
May 12, 2018

Yi-Ling C. Tam
Vehicle Engineering Department
Vehicle Systems Division

Prepared for:
Space and Missile Systems Center
Air Force Space Command
483 N. Aviation Blvd.
El Segundo, CA 90245-2808

Contract No. FA8802-14-C-0001

Authorized by: Space Systems Group

Distribution Statement A: Approved for public release; distribution unlimited.
This report was submitted by The Aerospace Corporation, El Segundo, CA 90245-4691, under Contract No. FA8802-14-C-0001 with the Space and Missile Systems Center, 483 N. Aviation Blvd., El Segundo, CA 90245. It was reviewed and approved for The Aerospace Corporation by B. Zane Faught, General Manager, Engineering and Integration Division. Luis Rodriguez was the technical advisor for the SMC/EN program.

This report has been reviewed by the Public Affairs Office (PAS) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nationals.

This technical report has been reviewed and is approved for publication. Publication of this report does not constitute Air Force approval of the report’s findings or conclusions. It is published only for the exchange and stimulation of ideas.

APPROVED ELECTRONICALLY BY 5/11/2018
Luis Rodriguez Date
SMC/EN

All trademarks, service marks, and trade names are the property of their respective owners.
4. TITLE AND SUBTITLE

5a. CONTRACT NUMBER
FA8802-14-C-0001

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
The Aerospace Corporation
Vehicle Systems Division
2310 E. El Segundo Blvd.
El Segundo, CA 90245-4691

8. PERFORMING ORGANIZATION REPORT NUMBER
TR-2018-01203

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Space and Missile Systems Center
Air Force Space Command
483 N. Aviation Blvd.
El Segundo, CA 90245

10. SPONSOR/MONITOR’S ACRONYM(S)
SMC

11. SPONSOR/MONITOR’S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT
This document provides the tailoring for the American National Standards Institute (ANSI) and American Institute of Aeronautics and Astronautics (AIAA) Standard ANSI/AIAA S-120A-2015, “Mass Properties Control for Space Systems.” The stakeholder review version (TOR-2017-02395) was released on Jan. 29, 2018. The stakeholder review status is documented in ATM-2018-01215. The information contained in this document may be used for establishing requirements during preparation of acquisition contracts and program specific documents. The primary objective of this document is to define the changes that The Aerospace Corporation and Space and Missiles Systems Center (SMC) need to make to the ANSI/AIAA Standard to be consistent with contractual obligations of space vehicle development and mission integration.

15. SUBJECT TERMS
Tailoring for ANSI/AIAA S-120A-2015

16. SECURITY CLASSIFICATION OF:

<table>
<thead>
<tr>
<th>a. REPORT</th>
<th>b. ABSTRACT</th>
<th>c. THIS PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNCLASSIFIED</td>
<td>UNCLASSIFIED</td>
<td>UNCLASSIFIED</td>
</tr>
</tbody>
</table>

19a. NAME OF RESPONSIBLE PERSON
Yi-Ling C. Tam

19b. TELEPHONE NUMBER (include area code)
(310) 336-0823
Foreword

This document provides tailoring of the American National Standards Institute (ANSI) and American Institute of Aeronautics and Astronautics (AIAA) Standard ANSI/AIAA S-120A-2015, Mass Properties Control for Space Systems, approved on November 23, 2015, as it applies to space vehicles (SVs) (hereafter referred to as the “ANSI/AIAA standard”). The information contained in this document may also be used for establishing requirements during preparation of acquisition contracts and program specific documents.

The primary objective of this document is to define the changes that The Aerospace Corporation and Space and Missiles Systems Center (SMC) need to make to the ANSI/AIAA standard to:

- Be consistent with existing contractual obligations
- Insert or remove “shall statement” as needed for all programs
- Add clarifying language where the ANSI/AIAA standard is vague or too general
- Provide a tailoring of the ANSI/AIAA standard that addresses the mass properties processes and control requirements that are unique to SVs.

This document is structured to follow the same section numbers as the ANSI/AIAA standard. Modifications for each tailored section of the ANSI/AIAA standard are provided in the corresponding numbered section of this document.

Where text or figures from the ANSI/AIAA standard are to be contractually implemented without change, those paragraphs or figures are not detailed in this document.

The ANSI/AIAA standard approved on November 23, 2015, together with this tailoring document form an effective baseline for SV mass properties control requirements.
Acknowledgments

This document is the result of contributions received from many individuals. The names and organizations of the principal contributors, or those acting as the focal point of contact for their organizations, are listed below:

- John S Brader, Vehicle Engineering Department
- Phillip C. Head, Vehicle Engineering Department
- Michael R. Hilton, Mechanical Systems Department
- Maben Jimenez, Vehicle Engineering Department
- Gail A. Johnson-Roth, Enterprise Systems Engineering Office
- John H. Nakai, Vehicle Engineering Department
- Todd M. Nygren, Corporate Chief Engineer’s Office
- Randolph Quon, Vehicle Engineering Department
- Vale T. Sather, Engineering and Integration Division
- Brian E. Shaw, Engineering and Integration Division
- William F. Tosney (retired), Corporate Chief Engineers Office
- Jacqueline M. Wyrwitzke, Mission Assurance Subdivision

Special thanks to the Corporate Chief Engineer’s Office and Engineering and Integration Division for funding the development and review of this tailoring document.
Contents

1. Scope ... 1
 1.1 Purpose ... 1
 1.2 Application ... 1

2. Tailoring .. 2
 2.1 Definition ... 2
 2.2 Changes from ANSI/AIAA S-120A-2015 .. 2

3. Applicable Documents .. 4

4. Vocabulary .. 5
 4.1 Acronyms and Abbreviated Terms ... 5
 4.2 Terms and Definitions (Definitions Added) .. 5

5. Requirements (Clarification Language Added) .. 6
 5.1 Mass Properties Control .. 6
 5.1.1 Scope ... 6
 5.1.2 Mass Properties Control Plan (Clarification Language Added) ... 6
 5.1.3 Mass Properties Control Process (Clarification Language Added) 6
 5.1.4 Requirements Flow Down and Traceability (Clarification Language Added) 6
 5.1.5 Mass Maturity Assessment (Clarification Language Added) .. 7
 5.1.6 Assessment of Predicted Performance Against Requirements (Clarification Language Added) .. 7
 5.1.7 Mass Growth Allowance (Clarification Language Added) ... 7
 5.1.8 Mass Threats, Opportunities, and Probability of Occurrence (Clarification Language Added) .. 7
 5.1.9 Mass Margin ... 7
 5.1.10 Mass Risk Assessment (Heritage Design Column Added) ... 7
 5.1.11 Technical Performance Measurement ... 8
 5.1.12 Mass Properties Control Board (Clarification Language Added) 8
 5.2 Analysis .. 9
 5.2.1 Scope ... 9
 5.2.2 Methods of Analysis .. 9
 5.2.3 Flight Hardware Analysis ... 9
 5.2.4 Mass Properties Uncertainty Analysis (Clarification Language Added) 9
 5.2.5 Special Analyses .. 10
 5.3 Verification .. 10
 5.3.1 Verification Plan (Requirement Added) .. 10
 5.3.2 Test Plan (Requirement Added) .. 11
 5.3.3 Standard Work Instruction ... 13
 5.3.4 Test Procedure (TP) .. 13
 5.3.5 Data Record .. 13
 5.4 Mass Properties Data Management ... 15
 5.4.1 Scope ... 15
 5.4.2 Data Management System ... 15
 5.4.3 Data Organization Utility (Clarification Language Added) .. 15
 5.4.4 Database Record Keeping ... 15
 5.5 Documentation ... 15
 5.5.1 Scope ... 15
 5.5.2 Mass Properties Control Plan ... 15
Tables

Table 2 – Mass Risk Assessment Example... 8
Table C.1 – Numbered Requirements... 21
Table D.1 – Space Vehicle Acquisition Mission Risk Classes 25
1. **Scope**

1.1 **Purpose**

This document is to be used for tailoring the American National Standards Institute (ANSI)/American Institute of Aeronautics and Astronautics (AIAA) Standard S-120A-2015, November 23, 2015, to provide an effective space vehicle (SV) program technical baseline for mass properties control and mission success.

1.2 **Application**

This document is intended for use in acquisition and study contracts for SVs. The ANSI/AIAA standard tailored by this document (hereafter referred to as the “tailored ANSI/AIAA standard”) supersedes all revisions of the following documents:

- MIL-STD-1811
- MIL-HDBK-1811
- MIL-M-38310
- AIAA S-120-2006
- TOR-2005(8583)-3970
- TOR-2008(8583)-7560

This tailored ANSI/AIAA standard should be used as a compliance document to specify mass properties control requirements for SVs.
2. Tailoring

2.1 Definition

Tailoring is a process by which individual requirements from specifications, standards, or related documents are evaluated and applied to a specific program by deletion, modification, or addition of requirements. Tailoring of requirements should be undertaken with consultation and approval of the procuring authority to align the standard with the acquisition authority’s requirements and the mission needs.

This tailored ANSI/AIAA Standard establishes a baseline for requirements, which in turn may be tailored or revised with rationale upon approval by the procuring authority.

2.2 Changes from ANSI/AIAA S-120A-2015

The following is a comprehensive list of all the changes that this document imposes on ANSI/AIAA S-120A-2015.

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Change Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.</td>
<td>Applicable Documents</td>
<td>Reference documents updated</td>
</tr>
<tr>
<td>4.2</td>
<td>Terms and Definitions</td>
<td>Definitions (2) added</td>
</tr>
<tr>
<td>5.</td>
<td>Requirements</td>
<td>Clarification language added</td>
</tr>
<tr>
<td>5.1.2</td>
<td>Mass Properties Control Plan</td>
<td>Clarification language added</td>
</tr>
<tr>
<td>5.1.2.1</td>
<td>Subcontractor Mass Properties Control Plan</td>
<td>Requirement added</td>
</tr>
<tr>
<td>5.1.3</td>
<td>Mass Properties Control Process</td>
<td>Clarification language added</td>
</tr>
<tr>
<td>5.1.4</td>
<td>Requirement Flow Down and Traceability</td>
<td>Clarification language added</td>
</tr>
<tr>
<td>5.1.5</td>
<td>Mass Maturity Assessment</td>
<td>Clarification language added</td>
</tr>
<tr>
<td>5.1.6</td>
<td>Assessment of Predicted Performance Against Requirements</td>
<td>Clarification language added</td>
</tr>
<tr>
<td>5.1.7</td>
<td>Mass Growth Allowance</td>
<td>Clarification language added</td>
</tr>
<tr>
<td>5.1.8</td>
<td>Mass Threats, Opportunities, and Probability of Occurrence</td>
<td>Clarification language added</td>
</tr>
<tr>
<td>5.1.10</td>
<td>Mass Risk Assessment</td>
<td>Heritage design column added</td>
</tr>
<tr>
<td>5.1.12</td>
<td>Mass Properties Control Board</td>
<td>Clarification language added</td>
</tr>
<tr>
<td>5.2.2.1</td>
<td>Manual Layout/Drawing Analysis</td>
<td>Clarification language added</td>
</tr>
<tr>
<td>5.2.2.2</td>
<td>Three-Dimensional (3D) Model Analysis</td>
<td>Clarification language added</td>
</tr>
<tr>
<td>5.2.4</td>
<td>Mass Properties Uncertainty Analysis</td>
<td>Clarification language added</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Verification Plan</td>
<td>Requirement added</td>
</tr>
<tr>
<td>5.3.1.2</td>
<td>Verification Method Selection</td>
<td>Requirement added</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Test Plan</td>
<td>Requirement added</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Change Type</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>5.3.2.1</td>
<td>Test Description</td>
<td>Clarification language added</td>
</tr>
<tr>
<td>5.3.2.3</td>
<td>Measurement Uncertainty</td>
<td>Requirements added</td>
</tr>
<tr>
<td>5.3.2.5</td>
<td>Customer Witnessing of Verification Tests</td>
<td>Requirements added</td>
</tr>
<tr>
<td>5.3.4.3</td>
<td>Requirements</td>
<td>Clarification language added</td>
</tr>
<tr>
<td>5.3.4.4</td>
<td>Test Configuration</td>
<td>Clarification language added</td>
</tr>
<tr>
<td>5.3.4.5</td>
<td>Test Sequence</td>
<td>Clarification language added</td>
</tr>
<tr>
<td>5.3.5.1</td>
<td>Records for Mass Properties Measurements</td>
<td>Clarification language added</td>
</tr>
<tr>
<td>5.4.3</td>
<td>Data Organization Utility</td>
<td>Clarification language added</td>
</tr>
<tr>
<td>5.5.5</td>
<td>Test Completion Reports</td>
<td>Clarification language added</td>
</tr>
<tr>
<td>5.5.7</td>
<td>Mass Properties Status Report</td>
<td>Clarification language added</td>
</tr>
<tr>
<td>6.</td>
<td>Bibliography</td>
<td>References documents added</td>
</tr>
<tr>
<td>Annex C</td>
<td>Guidance for Compliance with Contractual Requirements (Informative)</td>
<td>Replaced Table C.1</td>
</tr>
<tr>
<td>Annex D</td>
<td>Space Vehicle Mission Risk Classes (Informative)</td>
<td>New annex section added</td>
</tr>
<tr>
<td>Annex E</td>
<td>Determining POI Sign Convention Used in CAD Software Output (Informative)</td>
<td>New annex section added</td>
</tr>
</tbody>
</table>
3. Applicable Documents

Update the references cited in ANSI/AIAA-S-120A-2015, Section 3, as described below:

- CDS, Revision 13: *CubeSat Design Specification*
- 6U CDS, Revision Provisional X1: *6U CubeSat Design Specification*
4. Vocabulary

4.1 Acronyms and Abbreviated Terms

There are no changes to this section. Use ANSI/AIAA S-120A-2015 verbatim.

4.2 Terms and Definitions (Definitions Added)

Add the following definitions to ANSI/AIAA S-120A-2015, Section 4.2.

CubeSat
CubeSats are a subcategory of small satellites whose unit dimensions (1U) do not exceed 10.0 cm x 10.0 cm x 11.35 cm and unit mass does not exceed 1.33 kg. The CubeSat is extendable to larger sizes (1.5U, 2U, 3U, 3U+) and must adhere to the CubeSat Design Specification, Revision 13, Cal Poly SLO, February 20, 2014.

A 6U CubeSat is a satellite with dimensions that do not exceed 10.0 cm x 22.63 cm x 26.6 cm and whose unit mass does not exceed 12kg. 6U and 6U+ CubeSats must adhere to the 6U CubeSat Design Specification, Revision Provisional X1, April 20, 2016.

SmallSat
Per NASA¹, a small spacecraft with mass less than 180 kg is classified as follows:

- Minisatellite: 100–180 kg
- Microsatellite: 10–100 kg
- Nanosatellite: 1–10 kg
- Picosatellite: 0.01–1 kg
- Femtosatellite: 0.001–0.01 kg

¹https://www.nasa.gov/content/what-are-smallsats-and-cubesats
5. Requirements (Clarification Language Added)

Use ANSI/AIAA S-120A-2015 for all subsections, paragraphs, tables, and figures, except as noted below.

Insert the following paragraph into ANSI/AIAA S-120A-2015, Section 5, prior to the heading of Section 5.1:

5.1 Mass Properties Control

There are no changes to this section. Use ANSI/AIAA S-120A-2015 verbatim.

5.1.1 Scope

There are no changes to this section. Use ANSI/AIAA S-120A-2015 verbatim.

5.1.2 Mass Properties Control Plan (Clarification Language Added)

Append the following paragraph to the end of ANSI/AIAA S-120A-2015, Section 5.1.2:

See SAWE RP A-3, Revision A, Section 5.1.2, for additional information on key functions of the Mass Properties Control Plan (MPCP).

5.1.2.1 Subcontractor Mass Properties Control Plan (Requirement Added)

Insert the following paragraph at the beginning of ANSI/AIAA S-120A-2015, Section 5.1.2.1:

The contractor shall be responsible for determining and specifying the applicable and appropriate mass properties control requirements for each subcontractor-or supplier-provided components.

5.1.2.2 Supplier Interface

There are no changes to this section. Use ANSI/AIAA S-120A-2015 verbatim.

5.1.3 Mass Properties Control Process (Clarification Language Added)

Append the following sentence to the end of ANSI/AIAA S-120A-2015, Section 5.1.3:

See SAWE RP A-3, Revision A, Section 5.1.3, for additional details on the mass properties control process.

5.1.4 Requirements Flow Down and Traceability (Clarification Language Added)

Append the following sentence to the end of ANSI/AIAA S-120A-2015 Section 5.1.4:

See SAWE RP A-3, Revision A, Section 5.1.4, for additional information for requirements flowdown and traceability.
5.1.5 Mass Maturity Assessment (Clarification Language Added)

Append the following paragraph to the end of ANSI/AIAA S-120A-2015, Section 5.1.5:

See SAWE RP A-3, Revision A, Sections 5.1.5 and 5.1.6, for additional guidance on assessing the mass maturity of components.

5.1.6 Assessment of Predicted Performance Against Requirements (Clarification Language Added)

Replace the first sentence in the first paragraph of ANSI/AIAA S-120A-2015, Section 5.1.6, with the sentence below:

The system, subsystem, payload, bus, and/or vehicle aggregate Mass Growth Allowance (MGA) are strong indicators of the design maturity at each specified major milestone.

Append the following paragraphs to the end of ANSI/AIAA S-120A-2015, Section 5.1.6:

When inertia values are derived from the basic Computer Aided Design (CAD) tools, the inertia values are based on the basic mass. If larger inertias present more adverse conditions for meeting requirements, the inertia values should be scaled by the ratio of predicted mass/basic mass to quantify inertias based on predicted mass.

See SAWE RP A-3, Revision A, Section 5.1.6, for additional guidance.

5.1.7 Mass Growth Allowance (Clarification Language Added)

Append the following list to the end of the first paragraph of ANSI/AIAA S-120A-2015, Section 5.1.7:

- MGA is based on historical mass growth trends and component design maturities
- MGA is applied to mass only
- MGA always has a positive or zero value
- MGA is aggregated as a summation of MGA values for the system being assessed

5.1.8 Mass Threats, Opportunities, and Probability of Occurrence (Clarification Language Added)

Append the following sentence to the end of ANSI/AIAA S-120A-2015, Section 5.1.8:

See SAWE RP A-3, Revision A, Section 5.1.8, for additional details.

5.1.9 Mass Margin

There are no changes to this section. Use ANSI/AIAA S-120A-2015 verbatim.

5.1.10 Mass Risk Assessment (Heritage Design Column Added)

Insert an additional column to Table 2, Mass Risk Assessment Example, listing the recommended mass margins for systems having more than 50% heritage design by mass as shown below:
Table 2 – Mass Risk Assessment Example

<table>
<thead>
<tr>
<th>Program Milestone</th>
<th>Recommended MGA</th>
<th>Recommended Mass Margin</th>
<th>Recommended Mass Margin for More Than 50% Heritage Design by Mass</th>
<th>MGA + Mass Margin</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(%)<sup>1</sup></td>
<td>(%)<sup>1</sup></td>
<td>(%)<sup>1</sup></td>
<td>(%)<sup>2</sup></td>
</tr>
<tr>
<td>ATP</td>
<td>>15</td>
<td>>15</td>
<td>>8</td>
<td>>30</td>
</tr>
<tr>
<td></td>
<td>9<MGA≤15</td>
<td>10<Mass Margin≤15</td>
<td>5.5<Mass Margin≤8</td>
<td>19<MGA + Mass Margin≤30</td>
</tr>
<tr>
<td></td>
<td>≤9</td>
<td>≤10</td>
<td>≤5.5</td>
<td>≤19</td>
</tr>
<tr>
<td>PDR</td>
<td>>12</td>
<td>>9</td>
<td>>5</td>
<td>>21</td>
</tr>
<tr>
<td></td>
<td>8<MGA≤12</td>
<td>5<Mass Margin≤9</td>
<td>3<Mass Margin≤5</td>
<td>13<MGA + Mass Margin≤21</td>
</tr>
<tr>
<td></td>
<td>≤8</td>
<td>≤5</td>
<td>≤3</td>
<td>≤13</td>
</tr>
<tr>
<td>CDR</td>
<td>>7</td>
<td>>5</td>
<td>>3</td>
<td>>12</td>
</tr>
<tr>
<td></td>
<td>4<MGA≤7</td>
<td>3<Mass Margin≤5</td>
<td>2<Mass Margin≤3</td>
<td>7<MGA + Mass Margin≤12</td>
</tr>
<tr>
<td></td>
<td>≤4</td>
<td>≤3</td>
<td>≤2</td>
<td>≤7</td>
</tr>
<tr>
<td>Released Design</td>
<td>>3</td>
<td>>2</td>
<td>>1.5</td>
<td>>5</td>
</tr>
<tr>
<td></td>
<td>2<MGA≤3</td>
<td>1<Mass Margin≤2</td>
<td>1<Mass Margin≤1.5</td>
<td>3<MGA + Mass Margin≤5</td>
</tr>
<tr>
<td></td>
<td>≤2</td>
<td>≤1</td>
<td>≤1</td>
<td>≤3</td>
</tr>
<tr>
<td>Final</td>
<td>0</td>
<td>>1</td>
<td>>1</td>
<td>>1</td>
</tr>
</tbody>
</table>

Notes:

1. The percentages of MGA and Mass Margin in the above chart are defined as follows:
 - MGA = Predicted Mass - Basic Mass
 - % MGA = [(MGA/Basic Mass) × 100
 - Mass Margin = [(Allowable Mass - Predicted Mass)/Basic Mass] × 100

2. The % (MGA + Mass Margin) is defined as:
 - % (MGA + Mass Margin) = [(Allowable Mass - Basic Mass)/Basic Mass] × 100

3. Heritage Design parts and assemblies with no change to the design that meet the criteria for qualification by similarity

5.1.11 Technical Performance Measurement

There are no changes to this section. Use ANSI/AIAA S-120A-2015 verbatim.

5.1.12 Mass Properties Control Board (Clarification Language Added)

Append the following paragraph to the end of ANSI/AIAA S-120A-2015, Section 5.1.12:

See SAWE RP A-3, revision A, Section 5.1.12, for additional information on key functions of the Mass Properties Control Board (MPCB).
5.2 Analysis

Use ANSI/AIAA-S-120A-2015 for all subsections and paragraphs, except as noted below.

5.2.1 Scope

There are no changes to this section. Use ANSI/AIAA S-120A-2015 verbatim.

5.2.2 Methods of Analysis

There are no changes to this section. Use ANSI/AIAA S-120A-2015 verbatim.

5.2.2.1 Manual Layout/Drawing Analysis (Clarification Language Added)

Append the following sentence to the end of ANSI/AIAA S-120A-2015, Section 5.2.2.1:

See SAWE RP A-3, Revision A, Section 5.2.2.1, for additional information and guidance.

5.2.2.2 Three-Dimensional (3D) Model Analysis (Clarification Language Added)

Append the following paragraphs to the end of ANSI/AIAA S-120A-2015, Section 5.2.2.2:

For CAD tools with a selectable setting for Product of Inertia (POI) sign convention output, select the POI sign convention that matches the mass properties database software. The process in Annex E may be used to verify the CAD's POI sign convention output after changing the setting. The matching CAD POI sign convention setting should be documented and used consistently for all mass properties data derived by the CAD tool.

If the CAD tool lacks a user-specifiable setting for POI sign convention output, and its POI output sign convention is the opposite of the mass properties database, a reliable process for reversing the signs of all POI data extracted from the CAD tool prior to importing the data into the mass properties database should be implemented.

5.2.3 Flight Hardware Analysis

There are no changes to this section. Use ANSI/AIAA S-120A-2015 verbatim.

5.2.4 Mass Properties Uncertainty Analysis (Clarification Language Added)

Append the following to the end of ANSI/AIAA S-120A-2015, Section 5.2.4:

See SAWE RP A-3, Revision A, Section 5.2.4, for additional information and guidance.

Mass properties uncertainties must not be confused with MGA. Mass properties uncertainties:

- Are quantified through assessment of uncertainties in the method of derivation and component variations from:
 - Estimation or analysis uncertainties
Measurement uncertainties
- Manufacturing tolerances
 - Are applied to mass, Center of Mass (CM), Moment of Inertia (MOI), and POI
 - Have positive or negative values
 - May vary either randomly or systematically from component to component
 - For the system being assessed, may be aggregated by root sum squared (RSS), Monte Carlo, or worst-case summation

5.2.5 Special Analyses

There are no changes to this section. Use ANSI/AIAA S-120A-2015 verbatim.

5.2.5.1 Balance and Ballast Mass Analysis

There are no changes to this section. Use ANSI/AIAA S-120A-2015 verbatim.

5.2.5.2 Mission and Attitude Control System Analysis

There are no changes to this section. Use ANSI/AIAA S-120A-2015 verbatim.

5.2.5.2.1 Propellant

There are no changes to this section. Use ANSI/AIAA S-120A-2015 verbatim.

5.2.5.2.2 Movable Objects

There are no changes to this section. Use ANSI/AIAA S-120A-2015 verbatim.

5.2.5.2.3 Mission Sequential Mass Properties

There are no changes to this section. Use ANSI/AIAA S-120A-2015 verbatim.

5.3 Verification

Use ANSI/AIAA-S-120A-2015 for all subsections except as noted below.

5.3.1 Verification Plan (Requirement Added)

Append the following paragraphs to the end of ANSI/AIAA S-120A-2015, Section 5.3.1:

The Mass Properties Verification Plan (MPVP) is a document prepared for and used by engineers, managers, and the customer. The MPVP documents the method for verifying the SV’s mass properties, with the objective of reducing the SV’s mass properties
uncertainties. The MPVP identifies the mass properties data used for performance analyses, stability and control analyses, and other related analyses.

The contractor shall develop and document a MPVP to describe and substantiate the methods used to verify that mass properties meet requirements and/or mass properties objectives. The MPVP should be originated during the conceptual design and development stage. The MPVP should be updated and reviewed at PDR, CDR, and any other major developmental milestones such as block and/or fleet changes for which mass properties requirements and/or objectives and/or verification methods have been updated.

5.3.1.1 Verification Criteria

There are no changes to this section. Use ANSI/AIAA S-120A-2015 verbatim.

5.3.1.2 Verification Method Selection (Requirement Added)

Append the following paragraph to the end of ANSI/AIAA S-120A-2015, Section 5.3.1.2:

The verification method shall be included in the verification plan. Verification may be accomplished by analytical method(s), by measurement, or by a combination of both. Selection of the verification method(s) is/are justified by an approved verification plan (verification cross reference matrix or similar). The verification method(s) should be selected early enough in the program to provide time for the acquisition, modification, or preparation of test equipment and test site selection, or analysis tool procurement or development.

5.3.2 Test Plan (Requirement Added)

Insert the following paragraph at the beginning of ANSI/AIAA S-120A-2015, Section 5.3.2:

A test plan shall be prepared and documented for the final mass properties verification test. The test normally measures dry mass, dry CM, and/or MOI and POI.

5.3.2.1 Test Description (Clarification Language Added)

Append the following paragraph to the end of ANSI/AIAA S-120A-2015, Section 5.3.2.1:

See SAWE RP A-3, Revision A, Section 5.3.2.1, for an example outline of a test description.

5.3.2.2 Ground Support Equipment (GSE)

There are no changes to this section. Use ANSI/AIAA S-120A-2015 verbatim.

5.3.2.3 Measurement Uncertainty (Requirements Added)

Append the following paragraphs to the end of ANSI/AIAA S-120A-2015, Section 5.3.2.3:

The test plan shall include a description of the sources of measurement system error and the magnitudes of these errors. The test plan’s measurement uncertainty analysis computes the predicted uncertainties in the results of the mass properties test measurement. Measurement uncertainty analysis identifies all potential sources of discrepancy between measured and true values.
The measurement uncertainty analysis computations and documentation should consider errors from:

- Measurement equipment tolerances
- Wind, ventilation system air impingement, or other environmental sources of measurement error
- Uncertainties in local gravity
- GSE mass properties uncertainties
- GSE dimensional tolerances
- Tolerances in scale leveling or vertical alignment of measured weight load paths
- Potential side loading of compression load cells and shear loading of platform scales
- Any other identifiable measurement error sources

The computed measurement uncertainty shall be included in a final system level uncertainty analysis that also includes uncertainties due to:

- Buoyancy of gases in the propellant and other closed tanks
- Measurement configuration differences from flight
- Mass properties of each overage and shortage list item
- Assessment of potential errors in methods used to reconcile overages and shortages
- Any other identifiable sources of errors in reconciling measured mass properties to flight mass properties

The resulting mass properties uncertainties of the SV are used as inputs to assess compliance and margins to mass properties requirements in the launch configuration and various flight configurations throughout the mission. If mass properties noncompliance or low margins are identified the uncertainty analysis documentation may be used to identify areas where dispersions can be reduced to improve margins.

5.3.2.4 Measurement Schedule

There are no changes to this section. Use ANSI/AIAA S-120A-2015 verbatim.

5.3.2.5 Customer Witnessing of Verification Tests (Requirements Added)

Add the following new section after ANSI/AIAA S-120A-2015, Section 5.3.2.4:

5.3.2.5 Customer Witnessing of Verification Tests

The contractor shall support witnessing of flight final mass properties measurements by the customer and/or the customer’s representative.

Test plans for the flight final dry or wet mass properties measurements of SV should include provisions to support witnessing of final mass properties measurements by the customer and/or the customer’s representative, at the option of the customer. The purpose of this witnessing is to verify that the test facilities, environment, measurement equipment calibration, measurement processes, test article configuration, lift rigging setup, raw data collection, and data recording will yield measurement results within accuracy requirements.

Adequate lead time and method for notifying the customer of upcoming SV final mass properties tests, and for providing a copy of the test procedures shall be negotiated with the customer and documented in the test plan.
5.3.3 Standard Work Instruction
There are no changes to this section. Use ANSI/AIAA S-120A-2015 verbatim.

5.3.4 Test Procedure (TP)
There are no changes to this section. Use ANSI/AIAA S-120A-2015 verbatim.

5.3.4.1 Test Scope
There are no changes to this section. Use ANSI/AIAA S-120A-2015 verbatim.

5.3.4.2 Applicable Documents, Equipment, GSE, and Software
There are no changes to this section. Use ANSI/AIAA S-120A-2015 verbatim.

5.3.4.3 Requirements (Clarification Language Added)
Append the following paragraph to the end of ANSI/AIAA S-120A-2015, Section 5.3.4.3:

See SAWE RP A-3, revision A, Section 5.3.4.3, for elaboration on test requirements.

5.3.4.4 Test Configuration (Clarification Language Added)
Append the following paragraph to the end of ANSI/AIAA S-120A-2015, Section 5.3.4.4:

See SAWE RP A-3, Revision A, Section 5.3.4.4, for elaboration on test configurations.

5.3.4.5 Test Sequence (Clarification Language Added)
Append the following paragraph to the end of ANSI/AIAA S-120A-2015, Section 5.3.4.5:

See SAWE RP A-3, Revision A, Section 5.3.4.5, for a top-level example of a test sequence.

5.3.5 Data Record
There are no changes to this section. Use ANSI/AIAA S-120A-2015 verbatim.

5.3.5.1 Records for Mass Properties Measurements (Clarification Language Added)
Append the following to the end of ANSI/AIAA S-120A-2015, Section 5.3.5.1:

Records for each major mass properties measurement performed in accordance with the approved procedure or detailed work/process instructions should include the following:
• A copy of the redlined test procedure with the quality engineer’s approval when deviating from the approved test procedure.

• A copy of the measured raw data reduction, including the measurement uncertainty computations.

• A record of the test equipment model number, serial number, and calibration and proof-load expiration dates.

• A copy of tables and figures showing each scale reading with units and dimensions, tare, zero drifts, and the raw weight at each reaction point.

• A list of missing flight items (shortage list). This list contains data on each flight hardware item that was not present on the SV during mass properties measurement. Each record in this list should contain:
 − Identifying part number and description of each item
 − As applicable, the predicted mass, CM, MOI, and POI of each item

• A list of the non-flight items used during the measurements (overage list). This list contains data on the location, orientation, and applicable mass properties of GSE, lift riggings, any non-flight handling and lift fittings, test equipment, protective covers, tag lines, etc. Each record in this list should contain:
 − Identifying part number and/or description of each item
 − If applicable, the serial number of the GSE
 − As applicable, the measured or predicted mass, CM, MOI, and POI of each item

• If the measured SV includes propellant tanks, pressurant tanks, and/or sealed compartments that are known to, or are suspected of, containing liquids or gases with densities different from the surrounding atmosphere during weighing, the mass properties engineer should take measurements to compute tank buoyancies, and record the tank internal pressure, ambient air temperature, and barometric pressure.

• To obtain mass readings when using force measurement devices, such as load cells or electronic platform scales, include the measurement or computation of local gravitational acceleration at the weighing site so that weight measurements can be converted to corresponding mass values.
 − Note that some electronic weighing systems have software features that can adjust weight measurements in local gravity to standard gravity. The presence of such features should be verified, and, if present, the system’s gravity adjustment settings during the weighing should be recorded.

• If the mass measurement is performed using mass balance systems such as balance beam scale, the use of balance beam scales should be documented, and should not need any local gravity adjustment.

5.3.5.2 Post-Test Configuration Change Log

There are no changes to this section. Use ANSI/AIAA S-120A-2015 verbatim.
5.4 **Mass Properties Data Management**

Use ANSI/AIAA-S-120A-2015 for all paragraphs except as noted below.

5.4.1 **Scope**

There are no changes to this section. Use ANSI/AIAA S-120A-2015 verbatim.

5.4.2 **Data Management System**

There are no changes to this section. Use ANSI/AIAA S-120A-2015 verbatim.

5.4.2.1 **Database Requirements**

There are no changes to this section. Use ANSI/AIAA S-120A-2015 verbatim.

5.4.2.2 **Frequency of Database Updates**

There are no changes to this section. Use ANSI/AIAA S-120A-2015 verbatim.

5.4.3 **Data Organization Utility (Clarification Language Added)**

Replace the ANSI/AIAA S-120A-2015 paragraph in Section 5.4.3 with:

The mass properties database should have the flexibility to sort and report mass properties data in multiple formats, based on criteria from various programmatic and technical stakeholders, including work breakdown structure (WBS) and function breakdown structure (FBS).

5.4.4 **Database Record Keeping**

There are no changes to this section. Use ANSI/AIAA S-120A-2015 verbatim.

5.5 **Documentation**

Use ANSI/AIAA-S-120A-2015 for all paragraphs except as noted below.

5.5.1 **Scope**

There are no changes to this section. Use ANSI/AIAA S-120A-2015 verbatim.

5.5.2 **Mass Properties Control Plan**

There are no changes to this section. Use ANSI/AIAA S-120A-2015 verbatim.
5.5.3 Verification Plan
There are no changes to this section. Use ANSI/AIAA S-120A-2015 verbatim.

5.5.4 Mass Properties Test Plans and Procedures
There are no changes to this section. Use ANSI/AIAA S-120A-2015 verbatim.

5.5.5 Test Completion Reports (Clarification Language Added)
Append the following sentence to the end of ANSI/AIAA S-120A-2015, Section 5.5.5:
Refer to SAWE RP A-3, Revision A, Section 5.5.5, for recommended content of a mass
properties test completion report.

5.5.6 Contract Change Proposals
There are no changes to this section. Use ANSI/AIAA S-120A-2015 verbatim.

5.5.7 Mass Properties Status Report (Clarification Language Added)
Append the following paragraphs to the end of ANSI/AIAA S-120A-2015, Section 5.5.7:
Refer to SAWE RP A-3, Revision A, Section 5.5.7, for elements of a mass properties
status report.

Mass properties status reports composed of those applicable elements listed in SAWE
RP A-3, Revision A, Annex D, Table D.1, should be developed and documented by the
contractor as specified in the contract data requirements list (CDRL) and detailed by a
data item description (DID).

Refer to the subsections of SAWE RP A-3, Revision A, Section 5.5.7, for recommended
contents of a mass properties status report. Where variations for SV or launch vehicle
(LV) are indicated, the SV variant should be used. Where subsections of Section 5.5.7
are indicated in Annex D, Table D.1, these subsection references are to subsections of
Section 5.5.7 in SAWE RP A-3, Revision A, as ANSI/AIAA-S-120A-2015, Section 5.5.7,
has no subsections.

Mass properties data files should be provided in formatted text, spreadsheet, or other
data field delimited or structured digital format. Portable document format (PDF) is
discouraged for delivery of medium to large data sets.
6. Bibliography

Append the following references to the end of ANSI/AIAA S-120A-2015, Section 6:

Annex A. Supplemental Information for Terms and Definitions (Informative)

No change to this annex. Use ANSI/AIAA-S-120A-2015 verbatim.
Annex B. Functional Breakdown of Mass (Informative)

No change to this annex. Use ANSI/AIAA-S-120A-2015 verbatim.
Annex C. Guidance for Compliance with Contractual Requirements
(Replace Table C.1)

Replace the last sentence in this section and Table C.1 with the following:

Table C.1 numbers each requirement and identifies whether the requirement is:

- Applicable (A) – required
- Conditionally Applicable (C) – evaluation by procuring authority
- Optional (O) in support of program planning

Replace Table C.1 with the following table.
<table>
<thead>
<tr>
<th>Item #</th>
<th>Section # Description</th>
<th>Requirement</th>
<th>Applicability</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.1.2.1 Subcontractor Mass Properties Control Plan (Requirement Added)</td>
<td>The contractor SHALL be responsible for determining the applicable and appropriate mass properties control requirements for each subcontractor or supplier provided component.</td>
<td>A C O</td>
</tr>
<tr>
<td>2</td>
<td>5.1.2.2 Supplier Interface</td>
<td>The contractor SHALL structure its subcontracts to ensure suppliers provide sufficient information to support timely integration of subunit mass properties into complete unit mass properties and to ensure timely responses to information requests.</td>
<td>A A A</td>
</tr>
<tr>
<td>3</td>
<td>5.1.3 Mass Properties Control Process</td>
<td>The contractor SHALL develop achievable mass properties objectives and assist the procuring authority in specifying general system mass properties requirements and their proper allocation to the configuration element requirements.</td>
<td>A A A</td>
</tr>
<tr>
<td>4</td>
<td>5.1.4 Requirements Flow-down and Traceability</td>
<td>The contractor SHALL show traceability to its source for all system and subsystem mass properties requirements, including, but not limited to, contractual, attitude control, and mission and ground handling requirements.</td>
<td>A A A</td>
</tr>
<tr>
<td>5</td>
<td>5.1.6 Assessment of Predicted Mass Properties against Requirements</td>
<td>The contractor SHALL maintain the percentage of aggregate predicted mass in each maturity category in Table 1 and perform an analysis to show predicted performance and acceptable margins for each identified critical mass properties requirement.</td>
<td>A A O</td>
</tr>
<tr>
<td>6</td>
<td>5.1.7 Mass Growth Allowance</td>
<td>The contractor SHALL include in the mass data an allowance for the expected mass growth resulting from lack of maturity in the current design data according to Table 1.</td>
<td>A A O</td>
</tr>
<tr>
<td>7</td>
<td>5.1.8 Mass Threats, Opportunities, and Probability of Occurrence</td>
<td>The contractor SHALL evaluate and maintain a list of all potential design changes with threats to increase and opportunities to decrease the system mass.</td>
<td>A A O</td>
</tr>
<tr>
<td>8</td>
<td>5.1.10 Mass Risk Assessment</td>
<td>The contractor SHALL monitor mass risk according to predefined criteria for margin and MGA throughout the program.</td>
<td>A A C</td>
</tr>
<tr>
<td>9</td>
<td>5.1.11 Technical Performance Measurement (TPM)</td>
<td>The contractor SHALL track and status all critical mass properties (including mass, CM, MOI, POI) using TPM charts that show basic and predicted performance against derived limits and contractual requirements.</td>
<td>A A C</td>
</tr>
<tr>
<td>10</td>
<td>5.1.12 Mass Properties Control Board</td>
<td>If program-specific mass properties margins are not acceptable or have not been assessed, the program SHALL institute an MPCB.</td>
<td>A C O</td>
</tr>
<tr>
<td>Item #</td>
<td>Section # Description</td>
<td>Requirement</td>
<td>Applicability</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td>---</td>
<td>---------------</td>
</tr>
<tr>
<td>11</td>
<td>5.2.1 Analysis Scope</td>
<td>The contractor SHALL perform mass properties analysis to support the program requirements for space system mass properties accuracy and documentation for all configurations throughout the program.</td>
<td>A A O</td>
</tr>
<tr>
<td>12</td>
<td>5.2.2 Methods of Analysis</td>
<td>During all program phases, from proposal to launch and operation, the contractor SHALL substantiate the mass properties database and MGA values by providing a maturity assessment of each subsystem and key component and document associated coordinate systems as discussed in SAWE RP-6.</td>
<td>A A O</td>
</tr>
<tr>
<td>13</td>
<td>5.2.2.1 Manual Layout/Drawing Analysis</td>
<td>If a manual layout/drawing analysis approach is used in estimating mass properties, the contractor SHALL document and maintain records of the manual calculation of mass properties data.</td>
<td>A A O</td>
</tr>
<tr>
<td>14</td>
<td>5.2.2.2 Three-Dimensional (3D) Model Analysis</td>
<td>If a 3D model analysis is used, all constituents of the parts and assemblies SHALL be accounted.</td>
<td>A A A A</td>
</tr>
<tr>
<td>15</td>
<td>5.2.5.1 Balance and Ballast Mass Analysis</td>
<td>For programs where CM, static or dynamic balance, or MOI requirements are critical, and balance or ballast mass is required to meet those requirements, the contractor SHALL analyze the optimum locations and configuration of the balance and ballast mass required.</td>
<td>A C C</td>
</tr>
<tr>
<td>16</td>
<td>5.2.5.2 Mission and Attitude Control Systems Analysis</td>
<td>Mass properties analysis in support of space system launch and on-orbit operations SHALL be performed as necessary.</td>
<td>A C C</td>
</tr>
<tr>
<td>17</td>
<td>5.2.5.2.1 Propellant</td>
<td>The contractor SHALL calculate the propellant mass properties based on the system predicted dry mass.</td>
<td>A A A A</td>
</tr>
<tr>
<td>18</td>
<td>5.2.5.2.2 Movable Objects</td>
<td>The mass properties of movable objects, e.g., rotating appendages, SHALL be determined for their nominal stowed and deployed conditions, as well as any intermediate positions that may be critical because of stability, control, or mission success concerns, as necessary.</td>
<td>A A C</td>
</tr>
<tr>
<td>19</td>
<td>5.2.5.2.3 Mission Sequential Mass Properties</td>
<td>The contractor SHALL perform sequential mass properties as necessary to support guidance navigation and control, jettison, and re-contact analyses.</td>
<td>A C O</td>
</tr>
<tr>
<td>20</td>
<td>5.3.1 Verification Plan (Requirement Added)</td>
<td>The contractor SHALL develop and document a MPVP to describe and substantiate the methods used to verify that mass properties meet requirements and/or mass properties objectives.</td>
<td>A C O</td>
</tr>
<tr>
<td>21</td>
<td>5.3.1.2 Verification Method Selection (Requirement Added)</td>
<td>The verification methods SHALL be included in the verification plan.</td>
<td>A A A</td>
</tr>
<tr>
<td>Item #</td>
<td>Requirement</td>
<td>Applicability</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
<td>---------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Class A</td>
<td>Class B</td>
</tr>
<tr>
<td>22</td>
<td>A test plan SHALL be prepared and documented for the final mass properties verification test.</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>23</td>
<td>A test equipment fit check SHALL be performed on all new GSE as necessary, allowing adequate time for problem resolution so as not to impact the test schedule.</td>
<td>A</td>
<td>C</td>
</tr>
<tr>
<td>24</td>
<td>If GSE is attached to the unit being measured during the mass properties measurement, the test plan SHALL identify how the mass properties of the GSE will be measured and tracked.</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>25</td>
<td>The test plan SHALL include a description of the sources of measurement system error and the magnitudes of these errors.</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>26</td>
<td>The computed measurement uncertainty SHALL be included in a final system level uncertainty analysis.</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>27</td>
<td>The contractor SHALL support witnessing of flight final mass properties measurements by the customer and/or the customer’s representative.</td>
<td>A</td>
<td>C</td>
</tr>
<tr>
<td>28</td>
<td>Adequate lead time and method for notifying the customer of upcoming SV final mass properties test, and for providing a copy of the test procedures SHALL be negotiated with the customer and documented in the test plan.</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>29</td>
<td>The mass properties test configuration and environment SHALL be accurately documented in detail.</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>30</td>
<td>The test procedure SHALL include a detailed step-by-step sequence to be followed.</td>
<td>A</td>
<td>C</td>
</tr>
<tr>
<td>31</td>
<td>Records for each major mass properties measurement performed in accordance with approved procedures or detailed work/process instructions SHALL be documented, and these documents are made available for review by the customer and/or the customer’s representative upon request, including the subcategories listed below.</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>32</td>
<td>The contractor SHALL develop and maintain a mass properties database of the space system with sufficient capability and accuracy to support program reporting requirements.</td>
<td>A</td>
<td>C</td>
</tr>
<tr>
<td>33</td>
<td>The contractor SHALL maintain records that represent a snapshot in time of the detailed mass properties database in electronic format.</td>
<td>A</td>
<td>C</td>
</tr>
<tr>
<td>Item #</td>
<td>Section Description</td>
<td>Requirement</td>
<td>Applicability</td>
</tr>
<tr>
<td>-------</td>
<td>---------------------</td>
<td>---</td>
<td>---------------</td>
</tr>
<tr>
<td>34</td>
<td>5.5.2 Mass Properties Control Plan</td>
<td>The contractor SHALL document an MPCP in accordance with section 5.1 in this document.</td>
<td>A C C</td>
</tr>
<tr>
<td>35</td>
<td>5.5.3 Verification Plan</td>
<td>The contractor SHALL document program-specific mass properties verification planning, as specified in section 5.3.1 of this standard, describing and substantiating the methods to be used to verify the program critical mass properties.</td>
<td>A C C</td>
</tr>
<tr>
<td>36</td>
<td>5.5.4 Mass Properties Test Plans and Procedures</td>
<td>The contractor SHALL develop formal test plans, procedures, and work/process instructions.</td>
<td>A C O</td>
</tr>
<tr>
<td>37</td>
<td>5.5.5 Test Completion Reports</td>
<td>The contractor SHALL document data records specified in section 5.3.5 of this standard for each critical mass properties test, performed in accordance with approved verification planning and released procedures, in a test completion report.</td>
<td>A A A</td>
</tr>
<tr>
<td>38</td>
<td>5.5.6 Contract Change Proposals</td>
<td>The contractor SHALL document and substantiate the effect on vehicle mass properties resulting from proposed changes submitted with the change proposal.</td>
<td>A A O</td>
</tr>
<tr>
<td>39</td>
<td>5.5.7 Mass Properties Status Report</td>
<td>The contractor SHALL develop mass properties status reports that satisfy the needs of the customer, program office, and other internal customers who rely on the timely communication of mass properties information.</td>
<td>A A A</td>
</tr>
</tbody>
</table>
Annex D. Space Vehicle Mission Risk Classes
(Informative)

The table below is from ATR-2015-03151, Mission Risk Posture Assessment Process Description, dated September 29, 2015. This table provides a summary of the mission risk classes and defines top-level parameters for each risk class.

Table D.1 – Space Vehicle Acquisition Mission Risk Classes

<table>
<thead>
<tr>
<th>Description</th>
<th>Class A</th>
<th>Class B</th>
<th>Class C</th>
<th>Class D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk Acceptance</td>
<td>Lowest</td>
<td>Low</td>
<td>Moderate</td>
<td>High</td>
</tr>
<tr>
<td>National Significance</td>
<td>Extremely critical</td>
<td>Critical</td>
<td>Not critical</td>
<td>Not critical</td>
</tr>
<tr>
<td>Payloads</td>
<td>Operational</td>
<td>Operations demonstrate operational utility; May become operational</td>
<td>Typically experimental</td>
<td>Typically experimental</td>
</tr>
<tr>
<td>Acquisition Cost</td>
<td>Highest</td>
<td>High</td>
<td>Medium</td>
<td>Lowest</td>
</tr>
<tr>
<td>Development Time</td>
<td>May take 4 or more years</td>
<td>May take 3 or more years</td>
<td>May take 2 or more years</td>
<td>May take 1 or more years</td>
</tr>
<tr>
<td>Mission Life</td>
<td>Long – Greater than 5 years; typically 8-10 years</td>
<td>Medium – Up to 5 years</td>
<td>Short – Less than 2 years</td>
<td>Short – Less than 1 year</td>
</tr>
<tr>
<td>Launch Constraints</td>
<td>Critical</td>
<td>Medium</td>
<td>Few</td>
<td>Few to none</td>
</tr>
<tr>
<td>Specification and Standards Compliance</td>
<td>Specifications/standards fully incorporated as compliance documents with no or limited tailoring of requirements. All practical measures taken to minimize risk to mission success.</td>
<td>Specifications/standards required as compliance documents with minor tailoring in application to maintain a low risk to mission success.</td>
<td>Medium risk of achieving mission success may be acceptable. Reduced mission assurance requirements with tailoring acceptable.</td>
<td>High risk acceptance achieving mission success is permitted. Reduced set of mission assurance requirements acceptable.</td>
</tr>
</tbody>
</table>
Annex E. Determining POI Sign Convention Used in CAD Software Output
(Informative)

The following is a sample process for determining the POI sign convention used in mass properties data output from a CAD solid modeling tool.

1. Create a solid 1 unit diameter rod with one end at X = -10, Y = -10, Z = 0 units, and the other end at X = 10, Y = 10, Z = 0 units in the work coordinate system.
 a. Units may be inches, feet, meters, or other dimensional unit of measure.
 b. Specify a density of 1 in any convenient density unit for the rod material.

2. Have the CAD software compute and output the rod’s mass properties.

3. If the output Ixy value is positive, the positive integral sign convention is being used for POI output by the CAD software; otherwise, the negative integral sign convention is being used for POI output.

<table>
<thead>
<tr>
<th>REPORT NO.</th>
<th>PUBLICATION DATE</th>
<th>SECURITY CLASSIFICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>TR-2018-01203</td>
<td>April 18, 2018</td>
<td>UNCLASSIFIED</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Authors</th>
<th>Email Addresses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aaron Stevenson</td>
<td>Aaron.stevenson.1@us.af.mil</td>
</tr>
<tr>
<td>Bob Manthy</td>
<td>rmanthy@ball.com</td>
</tr>
<tr>
<td>Craig Day - Director of Business Development</td>
<td>craigd@aiaa.org</td>
</tr>
<tr>
<td>Aileen Sedmak</td>
<td>aileen.g.sedmak.civ@mail.mil</td>
</tr>
<tr>
<td>Bob Rassa - Chair emeritus</td>
<td>rcrassa@raytheon.com</td>
</tr>
<tr>
<td>Dan Berry</td>
<td>dberry@ball.com</td>
</tr>
<tr>
<td>Aileen Sedmak</td>
<td>aileen.g.sedmak.civ@mail.mil</td>
</tr>
<tr>
<td>Brian Kosinski</td>
<td>kosinskb@ssd.loral.com</td>
</tr>
<tr>
<td>Darlene Mosser-Kerner</td>
<td>Darlene.s.mosserkerner.ctr@mail.mil</td>
</tr>
<tr>
<td>Albert B. Spencer Jr</td>
<td>Benji.spencer@noaa.gov</td>
</tr>
<tr>
<td>Chris Carnahan</td>
<td>Chris.carnahan@aia-aerospace.org</td>
</tr>
<tr>
<td>Dave Kusnierzewicz</td>
<td>Dave.kusnierzewicz@jhuapl.edu</td>
</tr>
<tr>
<td>Alfredo Coln</td>
<td>alfredo.colon@nasa.gov</td>
</tr>
<tr>
<td>Chris Paquette</td>
<td>Christopher.paquette@navy.mil</td>
</tr>
<tr>
<td>Dave Swanson</td>
<td>david.swanson@orbitalatk.com</td>
</tr>
<tr>
<td>Name</td>
<td>Email Address</td>
</tr>
<tr>
<td>---------------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>Jeff Mayer</td>
<td>Jeffrey.mayer@us.af.mil</td>
</tr>
<tr>
<td>John Nelson</td>
<td>John.d.nelson@lmco.com</td>
</tr>
<tr>
<td>Logen Johnson</td>
<td>logen.johnson@sae.org</td>
</tr>
<tr>
<td>Jeffrey Rold</td>
<td>Jeffrey_b_rold@raytheon.com</td>
</tr>
<tr>
<td>Judy Gonce</td>
<td>Judy.gonce@us.af.mil</td>
</tr>
<tr>
<td>Major Mitch Pohlman</td>
<td>first.last@us.af.mil</td>
</tr>
<tr>
<td>Joan Lum</td>
<td>Joan.l.lum@boeing.com</td>
</tr>
<tr>
<td>Kenneth Gimlin</td>
<td>Kenneth.Gimlin@us.af.mil</td>
</tr>
<tr>
<td>Mark Baldwin</td>
<td></td>
</tr>
<tr>
<td>Joe Elm - Chair</td>
<td>joseph.elm@l-3com.com</td>
</tr>
<tr>
<td>Kim Nguyen</td>
<td>Kim.nguyen.1@us.af.mil</td>
</tr>
<tr>
<td>Mark D. Silvius, Major, USAF, PhD</td>
<td>silviusm@nro.mil</td>
</tr>
<tr>
<td>John Clark</td>
<td>John.clark@ngc.com</td>
</tr>
<tr>
<td>Kristen Baldwin</td>
<td>Kristen.baldwin@osd.mil</td>
</tr>
<tr>
<td>Mary D'Ordine</td>
<td></td>
</tr>
<tr>
<td>John Clark</td>
<td>John.clark@incose.org</td>
</tr>
<tr>
<td>Larry Defillipo</td>
<td>Larry.Defillipo@orbitalatk.com</td>
</tr>
<tr>
<td>Michael Floyd</td>
<td></td>
</tr>
<tr>
<td>John Evers - Chair</td>
<td>drjohnusa@aim.com</td>
</tr>
<tr>
<td>Leonard Levine</td>
<td>Leonard.f.levine.civ@mail.mil</td>
</tr>
<tr>
<td>Michael Hedenskoog</td>
<td>Michael.hedenskoog.1@us.af.mil</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Position</td>
</tr>
<tr>
<td>---------------------</td>
<td>--</td>
</tr>
<tr>
<td>Steven Martin</td>
<td>USAF SMC/ENE-Software</td>
</tr>
<tr>
<td>Thomas Fitzgerald</td>
<td>USAF SMC/EN</td>
</tr>
<tr>
<td>Thomas Meyers</td>
<td>USAF SMC/SES</td>
</tr>
<tr>
<td>Timothy Kalt</td>
<td>USAF Life Cycle Management Center</td>
</tr>
<tr>
<td>Todd Fenimore</td>
<td>Lockheed Martin Space Systems Co.</td>
</tr>
<tr>
<td>Tom Donehue</td>
<td>ATK</td>
</tr>
<tr>
<td>Wade Schubring</td>
<td>Departmental Standardization Officer Army</td>
</tr>
<tr>
<td>Wanda Sigur</td>
<td>Lockheed Martin Space Systems Co.</td>
</tr>
<tr>
<td>Wayne Brown</td>
<td>United Launch Alliance</td>
</tr>
<tr>
<td>Wayne Brown</td>
<td>United Launch Alliance</td>
</tr>
<tr>
<td>Wade Schubring</td>
<td>Departmental Standardization Officer Army</td>
</tr>
</tbody>
</table>

APPROVED BY___ DATE___________

(AF OFFICE)

Approved Electronically by:

John S. Brader, DIRECTOR DEPT
VEHICLE ENGINEERING DEPARTMENT
VEHICLE SYSTEMS DIVISION
ENGINEERING & TECHNOLOGY GROUP

Vale T. Sather, SYSTEMS DIRECTOR
SYSTEMS & SOFTWARE ENGINEERING
ENGINEERING AND MISSION READINESS
SPACE SYSTEMS GROUP

Cognizant Program Manager Approval:

B Zane Z. Faught, GENERAL MANAGER
ENGINEERING & INTEGRATION DIVISION
SPACE SYSTEMS GROUP

Aerospace Corporate Officer Approval:

Malina M. Hills, SR VP SPACE SYS
SPACE SYSTEMS GROUP

Content Concurrence Provided Electronically by:

Yi-Ling C. Tam, ENGRG SPECIALIST
VEHICLE TEST & VERIFICATION
VEHICLE ENGINEERING DEPARTMENT
ENGINEERING & TECHNOLOGY GROUP

© The Aerospace Corporation, 2018.
All trademarks, service marks, and trade names are the property of their respective owners.
ST0265

Technical Peer Review Performed by:

Brian E. Shaw, PROJECT LEADER SR SYSTEMS & SOFTWARE ENGINEERING ENGINEERING AND MISSION READINESS SPACE SYSTEMS GROUP

Vale T. Sather, SYSTEMS DIRECTOR SYSTEMS & SOFTWARE ENGINEERING ENGINEERING AND MISSION READINESS SPACE SYSTEMS GROUP

© The Aerospace Corporation, 2018.
All trademarks, service marks, and trade names are the property of their respective owners.
ST0265