 or CRMF structure. All PKI
Requests are Full PKI Requests, and all PKI Responses are Full PKI Responses; the respective set of
terms should be interpreted synonymously in this document.


4. Requirements and Assumptions


Elliptic Curve Digital Signature Algorithm (ECDSA) and Elliptic Curve Diffie-Hellman (ECDH) key pairs
are on the curve P-384. FIPS 186-4 [DSS], Appendix B.4, provides useful guidance for elliptic curve
key pair generation that SHOULD be followed by systems that conform to this document.


RSA key pairs (public, private) are identified by the modulus size expressed in bits; RSA-3072 and
RSA-4096 are computed using moduli of 3072 bits and 4096 bits, respectively.


RSA signature key pairs used in CNSA Suite compliant implementations are either RSA-3072 or RSA-
4096. The RSA exponent e MUST satisfy 2^16<e<2^256 and be odd per [DSS].


It is recognized that, while the vast majority of RSA signatures are currently made using the
RSASSA-PKCS1-v1_5 algorithm, the preferred RSA signature scheme for new applications is
RSASSA-PSS. CNSA Suite compliant X.509 certificates will be issued in accordance with [ID.cnsa-
cert-profile], and while they must be validated using RSASSA-PKCS1-v1_5, they can be used to
produce signatures with either signing scheme. Where use of RSASSA-PSS is indicated in this
document, the following parameters apply: [RFC4056]. Application developers are obliged to ensure
that the chosen signature scheme is appropriate for the application and will be interoperable within
the intended operating scope of the application.


the hash algorithm must be id-sha384 as defined in [RFC8017];
the mask generation function must use the algorithm identifier mfg1SHA384Identifier as
defined in [RFC4055];
the salt length must be 48 octets; and
the trailerField must have value 1.


These parameters will not appear in a certificate and must be securely communicated with the
signature as specified in


This document assumes that the required trust anchors have been securely provisioned to the client
and, when applicable, to any RAs.


All requirements in [RFC5272], [RFC5273], [RFC5274], and [RFC6402] apply, except where
overridden by this profile.


This profile was developed with the scenarios described in Appendix A in mind. However, use of this
profile is not limited to just those scenarios.


The term "client" in this profile typically refers to an end-entity. However, it may instead refer to a
third party acting on the end-entity's behalf. The client may or may not be the entity that actually
generates the key pair, but it does perform the CMC protocol interactions with the RA and/or CA. For
example, the client may be a token management system that communicates with a cryptographic
token through an out-of-band secure protocol.


This profile uses the term "rekey" in the same manner as does CMC (defined in Section 2 of
[RFC5272]). The profile makes no specific statements about the ability to do "renewal" operations;
however, the statements applicable to rekey should be applied to renewal as well.







This profile may be used to manage RA and/or CA certificates. In that case, the RA and/or CA whose
certificate is being managed is considered to be the end-entity.


This profile does not support key establishment certification requests from cryptographic modules
that cannot generate a one-time signature with a key establishment key for proof-of-possession
purposes. In that case, a separate profile would be needed to define the use of another proof-of-
possession technique.


5. Client Requirements: Generating PKI Requests


This section specifies the conventions employed when a client requests a certificate from a Public
Key Infrastructure (PKI).


The Full PKI Request MUST be used; it MUST be encapsulated in a SignedData; and the SignedData
MUST be constructed in accordance with [ID.cnsa-smime-profile]. The PKIData content type defined
in [RFC5272] is used with the following additional requirements:


controlSequence SHOULD be present.
TransactionId and SenderNonce SHOULD be included. Other CMC controls MAY
be included.
If the request is being authenticated using a shared-secret, then Identity Proof
Version 2 control MUST be included with the following constraints:


hashAlgId MUST be id-sha384 for all certification requests
(algorithm OIDs are defined in [RFC5754]);
macAlgId MUST be HMAC-SHA384 (the HMAC algorithm is defined
in [RFC4231]).


If the subject included in the certification request is NULL or otherwise does not
uniquely identify the end-entity, then the POP Link Random control MUST be
included, and the POP Link Witness Version 2 control MUST be included in the
inner PKCS #10 or Certificate Request Message Format (CRMF) [RFC4211]
request as described in Sections 4.1 and 4.2.


reqSequence MUST be present. It MUST include at least one tcr (see Section 4.1) or crm (see
Section 4.2) TaggedRequest. Support for the orm choice is OPTIONAL.


The private signing key used to generate the encapsulating SignedData MUST correspond to the
public key of an existing signature certificate unless an appropriate signature certificate does not yet
exist, such as during initial enrollment.


The encapsulating SignedData MUST be generated using SHA-384 and either ECDSA on P-384, or
RSA using either RSASSA-PKCS1-v1_5 or RSASSA-PSS with an RSA-3072 or RSA-4096 key.


If an appropriate signature certificate does not yet exist, and if a Full PKI Request includes one or
more certification requests and is authenticated using a shared-secret (because no appropriate
certificate exists yet to authenticate the request), the Full PKI Request MUST be signed using the
private key corresponding to the public key of one of the requested certificates. When necessary
(i.e., because there is no existing signature certificate and there is no signature certification request
included), a Full PKI Request MAY be signed using a key pair intended for use in a key establishment
certificate. However, servers are not required to allow this behavior.


5.1. Tagged Certification Request


The reqSequence tcr choice conveys PKCS #10 syntax. The CertificateRequest MUST comply with
[RFC5272], Section 3.2.1.2.1, with the following additional requirements:


certificationRequestInfo:
subjectPublicKeyInfo MUST be set as defined in Section 4.4 of [ID.cnsa-cert-
profile];
attributes:


The ExtensionReq attribute MUST be included with its contents as
follows:


The Key Usage extension MUST be included, and it
MUST be set as defined in [ID.cnsa-cert-profile].
For rekey requests, the SubjectAltName extension
MUST be included and set equal to the







SubjectAltName of the certificate that is being used
to sign the SignedData encapsulating the request
(i.e., not the certificate being rekeyed) if the Subject
field of the certificate being used to generate the
signature is NULL.
Other extension requests MAY be included as
desired.


The ChangeSubjectName attribute, as defined in [RFC6402], MUST
be included if the Full PKI Request encapsulating this Tagged
Certification Request is being signed by a key for which a
certificate currently exists and the existing certificate's Subject or
SubjectAltName does not match the desired Subject or
SubjectAltName of this certification request.
The POP Link Witness Version 2 attribute MUST be included if the
request is being authenticated using a shared-secret and the
Subject in the certification request is NULL or otherwise does not
uniquely identify the end-entity. In the POP Link Witness Version 2
attribute, keyGenAlgorithm MUST be id-sha384 for certification
requests, as defined in [RFC5754]; macAlgorithm MUST be HMAC-
SHA384, as defined in [RFC4231].


signatureAlgorithm MUST be ecdsa-with-sha384 for P-384 certification requests,
and sha384WithRSAEncryption or id-RSASSA-PSS for RSA-3072 and RSA-4096
certification requests;
signature MUST be generated using the private key corresponding to the public
key in the CertificationRequestInfo, for both signature and key establishment
certification requests. The signature provides proof-of-possession of the private
key to the Certification Authority.


5.2. Certificate Request Message


The reqSequence crm choice conveys Certificate Request Message Format (CRMF) syntax. The
CertReqMsg MUST comply with [RFC5272], Section 3.2.1.2.2, with the following additional
requirements:


popo MUST be included using the signature (POPOSigningKey) proof-of-possession choice and
set as defined in [RFC4211], Section 4.1, for both signature and key establishment
certification requests. The POPOSigningKey poposkInput field MUST be omitted. The
POPOSigningKey algorithmIdentifier MUST be ecdsa-with-sha384 for P-384 certification
requests, and sha384WithRSAEncryption or id-RSASSA-PSS for RSA-3072 and RSA-4096
certification requests. The signature MUST be generated using the private key corresponding
to the public key in the CertTemplate.


The CertTemplate MUST comply with [RFC5272], Section 3.2.1.2.2, with the following additional
requirements:


version MAY be included and, if included, it MUST be set to 2 as defined in Section 4.3 of
[ID.cnsa-cert-profile];
publicKey MUST be set as defined in Section 4.4 of [ID.cnsa-cert-profile];
extensions:


The Key Usage extension MUST be included, and it MUST be set as defined in
[ID.cnsa-cert-profile].
For rekey requests, the SubjectAltName extension MUST be included and set
equal to the SubjectAltName of the certificate that is being used to sign the
SignedData encapsulating the request (i.e., not the certificate being rekeyed) if
the Subject field of the certificate being used to generate the signature is NULL.
Other extension requests MAY be included as desired.


controls:
The ChangeSubjectName attribute, as defined in [RFC6402], MUST be included if
the Full PKI Request encapsulating this Tagged Certification Request is being
signed by a key for which a certificate currently exists and the existing
certificate's Subject or SubjectAltName does not match the desired Subject or
SubjectAltName of this certification request.
The POP Link Witness Version 2 attribute MUST be included if the request is
being authenticated using a shared-secret, and the Subject in the certification
request is NULL or otherwise does not uniquely identify the end-entity. In the
POP Link Witness Version 2 attribute, keyGenAlgorithm MUST be id-sha384 for







certification requests; macAlgorithm MUST be HMAC-SHA384 when
keyGenAlgorithm is id-sha384.


6. RA Requirements


This section addresses the optional case where one or more RAs act as intermediaries between
clients and a CA as described in Section 7 of [RFC5272]. In this section, the term "client" refers to
the entity from which the RA received the PKI Request. This section is only applicable to RAs.


6.1. RA Processing of Requests


RAs conforming to this document MUST ensure that only the permitted signature, hash, and MAC
algorithms described throughout this profile are used in requests; if they are not, the RA MUST
reject those requests. The RA SHOULD return a CMCFailInfo with the value of badAlg [RFC5272].


When processing end-entity-generated SignedData objects, RAs MUST NOT perform Cryptographic
Message Syntax (CMS) Content Constraints (CCC) certificate extension processing [RFC6010].


Other RA processing is as in [RFC5272].


6.2. RA-Generated PKI Requests


RAs mediate the certificate request process by collecting Client requests in batches. The RA MUST
encapsulate client-generated PKI Requests in a new RA-signed PKI Request, it MUST create a Full
PKI Request encapsulated in a SignedData, and the SignedData MUST be constructed in accordance
with [ID.cnsa-smime-profile]. The PKIData content type complies with [RFC5272] with the following
additional requirements:


controlSequence MUST be present. It MUST include the following CMC controls: Transaction
ID, Sender Nonce, and Batch Requests. Other appropriate CMC controls MAY be included.
cmsSequence MUST be present. It contains the original, unmodified request(s) received from
the client.


      SignedData (applied by the RA) 
        PKIData 
          controlSequence (Transaction ID, Sender Nonce, 
                                               Batch Requests) 
          cmsSequence 
            SignedData (applied by Client) 
              PKIData 
                controlSequence (Transaction ID, Sender Nonce) 
                reqSequence 
                  TaggedRequest 
                  {TaggedRequest} 
            {SignedData     (second Client request) 
              PKIData...} 
   


Authorization to sign RA-generated Full PKI Requests SHOULD be indicated in the RA certificate by
inclusion of the id-kp-cmcRA EKU from [RFC6402]. The RA certificate MAY also include the CCC
certificate extension [RFC6010], or it MAY indicate authorizaton thorugh inclusion of the CCC
certificate extension alone. The RA certificate may also be authorized through local configuration.


If the RA is authorized via the CCC extension, then the CCC extension MUST include the object
identifier for the PKIData content type. CCC SHOULD be included if constraints are to be placed on
the content types generated.


The outer SignedData MUST be generated using SHA-384 and either ECDSA on P-384 or RSA using
RSASSA-PKCS1-v1_5 or RSASSA-PSS with an RSA-3072 or RSA-4096 key.


If the Full PKI Response is a successful response to a PKI Request that only contained a Get
Certificate or Get CRL control, then the SignedData MUST be signed by the algorithm used in the
response MUST match the algorithm used in the request.


6.3. RA-Generated Errors







RA certificates authorized with the CCC certificate extension [RFC6010] MUST include the object
identifier for the PKIResponse content type to authorize them to generate responses.


7. CA Requirements


This section specifies the requirements for CAs that receive PKI Requests and that generate PKI
Responses.


7.1. CA Processing of PKI Requests


CAs conforming to this document MUST ensure that only the permitted signature, hash, and MAC
algorithms described throughout this profile are used in requests; if they are not, the CA MUST
reject those requests. The CA SHOULD return a CMCStatusInfoV2 control with CMCStatus of failed
and a CMCFailInfo with the value of badAlg [RFC5272].


For requests involving an RA (i.e., batched requests), the CA MUST verify the RA's authorization.
The following certificate fields MUST NOT be modifiable using the Modify Certification Request
control: publicKey and the key usage extension. The request MUST be rejected if an attempt to
modify those certification request fields is present. The CA SHOULD return a CMCStatusInfoV2
control with CMCStatus of failed and a CMCFailInfo with a value of badRequest.


When processing end-entity-generated SignedData objects, CAs MUST NOT perform CCC certificate
extension processing [RFC6010].


If the client-generated PKI Request includes a ChangeSubjectName attribute either in the
CertRequest controls field for a CRMF request or in the tcr attributes field for a PKCS #10 request,
then the CA MUST ensure that name change is authorized. The mechanism for ensuring that the
name change is authorized is out of scope. If the CA performs this check, and the name change is
not authorized, then the CA MUST reject the PKI Request. The CA SHOULD return a
CMCStatusInfoV2 control with CMCStatus of failed.


Other processing of PKIRequests is as in [RFC5272].


7.2. CA-Generated PKI Responses


CAs send PKI Responses to both Client-generated reqeusts and RA-generated requests. If a Full PKI
Response is returned in direct response to a Client-generated request, it MUST be encapsulated in a
SignedData, and the SignedData MUST be constructed in accordance with [ID.cnsa-smime-profile].


If the PKI Response is in response to an RA-generated PKI Request, then the above PKI Response is
encapsulated in another CA-generated PKI Response. That PKI Response MUST be encapsulated in a
SignedData and the SignedData MUST be constructed in accordance with [ID.cnsa-smime-profile].
The above PKI Response is placed in the encapsulating PKI Response cmsSequence field. The other
fields are as above with the addition of the batch response control in controlSequence. The following
illustrates a successful CA response to an RA-encapsulated PKI Request, both of which include
Transaction IDs and Nonces:


      SignedData (applied by the CA) 
        PKIResponse 
          controlSequence (Transaction ID, Sender Nonce, Recipient 
                           Nonce, Batch Response) 
          cmsSequence 
            SignedData (applied by CA and includes returned 
                        certificates) 
              PKIResponse 
                controlSequence (Transaction ID, Sender Nonce, 
                                 Recipient Nonce) 
   


The same private key used to sign certificates MUST NOT be used to sign Full PKI Response
messages. Instead, a separate certificate indicating authorization to sign CMC responses MUST be
used.


Authorization to sign Full PKI Responses SHOULD be indicated in the CA certificate by inclusion of
the id-kp-cmcCA EKU from [RFC6402]. The CA certificate MAY also include the CCC certificate







extension [RFC6010], or it MAY indicate authorizaton thorugh inclusion of the CCC certificate
extension alone. The CA certificate may also be authorized through local configuration.


If the CA is authorized via the CCC extension, then the CCC extension MUST include the object
identifier for the PKIResponse content type. CCC SHOULD be included if constraints are to be placed
on the content types generated.


Signatures applied to individual certificates are as required in [ID.cnsa-cert-profile].


The signature on the SignedData of a successful response to a Client-generated request, or each
individual inner SignedData on the successful response to a RA-generated request, MUST be
generated using SHA-384 and either ECDSA on P-384 or RSA using RSASSA-PKCS1-v1_5 or
RSASSA-PSS with an RSA-3072 or RSA-4096 key. An unsuccessful response MUST be signed using
the same key-type and algorithm that signed the request.


The outer SignedData on the Full PKI Response to any RA-generated PKI Request MUST be signed
with the same key-type and algorithm that signed the request.


The SignedData on a successful Full PKI Response to a PKI Request that only contained a Get
Certificate or Get CRL control MUST be signed with the same key-type and algorithm that signed the
request.


8. Client Requirements: Processing PKI Responses


Clients conforming to this document MUST ensure that only the permitted signature, hash, and MAC
algorithms described throughout this profile are used in responses; if they are not, the client MUST
reject those responses.


Clients MUST authenticate all Full PKI Responses. This includes verifying that the PKI Response is
signed by an authorized CA or RA whose certificate validates back to a trust anchor. The authorized
CA certificate MUST include the id-kp-cmcCA EKU and/or include a CCC extension that includes the
object identifier for the PKIResponse content type. Or, the CA is determined to be authorized to sign
responses through an implementation-specific mechanism. The PKI Response can be signed by an
RA if it is an error message, if it is a response to a Get Certificate or Get CRL request, or if the PKI
Response contains an inner PKI Response signed by a CA. In the last case, each layer of PKI
Response MUST still contain an authorized, valid signature signed by an entity with a valid certificate
that verifies back to an acceptable trust anchor. The authorized RA certificate MUST include the id-
kp-cmcRA EKU and/or include a CCC extension that includes the object identifier for the
PKIResponse content type. Or, the RA is determined to be authorized to sign responses through an
implementation-specific mechanism.


When a newly issued certificate is included in the PKI Response, the client MUST verify that the
newly issued certificate's public key matches the public key that the client requested. The client
MUST also ensure that the certificate's signature is valid and that the signature validates back to an
acceptable trust anchor.


Clients MUST reject PKI Responses that do not pass these tests. Local policy will determine whether
the client returns a Full PKI Response with an Extended CMC Status Info control with CMCStatus set
to failed to a user console, error log, or the server.


If the Full PKI Response contains an Extended Status Info with a CMCStatus set to failed, then local
policy will determine whether the client resends a duplicate certification request back to the server
or an error state is returned to a console or error log.


9. Shared-Secrets


When the Identity Proof V2 and POP Link Witness V2 controls are used, the shared-secret MUST be
randomly generated and securely distributed. The shared-secret MUST provide at least 192 bits of
strength.


10. Security Considerations


Protocol security considerations are found in [RFC2986], [RFC4211], [ID.cnsa-smime-profile],
[RFC5272], [RFC5273], [RFC5274], [ID.cnsa-cert-profile], and [RFC6402]. When CCC is used to
authorize RA and CA certificates, then the security considerations in [RFC6010] also apply. Algorithm
security considerations are found in [ID.cnsa-smime-profile].







Compliant with NIST Special Publication 800-57 [SP80057], this profile defines proof-of-possession
of a key establishment private key by performing a digital signature. Except for one-time proof-of-
possession, a single key pair MUST NOT be used for both signature and key establishment.


This specification requires implementations to generate key pairs and other random values. The use
of inadequate pseudo-random number generators (PRNGs) can result in little or no security. The
generation of quality random numbers is difficult. NIST Special Publication 800-90 [SP80090], FIPS
186-3 [DSS], and [RFC4086] offer random number generation guidance.


When RAs are used, the list of authorized RAs must be securely distributed out-of-band to CAs.


Presence of the POP Link Witness Version 2 and POP Link Random attributes protects against
substitution attacks.


The Certificate Policy for a particular environment will specify whether expired certificates can be
used to sign certification requests.


11. IANA Considerations


This document has no IANA actions.
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Appendix A. Scenarios


This section illustrates several potential certificate enrollment and rekey scenarios supported by this
profile. This section does not intend to place any limits or restrictions on the use of CMC.


A.1. Initial Enrollment


This section describes three scenarios for authenticating initial enrollment requests:


1. Previously installed signature certificate (e.g., Manufacturer Installed Certificate);
2. Shared-secret distributed securely out-of-band;
3. RA authentication.


A.1.1. Previously Installed Signature Certificate


In this scenario, the end-entity has had a signature certificate installed by the cryptographic module
manufacturer. As the end-entity already has a signature certificate, it can be used to authenticate a
request for a new certificate. The end-entity signs the Full PKI Request with the private key that
corresponds to the subject public key of a previously installed signature certificate. The CA will
recognize the authorization of the previously installed certificate and issue an appropriate certificate
to the end-entity.


A.1.2. Shared-Secret Distributed Securely Out-of-Band


In this scenario, the CA distributes a shared-secret out-of-band to the end-entity that the end-entity
uses to authenticate its certification request. The end-entity signs the Full PKI Request with the
private key for which the certification is being requested. The end-entity includes the Identity Proof
Version 2 control to authenticate the request using the shared-secret. The CA uses either the
Identification control or the Subject in the end-entity's enclosed PKCS #10 or CRMF certification
request message to identify the request. The end-entity performs either the POP Link Witness
Version 2 mechanism as described in [RFC5272], Section 6.3.1.1, or the Shared-Subject/Subject
Distinguished Name (DN) linking mechanism as described in [RFC5272], Section 6.3.2. The Subject
in the enclosed PKCS #10 or CRMF certification request does not necessarily match the issued
certificate, as it may be used just to help identify the request (and corresponding shared-secret) to
the CA.


A.1.3. RA Authentication
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In this scenario, the end-entity does not automatically authenticate its enrollment request to the CA,
either because the end-entity has nothing to authenticate the request with or because organizational
policy requires an RA's involvement. The end-entity creates a Full PKI Request and sends it to an
RA. The RA verifies the authenticity of the request, then, if approved, encapsulates and signs the
request as described in Section 5.2, forwarding the new request on to the CA. The Subject in the
PKCS #10 or CRMF certification request is not required to match the issued certificate, it may be
used just to help identify the request to the RA and/or CA.


A.2. Rekey


There are two scenarios to support the rekey of certificates that are already enrolled. One addresses
the rekey of signature certificates and the other addresses the rekey of key establishment
certificates. Typically, organizational policy will require certificates to be currently valid to be
rekeyed, and it may require initial enrollment to be repeated when rekey is not possible. However,
some organizational policies might allow a grace period during which an expired certificate could be
used to rekey.


A.2.1. Rekey of Signature Certificates


When a signature certificate is rekeyed, the PKCS #10 or CRMF certification request message
enclosed in the Full PKI Request will include the same Subject as the current signature certificate.
The Full PKI Request will be signed by the current private key corresponding to the current signature
certificate.


A.2.2. Rekey of Key Establishment Certificates


When a key establishment certificate is rekeyed, the Full PKI Request will generally be signed by the
current private key corresponding to the current signature certificate. If there is no current signature
certificate, one of the initial enrollment options in Appendix A.1 may be used.
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What is DevOps?
Get Started with AWS


DevOps on AWS DevOps Blog Partner Solutions Resources The Amazon
Builders' Library


DevOps is the combination of cultural philosophies, practices, and tools that increases an


organization’s ability to deliver applications and services at high velocity: evolving and improving


products at a faster pace than organizations using traditional software development and


infrastructure management processes. This speed enables organizations to better serve their


customers and compete more effectively in the market.


Under a DevOps model, development and operations teams are no longer “siloed.” Sometimes, these


two teams are merged into a single team where the engineers work across the entire application


lifecycle, from development and test to deployment to operations, and develop a range of skills not


limited to a single function.


In some DevOps models, quality assurance and security teams may also become more tightly


integrated with development and operations and throughout the application lifecycle. When security


DevOps Model Defined


How DevOps Works
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is the focus of everyone on a DevOps team, this is sometimes referred to as DevSecOps.


These teams use practices to automate processes that historically have been manual and slow. They


use a technology stack and tooling which help them operate and evolve applications quickly and


reliably. These tools also help engineers independently accomplish tasks (for example, deploying code


or provisioning infrastructure) that normally would have required help from other teams, and this


further increases a team’s velocity.


Learn about AWS DevOps tooling and services »


Benefits of DevOps


Move at high velocity so you can innovate for customers faster, adapt to changing


markets better, and grow more efficient at driving business results. The DevOps


model enables your developers and operations teams to achieve these results. For


example, microservices and continuous delivery let teams take ownership of


services and then release updates to them quicker.


Speed


Increase the frequency and pace of releases so you can innovate and improve your


product faster. The quicker you can release new features and fix bugs, the faster


you can respond to your customers’ needs and build competitive advantage.


Continuous integration and continuous delivery are practices that automate the


software release process, from build to deploy.


Rapid Delivery


Ensure the quality of application updates and infrastructure changes so you can


reliably deliver at a more rapid pace while maintaining a positive experience for


end users. Use practices like continuous integration and continuous delivery to


test that each change is functional and safe. Monitoring and logging practices


help you stay informed of performance in real-time.


Reliability
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Operate and manage your infrastructure and development processes at scale.


Automation and consistency help you manage complex or changing systems


efficiently and with reduced risk. For example, infrastructure as code helps you


manage your development, testing, and production environments in a repeatable


and more efficient manner.


Scale


Build more effective teams under a DevOps cultural model, which emphasizes


values such as ownership and accountability. Developers and operations teams


collaborate closely, share many responsibilities, and combine their workflows. This


reduces inefficiencies and saves time (e.g. reduced handover periods between


developers and operations, writing code that takes into account the environment


in which it is run).


Improved Collaboration


Move quickly while retaining control and preserving compliance. You can adopt a


DevOps model without sacrificing security by using automated compliance


policies, fine-grained controls, and configuration management techniques. For


example, using infrastructure as code and policy as code, you can define and then


track compliance at scale.


Security


Software and the Internet have transformed the world and its industries, from shopping to entertainment to banking.


Software no longer merely supports a business; rather it becomes an integral component of every part of a business.


Companies interact with their customers through software delivered as online services or applications and on all sorts of


devices. They also use software to increase operational efficiencies by transforming every part of the value chain, such as


logistics, communications, and operations. In a similar way that physical goods companies transformed how they design,


build, and deliver products using industrial automation throughout the 20th century, companies in today’s world must


transform how they build and deliver software.


Why DevOps Matters


How to Adopt a DevOps Model
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Transitioning to DevOps requires a change in culture and mindset. At its simplest, DevOps is about removing the barriers


between two traditionally siloed teams, development and operations. In some organizations, there may not even be separate


development and operations teams; engineers may do both. With DevOps, the two teams work together to optimize both the


productivity of developers and the reliability of operations. They strive to communicate frequently, increase efficiencies, and


improve the quality of services they provide to customers. They take full ownership for their services, often beyond where


their stated roles or titles have traditionally been scoped by thinking about the end customer’s needs and how they can


contribute to solving those needs. Quality assurance and security teams may also become tightly integrated with these


teams. Organizations using a DevOps model, regardless of their organizational structure, have teams that view the entire


development and infrastructure lifecycle as part of their responsibilities.


There are a few key practices that help organizations innovate faster through automating and streamlining the software


development and infrastructure management processes. Most of these practices are accomplished with proper tooling.


One fundamental practice is to perform very frequent but small updates. This is how organizations innovate faster for their


customers. These updates are usually more incremental in nature than the occasional updates performed under traditional


release practices. Frequent but small updates make each deployment less risky. They help teams address bugs faster because


teams can identify the last deployment that caused the error. Although the cadence and size of updates will vary,


organizations using a DevOps model deploy updates much more often than organizations using traditional software


development practices.


Organizations might also use a microservices architecture to make their applications more flexible and enable quicker


innovation. The microservices architecture decouples large, complex systems into simple, independent projects. Applications


are broken into many individual components (services) with each service scoped to a single purpose or function and operated


independently of its peer services and the application as a whole. This architecture reduces the coordination overhead of


updating applications, and when each service is paired with small, agile teams who take ownership of each service,


organizations can move more quickly.


However, the combination of microservices and increased release frequency leads to significantly more deployments which


can present operational challenges. Thus, DevOps practices like continuous integration and continuous delivery solve these


issues and let organizations deliver rapidly in a safe and reliable manner. Infrastructure automation practices, like


infrastructure as code and configuration management, help to keep computing resources elastic and responsive to frequent


changes. In addition, the use of monitoring and logging helps engineers track the performance of applications and


infrastructure so they can react quickly to problems.


Together, these practices help organizations deliver faster, more reliable updates to their customers. Here is an overview of


important DevOps practices.


The following are DevOps best practices: 


Continuous Integration


Continuous Delivery


DevOps Cultural Philosophy


DevOps Practices Explained


DevOps Practices
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Microservices


Infrastructure as Code


Monitoring and Logging


Communication and Collaboration


Below you can learn more about each particular practice.


Continuous integration is a software development practice where developers regularly merge


their code changes into a central repository, after which automated builds and tests are run.


The key goals of continuous integration are to find and address bugs quicker, improve


software quality, and reduce the time it takes to validate and release new software updates.


Learn more about continuous integration »


Continuous Integration


Continuous delivery is a software development practice where code changes are


automatically built, tested, and prepared for a release to production. It expands upon


continuous integration by deploying all code changes to a testing environment and/or a


production environment after the build stage. When continuous delivery is implemented


properly, developers will always have a deployment-ready build artifact that has passed


through a standardized test process.


Learn more about continuous delivery and AWS CodePipeline »


Continuous Delivery


The microservices architecture is a design approach to build a single application as a set of


small services. Each service runs in its own process and communicates with other services


through a well-defined interface using a lightweight mechanism, typically an HTTP-based


application programming interface (API). Microservices are built around business capabilities;


each service is scoped to a single purpose. You can use different frameworks or programming


languages to write microservices and deploy them independently, as a single service, or as a


group of services.


Learn more about Amazon Container Service (Amazon ECS) »


Learn more about AWS Lambda »


Microservices
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Infrastructure as code is a practice in which infrastructure is provisioned and managed using


code and software development techniques, such as version control and continuous


integration. The cloud’s API-driven model enables developers and system administrators to


interact with infrastructure programmatically, and at scale, instead of needing to manually


set up and configure resources. Thus, engineers can interface with infrastructure using code-


based tools and treat infrastructure in a manner similar to how they treat application code.


Because they are defined by code, infrastructure and servers can quickly be deployed using


standardized patterns, updated with the latest patches and versions, or duplicated in


repeatable ways.


Learn to manage your infrastructure as code with AWS CloudFormation »


Developers and system administrators use code to automate operating system and host


configuration, operational tasks, and more. The use of code makes configuration changes


repeatable and standardized. It frees developers and systems administrators from manually


configuring operating systems, system applications, or server software.


Learn how you can configure and manage Amazon EC2 and on-premises systems with


Amazon EC2 Systems Manager »


Learn to use configuration management with AWS OpsWorks »


With infrastructure and its configuration codified with the cloud, organizations can monitor


and enforce compliance dynamically and at scale. Infrastructure that is described by code can


thus be tracked, validated, and reconfigured in an automated way. This makes it easier for


organizations to govern changes over resources and ensure that security measures are


properly enforced in a distributed manner (e.g. information security or compliance with PCI-


DSS or HIPAA). This allows teams within an organization to move at higher velocity since


non-compliant resources can be automatically flagged for further investigation or even


automatically brought back into compliance.


Learn how you can use AWS Config and Config Rules to monitor and enforce compliance for


your infrastructure » 


Infrastructure as Code


Configuration Management


Policy as Code


Organizations monitor metrics and logs to see how application and infrastructure


performance impacts the experience of their product’s end user. By capturing, categorizing,


and then analyzing data and logs generated by applications and infrastructure, organizations


understand how changes or updates impact users, shedding insights into the root causes of


problems or unexpected changes. Active monitoring becomes increasingly important as


services must be available 24/7 and as application and infrastructure update frequency


increases. Creating alerts or performing real-time analysis of this data also helps


organizations more proactively monitor their services.


Monitoring and Logging
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Learn how you can use Amazon CloudWatch to monitor your infrastructure metrics and logs


»


Learn how you can use AWS CloudTrail to record and log AWS API calls »


Increased communication and collaboration in an organization is one of the key cultural


aspects of DevOps. The use of DevOps tooling and automation of the software delivery


process establishes collaboration by physically bringing together the workflows and


responsibilities of development and operations. Building on top of that, these teams set


strong cultural norms around information sharing and facilitating communication through


the use of chat applications, issue or project tracking systems, and wikis. This helps speed up


communication across developers, operations, and even other teams like marketing or sales,


allowing all parts of the organization to align more closely on goals and projects.


Communication and Collaboration


The DevOps model relies on effective tooling to help teams rapidly and reliably deploy and innovate for their customers.


These tools automate manual tasks, help teams manage complex environments at scale, and keep engineers in control of the


high velocity that is enabled by DevOps. AWS provides services that are designed for DevOps and that are built first for use


with the AWS cloud. These services help you use the DevOps practices described above.


Learn about AWS DevOps services »


Learn about AWS partner solutions »


DevOps Tools


Get Started with


AWS DevOps Services


Next Steps
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APPENDIX B – AUTONOMY TEST CAPABILITIES 

TESTING OF AUTONOMY IN COMPLEX ENVIRONMENTS (TACE) 

System Description: 

The Testing of Autonomy in Complex Environments (TACE) system was developed by the Johns 
Hopkins University Applied Physics Lab (JHU/APL) as a tool for safely testing autonomy onboard a 
platform. TACE contains an RTA and LVC functionality, it was designed to be compatible with an OSA, 
and interfaces with the Pixhawk autopilot. A high-level depiction of the TACE software architecture and 
its interfaces with the autonomy engine and the platform interface is presented in figure B1.  

 
Figure B1  TACE Software Configuration 

This figure highlights two important facets of TACE. First, that TACE was designed as test middleware 
located between the autonomy engine and the platform interface to the autopilot. This is important because 
it guarantees that nothing commanded from the autonomy can circumvent TACE and command the 
platform directly. If the autonomy commands the platform to do something that will violate a safety of 
flight parameter, TACE’s RTA function will unilaterally stop the commands from the autonomy and send 
a remediation command to the platform instead. As of September 2019, the three safety of flight parameters 
that are monitored are geospatial boundaries, proximity with other test aircraft, and communications with 
the TACE ground station. These constraints are tailorable and can be programmed before flight or 
manipulated in real-time via the TACE ground station. The remediation action for the current version of 
TACE is to return to a pre-determined remediation waypoint and loiter indefinitely until commanded 
otherwise by the ground station. 

Additionally, the location of TACE in the overall test configuration allows for a natural inclusion of 
LVC. While TACE monitors commands being sent to the platform it is also responsible for passing aircraft 
state information back to the autonomy engine. Therefore, information regarding synthetic entities, 
simulated sensor data, and other effects can be sent by the LVC to the autonomy to stimulate its decision 
making process without impacting any safety of flight or test parameters of the platform. For the current 
version of TACE, the Advanced Framework for Simulation, Integration, and Modelling (AFSIM) 
(reference 41) is used as the LVC synthetic force generator (SFG). Lastly, the test network manager allows 
the test team direct access to TACE during flight test to monitor the safety of flight parameters, manage the 
LVC, and log all of the data being sent between the autonomy engine and the platform. 
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The second important feature of TACE, symbolized by the puzzle piece shapes in figure B1, is that 
TACE was designed to be modular. The use of an OSA, like UxAS, allows for different types of autonomy 
engines and platforms to be used with TACE for test. Furthermore, after the autonomy has been verified 
and approved to fly in an operational system, then TACE can be removed and the autonomy can seamlessly 
interface with the platform directly.  

SUMMARY OF FLIGHT TEST EXPERIENCE 

TACE was first flown on 26 February 2019 (example shown in figure B2), and the initial test event 
featured eight autonomous test sorties (four of which were multi-ship) aimed at demonstrating the TACE 
system. The three specific test objectives for the TACE flight test were to characterize the RTA 
performance, demonstrate the LVC functionality, and to demonstrate the TACE ground operator’s control 
of the system. These three test objectives can be traced to the three different components of the TACE 
software configuration shown in figure B1 (RTA, LVC Manager, and Test Network Manager). For this test 
event, all three specific test objectives were met. 

It is important to clarify that the point of this test was not to perform a V&V of the TACE software, nor 
was it intended to satisfy an airworthiness process. Rather, this flight test was designed to demonstrate 
capabilities of the TACE system and to provide real world flight test data to compare with simulations 
of TACE. 

 
Figure B2  Takeoff of Lynx sUAS carrying TACE Payload (Feb 27 2019) 

In July 2019, the same test cards were flown on the E-flite Shockwave aircraft. This group 2 UAS has 
a top speed of 200 knots and was chosen to demonstrate TACE’s ability to replicate its successful results 
on a more dynamic aircraft. The success of TACE’s RTA functionality on a high-speed aircraft builds 
confidence in the system and showcases the ability of TACE to accommodate an array of test aircraft. 
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FUTURE DEVELOPMENT AND USAGE 

TACE is the current autonomy test capability of the 412 Test Wing at Edwards AFB. Furthermore, 
TACE is featuring prominently in several autonomy development programs in the DoD. Due to this fact, 
there is an ongoing effort to increase the capabilities of the TACE system, with a specific emphasis on 
improving the RTA functionality. There is active development ongoing to provide a RTA functionality for 
lower level control inputs (i.e., rate and surface level commands), incorporate a layered, smart remediation 
capability to account for more complex scenarios, and to include predictive avoidance functionality to avoid 
airspace incursions. The current development cycle features 6 weeks of TACE development followed by a 
week of flight test. This cycle is planned for the entirety of FY20. Beyond FY20, it is anticipated that TACE 
will continue to mature and be used for groups 1-3 UAS. 

Current efforts with TACE are determining how to “certify” it as an approved autonomy test capability 
that can fly on a military range. “Certify” is a loaded word and means different things to different people. 
The burden for certifying a system to operate in the national airspace is much greater than operating in 
restricted airspace, away from the general population. Currently, the ET CTF is tracking total flight hours 
and number of RTA failures to help calculate the Mean Time Between Failure (MTBF). The MTBF 
parameter is failure ubiquitous within the range safety community and is a good metric for determining the 
trustworthiness of TACE for maintaining range and test safety.  

The current test plan incorporates improvements and testing of TACE, but also leverages TACE to test 
autonomy software. As TACE matures and the path towards “certification” becomes more transparent, less 
additional safety mitigations will be required and a more robust autonomy test capability will be possible. 

CONTACT INFORMATION 

For all questions and comments concerning TACE, please contact Mr. Jeff Jessen, Chief Engineer of 
the Emerging Technologies CTF (email: jeffrey.jessen@us.af.mil, work: 661-275-1258) 

  

mailto:jeffrey.jessen@us.af.mil
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COOPERATIVE OPERATIONS IN DENIED ENVIRONMENTS (CODE): 

System Description: 

The Collaborative Operations in a Denied Environment (CODE) autonomy system was developed 
under DARPA. It was designed to be an open, standards-aligned autonomy architecture enabling 
heterogeneous teams of UAVs to collaborate even in Comms/GPS denied environments. The CODE is a 
Software and Autonomy Open Architecture where the DARPA reference architecture interfaced with the 
Piccolo Autopilot. During DARPA CODE Tests and Extended TigerShark Experimentation (ETE) events, 
a JHU/APL-developed TACE-based software called White Force Network (WFN) was used as the LVC 
component. A high-level depiction of the CODE software architecture is presented in figure B3.  

 
Figure B3  CODE Software Configuration 

White Force Network (WFN) Air sits between the Autonomy and all interfaces (e.g., Watchdog, CODE 
Radio). The data flowing through the interfaces are manipulated in order to support test events. The WFN 
Ground was the software a Test Operator used to control how and what data were manipulated. An example 
of this manipulation was denying GPS to the CODE Autonomy. The operator commanded the WFN Ground 
to deny GPS. The WFN Air received the command and prevented all data from the Watchdog to the CODE 
Autonomy Software.  

The Watchdog was a Raspberry Pi II single board microcomputer running a Linux operating system. 
The purpose of the Watchdog was to: 

• Function as a message translator between the CODE Mission Computer’s (CMC) STANAG 
4586 message format and the TigerShark’s Piccolo native datalink stream format. 

• Provide message filtering to allow only a limited set of valid translated commands from the 
CMC through to the Piccolo autopilot. 

• Provide control of CMC Level of Interoperability states through Air Vehicle (AV) Operator 
manipulation of the Watchdog Graphical User Interface. 



B-5 

SUMMARY OF FLIGHT TEST EXPERIENCE 

DARPA Code: 

Phase 1, consisting of Flight Test Series 1 (FTS1), was completed in April 2017. The FTS1 objective 
was to demonstrate and verify foundational CODE AV and Human-System Interface (HSI) functionality 
for a single vehicle through a series of tests that were designed to verify: 

• Low-level task allocation through a “travelling salesman” test  

• Bi-directional communications  

• Basic common-operating picture sharing  

• Mission authorization checks  

• HSI single-vehicle play selection functionality  

• HSI functionality 

Phase 2 (FTS2) was completed in May 2017, with the objective of demonstrating multi-vehicle roles, 
multi-vehicle play selection and multi-vehicle behaviors through a series of tests that were designed 
to verify:  

• Heterogeneous team play execution  

• CODE system response to a detected threat  

• The ability to assign vehicles different roles based on capability  

• HSI multi-vehicle play selection functionality  

• Simple target geo-location and sensor pointing (geo-locate virtually, point physically)  

• Collaborative formation flying  

• Coordinated time of arrival 

Phase 3 concluded with the VIP Demo in February of 2019. The objective of Phase 3 was to validate 
systems capabilities, gain confidence in M&S results, and demonstrate collaborative autonomy to the 
greatest extent feasible onboard live UAV with associated challenges of operating onboard real hardware. 
Phase 3 included three distinct flight test campaigns and the final demonstration referred to as FTS3, FTS4, 
FTS5 and VIP Demo.  
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NAVY CODE RAIDER Extended TigerShark Experimentation (ETE): 

The Navy ETE1 event occurred in June of 2019. Seven vignettes from the previous DARPA program 
were flown to demonstrate that an all-Navy Test Team could learn the skills needed to operate the software 
systems and conduct the event without CODE OEM support. 45 flight hours on 5 total real AVs (>6 Virtual 
AVs) were successfully flown during the 3-day period. 

The Navy ETE2 occurred in September of 2019. ETE2 was a software regression test of CODE 2.1 
(versus 1.7 that was flown for ETE1), and a newly developed Vignette (with Navy-built autonomy 
behaviors) designed to investigate CODE in a Navy specific scenario. Total flight time for ETE2 was 
37 hours over 9 sorties, with 10 total Vignettes runs. 

Future Development and Usage: 

The CODE Autonomy architecture will be used again on other future Navy Autonomy experiments. 
The goal is to fly a new set of experiments once every six months.  

CONTACT INFORMATION 

For all questions and comments concerning CODE or the Navy’s RAIDER Lab, please contact Mr. 
Charles Rea, Data Fusion Chief Engineer (email: charles.rea@navy.mil, work: (301) 342-9113) 
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APPENDIX C – UAS GROUPS 

Table 1  DoD Definition of UAS Groups 

UAS Group 
Max Weight 

(lbs) 
Nominal Operating 

Altitude 
Speed 
(knots) 

Group 1 <20 < 1,200 ft AGL <100 

Group 2 21-55 < 3,500  ft AGL <250 

Group 3 56 – 1,320 < FL 180 <250 

Group 4 > 1,320 < FL 180 Any 

Group 5 > 1,320 > FL 180 Any 
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APPENDIX D – ABBREVIATIONS, ACRONYMS, AND SYMBOLS 

Abbreviation Definition 
AAIT Autonomy and Artificial Intelligence Testing 
AF Air Force 
AFB Air Force Base 
AFI Air Force Instruction 
AFRL Air Force Research Laboratory 
AFSIM Advanced Framework for Simulation, Integration, and Modelling 
AFTC Air Force Test Center 
AGL above ground level 
AI artificial intelligence 
AIAA American Institute of Aeronautics and Astronautics 
API application program interface 
ARV autonomous research vehicle 
AV air vehicle 
CAL critical abstraction layer 
CAS close air support 
CMC CODE Mission Computer 
CMS Cryptographic Message Syntax 
CNSA Commercial National Security Algorithm 
CODE Cooperative Operations in Denied Environments 
COI community of interest 
CONOPS concept of operations 
CR category ratio 
CRPS complacency potential rating scale 
CSC Conference on Scientific Computing 
DARPA Defense Advanced Research Projects Agency 
DAU Defense Acquisition University 
DevOps Development and Operations 
DoD Department of Defense 
DoDD Department of Defense Directive 
DOE design of experiments 
DRM design reference mission 
DT developmental test 
DTIC Defense Technical Information Center 
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Abbreviation Definition 
EO/IR electro-optical/infrared 
ET CTF Emerging Technologies Combined Test Force 
ETE Extended TigerShark Experimentation 
FL flight level 
ft feet 
FTS flight test series 
FY fiscal year 
GE General Electric 
GPS global positioning system 
HIL hardware-in-the-loop 
HRI human robot interaction 
HSI human-systems integration 
IDA Institute for Defense Analyses 
IEEE Institute of Electrical and Electronics Engineers 
ISR Intelligence, Surveillance, and Reconnaissance  
IT information technology 
ITEA International Test and Evaluation Association 
JHU/APL Johns Hopkins University Applied Physics Lab 
lbs pounds 
LVC Live-Virtual-Constructive 
M&S modelling and simulation 
MIT Massachusetts Institute of Technology 
ML machine learning 
MOE measures of effectiveness 
MOS measures of suitability 
MQT mission qualification training 
MTBF mean time between failures 
N/A not applicable 
OMS Open Missions Systems 
ORACLE Operate Remote Aircraft Clairvoyantly in a Limited Evaluation 
OSA Open Systems Architecture 
OT operational test 
RTA Run Time Assurance 
SA situational awareness 
SBTA services-based testing of autonomy 



 

D-3 

Abbreviation Definition 
SDK software development kit 
SEAD suppression of enemy aerial defense 
SFG synthetic force generator 
STANAG standardization agreement 
STPA systems theoretic process analysis 
SUT system under test 
T&E Test and Evaluation 
TACE Testing of Autonomy in Complex Environments 
TEAMS Teaming-Enabled Architectures for Manned-Unmanned Systems 
TEVV Test and Evaluation Verification and Validation 
TIH Technical Information Handbook 
TRMC Test Resource Management Center 
TTP tactics, techniques, and procedures 
TW Test Wing 
UAS unmanned aerial system 
UAV unmanned aerial vehicle 
UCA unsafe control action 
U.S. United States 
USAF United States Air Force 
UxAS Unmanned Systems Autonomy Services 
V&V verification & validation 
VISTA Variable In-flight Simulator Test Aircraft 
VSS Variable Stability Simulator 
WFN White Force Network 
Wx weather 
> greater than 
< less than 
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APPENDIX E – DISTRIBUTION LIST 

 Number of Copies 

Onsite E-mail Hardcopy 
Emerging Technologies CTF 
Attn: 1st Lt Avery Leonard 
759 North Base Rd 
Edwards AFB CA 93524 
Email: avery.leonard.1@us.af.mil 
 

1 0 

Edwards AFB Technical Research Library 
Attn: Darrell Shiplett 
307 E Popson Ave 
Edwards AFB CA 93524 
 

0 2 

AFTC/HO 
Attn: Jeannine Geiger 
305 E Popson Ave 
Edwards AFB CA 93524 
Email: jeannine.geiger@us.af.mil 
 

1 0 

Offsite 
Defense Technical Information Center 
8725 John J. Kingman Rd, Ste 0944 
Ft Belvoir, VA 22060-6217 
Submit per DTIC procedures 
 

1 0 

Air Force Test Center 
Attn: Elisabetta L. Jerome, PhD, SL 
101 West D Ave, Bldg 1, Suite 115 
Eglin AFB 32542 
elisabetta.jerome.1@us.af.mil 
 

1  

Total: 4 2 
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