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Ultra High Speed Communications System 
with Finite Rate of Innovation  
Introduction 
The modern world possesses a nearly insatiable thirst for data.  Many user applications across defense, 

consumer, commercial, government, and academic sectors have demanding requirements for high data 

throughput and low latency.  The burden of data transport falls on communications systems which in 

turn are constrained by regulation (spectrum management and human safety), engineering (size, 

weight, power and cost) and by physical realities (e.g. the finite speed of light).  The maximum rate of 

data potentially transmitted across a channel depends on both the bandwidth and the signal to noise 

ratio (SNR) [1].  Hence for a fixed SNR, increasing the data throughput of a communications system 

involves increasing the bandwidth (number of degrees of freedom per unit time) of the information 

encoded onto the signal which has several consequences: higher performance transmitter modulators, 

wider bandwidth receiver components, faster digital to analog converters and reduced sensitivity, to 

name a few.  Objectively speaking, an ideal solution for meeting high data rate requirements without 

increasing SNR is to increase the information content of a signal without increasing its bandwidth, a 

seemingly quixotic endeavor.  This paper proposes a novel method for realizing this solution in practice. 

Background 

Band-limited Signals 
Conventional communications signals are bandlimited, that is to say the baseband representation of a 

signal 𝑥(𝑡) with Fourier transform 𝑋(𝜔) obeys the following  

𝑋(𝜔) = 0, |𝜔| > 𝜔𝑚 

The number of degrees of freedom per unit time of a bandlimited signal is equivalent to the bandwidth 

𝐵 [2] 

𝐵 =
𝜔𝑚

𝜋

In practice, communications systems obtain a discrete set of samples of a signal with an objective of 

minimizing the number of samples necessary to represent a signal.  It is readily apparent that the high 

bandwidth signals required by ultra high speed communications require a greater number of samples 

than their lower speed counterparts as they contain more degrees of freedom per unit time. 

Another impact of high bandwidths is on the receiver subsystem.  High bandwidths reduce the 

sensitivity of receivers hence requiring greater link margin.  For illustration, the equation below 

describes the sensitivity of a room temperature RF system as a function of bandwidth, BW, and noise 

figure, NF. 

𝑆𝑅𝐹 =  −174 + 10 log10 𝐵𝑊 + 𝑁𝐹 

Above, 𝑆𝑅𝐹 is in dBm with lower values representing better sensitivity. 

_____________
Manuscript approved June 18, 2020.
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Pulse Position Modulation (PPM) 
PPM is a widely used modulation scheme in communications systems.  PPM encodes information using 

the position of a pulse in the time domain.  [3] provides a review of PPM.  The equation below illustrates 

PPM algebraically as a series of dirac delta functions 

𝑥(𝑡) = ∑ 𝛿(𝑡 − 𝑡𝑛)

𝑛∈𝒵

 

Above 𝑡𝑛 is the displacement of the dirac delta function in the time domain. 

Finite Rate of Innovation (FRI) 
In [4], the concept of Finite Rate of Innovation (FRI) was introduced.  FRI signals differ from conventional 

communications systems as they are not bandlimited.  Instead they posses a quality known as 

innovations; it is this quality that is finite per unit time.  The equation below shows an illustrative form 

of FRI signals 

𝑥(𝑡) = ∑ ∑ 𝑐𝑛𝑟𝛿 (
𝑡 − 𝑡𝑛

𝑇
)

𝑅

𝑟=0𝑛∈𝒵

 

Above 𝑐𝑛𝑟 are scalar coefficients, 𝛿(𝑡) is the dirac delta function and 𝑡𝑛 are time instants.  The degrees 

of freedom present in the signal are 𝑐𝑛𝑟 and 𝑡𝑛.  Note that while 𝛿(𝑡) is highly localized in time, it is not 

bandlimited. Define a function 𝐶𝑥(𝜏𝑎, 𝜏𝑏) which counts the degrees of freedom on an interval from 𝜏𝑎 to 

𝜏𝑏.  The rate of innovation of a signal is defined as  

𝜌 = lim
𝜏→∞

1

𝜏
𝐶𝑥 (−

𝜏

2
,
𝜏

2
) 

As shown in [4], only 𝜌 measurements per unit time are necessary to fully represent a signal with a finite 

rate of innovation.  The implications of this statement are that relative to bandlimited signals, FRI signals 

contain more information per measurement; FRI signals are an attractive candidate  

What has prevented the realization of real world FRI communications systems? The challenge behind 

measuring FRI signals is that they require non-bandlimited sampling kernels [4]; non-bandlimited 

sampling kernels are not practical to implement in real-world digital receivers.  The figure below shows a 

representative sampling schema. 

 

 
 

Figure 1 - FRI Block Diagram from [4] 
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Method 
This report now presents a novel method for implementing FRI signals in a real-world communications 

system.  This section presents methods for both RF and Optical communications systems. 

RF Implementation 
 

The novel idea presented here to realize a real-world RF RFI communications system is modulation of 

the RF signal with either a sinc function kernel or a gaussian kernel.  The equations below show 

archetypes for the sinc kernel and the gaussian kernel respectively. 

𝜙(𝑡) = 𝑠𝑖𝑛𝑐 (
𝑡

𝑇
) 

𝜙(𝑡) = 𝑒𝑥𝑝 (
−𝑡2

2𝜎2) 

The FRI modulator realizes the sinc kernel through amplitude and phase modulation.  The FRI modulator 

realizes the gaussian kernel through amplitude modulation.  

The remainder of the RF RFI system utilizes standard RF components.  Recovery of the information is 

performed through standard methods, for example the annihilator method [4] or noisy spectral 

estimation techniques [5]. 

The figure below shows a block diagram of a RF RFI communications system. It highlights the novel FRI 

modulator in red.   

 

 
 

Figure 2 - RF FRI Communications System Block Diagram 

 

The table below identifies and describes the individual components. 

FRI 
Modulator

Transmitter TX ApertureUpconverter

RX Aperture
Bandpass 

Filter
ADC Demodulator

Local 
Oscillator

Channel

Channel
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Component Description 

Local Oscillator Reference clock source 

Upconverter Provides RF reference derived from clock source 

FRI Modulator Applies FRI kernel to PPM modulation, encodes 
information onto RF signal 

Transmitter Amplifies RF signal 

TX Aperture Couples transmitter to channel (antenna for 
OTA applications) 

Channel Media between TX and RX subsystems 
(atmosphere for OTA applications) 

RX Aperture Couples channel to receiver (antenna for OTA 
applications) 

Bandpass Filter Bandwidth limiting and anti-aliasing filter  

ADC Analog to digital conversion 

Demodulator Recovers information from signal 

 
 

Table 1 - RF FRI Component Descriptions 

Optical Implementation 
The novel idea presented here to realize a real-world Optical RFI communications system is spatial 

modulation of the Optical signal by slewing the positioning optics, such as fast steering mirror (FSM), of 

the transmitter.  As the gain of an optical beam is gaussian spatially, the consequence of slewing the 

FSM is imposing a gaussian kernel onto the time domain at the receiver.  

The remainder of the Optical RFI system utilizes standard optical components.  Recovery of the 

information is performed through standard methods, for example the annihilator method [4] or noisy 

spectral estimation techniques [5]. 

The figure below shows a block diagram of an Optical RFI communications system. It highlights the 

novelty in red.   

 

 
 

Figure 3 - Optical FRI Communications System Block Diagram 

Optical 
Transmitter

Optical 
Source

RX Aperture Optical Filter
Photodiode/

TIA
Demodulator

Local 
Oscillator

TX Optics

Channel

TX Aperture

Actuator

Channel

RX Optics
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The table below identifies and describes the individual components. 

 

Component Description 

Local Oscillator Reference clock source 

Optical Source Generates CW tone at optical wavelength from 
clock source 

Optical Transmitter Amplifies optical source (commonly an EDFA) 

TX Optics Steers optical beam (commonly a FSM) 

TX Aperture Couples transmitter to channel (lenses for OTA 
applications) 

Channel Media between TX and RX subsystems 
(atmosphere for OTA applications) 

RX Aperture Couples channel to receiver (lenses for OTA 
applications) 

Optical Filter Spectral limiting filter 

RX Optics Steers optical beam (commonly a FSM) 

Photodiode/TIA Develops digital signal from optical signal 
(commonly APD and TIA) 

Demodulator Recovers information from signal 

 
 

Table 2 - Optical FRI Component Descriptions 

Summary 
This paper presented a novel realization of a real-world ultra high speed communications system using 

FRI.  This system consists of existing components and promises greater data throughput using lower 

bandwidth signals than conventional systems for a fixed SNR; therefore, FRI communications systems 

would provide better performance with lower SWAP and cost. Future work includes: 

1. Modeling and simulation to determination nominal system performance 

2. Paper studies on FRI kernels and optimization of their parameters 

3. Development of a prototype system 
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