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Chapter 1

Project description

1.1 Objectives

The overall goal of this research project is to advance the distributed radar imaging
in contested and challenging environments. Contested environments are typically
uncertain, complex and ambiguous areas where radars capabilities are limited,
denied or deceived. Both distributed active and passive radar provide important
sensing capabilities in contested environments. Passive radar also offers efficient
use of RF spectrum in congested environments.

The objectives of the project are organized along the following topics: i) Pas-
sive imaging of extended and moving targets - This research aims to develop meth-
ods to overcome the limitations of widely used time or frequency difference of ar-
rival based backprojection techniques. Our approach focuses on convex and non-
convex optimization methods, computational efficiency and performance analysis
in the presence of uncertainties and limited spectral data. ii) Passive polarimetric
imaging - We investigate the value of polarimetric diversity in passive detection
and imaging. The methods we develop range from filtered-backprojection to sta-
tistical methods and optimization based approaches that take advantage of under-
lying tensorial structures in our polarimetric model. iii) Analysis to algorithms -
We develop quantitatively analysis of certain artifacts observed in SAR imagery.
These include analysis of artifacts due to antenna trajectory errors, moving tar-
gets, non-flat or unknown ground topography, and unknown refractive index of
background propagation medium. Our analysis shows that these artifacts contain
valuable information. We develop methods to extract this information, specifically
for motion estimation from smearing analysis and height estimation from layover
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analysis.

In addition to the objectives above, we also explore the machine learning,
specifically deep learning and optimization methods in addressing the problems
of distributed radar imaging.

The project included a sub-task conducted by Prof. John Christian of Rensse-

laer Polytechnic Institute. The final report on this sub-task is included in Appendix
A.

1.2 Personnel Supported

1.2.1 Faculty
e Birsen Yazici (Principal Investigator)

e John Christian (Investigator for a sub-task)

1.2.2 Graduate students supported

The project provided partial support to the following graduate students:

II-Young Son (US Citizen)

Eric Mason (US Citizen)

Bariscan Yonel (Citizen of Republic of Turkey)
e Avi Ryderman (US Citizen)
e Devin Renshaw (US Citizen)

Additionally, the PI hired the following students: Samia Kazemi (Citizen of
Bangladesh) in January 2018. She is working on a sonar imaging and machine
learning project and supported by the Office of Naval Research. Sean Tham-
makhoune hired in January 2019 (US Citizen). Sean is supported by AFOSR
and is working on blind deconvolution and ground moving target imaging. Airas
Akthar (Citizen of Pakistan) hired in June 2019. She is supported by National
Science Foundation and is working on exact interferometric inversion with a pri-
ori information. Matthew Caulfield (US Citizen) hired in Fall 2019. Matthew is
currently a teaching assistant. Once he successfully passes his doctoral qualifying
exam, he will be supported by AFOSR. His thesis is on optimization methods and

3
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autofocus problem. Avi Ryderman whom I hired in Fall 2018, dropped out of the
PhD program in Spring 2019 and is no longer with Rensselaer. He was hired by
Raytheon to work on radar signal processing.

Devin Renshaw is a graduate student in J. Christian’s research program who
worked on the subtask.

1.2.3 Thesis

The students who are partly supported by the AFOSR grant have completed or are
working on the following PhD thesis topics:

e Eric Mason — Passive Radar Detection and Imaging using Low-Rank Matrix
Recovery. Graduated in December 2017. Currently with Naval Research
Laboratory, Washington DC.

e Il-Young Son — Multistatic Polarimetric Passive Radar Imaging. Graduated
in December 2018. Working as a data scientist for NBA.

e Bariscan Yonel — A Theory of Exact Interferometric Inversion for Wave-
Based Imaging. Expected graduation in Fall 2020.
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Chapter 2

Current Status of Effort

2.1 Collaborations

e My former student, Eric Mason, defended his PhD thesis successfully in
August 2017 and joined Naval Research Laboratory (NRL), Washington
DC in Fall 2017. Eric spent the summer of 2016 as an intern in Air Force
Research Laboratory (AFRL), Wright-Patterson, Automatic Target Recog-
nition (ATR) Center. We were also fortunate to arrange tuition and stipend
support for Eric from Ed Zelnio’s ATR Center for Fall 2016 and Spring
2017. Eric and I continue to collaborate on a number of topics related to his
thesis and beyond. Specifically, I consulted Eric on group theory as certain
operators that arise in radar signal processing are group representations. We
also continue to collaborate on machine learning for passive radar imaging.
Specifically, Eric and my current PhD student Bariscan Yonel and I pub-
lished an invited manuscript on deep learning and waveform estimation for
passive Synthetic Aperture Radar (SAR) imaging to IET Radar, Sonar and
Navigation Journal special issue. Other topics that Eric, Bariscan and I are
collaborating involves passive SAR imaging from phaseless measurements
and non-convex optimization methods for exact recovery of extended tar-
gets in passive SAR. Currently, we are drafting two journal papers on these
topics. Eric appears to be doing very well at NRL, already leading sev-
eral projects as a PI and looking to develop new ones. The management in
NRL appears very happy to have Eric on board and are looking to hire more
students from my research group.

e In Fall 2019, I hired a new graduate student Sean Thammakhoune. Sean
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spent his first year learning the basics of radar and computational imaging.
He spent the summer of 2019 at NRL working with Dr. Eric Mason. Sean is
doing a remote internship with NRL in summer 2020. His thesis will be on
moving target imaging using optimization and machine learning methods.
NRL already expressed interest in hiring Sean upon his graduation. Sean
cleared his doctoral qualifying exam in Fall 2019 and I started supporting
him with our new AFOSR grant since January 2020.

My PhD student Il-Young Son (US Citizen) completed his PhD thesis in
Fall 2018. His thesis topic explores polarimetry for multi-static passive
radar. Il1-Young was a summer intern at AFRL in 2016 working on airborne
polarimetric passive radar per Richard Albanese suggestion. Il-Young co-
authored a journal paper on Doppler Synthetic Aperture Radar Interferom-
etry, machine learning on passive radar and optimization for multi-static
radar. NRL had planned on hiring II-Young. However, security related
technical problems prevented the planned hiring. II-Young stayed with my
research program for about half a year during which he completed a journal
paper and secured a job as a data scientist in National Basketball Associa-
tion.

Starting Spring 2017, 1 have been supporting Bariscan Yonel to work on
my AFOSR project. Bariscan has passed the PhD qualifying exam as a top
student in the department. He is self-motivated and has extremely good an-
alytic skills. Bariscan very quickly learned the basics of synthetic aperture
imaging, analytic image reconstruction techniques and machine learning
and optimization theory. Bariscan, Eric and I wrote two journal papers ad-
dressing synthetic aperture image reconstruction in machine learning frame-
work. Specifically, we are looking into Deep Learning methods. Bariscan,
Eric and I co-authored a number of conference papers on the topic. These
papers drew significant attention and I was invited to write two journal ar-
ticles on the topic, one for the IEEE Journal Special Topics on Machine
Learning in RF Communication and Radar and another one for IET Jour-
nal on Radar, Sonar and Navigation special issue on high resolution pas-
sive radar imaging. In addition to Deep Learning approach to computa-
tional imaging problems, Bariscan, and I have also developed novel, prov-
ably good, computationally efficient, non-convex optimization methods for
imaging with applications to passive radar and phaseless imaging. Thus far,
Bariscan co-authored five high quality journal publications and we are cur-
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rently working on two other manuscripts. Bariscan has strong analytic skills
and ability to tackle fundamental theoretical problems. He has been collab-
orating with three other graduate students in my research group. Bariscan is
planning to defend his thesis in early Fall 2020 and graduate in December
2020. He plans to look for an academic position in US.

In January 2018, I hired Samia Kazemi as a graduate research assistant.
Samia is funded by a Navy grant on sonar imaging and automatic target
recognition. Samia has good analytic skills. She is very bright and hard
working. She passed her PhD qualifying exam as the top student in the
department. She took my radar imaging course in Spring 2018 and quickly
built her background in computational imaging, radar and sonar. Samia,
Bariscan and I are developing Deep Learning methods for mine detection
and classification and sonar imaging in uncertain and dynamically changing
ocean environments. These techniques have direct applicability to radar
imaging and radar automatic target recognition (ATR).

I hired a new graduate research assistant, Avi Ryderman (US Citizen), in
Fall 2018 and started supporting Avi by my AFOSR grant. (Avi was ad-
mitted to RPI with good credentials. He graduated from University of Cal-
ifornia, Santa Barbara , CA with a BS degree in Electrical Engineering.)
Unfortunately he could not maintain the minimum required grade point av-
erage at RPI and dropped out of the program in Spring 2019. Nevertheless,
Avi secured a position at Raytheon as a radar engineer.

I also arranged summer internship for Richard Chen, my former PhD stu-
dent, at AFRL, ATR Center in 2016. Richard worked on learning the ba-
sics of SAR processing and pattern recognition algorithms. Unfortunately,
Richard failed to pass the PhD qualifying exam in Fall 2016 and had to quit
the PhD program at the end of 2016.

We started collaborating with Prof. Piotr Samczynski of Warsaw University
of Technology, Institute of Electronic Systems. Piotr is a young and a very
productive researcher who has received Fred Nathanson Memorial Radar
Award in 2017. Piotr’s group has developed a high fidelity electromagnetic
simulator and we are using this simulation platform to generate synthetic
data for training and testing our machine learning algorithms.

Prof. Yuejie Chi of Carnegie Mellon University and I started a collaboration
on developing non-convex optimization methods for certain problems that

7
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arise in passive radar and sensor networks. [ brought the problem to Yuejie’s
attention and some of Yuejie’s publications were very helpful in getting a
good understanding of the problem. Since our initial discussion, my student
Bariscan and I have developed the method fully. We plan to visit Yuejie or
invite her to RPI to discuss further collaborations.

Prof. Ilker Bayram of Istanbul Technical University visited my research
group in Spring 2017. Prof. Bayram’s area of expertise is convex optimiza-
tion. Dr. Bayram, then my student Dr. Eric Mason and I co-authored a con-
ference paper on weakly convex optimization for phaseless imaging. Addi-
tionally, Eric, Ilker and I co-authored a book chapter entitled “Optimization
Methods for Synthetic Aperture Radar Imaging,” published in Handbook
of Convex Optimization Methods in Imaging Science by Springer-Verlag in
2018.

I continued to collaborate with my former post-doctoral associate Dr. Ling
Wang on theoretical aspects of radar imaging. Ling and I co-authored two
journal papers and a number of conference papers.

Dr. Xin Wang of Nanjing University visited my research group in Fall 2017.
I encouraged Xin to work on some theoretical problems in computational
wave based imaging. However, Xin did not seem to have the right orienta-
tion to tackle such problems. She instead worked on implementing iterative
schemes for image reconstruction. Xin returned to her home institution in
September 2018.

I have mentored Daryl Osterloh of University of Dayton on radar imag-
ing within IEEE AES Society professional networking and mentorship pro-
gram. Daryl is a first year PhD student working on radar tomography with
Dr. Michael Wicks.

I arranged summer internships for a number of graduate students in defense
industry. These students and some of the undergraduates who took my radar
imaging course in Spring 2018 went on to work for defense companies.
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Chapter 3

Interactions/Transitions

My students and I attended the conferences and meetings in US and Europe; pre-
sented our research and interacted with colleagues in other universities, AFRL
researcher and researchers in industry.

3.1 Activities in 2016-2017

My students and 1 attended IEEE Radar Conference in Seattle, WA; SPIE De-
fense and Security Conference in Anaheim, CA; IEEE International Conference
on Acoustics and Signal Processing, New Orleans and IEEE International Radar
Symposium (IRS) Prague, Czech Republic. In these meetings, we presented the
following papers:

1. I. Y. Son and B. Yazici, “Passive Polarimetric Reconstruction of Extended
Dipole Targets,” IEEE International Radar Symposium, Prague, Czech Re-
public, June 2017.

2. L. Wang and B. Yazici, “Height reconstruction using differential layover for
SAR imagery,” 2017 IEEE Radar Conference (RadarConf), Seattle, WA,
2017, pp. 0163 - 0168.

3. L. Wang and B. Yazici, “Effects of fluctuation in refractive index of atmo-
sphere on synthetic aperture radar images,” 2017 IEEE Radar Conference
(RadarConf), Seattle, WA, 2017, pp. 0169 - 0174.

4. E. Mason, B. Yonel and B. Yazici, “Deep learning for radar,” 2017 IEEE
Radar Conference (RadarConf), Seattle, WA, 2017, pp. 1703-1708.

9
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5. E. Mason, B. Yonel, B. Yazici, “Deep learning for SAR image forma-
tion,” Proc. SPIE 10201, Algorithms for Synthetic Aperture Radar Imagery
XXIV, 2017.

6. I. Bayram, E. Mason and B. Yazici, “A weakly-convex formulation for
phaseless imaging,” 2017 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), New Orleans, LA, 2017, pp. 6045-6049.

7. E. Mason and B. Yazici, Robustness of LRMR based Passive Radar Imaging
to Phase Errors,” Proceedings of EUSAR 2016: 11th European Conference
on Synthetic Aperture Radar, Hamburg, Germany, pp. 1-4, 2016.

8. E. Mason, B. Yazici, “Moving Target Imaging using Sparse and Low- Rank
Structure,” Proceedings of SPIE Defense and Security Conference, Balti-
more, MD, April 2016.

e In August 2016, I attended NSF Industry/University Center for Research
Collaboration (I/UCRC) on ATR in Wright State University, Dayton OH. I
talked to Ed Zelnio of AFRL, Profs. Lee Potter of Ohio State University and
Al Hero of University of Michigan about our research project to support my
student Eric Mason. Our research project was rated very highly by industry
participants and funded for a year.

e In February 2017, I was invited to attend ONR’s Ocean Engineering and
Marine Systems Program Review in St. Augustine, FL. The projects pre-
sented ranged from synthetic aperture sonar (SAS) image reconstruction to
machine learning using SAS imagery. I met researchers from Naval Ware-
fare Center (Dr. James Prater), Panama City, FL and University of Washing-
ton, Applied Physics laboratory (Dr. Tim Marston), Seattle, WA working
on SAS image reconstruction. We discussed circular synthetic aperture im-
age reconstruction and other SAR related issues. I pointed out many of
my publications to NWC and APL researchers. I also chatted with faculty
from Georgia Tech, Pennsylvania State University and industry on machine
learning. I pointed out the body of work on ATR in radar and encouraged
SAS community to contact AFRL on ATR.

e In May 2017, I attended IEEE Radar Conference in Seattle, WA. Every
year, | serve in the technical committee of IEEE Radar Conference. This
year I managed review of radar signal processing papers. The conference
was very well organized, well attended and included high quality papers

10
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not only from US researchers, but also from international participants. I
presented three papers and chaired three sessions, two on SAR and one on
machine learning. There was a great deal of interest in our paper entitled
“Deep Learning for Radar”. 1 observed, in general, that there is a grow-
ing interest in machine learning techniques in radar. As always I renewed
my acquaintance with AFRL researchers, colleagues from academia and re-
searchers from industry and other national labs. Dr. Heiner Kuschel of DLR
invited me to take part in NATO SET panel on passive radar. I completed
all paper work, but I found out that the panel is classified and it would not
be possible for me to attend without clearance. I was reached out by an-
other NATO SET panel lead by Prof. Marco Mortarello of Pisa University
on Compressive Sensing for Radar. I was also invited to give talks at Penn
State Unv. and AFRL on my research.

e In June 2017, I attended IEEE International Radar Symposium (IRS) in
Prague, Czech Republic per Dr. Kryzstof Kulpa’s (of Warsaw University of
Technology) invitation. This is a meeting attended primarily by European
researchers. I presented our work on polarimetric radar which was very
attentively listened. Prof. Kulpa invited me to visit Warsaw University of
Technology to give talks. He also expressed interest in sending some of his
PhD students to visit my research group. I also met my former post-doc Dr.
Ling Wang and Prof. Jochaim Ender (a mathematician working on radar) in
the symposium.

e My then student Eric Mason attended IEEE International Conference on
Acoustics and Signal Processing (ICASSP) in March 2017 and presented
our paper on weakly convex optimization on phaseless imaging. Eric also
attended SPIE Defense and Security Conference in Anaheim, CA and pre-
sented our work deep learning in Ed Zelnio’s SAR symposium. Addition-
ally, Eric spent the summer of 2016 as an intern at AFRL ATR Center. He
attended the [IUCRC meetings in August 2016 and February 2017 and pre-
sented progress in his research.

3.2 Activities in 2017-2018

I had limited travel this year due to health issues, but my students attended the
IEEE Radar Conference in Oklahoma City, OK and SPIE Defense and Security

11
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Conference in Anaheim, CA. In these meetings, the following papers were pre-
sented:

1. B. Yonel, E. Mason, B. Yazici, “Passive Phaseless SAR Imaging,” 2018
Asilomar Conference, Pacific Grove, CA, 2018.

2. B. Yonel, I.Y. Son, B Yazici, “Generalized Wirtinger flow for passive polari-
metric reconstruction of extended dipole targets,” IEEE Radar Conference
(RadarConf18), pp: 1353 - 1358, 2018.

3. B. Yonel, E. Mason, B. Yazici, “Deep learning for waveform estimation in
passive synthetic aperture radar imaging, ” Algorithms for Synthetic Aper-
ture Radar Imagery XXV 10647, 106470E, 2018.

4. B. Yonel, E. Mason, B. Yazici, “Deep learning for waveform estimation in
passive synthetic aperture radar,” IEEE Radar Conference (RadarConf18),
pp: 1395 - 1400, 2018.

5. E. Mason, B. Yazici, “Passive Phaseless SAR Imaging,” 2018 IEEE Radar
Conference (RadarConf18), pp: 0292 - 0297, 2018.

e In September 2017, I visited Penn State University and gave a talk on Deep
Learning for computational imaging per my colleague Prof. Vishal Monga’s
invitation. Vishal’s students gave me presentations describing their projects
in detail. Vishal and I both thought of combining our expertise and collab-
orating on projects involving imaging and automatic target recognition.

e In October 2017, I was re-elected to serve in IEEE Signal Processing So-
ciety Technical Committee on Signal Processing Methods and Theory for
the next three years. Additionally, I was elected and start serving in the
following IEEE Signal Processing Society Technical Committees:

— Technical Committee on Sensor Array Multichannel, 2018-2020.
— Special Interest Group on Computational Imaging, 2018-2021.

e In January 2018, I was elected to serve as an associate editor to IEEE Trans-
actions in Computational Imaging for the next four years.

12
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e Asin 2017, in February 2018, I was invited to attend ONR’s Ocean Engi-
neering and Marine Systems Program Review in St. Augustine, FL. This
time I attended the meeting as a PI sponsored by the Ocean Engineering
and Marine Systems Program. I renewed my acquaintances with Dr. Prater
of Naval Surface Warfare Center and Dr. Marston of University of Wash-
ington, Applied Physics laboratory. I met a group of your researchers from
NSWC, Panama City, one of whom, Dr. Denton Woods, later helped me to
access a high fidelity synthetic aperture sonar data simulator. I also chatted
with my colleague and friend Vishal Monga who is also sponsored by the
same ONR program. We discussed several ideas and topics of collaboration.

e In March 2018, my student Bariscan and I took part in a workshop (orga-
nized by Prof. Ge Wang) on Deep Learning held at RPI. Our work drew
interest from attendees and we were invited to give a talk to the medical
imaging program in General Electric Research Center, Niskayuna, NY.

e In April 2018, my former PhD student, Eric Mason and current students,
Bariscan Yonel and I1-Young Son attended IEEE Radar Conference in Ok-
lahoma City, OK. As always, I served in the Technical Committee of the
IEEE Radar Conference. Eric presented a paper entitled “Phaseless Passive
SAR Imaging” which apparently drew significant interest from the atten-
dees. Eric and Bariscan presented “Deep learning for waveform estimation
in passive synthetic aperture radar,” and Bariscan and Il-Young presented
“Generalized Wirtinger flow for passive polarimetric reconstruction of ex-
tended dipole targets”. We are currently drafting journal papers on all three
topics. Eric also presented our Deep Learning based waveform estimation
work in Ed Zelnio’s SAR symposium in SPIE Defense and Security Con-
ference in Anaheim, CA.

e In April 2018, Dr. Mike Wicks visited me at RPI. He gave a talk on his
research. As always Mike had many different ideas and we discussed col-
laboration opportunities.

3.3 Activities in 2018-2019

My students and I attended the IEEE Radar Conference in Boston, MA and IEEE
International Radar Symposium, Aachen, Germany. In these meetings, the fol-
lowing papers were presented:

13
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1. B. Yonel, 1.Y. Son, B. Yazici, “Multistatic passive imaging via Wirtinger
Flow,” Invited IEEE International Radar Symposium, Aachen, Germany,
2019.

2. B. Yonel, S. Kazemi, B. Yazici, “A Neural Network Based Approach for
Radar Imaging Beyond Born Approximation,” 2019 IEEE Radar Confer-
ence, Boston, MA, 2019.

3. S. Kazemi, B. Yonel, B. Yazici, “Deep Learning for Direct Automatic Tar-
get Recognition from SAR Data,” Invited. 2019 IEEE Radar Conference,
Boston, MA, 2019.

e In January 2019, I was invited to attend ONR’s Ocean Engineering and
Marine Systems Program Review in St. Augustine, FL. I presented our
recent results on segmentation and classification of objects using synthetic
aperture sonar received data bypassing the image reconstruction step using
machine learning methods. Our results were well received by the audience
and the researchers at NSWC, San Diego CA and NSWC, Panama City, FL.
I met the new program managers Dr. Daniel Cook and Dr. Tory Cobb and
chatted with them about our on-going work.

e From February 2019 through May 2019, I was on sabbatical at The Cen-
ter for Sensor Systems, University of Siegen, Siegen, Germany. The center
is lead by Prof. Otmar Loffeld and has 21 faculty members who pursue
research in a wide range of applications involving variety of electromag-
netic sensors. Some of these projects are on developing novel sensors and
others are on developing new and novel measurement and processing meth-
ods. I was invited and hosted by Prof. Otmar Loffeld. Prof. Loffeld’s
research group pursues both experimental and signal processing projects on
radar remote sensing. Some of his projects include the design and imple-
mentation of passive bi-static radar using TerraSAR-X as an illumination of
opportunity, multi-channel SAR sensor with applications to SAR interfer-
ometry and compressive sensing methods for SAR. I presented a number
of seminars on my research during my stay at Siegen some of which in-
cluded microlocal analysis in SAR imaging and its implications in design
of novel SAR interferometric methods, non-convex provably exact meth-
ods in interferometric inversion and phaseless SAR imaging. My research

14
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project most closely resonated with the research of the guest faculty mem-
ber, Dr. Jochaim Ender. Dr. Ender is a mathematician who works/consults
for German Space Agency and Fraunhoffer Research Institute. He visits
Unv. of Siegen once a week to pursue academic research. At the time of my
visit, Dr. Ender’s research interest was on Inverse Synthetic Aperture Radar
(ISAR). The main problem in ISAR is the estimation of the target’s rational
angles and shift in three-dimensional space which inherently introduces un-
known phase angles. This problem at first appeared as a perfect application
for phaseless imaging. Upon working on the problem formulation, I dis-
covered an interesting generalization of the phaseless imaging problem and
a novel solution for ISAR imaging with unknown rotation and shift. The
key ideas involve modeling ISAR forward model on the Euclidean motion
group and considering only the “magnitude” of the Fourier transform of the
measurements over the Euclidean group. This is identical to the phaseless
imaging problem in which one considers only the magnitude data with re-
spect to the ordinary Fourier transform (i.e., the Fourier transform of the
additive group over the real numbers). Here, the concept of “magnitude” is
simply the composition of the matrix valued Euclidean group Fourier “co-
efficients” and their adjoint matrix. I was pleasantly surprised by such a
generalization of the phaseless imaging problem and its relevance to an im-
portant imaging application. I drafted a note on this idea and hope to find a
mathematically oriented student to implement the method.

My student presented our work on interferometric inversion in the IEEE
Radar Symposium in Aachen Germany.

In April 2019, I organized an invited session on machine learning and radar
sensing and imaging in the 2019 IEEE Radar Conference, Boston, MA.
The invited papers ranged from ATR to image reconstruction. There was a
very strong interest in the session across the entire radar signal processing
community.
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Chapter 4

Specific Technical Findings

4.1 List of Publications in the Period 2016-2019

The research presented in the following publications are funded by the AFOSR
grant.

Book Chapters

B1. E. Mason, I. Bayram, B. Yazici, “Optimization Methods for Synthetic Aper-
ture Radar Imaging,” to be published in Handbook of Convex Optimization
Methods in Imaging Science by Springer-Verlag in 2018.

B2. S. Kazemi, E. Mason, B. Yonel, B. Yazici, “Deep Learning for Passive Syn-
thetic Aperture Radar Imaging,” to appear in IET book on Deep Neural
Networks for Radar Applications, pp. 1-27, 2020.

Journal Publications

J1. B. Yonel and B. Yazici, “ A Deterministic Convergence Framework for Ex-
act Non-Convex Phase Retrieval,” to appear in the /IEEE Transactions on
Signal Processing, December 2019.

J2. B. Yonel, 1.Y. Son, B. Yazici, “Exact Multistatic Interferometric Inversion
via Generalized Wirtinger Flow,” IEEE Transactions on Computational Imag-
ing, vol. 6, pp. 711-726, 2020.

J3. B. Yonel, B. Yazici, “Generalized Wirtinger Flow for Interferometric Inver-
sion,” SIAM Imaging Science Journal, 2019 12 (4), 2119-2164, 2019.
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J4.

J5.

J6.

J7.

J8.

JO.

J10.

L. Wang and B. Yazici, “Analysis of Artifacts in SAR Imagery due to Fluc-
tuation in Refractive Index,” IEEE Trans on Computational Imaging, Vol. 5
, Issue: 3, pp: 450 - 464, Sept. 2019

B. Yonel, E. Mason, B. Yazici, “Deep Learning for Waveform Estimation
and Imaging in Passive Radar,” IET Radar, Sonar and Navigation Journal,
[invited] Special issue on Passive High Resolution Radar Imaging, 13.6
(2019): 915-926, February 2019.

S. Wacks, B. Yazici, “Doppler-DPCA and Doppler-ATI: Novel SAR Modal-
ities for Imaging of Moving Targets Using Ultra-Narrowband Waveforms”

IEEFE Transactions on Computational Imaging, Vol. 4, Issue 1, pp. 125-
136, March 2018.

B. Yazici, 1.Y. Son, H.C. Yanik “Doppler Synthetic Aperture Interferome-
try: A Novel Synthetic Aperture Interferometry for Height Mapping using
Ultra-Narrowband Continuous Waveforms” Inverse Problems Journal, 34
(2018) 055003 (28pp), March 2018.

B. Yonel, E. Mason, B. Yazici, “Deep Learning for Passive Synthetic Aper-
ture Radar,” [invited] /EEE Trans. on Selected Topics in SP - Machine
Learning for RF Communication and Radar, Vol. 12, No. 1, pp. 90-103,
February 2018.

L. Wang, B. Yazici, “Layover Analysis in Synthetic Aperture Imagery,”
SIAM Imaging Science Journal, 10(3), 1033 - 1068. (36 pages), 2017.

LY. Son, and B. Yazici, “Passive polarimetric multistatic radar detection of
moving targets.” Available Online, arXiv preprint arXiv:1706.09369.

Conference Publications

Cl1.

C2.

S. Kazemi, B. Yazici, “Deep Learning for joint SAR Image Reconstruction
and Segmentation,” in the Proceedings of IEEE International Radar Confer-
ence, 2020.

B. Yonel, I.Y. Son, B. Yazici, “Multistatic passive imaging via Wirtinger
Flow,” Invited IEEE International Radar Symposium, Aachen, Germany,
2019.
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C3. B. Yonel, S. Kazemi, B. Yazici, “A Neural Network Based Approach for
Radar Imaging Beyond Born Approximation,” 2019 IEEE Radar Confer-
ence, Boston, MA, 2019.

C4. S. Kazemi, B. Yonel, B. Yazici, “Deep Learning for Direct Automatic Tar-
get Recognition from SAR Data,” Invited. 2019 IEEE Radar Conference,
Boston, MA, 2019.

C5. B. Yonel, E. Mason, B. Yazici, “Phaseless Passive Synthetic Aperture Radar
Imaging via Wirtinger Flow,” Invited. 2018 Asilomar Conference, Pacific
Grove, CA, 2018.

C6. B. Yonel, E. Mason, B Yazici, “Passive SAR Imaging using Phaseless Mea-
surements,” Proceedings of European Conference on Synthetic Aperture
Radar, Aachen, Germany, 2018.

C7. B. Yonel, E. Mason, B Yazici, “Generalized Wirtinger flow for passive po-
larimetric reconstruction of extended dipole targets,” IEEE Radar Confer-
ence (RadarConf18), pp: 1353 - 1358, 2018.

C8. B. Yonel, E. Mason, B. Yazici, “Deep learning for waveform estimation in
passive synthetic aperture radar imaging, ” Algorithms for Synthetic Aper-
ture Radar Imagery XXV 10647, 106470E, 2018.

C9. B. Yonel, E. Mason, B. Yazici, “Deep learning for waveform estimation in
passive synthetic aperture radar,” IEEE Radar Conference (RadarConf18),
pp: 1395 - 1400, 2018.

C10. E. Mason, B. Yazici, “Passive Phaseless SAR Imaging,” 2018 IEEE Radar
Conference (RadarConf18), pp: 0292 - 0297, 2018.

C11. L. Wang, and B. Yazici, “Height reconstruction using differential layover
for SAR imagery,” IEEE Radar Conference pp. 0169-0174, 2017.

C12. L. Wang, and B. Yazici, “Effects of fluctuation in refractive index of at-
mosphere on synthetic aperture radar images,” IEEE Radar Conference pp.
0163-0168, 2017.

C13. LY. Son, and B. Yazici, “Passive Polarimetric Reconstruction of Extended
Dipole Target,” International Radar Symposium, pp. 1-10, June 2017.
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Cl4

Cl1s.

Cle.

C17.

C18.

C19.

. E. Mason, B. Yonel, and B. Yazici, “Deep learning for radar,” in the Pro-
ceedings of 2017 IEEE Radar Conference, May 2017, pp. 17031708.

E. Mason, B. Yonel, and B. Yazici, “Deep learning for SAR image forma-
tion,” in Proc.SPIE, vol. 10201, 2017.

I. Bayram, E. Mason, and B. B. Yazici, “A weakly-convex formulation for
phaseless imaging,” in IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), March 2017, pp. 6045 - 6049.

E. Mason, B. Yazic1 “Robustness of LRMR based Passive Radar Imaging
to Phase Errors,” Proceedings of EUSAR 2016: 11th European Conference
on Synthetic Aperture Radar, Hamburg, Germany, 2016.

II-Young Son, B. Yazic1 “Passive Polarimetric Multi-static Radar for Ground
Moving Target” in the Proceedings of IEEE Radar, 2016.

E. Mason, B. Yazic1 “Moving Target Imaging using Sparse and Low-rank
Structures” in the Proceedings of SPIE Defense and Security, 2016.

4.2 Description

From August 2016 until October 2019, we worked on the following specific prob-
lems:

e Analysis of SAR artifacts

e Doppler SAR interferometric imaging

e Multi-static and polarimetric passive radar imaging

e Phaseless imaging with applications to radar

e Convex and non-convex optimization methods for passive imaging

e Machine learning for inverse problems in imaging with applications in pas-

sive SAR and ATR

These topics are directly related to the objectives of the project outlined in the
introduction.
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4.2.1 Analysis of SAR Artifacts

Publications

J4.

JO.

Cl1l1.

Ci12.

L. Wang and B. Yazici, “Analysis of Artifacts in SAR Imagery due to Fluc-
tuation in Refractive Index,” IEEE Trans on Computational Imaging, Vol. 5
, Issue: 3, pp: 450 - 464, Sept. 2019

L. Wang, B. Yazici, “Layover Analysis in Synthetic Aperture Imagery,”
SIAM Imaging Science Journal, 10(3), 1033 - 1068. (36 pages), 2017.

L. Wang, and B. Yazici, “Height reconstruction using differential layover
for SAR imagery,” IEEE Radar Conference pp. 0169-0174, 2017.

L. Wang, and B. Yazici, “Effects of fluctuation in refractive index of at-
mosphere on synthetic aperture radar images,” IEEE Radar Conference pp.
0163-0168, 2017.

Analysis of Artifacts in SAR Imagery Due to Fluctuation in Refrac-
tive Index [J4], [C12]: We analyze the artifacts in synthetic aperture radar
imagery due to fluctuations in the refractive index of the atmosphere, specif-
ically due to absorption and variations in speed of light. SAR image recon-
struction algorithms ignore absorption and assume unit refractive index. We
assume a complex-valued refractive index for the atmosphere and analyze
the errors in reconstructed images due to absorption and fluctuations in the
speed of electromagnetic (EM) waves. Absorption leads to amplitude er-
rors, which can be viewed as a filtering error. This error can be characterized
as systematic variations in the ground reflectivity function. Fluctuations in
the speed of EM waves lead to phase errors, which manifest as positioning
errors or geometric distortions in synthetic aperture radar (SAR) imagery.

Layover Analysis in Synthetic Aperture Imagery [J9], [C11]: Layover is
an artifact observed in synthetic aperture radar (SAR) images. This artifact
manifests as geometric distortions or positioning errors due to unknown or
inaccurate ground topography information. Layover artifact results in er-
roneous distance between reconstructed scatterers, particularly in elevated
regions. We develop a quantitative analysis of positioning errors due to
incorrect height information in backprojection based (BP) SAR image for-
mation. Our analysis is based on microlocal techniques and provides an ex-
plicit algebraic relationship between the two-dimensional positioning error
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and height error. Our analysis is applicable to arbitrary imaging geome-
tries including bistatic configuration, arbitrary antenna trajectories, wide
apertures, and large scenes. While we focus primarily on BP based im-
age formation, the results are also applicable to range-Doppler type image
formation methods. Our results can be used to interpret and identify lay-
over regions in SAR images and extract valuable information from layover
artifacts. In [C11], we presented a method of utilizing layover artifacts for
height estimation.

4.2.2 Doppler SAR Interferometry

Publications

Jo.

J7.

S. Wacks, B. Yazici, “Doppler-DPCA and Doppler-ATI: Novel SAR Modal-
ities for Imaging of Moving Targets Using Ultra-Narrowband Waveforms”

IEEFE Transactions on Computational Imaging, Vol. 4, Issue 1, pp. 125-
136, March 2018.

B. Yazici, 1Y. Son, H.C. Yanik “Doppler Synthetic Aperture Interferome-
try: A Novel Synthetic Aperture Interferometry for Height Mapping using
Ultra-Narrowband Continuous Waveforms” Inverse Problems Journal, 34
(2018) 055003 (28pp), March 2018.

Doppler synthetic aperture radar interferometry: A novel SAR inter-
ferometry for height mapping using ultra-narrowband waveforms [J7]:
We introduced a new and novel radar interferometry based on Doppler syn-
thetic aperture radar (Doppler-SAR) paradigm. Conventional SAR inter-
ferometry relies on wideband transmitted waveforms to obtain high range
resolution. Topography of a surface is directly related to the range dif-
ference between two antennas configured at different positions. Doppler-
SAR is a novel imaging modality that uses ultra-narrowband continuous
waves (UNCW). It takes advantage of high resolution Doppler information
provided by UNCWs to form high resolution SAR images. We introduce
the theory of Doppler-SAR interferometry. We derive an interferometric
phase model and develop the equations of height mapping. Unlike con-
ventional SAR interferometry, we show that the topography of a scene is
related to the difference in Doppler frequency between two antennas config-
ured at different velocities. While the conventional SAR interferometry uses
range, Doppler and Doppler due to interferometric phase in height mapping;
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Doppler-SAR interferometry uses Doppler, Doppler-rate and Doppler-rate
due to interferometric phase in height mapping. Doppler-SAR interferome-
try offers the advantages of long-range, robust, environmentally friendly op-
erations; low-power, low-cost, lightweight systems suitable for low-payload
platforms, such as micro-satellites; and passive applications using sources
of opportunity transmitting UNCW.

e Doppler-DPCA and Doppler-ATI: Novel SAR Modalities for Imaging
of Moving Targets Using Ultra-Narrowband Waveforms [J6]: We intro-
duced two novel imaging modalities: Doppler displaced phase center an-
tenna (Doppler-DPCA) and Doppler along track interferometry (Doppler-
ATT). The DPCA and ATTI techniques have the distinct advantage of remov-
ing the response from stationary targets (clutter). We develop DPCA and
ATT techniques in Doppler synthetic aperture radar (Doppler-SAR) paradigm
to image moving targets embedded in clutter. Doppler-SAR uses ultra-
narrowband continuous waveforms (UNCW) to reconstruct high-resolution
SAR images. We consider a two-channel bistatic configuration with a sta-
tionary antenna transmitting UNCW and two receiving antennas moving
along an arbitrary trajectory in tandem. We introduced the theory for Doppler-
DPCA and Doppler-ATI. We derive an interferometric phase model and de-
velop equations of velocity mapping. While conventional wideband SAR
DPCA and ATI use range difference, Doppler-DPCA and Doppler-ATT use
high-resolution temporal Doppler difference in imaging of moving targets.
These novel modalities can be used for applications requiring high signal-
to-noise ratio, long-range, low-power, and low payload such as microsatel-
lites and uninhabited aerial vehicles; passive imaging using sources of op-
portunity, such as TV and radio stations; and in applications requiring spec-
trum efficiency.

4.2.3 Multi-static and Polarimetric Radar Imaging
Publications

J2. B. Yonel, LY. Son, B. Yazici, “Exact Multistatic Interferometric Inversion
via Generalized Wirtinger Flow,” IEEE Transactions on Computational Imag-
ing, vol. 6, pp. 711-726, 2020.

J10. 1.Y. Son, and B. Yazici, “Passive polarimetric multistatic radar detection of
moving targets.” Available Online, arXiv preprint arXiv:1706.09369.
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C2.

C7.

Cl13.

C18.

B. Yonel, LY. Son, B. Yazici, “Multistatic passive imaging via Wirtinger
Flow,” Invited IEEE International Radar Symposium, Aachen, Germany,
2019.

B. Yonel, E. Mason, B Yazici, “Generalized Wirtinger flow for passive po-
larimetric reconstruction of extended dipole targets,” IEEE Radar Confer-
ence (RadarConf18), pp: 1353 - 1358, 2018.

1.Y. Son, and B. Yazici, “Passive Polarimetric Reconstruction of Extended
Dipole Target,” International Radar Symposium, pp. 1-10, June 2017.

1.Y. Son, B. Yazic1t “Passive Polarimetric Multi-static Radar for Ground
Moving Target” in the Proceedings of IEEE Radar, 2016.

Exact Multistatic Interferometric Imaging via Generalized Wirtinger
Flow [J2], [C2], [C7]: We present a novel, exact method to address the in-
terferometric inversion problem for multistatic wave-based imaging based
on Generalized Wirtinger Flow (GWF). Interferometric imaging is a relative
of phase retrieval, which arises from cross-correlating measurements from
pairs of receivers. GWF provides a theoretical framework to process scatter-
ing data satisfying the Born approximation, and guarantees exact recovery
of the underlying scene reflectivity vector from interferometric measure-
ments if the discretized lifted forward model satisfies the restricted isome-
try property over rank-1, positive semi-definite matrices with a sufficiently
small restricted isometry constant (RIC). To this end, we design a linear
deterministic discrete lifted forward model for interferometric multistatic
radar measurements such that the exact recovery conditions of GWF are
satisfied. Our results identify a lower limit on the pixel spacing and the
sample complexity for exact multistatic radar imaging. We provide a nu-
merical study of our RIC and pixel spacing bounds on synthetic single scat-
tering data, which show that GWF can achieve exact recovery with super-
resolution. While our primary interest lies in radar imaging, our results are
applicable to other multistatic wave-based imaging problems such as those
arising in acoustics and geophysics.

Passive Polarimetric Multistatic Radar Detection of Moving Targets
[J10], [C13], [C18]: We study the exploitation of polarimetric diversity
in passive multistatic radar for detecting moving targets. We first derive a
data model that takes into account polarization and anisotropy of targets in-
herent in multistatic configurations. Unlike conventional isotropic models
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in which targets are modeled as a collection of uniform spheres, we model
targets as a collection of dipole antennas with unknown directions. We con-
sider a multistatic configuration in which each receiver is equipped with a
pair of orthogonally polarized antennas, one directed to a scene of interest
collecting target-path signal and another one having a direct line-of-sight
to a transmitter-of-opportunity collecting direct-path signal. We formulate
the detection of moving target problem in a generalized likelihood ratio test
framework under the assumption that direct-path signal is available. We
show that the result can be reduced to the case in which the direct-path
signal is absent. We present a method for estimating the dipole moments
of targets. Extensive numerical simulations show the performance of both
the detection and the dipole estimation tasks with and without polarimetric
diversity.

4.2.4 Convex and Non-Convex Methods for Passive Imaging
Publications

B1. E. Mason, I. Bayram, B. Yazici, “Optimization Methods for Synthetic Aper-
ture Radar Imaging,” to be published in Handbook of Convex Optimization
Methods in Imaging Science by Springer-Verlag in 2018.

J2. B. Yonel, LY. Son, B. Yazici, “Exact Multistatic Interferometric Inversion
via Generalized Wirtinger Flow,” IEEE Transactions on Computational Imag-
ing, vol. 6, pp. 711-726, 2020.

J3. B. Yonel, B. Yazici, “Generalized Wirtinger Flow for Interferometric Inver-
sion,” SIAM Imaging Science Journal, 2019 12 (4), 2119-2164, 2019.

C2. B. Yonel, LY. Son, B. Yazici, “Multistatic passive imaging via Wirtinger
Flow,” Invited IEEE International Radar Symposium, Aachen, Germany,
2019.

C7. B. Yonel, E. Mason, B Yazici, “Generalized Wirtinger flow for passive po-
larimetric reconstruction of extended dipole targets,” IEEE Radar Confer-
ence (RadarConf18), pp: 1353 - 1358, 2018.

C16. 1. Bayram, E. Mason, and B. B. Yazici, “A weakly-convex formulation for
phaseless imaging,” in IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), March 2017, pp. 6045 - 6049.
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C17.

C19.

E. Mason, B. Yazic1 “Robustness of LRMR based Passive Radar Imaging
to Phase Errors,” Proceedings of EUSAR 2016: 11th European Conference
on Synthetic Aperture Radar, Hamburg, Germany, 2016.

E. Mason, B. Yazic1 “Moving Target Imaging using Sparse and Low-rank
Structures” in the Proceedings of SPIE Defense and Security, 2016.

Passive SAR Imaging Using Low-rank Matrix Recovery Methods [B1],
[C17], [C19]: We present a novel image formation method for passive syn-
thetic aperture radar (SAR) imaging for both moving and stationary tar-
gets. The method is an alternative to widely used time difference of arrival
(TDOA) or correlation-based backprojection method. These methods work
under the assumption that the scene is composed of a single or a few widely
separated point targets. The new method overcomes this limitation and can
reconstruct heterogeneous scenes with extended targets. We assume that
the scene of interest is illuminated by a stationary transmitter of opportunity
with known illumination direction, but unknown location. We consider two
airborne receivers and correlate the fast-time bistatic measurements at each
slow-time. This correlation process maps the tensor product of the scene
reflectivity with itself to the correlated measurements. Since this tensor
product is a rank-one positive semi-definite operator, the image formation
lends itself to low-rank matrix recovery techniques. Taking into account
additive noise in bistatic measurements, we formulate the estimation of the
rank-one operator as a convex optimization with rank constrain. We present
a gradient-descent based iterative reconstruction algorithm and analyze its
computational complexity. Extensive numerical simulations show that the
new method is superior to correlation-based backprojection in reconstruct-
ing extended and distributed targets with better geometric fidelity, sharper
edges, and better noise suppression.

Generalized Wintinger Flow for interferometric inversion with appli-
cations in passive radar imaging [J3]:

Generalized phase retrieval is a ubiquitous problem in many disciplines.
The problem consists of recovery of a signal from auto-correlations of its
linear transformations. In [J3], my student Bariscan and I investigate a prob-
lem that is a close relative of phase retrieval: interferometric inversion, i.e.,
recovery of a signal from cross-correlations of its linear transformations. In
recent years, phase retrieval literature has undergone significant advance-
ments through the introduction of provably good methods. A prominent
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method of interest is the Wirtinger Flow !, in which phase retrieval problem
is solved in a provably exact manner by a non-convex optimization prob-
lem. We pursue this framework for interferometric inversion problem and
develop Generalized Wirtinger Flow, and provide the exact recovery guar-
antees for a general complex signal. In achieving this, we take a low rank
recovery perspective to interferometric inversion, in which the problem is
lifted to a higher dimensional rank-1 subspace recovery. We identify key
condition that the interferometric measurement mapping should satisfy in
the lifted problem as the matrix restricted isometry property over rank-1
positive semi-definite matrices (RIP-1). We show that RIP-1 condition is
a sufficient condition for exact recovery by GWF as long as the restricted
isometry constant is within the upper bound of 0.256. We then establish
the validity of the condition for cross correlations of linear measurements
collected by complex Gaussian sampling vectors.

Finally, we establish the RIP-1 condition for cross correlations of linear
measurements collected by complex Gaussian sampling vectors. We illus-
trate the validity of our analysis on complex Gaussian sampling vectors
through numerical simulations, and display the effectiveness of our method
on the passive synthetic aperture radar imaging problem, for which a RIP-1
has been previously established.

In [C7], under the observation that generalized phase retrieval is a special
case of cross-correlation measurement model, my students Bariscan, II-
Young and I propose Wirtinger flow method for passive polarimetric imag-
ing from interferometric measurements. We consider the polarimetric imag-
ing problem for a distributed array of antennas, in which scene reflectivities
and polarization states of stationary targets have to be simultaneously re-
constructed. Linear measurements collected from each antenna is correlated
with the others to yield a quadratic measurement model. We then pursue the
non-convex approach rather than the previously explored LRMR method,
and derive Generalized Wirtinger flow for cross-correlated measurements.

4.2.5 Phaseless Imaging with Applications to Passive Radar

Publications

'E.J. Candes, X. Li, M. Soltanolkotabi, “Phase retrieval via wirtinger flow: Theory and algo-
rithms”, IEEE Transactions on Information Theory, vol. 61, no. 4, pp. 1985-2007, 2015.
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J1.

Cs.

Ce.

C10.

B. Yonel and B. Yazici, “ A Deterministic Convergence Framework for Ex-
act Non-Convex Phase Retrieval,” to appear in the IEEE Transactions on
Signal Processing, December 2019.

B. Yonel, E. Mason, B. Yazici, “Phaseless Passive Synthetic Aperture Radar
Imaging via Wirtinger Flow,” Invited. 2018 Asilomar Conference, Pacific
Grove, CA, 2018.

B. Yonel, E. Mason, B Yazici, “Passive SAR Imaging using Phaseless Mea-
surements,” Proceedings of European Conference on Synthetic Aperture
Radar, Aachen, Germany, 2018.

E. Mason, B. Yazici, “Passive Phaseless SAR Imaging,” 2018 IEEE Radar
Conference (RadarConf18), pp: 0292 - 0297, 2018.

A Deterministic Convergence Framework for Exact Non-Convex Phase
Retrieval [J1]: In this work, we analyze the non-convex framework of
Wirtinger Flow (WF) for phase retrieval and identify a novel sufficient con-
dition for universal exact recovery through the lens of low rank matrix re-
covery theory. Via a perspective in the lifted domain, we establish that the
convergence of WF to a true solution is geometrically implied under a con-
dition on the lifted forward model which relates to the concentration of the
spectral matrix around its expectation given that the bound is sufficiently
tight. As a result, a deterministic relationship between accuracy of spec-
tral initialization and the validity of the regularity condition is derived, and
a convergence rate that solely depends on the concentration bound is ob-
tained. Notably, the developed framework addresses a theoretical gap in
non-convex optimization literature on solving quadratic systems of equa-
tions with the convergence arguments that are deterministic. Finally, we
quantify a lower bound on the signal-to-noise ratio such that theoretical
guarantees are valid using the spectral initialization even in the absence of
pre-processing or sample truncation.

Phaseless SAR imaging [C5], [C6], [C10]: Passive synthetic aperture
radar (SAR) is a coherent imaging method. Thus, performance is very sus-
ceptible to phase error, which result because the transmitter is not under
control of the user. These errors result from poor clock synchronization,
uncertainty in transmitter location and trajectory error, to name a few. In
[C5],[C6] and [C10], we present an incoherent imaging method for passive
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SAR which uses phaseless measurements. The approach is appealing over
existing methods for passive radar since only a single receiver is required,
and robustness to uncertainties is increased. We utilize the observation that
the squared modulus of the data is equivalent to a linear mapping of a rank-
one positive semi-definite operator, formed as the tensor product of scene
reflectivity with itself. Therefore, we pose imaging as least-squares opti-
mization, utilizing this structure to constrain the problem. We consider the
use of both convex and non-convex constraints, for which we provide effi-
cient and provably convergent iterative schemes.

This effort was initiated by Eric. Eric, Bariscan and I are currently working
on a journal paper on this topic.

4.2.6 Machine Learning for Inverse Problems in Radar Imag-

ing

Publications

B2.

J5.

J8.

Cl1.

C3.

S. Kazemi, E. Mason, B. Yonel, B. Yazici, “Deep Learning for Passive Syn-
thetic Aperture Radar Imaging,” to appear in IET book on Deep Neural
Networks for Radar Applications, pp. 1-27, 2020.

B. Yonel, E. Mason, B. Yazici, “Deep Learning for Waveform Estimation
and Imaging in Passive Radar,” IET Radar, Sonar and Navigation Journal,
[invited] Special issue on Passive High Resolution Radar Imaging, 13.6
(2019): 915-926, February 2019.

B. Yonel, E. Mason, B. Yazici, “Deep Learning for Passive Synthetic Aper-
ture Radar,” [invited] /[EEE Trans. on Selected Topics in SP - Machine
Learning for RF Communication and Radar, Vol. 12, No. 1, pp. 90-103,
February 2018.

S. Kazemi, B. Yazici, “Deep Learning for joint SAR Image Reconstruction
and Segmentation,” in the Proceedings of IEEE International Radar Confer-
ence, 2020.

B. Yonel, S. Kazemi, B. Yazici, “A Neural Network Based Approach for
Radar Imaging Beyond Born Approximation,” 2019 IEEE Radar Confer-
ence, Boston, MA, 2019.
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C4

C8

9

Cl4

C15

. S. Kazemi, B. Yonel, B. Yazici, “Deep Learning for Direct Automatic Tar-
get Recognition from SAR Data,” Invited. 2019 IEEE Radar Conference,
Boston, MA, 2019.

. B. Yonel, E. Mason, B. Yazici, “Deep learning for waveform estimation in
passive synthetic aperture radar imaging, ” Algorithms for Synthetic Aper-
ture Radar Imagery XXV 10647, 106470E, 2018.

. B. Yonel, E. Mason, B. Yazici, “Deep learning for waveform estimation in
passive synthetic aperture radar,” IEEE Radar Conference (RadarConf18),
pp: 1395 - 1400, 2018.

. E. Mason, B. Yonel, and B. Yazici, “Deep learning for radar,” in 2017 IEEE
Radar Conference, May 2017, pp. 17031708.

. E. Mason, B. Yonel, and B. Yazici, “Deep learning for SAR image forma-
tion,” in Proc.SPIE, vol. 10201, 2017.

e Machine Learning for Passive SAR Imaging [B2], [J5], [J8], [C9], [C14],

[C15]: Deep learning (DL) has dramatically advanced the state-of-the-art
in many challenging problems in different domains of science including in
speech recognition, visual object recognition, predicting the activity of drug
molecules, reconstructing brain circuits, and many other problems. Moti-
vated by these advances, in [J8] we introduced a deep learning based math-
ematical framework for inverse problems in imaging, and demonstrate the
advantages and applicability of our approach in passive SAR image recon-
struction. Imaging problems require physics-based modeling of sensing and
estimation via optimization. This separation between modeling and estima-
tion is largely due to different domains of expertise. In this project we move
away from the dichotomy between modeling and optimization and propose
anovel learning framework in which modeling and optimization parameters
are jointly learned and refined. Our approach is particularly suitable for a
class of image formation problems in which the forward model is only par-
tially known. We demonstrate through extensive numerical simulations that
our DL based approach out performs conventional sparse coding methods
in terms of computational requirements and reconstructed image quality.

In [J8], we considered the passive imaging problem in which the transmit-
ter location is unknown, and used DL to refine the phase component of the
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synthetic aperture radar (SAR) forward model. In [J5] we develop a DL-
based approach for passive SAR image reconstruction when the transmitted
waveforms of opportunity are unknown. Specifically we present a deep net-
work architecture and an unsupervised training scheme to learn transmitted
waveforms as a parameter of the SAR imaging problem, while reconstruct-
ing focused imagery. The key advantage of our approach as compared to
other methods is that it only requires a single receiver antenna, thereby pro-
viding reduced cost and increased versatility. We extended our preliminary
studies on the joint waveform estimation and imaging problem in [B2], de-
veloped the theory and demonstrate its effectiveness in extensive numerical
simulations.

Machine Learning for SAR ATR [C1], [C4]: Based on the framework
for deep learning (DL) based image reconstruction approach for synthetic
aperture radar (SAR) that we introduced in [J5] and [J8], we developed a
recurrent neural network (RNN) based approach for direct automatic tar-
get recognition (ATR) from SAR received signal [C4]. The deep nonlinear
network structure enables the modelling of the complex non-linear map-
ping from the input SAR/SAS received signal to the classification label.
In developing the DL approach for direct ATR, we combined a dictionary
learning based classification approach using sparse representation with the
model-based DL image reconstruction framework. The objective function
of the underlying optimization problem contains a data fidelity term and a
regularized term imposing the sparsity condition. The RNN network re-
sulting from the unwrapping of fixed number of iterative gradient descent
steps has the dictionary as its parameters implying that the training process
provides its optimum value for estimates sparse vectors in fixed number of
iteration steps with improving classification accuracy. The DL approach
is verified on both simulated SAR data and PCSWAT simulated sonar data,
and is shown to outperform contemporary methods at similar computational
complexity level.

In [C1], we developed a method for joint image reconstruction and seg-
mentation where the segmentation step involves separating the surrounding
background from the objects of interest. The goal of this segmentation is to
assist in further processing steps such as ATR. The model-based approach
requires formulating an optimization problem that jointly recovers the un-
known scene reflectivity vector and a window that corresponds to the fore-
ground part of the image. The regularization part of the objective function

30

DISTRIBUTION A: Distribution approved for public release.



is formulated by assuming a generalized Gaussian distribution for the un-
known image given the window and a Gibbs distribution for the window
vector. By setting the generalized Gaussian distribution parameters to ap-
propriate values, we incorporate prior information, such as sparsity prior
for the foreground and normal distribution prior for the background. By
unfolding the step of an iterative gradient descent approach with alternating
minimization steps, a corresponding RNN based deep network is derived
where the regularized terms are incorporated via the nonlinear functions at
each RNN stage. Numerical evaluation on simulated data is performed for
establishing feasibility.
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Chapter 5

Appendix A - Sub-Task lead by J.
Christian
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Subpixel Localization of Isolated Edges and Lines in Digital Images

Devin Renshaw' and John Christian'
"Mechanical, Acrospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 USA

The localization of edges and lines in digital images is an important component in many image processing pipelines. Several
approaches attempt to solve this problem at both the pixel level and subpixel level. While the subpixel methods are often necessary
for applications requiring best-possible accuracy, they are often susceptible to noise, use iterative methods, or require pre-processing.
This work investigates a unified framework for subpixel edge and line localization using Zernike moments with ramp-based and
wedge-based signal models. The method described here is non-iterative and performs no pre-processing on the image. Moreover,
this method is found to outperform the current state-of-the-art for digital images with common signal-to-noise ratios. Performance

is demonstrated on both synthetic and real images.

Index Terms—edge localization, line localization, Zernike moments

I. INTRODUCTION

IGITAL images frequently contain valuable information

about the real-world objects observed by a camera, tele-
scope, or other optical system. This information may be used
to understand, interpret, monitor, or analyze the properties of
objects contained within the scene. Oftentimes, such analysis
makes use of geometric image primitives—with edges and
lines being especially common examples. Although pixel-level
edge/line localization is often adequate, some applications
demand higher accuracy and motivate the need for subpixel
localization.

In this work, we treat both edges and lines as a local
(and not global) concept, with each being identifiable by the
2D intensity pattern within a small image patch. An edge
is defined as an image point whose neighborhood possesses
an intensity discontinuity in one direction and not in the
other. Likewise, a line is defined as in image point belonging
to a bright (or dark) 1D path against a dark (or bright)
background. The local concept of an edge/line used here is
not to be confused with its global counterpart, which is the
locus of edge/line points forming a 1D path within the image.
Furthermore, because our definition of edge/line is local, the
global path formed by the locus of edge/line points may be
of arbitrary shape and need not be straight—although we do
assume the edge/line is approximately straight within its local
neighborhood.

The technique developed in this work is designed for the
localization of isolated edges/lines. An isolated edge/line is
defined here as an edge/line point haivng no other points
belonging to another edge/line within its neighborhood.

Pixel-level edge localization is a ubiquitous image process-
ing task, with a variety of techniques that can be found in
almost every introductory text on image processing. Some
popular methods are those of Sobel [1], Marr-Hildreth [2], and
Canny [3]—although there are many more. Likewise, there are
several methods available for subpixel edge localization. Many
of these methods operate by refining a pixel-level edge guess
into a subpixel-level estimate. The approaches for achieving
such a subpixel correction vary, but generally belong to one
of four different categories: moment-based [4], least-squares

fitting [5], partial area effect [6], and interpolation [7].

This work presents a localization framework that is equally
suitable to finding the subpixel location of edge and line
points within a digital image. Our method belongs to the
moment-based category of techniques. We refine recent work
on improved edge localization with Zernike moments [8] and
then extend this approach to the closely related problem of line
localization. Unlike conventional subpixel edge localization
methods using Zernike moments that assume an intensity step
function [9], we model the underlying intensity function as a
ramp (for an edge) or a wedge (for a line). The framework
presented here is computationally efficient, non-iterative, and
can be used within any imaging pipeline.

The remainder of this work is organized as follows. Sec-
tion II introduces the coordinate frames and scaling con-
ventions that are used in Section III to construct Zernike
moments on local image patches. Section IV describes how
to use these Zernike moments for the subpixel localization of
both edges and lines. Performance of this approach is then
demonstrated quantitatively on synthetic images (Section V)
and qualitatively on real images (Section VI).

II. COORDINATE FRAMES AND CONVENTIONS

Suppose that we have a digital image with N rows and M
columns, with pixel intensity values stored in a N x M array
(for a monochrome image). Define the u—v coordinate system
with the origin in the upper lefthand corner such that pixel
centers occur at integer values of u and v. The wu-direction
is to the right (corresponding to column number) and the
v-direction is down (corresponding to the row number). We
presume in this work that a different algorithm (e.g., Sobel
[1], Canny[3]) has already produced pixel-level estimates for
either an edge or line location. Assuming such an algorithm
has detected m such pixel locations, we denote the set of
pixel-level guesses as {ii;, 9;}7* C Z*? (where Z* is the set
of non-negative integers).

The algorithms presented in this work use a small image
patch (e.g., 5 x5 or 7x7) centered about a pixel-level estimate
of an edge or line location to compute a small correction to that
feature’s location. The result is subpixel-level localization of a
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point belonging to an edge or line. Furthermore, the moment-
based methods to be discussed in Section III require the signal
to be contained within the unit circle. Thus, data within each
small image patch must be scaled to lie within the unit circle.
For the ¢-th patch,

2 2
= —(u—1u V=—(@W—-17 1

p( i) Np( i), M
where N, is the size of the image patch (e.g., N, = 5isa x5
patch). We generally constrain N, to be an odd integer, such
that the pixel-level guess occurs at the center of the patch.
This scaling ensures that ||@|]| < 1 and ||7|| < 1 for every
point within the square patch, and that @ + > < 1 within the
inscribed circle.

We also find it convenient to define a rotated version of the
u—v coordinate frame with an orientation dictated by the local
normal of the edge or line. Define a frame with coordinate
axes @' and ¥’ that are rotated by an angle i relative to
the unprimed frame (Fig. 1) such that the @ direction is
parallel with the local edge/line normal and ' is parallel to
the edge/line tangent. The direction @’ is chosen to be positive
in the direction from dark to bright for an edge. Alternatively,
for lines, the positive @’ direction is chosen to be from the
patch center towards the line’s center. Thus, by construction,
the correction from the pixel-level guess to the subpixel line
location is a small positive update along the @’ direction. The
subpixel update along the 4 direction may be either positive
or negative for an edge.

<l

Fig. 1. Unaligned system in the uv frame, and the aligned prime frame @’ v’
where o' is parallel to the incident line, and @’ is normal to the line. Although
this figure shows only an edge, these coordinate frame conventions are the
same for both lines and edges.

III. COMPUTATION OF ZERNIKE MOMENTS IN DIGITAL
IMAGES

It is well-established that image moments are a useful
tool for compactly describing the shape of the 2D intensity
pattern within an image patch using only a small number of
parameters. In general, 2D moments are a weighted average of
the 2D signal value, with the weights for a particular moment
coming from its corresponding basis function. That is, given
a basis function Py, (u, v), the corresponding moment of the
arbitrary 2D signal f(u,v) is computed as

//anfa@ (@,7) dudo )

Since we will be computing moments within small image
patches, we have chosen to express all functions in terms of
the scaled pixel coordinates {@, 7} as defined in Eq. 1.

The choice of basis functions P,,, is somewhat arbitrary,
although it is desirable that the chosen set is both complete
and orthogonal. In the case of edge or line localization, we are
looking for basis function sets defined within the unit disk. If
P, is chosen to be a polynomial in two variables, there are
an infinite number of complete orthogonal sets [10]—with the
Zernike polynomials being the most commonly used.

A. Zernike Polynomials

Zernike polynomials, originally developed to aid in the
study of spherical aberrations in optical lenses [11], have since
found uses for a broad array of applications [8], [12], [9], [13],
[14], [15]. The Zernike polynomials may be written in either
Cartesian or polar coordinates, with the polar form being the
most commonly used,

Prm(p,0) = Rum(p) exp (jmb) 3)
where j = v/—1 and
p? = a* + v* 4
n—2s , — 5)!
Rom(p) = — L) ®)

(2 phml st (gl — gl ).
These polynomials form a complete set over a continuous
space contained within the unit circle. The 1D radial poly-
nomials, R,,,(p), and their corresponding 2D Zernike poly-
nomials, P, (u,v), may be computed for a few common
combinations of n and m,

Roo(p) =1 = Py (a,v) =1, (6)
Ru(p) = p= P11(4,0) = + j, @)
Rao(p) = 2p? —lezo(ﬂ 7)=2u> +25° -1, (8)
Ros(p) = ,0 = Pyo(a,v) = w2 + 2. 9)

where the order 7 and repetition m [8] (or angular dependence
[16]) can assume any values that satisfy

n > |m| =0, (10)

(1)

n—m even.

It is straightforward to show that Zernike polynomials are
orthogonal under an Ls-inner product,

(Play: Pipy)y, = /P<a>P<*ﬂ)dudv=Q<a>5aﬂ (12)

u2+0v2<1

where P,) and Pg) are two arbitrary polynomials of the set,
P’b) is the complex conjugate of Pg), and d,p is the Kro-
necker delta function. Additionally, @ () is the normalization
coefficient and may be computed as [16]

™

Qnm:n+1

(13)
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B. Zernike Moments for a Continuous 2D Signal

Zernike moments are formed by using the Zernike polyno-
mials from Eq. 3 as the basis functions in the 2D moment
equation (Eq. 2). We express such a moment as

Zam = // Pum(uv) f(u,v) dudv  (14)

u?+v2<1

although we often find that scaling with the normalization
coefficient is not required,

Apm = P (u,v) f(u,v) du do, (15)
u2+v2<1
This, of course, leads to the simple scaling relation
an - Anm/Qnm (16)
C. Rotational Properties of Zernike Moments
Zernike moments of repetition m = 0 are rotationally

invariant, as the value of the moment A,,,, is unaffected by
the orientation of the underlying signal relative to the 4-v
coordinate system. For other values of m (i.e., for m > 0),
we find that the moment A,,,, changes as the orientation of
the underlying signal changes.

Consider, for example, the moment A, for a particular
image patch as computed in the %-? frame. Now consider the
moment A/, for this same image patch as computed in the
u'-v’ frame that has been rotated by an angle v relative to the
unprimed frame (see Fig. 1). Noting that 8’ = 6 —1), it is clear
from Eqgs. 3 and 15 that

Al = Apm exp(—jmap) (17

It is this relation that will ultimately allow us to determine the
orientation of an edge or line from the moment Ay;.

D. Zernike Moments for a Digital Image

A digital image, I(u,v), is a quantized representation of the
continuous signal f(u,v). The image I(u,v) is presumed to
be an array of digital numbers, with integer intensity values
(e.g., 065,535 for a 16-bit image) occurring at integer valucs
of  and v.

In this case, we approximate the Zernike moment integral
from Eq. 15 with a double summation. Therefore, assuming
a local image patch of size N x N centered at a pixel-level
edge/line guess of {u;,¥;}, one may compute the moment as

PP
Apm (3, 05) & > Y I(lii + 5, + k) My (p + 5,0 + k)
k=—ps=-p

(18)
where p = (N —1)/2 is a non-negative integer (since N is an
odd integer greater than one). The mask M, is an N x N
matrix of values found by the integration of P,,, over the
corresponding pixel and within the patch’s inscribed circle.
Values of M7, and Msq are shown for a 5x5 and 7x 7 mask in
[8]. It is observed that Eq. 18 is simply an image correlation,

such that one may compute the moment everywhere in the
image according to

m ¥ 1

where * is the 2D correlation operator.

The edge and line localization methods presented here will
ultimately only use the moments Ay and Agg. Of note is that
My is real valued such that

A20 = Mgo ey (20)
We observe, however, that M7 is complex valued,
Mym = Re [Mll] +jIII1 [Mll] 21

Fortunately, given the structure of M, one only needs to keep
track of the real component in practice since [8]

Re[A11] = Re [Myy] « I (22)

Im[Ay] = Re[Myy)" * 1 (23)

Thus, we may compute all the necessary moments through
three simple image correlations (which, in practice, only need
to be computed at the pixel-level edge or line locations and
not at every point in the image).

IV. MOMENT-BASED EDGE AND LINE LOCALIZATION

The same procedure may be used for both edge and line
localization. In both cases, the image data in a small N, x
N, image patch around a pixel-level edge/line guess is scaled
according to Eq. 1 and the Zernike moments Ay, and Agg
are computed (Egs. 20, 22, 23). These moments are used to
compute the edge/line orientation (1)) and the distance along
this direction by which the pixel-level edge/line guess should
be adjusted (£). Consequently, both the edge and the line are
corrected to subpixel accuracy by

HEE

which, after rearranging Eq. 1, yields the correction we seek

in practice
w | Nyl | cosv
|:’U:|_|: }+Tp{sinw]

The orientation v of both edges and lines is found in the same
way and using the same equation. The difference between the
correction between the edge and line is simply how the Zernike
moments are used to compute /.

(24)

[STIE]

(25)

S 2

A. Computing Edge or Line Orientation

Determining the normal direction to an edge or line is
achieved in the exact same manner, with the final equation
being equivalent for both. By construction, and as can be seen
from Fig. 1, the intensity value is only a function of @’ (i.e.,
not a function of ©’) for both the edge and the line. We see
immediately from the form of Pj; in Eq. 7 that

Im[Al,] = 0 (26)
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Thus, recalling that exp(—jm) = cos(my) — jsin(my)), we
may rewrite Eq. 17 as (for m =n =1)

Ay = Ay [cos(p) — jsin(v)] 27

such that
Re[A};] = Re[A11] cos(¢p) + Im[A1] sin(v)) (28)
Im[A};] = Im[A11] cos(¢)) — Re[A1]sin(¢p) =0 (29)

The line orientation may be found using the equation for the
imaginary component of A/ . Observing that

Im[A;q] cos(v)) = Re[A11] sin(v)) (30)

we find that the orientation of the line is computed in terms
of the moment Ay; (computed using Eq. 17 and Eq. 30) as

1) = atan2 (Im[A11], Re[A11]) (31)

This relation has been known for some time for edges [8],
[9]. Although obvious within the present framework, this
represents the first extension of Eq. 31 to lines (of which the
authors are aware).

B. Computing ¢ for Edges

An edge is generally understood to describe a discontinuity
in image intensity in one direction, with little intensity change
in the direction orthogonal to this discontinuity. Real grayscale
images, however, rarely exhibit a true intensity discontinuities.
Instead, image blur and pixel quantization cause the intensity
change rapidly over a small distance (a few pixels). Thus,
we seek areas of high intensity gradient rather than true
discontinuities. It has long been known [4] that using a step
function for the edge model within a moment-based subpixel
edge localization algorithm produces a biased edge update if
the image is blurred. This was one of the motivations for
introducing a ramp edge model in [8].

In many practical image processing problems, the point
spread function (PSF) due to camera defocus and other optical
effects is well modeled as a 2D Gaussian [17]. Consequently,
the line associated with a crisp edge (a true discontinuity) may
be blurred according to

Iblur ~ KG x [ (’32)

where [ is the perfectly crisp image, K¢ is the Gaussian
kernel, and Iy, is the blurred image. The one-dimensional
intensity profile taken perpendicular to the edge is sometimes
referred to as the edge spread function (ESF), which will
generally take the shape of a sigmoid function. To avoid
the mathematical complexities of the sigmoid function within
the Zernike moment integrals, it was observed in [8] that a
linear ramp provides an adequate engineering approximation
for most practical cases. The objective, therefore, is to relate
the width of the linear ramp (w, see Fig. 2) with the width of
the Gaussian kernel approximating the camera PSF (o). We

do this using the linear relationship
(33)

W = keqgeo

where kcgqq4c is the scaling we seek. In [8], it was suggested
to select keqge = 1.66. We performed a more comprehensive

study and found that choosing kcqqe = 1.8 produced superior
performance, especially as the SNR became very large. In
general, we found reduced sensitivity to the choice of kegge
as the images became noisier (lower SNR).

Therelore, we choose to model an edge as a ramp, whose
intensity changes linearly between a background intensity (h)
and a foreground intensity (h + k). The midpoint of this
transition is defined to occur at a distance ¢ from the image
patch center and has a width of 2w. Since we are using Zernike
moments, we define all these quantities within the unit disk
(Fig. 2). By choosing to define the edge in the @'-%’ frame,
it is straightforward to write the intensity as a function of @’
only,

h ' <fl—w
Tegge (0. 0') = h+kw —w<@ <{l+w
h+k C4w <
(34)
k
- b k+h

Fig. 2. Graphical representation of an edge on an image within the unit circle,
including background intensity h, peak intensity of edge k, edge width w,
and distance from the origin to the midpoint of the edge ¢.

Using this ramp edge model, it is possible to analytically
solve the double integral in the moment equation from Eq. 15
in the edge-aligned (i.e., primed) frame. We do this for the
moments A}, and Ab, leading to

k
Al = —— [3 arcsin fy + (3 + 2Bs)ly By

24w (35)
—3arcsinfy — (3 + 231)6131]
Al = Aoy = L (B} — B3] (36)
20 hw 1 2
where
Vi1=0—w and l=/(+w (37)
and
By =4/1—-2 and Bg=/1-1/03 (38)

Looking at the expressions for A}, and A, it is immedi-
ately evident that the the intensity-dependent variable k£ (which
describes the magnitude of the intensity change across the
edge) cancels out if one considers the ratio, Qg

Qp =20 _ A

Al
All

(39)
Ay
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In many cases the edge width w is known (e.g., from the
imaging system point spread function), such that Qg is a
function of only ¢. Although the analytic expression for Qg
is rather cumbersome, it was found in [8] that

Qp ~ 5[1 1+ z/z)uﬂ] (40)
which may be rearranged to solve for the unknown ¢
. 1 —w?— /(w2 —1)2 — 2u?Qpg @1

w?

C. Computing ¢ for Lines

As a natural extension to the ideal step-function ESF, we
model the ideal line spread function (LSF) as an impulse
(where the LSF is defined as the 1D intensity profile per-
pendicular to the line). As before, the perfectly crisp image
is blurred with a Gaussian kernel, thus spreading out the line
intensity—with the resulting LSF being Gaussian PDFE. Rather
than deal with the mathematical complexities of the Gaussian
PDF, we choose to model the line PSF as a wedge. To make
practical use of the wedge model, it is necessary to determine
the relationship between the wedge width (w, see Fig. 3) and
the Gaussian kernel width (o),

W R Kjineo (42)
where kj;p. is the parameter we seek. We found that choosing
kiine = 0.9 provided the best results, with low SNR images
exhibiting less sensitivity to the exact choice of this parameter.

The small image patch centered about the pixel-level guess
is assumed to have a constant background intensity of h and
contain a line of intensity h + k. The wedge has a full width
of 2w with a peak intensity occurring at a distance ¢ from
the image patch (or disk) center. The sides of the wedge are
linear ramps transitioning between the background and the
line’s ridgeline. This is shown pictorially on the unit disk in

Fig. 3.
|

2w
1 ) k+h

Fig. 3. Graphical representation of a line on an image within the unit circle,
including background intensity h, peak intensity of line k, width of the line
w, and distance from the origin to the line £.

As with the edge, we choose to define the line model in
the @'-v’ frame such that the intensity is a function of @’ only
(and not a function of 7'),

h ' <l—w
’U/—(f—w) _ ! <
D@0ty = { PP e <TS b
htk—kTt (<@ <l+w
h (+w<

The analytical value of A}; and AL, may be found by
evaluating the double integral from Eq. 15

4 [b arcsin# — 3arcsinf; — 3 arcsin £

11 — %
92
+20C (5 — 20?) 44)
—01B1(3 +2BY})
—lyBa(3 + 233)]
and
A = 2k [35 LB - 205] (45)
20 — 15w 1 2 )
where B; and B, are from Eq. 38 and
Cc=\1-r2 (46)

The ratio of Al to A}, climinates k, thus providing a
function of only ¢ and w,
/

5l 5l

Assuming the line width w is known, we seek to rearrange @),
to solve for the unknown £. The complicated form of @), after
substitution of Eq. 44 and Eq. 45 makes finding an analytic
solution difficult for arbitrary values of w and ¢. Fortunately, it
is straightforward to find an approximation that is good enough
for most practical image processing applications.

We know that lines are thin, so it is instructive to explore
what happens to Q);, as w — 0. We find that the limit does
permit a simple analytic solution,

QL(E, ’w)

I A, — 1 48
Qr, = wlgl() QL = W (48)
which may be solved for for /r,,
2
A 3 3 1
by, = = + - - 49
Lo 8QL0 <8QL0> + 4 ( )
To choose the correct root, observe that
402 — 1
li = 0~ —_ 50
2L0?15+'Q2L“ €,,—01 3l 0 (50)

where we know to choose the right limit since £, > 0 by
construction. Thus we seek the root that is approximately zero
when (Jr, is a large negative number, which only happens
when the plus sign is chosen in Eq. 49. Therefore,

(6D

FNyp-

.3 3 ?
EL‘) = gQLo + (gQLl)) +
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This analytic result may be generalized to the situation
where w > 0, which does not appear to permit an exact ana-
Iytic solution. Therefore, we write a parameterized expression
for ¢, that simplifies exactly to Eq. 51 when w = 0 and fit
the parameters in a least squares sense. Using this approach,
consider a model of the form

0 ~ \/an% + a2Qrw + asw? + aqw + ag
+asQr + arw + ag

(52)

We found the terms associated with a1, a3, as, and ag
to dominate the estimate of ¢j, with the remaining terms
contributing relatively little. Furthermore, it was found that
a1 =~ ag regardless of the test set-up. Therefore, discarding
the unimportant terms and letting a; = ag, we performed a
three parameter fit for the line correction of the form

i ~ \/an% +asw? +as+a1Qr. (53)

The result of the least squares fit found the values of a; and
as to exactly match the analytically derived coefficients for
{1, in Eq. 51

a1 =3/8, az=1/4 (54
and empirically found that
as ~ —1/10 (55)

Therefore, we may write the empirically derived expression
for the line update for arbitrary w as

.3 3 S| 1
= — — a2 _
{1 8QL+\/<8QL) T +4

V. NUMERICAL VALIDATION ON SYNTHETIC IMAGES

(56)

The performance of the edge and line localization methods
presented in this work were quantitatively evaluated using
synthetic images. We find synthetic images to be especially
useful in this context since the true continuous location of
every image feature is known. The perfectly known continuous
underlying signal may be blurred to simulate camera defocus
and quantized (both spatially and in intensity) to simulate
differing image resolutions. Further, noise may be added with
a prescribed intensity, allowing the unambiguous evaluation of
performance as a function of signal-to-noise ratio (SNR). This
is important, as the localization of edges is known to become
more challenging as SNR decreases [18].

For the examples presented here, perfect images were
blurred by using a Gaussian point spread function (PSF). After
blurring, zero-mean Gaussian noise was added to achieve the
specified SNR.

A. Synthetic Images with Edges

1) Ideal Edge Localization Performance

It is important to quantify the error associated with the
approximations used to arrive at the analytic edge update
given in Eq. 41. Therefore, as a bounding case, suppose

that we perfectly compute the Zernike moments for a noise-
free continuous signal. In this situation, the error in [fE is
given by the contours in Fig. 4 for different situations. These
contours make clear the performance improvement realized by
switching form the step-function edge model (red contours) to
the ramp edge model (black contours). The results shown here
are identical to the observations of Christian in [8].

w (pixels)

08
¢ (pixels

Fig. 4. Contours of edge localization error for a continuous (not pixelated)
ramp edge signal. Black contours show the error when using the approxima-
tion from Eq. 41, red contours show the error when using the step function
approximation from [9].

2) Digital Image Edge Localization Performance

Our method performed favorably to other existing tech-
niques when processing synthetic digital imagery. This was
assessed through a Monte Carlo analysis where we evaluated
performance of different algorithms for images having varying
amounts of blur and noise. Figure 5 shows edge localization
error with our technique (black contours) compared against
the moment-based solution with a step-function edge model
[9] and the partial area effect (PAE) [6]. Results for both of
the two moment-based methods shown here assume a 5 x 5
pixel mask.

041

o
[

Blur Standard Deviation
o

0.1

64 T
Signal to Noise Ratio (SNR)

Fig. 5. Contours of edge localization error (in pixels, assuming a 5 X 5
mask) for our method (black), the step function approximation using Zernike
moments (red) [9], and the partial area effect (blue) [6] as a function of SNR
and blur levels.
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We observe that the PAE algorithm produced nearly perfect
edge localization in cases with no noise (infinite SNR; off the
right-hand side of Fig 5). The Zernike moment methods tended
to perform better than the PAE method as noise increased
(as SNR decreased; towards the left-hand side of Fig 5). The
method presented in this work outperforms the PAE method
for most real-life SNR values.

Example performance of our subpixel edge localization
algorithm in different noise/blur cases is shown in Fig. 6.
This example shows localization of the edge of a circle. Clear
improvement is evident in all cases, as the algorithm moves the
pixel-level edge guess (red x) towards the true edge location
(black line). We know the true edge location since these are
synthetic images.

x Pixel-level Guesses
* Subpixel Estimates

Fig. 6. Qualitative visualization of subpixel edge localization performance at
varying levels of blur and SNR. The left column shows the full synthetically
generated image and the right column shows a small area within that image.
The rows represent different noise and blur levels (top: no noise or blur;
middle: noise only; bottom: noise and blur). The black line is the exact
location of the true edge.

B. Synthetic Images with Lines

1) Ideal Line Localization Performance

As with the case of edges, we begin the numerical assess-
ment of our subpixel line localization method by considering
the case of a continuous signal. This allows us to directly
quantify the error associated with the approximations used to

arrive at the analytic expression in Eq 56. We considered all
reasonably plausible combinations of line location (£) and line
width (w) and produced contours of errors in the estimate / L
as shown in Fig. 7. These errors low enough to be negligible
when applied to a pixelated image.

w (pixels)

¢ (pixels)

Fig. 7. Contours of line localization error when using Eq. 56 for a continuous
(not pixelated) wedge edge signal.

2) Digital Image Line Localization Performance

Our Zernike moment method also performed well in the
subpixel localization of lines. We performed a Monte Carlo
analysis where line localization error was recorded for varying
amounts of image blur and noise. The results are shown
as contours in Fig. 8. As expected, localization performance
decreases with increased noise and blur.

Example performance of our subpixel line localization
algorithm in different noise/blur cases is shown in Fig. 9.
This example shows localization of a circular line. Clear
improvement is evident in all cases, as the algorithm moves
the pixel-level line guess (red x) towards the true line location
(black line). We know the true line location since these are
synthetic images.
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Fig. 8. Contours of line localization error (in pixels, assuming a 5 x 5 mask)
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Fig. 9. Qualitative visualization of subpixel line localization performance at
varying levels of blur and SNR. The left column shows the full synthetically
generated image and the right column shows a small area within that image.
The rows represent different noise and blur levels (top: no noise or blur;
middle: noise only; bottom: noise and blur). The black line is the exact
location of the true line center.

VI. VALIDATION ON REAL DATA

After confirming that estimate edge and line locations agree
with the truth in simulated images, we apply our method to
real digital images. As these real-world images do not provide
perfect subpixel knowledge of the edge or line location, verify-
ing results is from visual inspection and is largely qualitative.

It is important to remember that the algorithm presented
here only performs the subpixel localization (i.e., correction)
on pixel-level location guesses (e.g., using Sobel [1], Canny
[3], or other method); any lines that the higher-level algorithm
fails to identify will not contribute to the final result. Note
that these pixel-level guesses may be found automatically or
manually. Regardless of how they are found, the subpixel
correction is automatic.

This section includes a number of example images with
the accompanying results from the methods proposed in this
paper. These examples show the raw image on the left-most
frame, followed by two sections of the image in grayscale
containing lines or edges of interest (center and right frame).
The middle frame of each example only shows the subpixel
estimate overlay (green dots). The right frame of each example
shows both the pixel-level guess (red x) and the subpixel
estimate (green dots) overlay. The right frame also shows the
edge or line estimates connected by a line to highlight the

improvement in smoothness automatically produced by the
subpixel correction.

Figure 10 shows an application to satellite imagery that
illustrates the difference in the shores of the Mississippi River
in the aftermath of a flood (top) and its normal banks (bottom).
Figures 11, 12, and 13 show various space images to which
we have applied this technique. Figure 14 traces the routes of
blood vessels in a retinal scan to highlight the potential use
of this method in medical imaging.

VII. CONCLUSION

Zernike moments are powerful tools in image processing.
Correcting a pixel-level guess of either an edge or a line
requires use of only two moments: Aj; and Ayy. We show
that it is possible to accurately locate both edges and lines
using an analytic function of these two moments. Furthermore,
this method is tolerant to noise and outperforms other ex-
isting methods. Performance was quantitatively evaluated on
synthetic images (better than 0.1 pixels for both edges and
lines) and qualitatively evaluated on real images. Applications
were shown to remote sensing, space exploration, and medical
imaging.
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Fig. 12. Inertially pointed star field image captured with with the Omnidirectional Space Situational Awareness (OmniSSA) system. This example image has
a 10 second exposure time and contains a satellite that appears as a streak (line) within the image. The red X symbols denote pixel-level line estimates, and

green dots denote the refined subpixel localization estimates. The original OmniSSA image is courtesy of Dr. Marcus Holzinger of University of Colorado
Boulder.

Fig. 13. New Horizon’s Long Range Reconnaissance Imager (LORRI) captured this image of Kuiper belt object Arrokoth (formerly called Ultima Thule)
during a flyby in early 2019 [21]. The red x symbols denote pixel-level line estimates, and green dots denote the refined subpixel localization estimates.

Fig. 14. Image of a retinal scan for a healthy eye, where we seek to localize blood vessels. The red x symbols denote pixel-level edge estimates, and green
dots denote the refined subpixel localization estimates. The original image is im00032 from the STARE database [22], [23].
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