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ABSTRACT
We provide a systematic analysis of geometric parametric instabilities in nonlinear graded-index multimode fibers. Our approach
implicitly accounts for self-focusing effects and considers dispersion processes to all orders. It is shown that the resulting para-
metric problem takes the form of a Hill’s equation that can be systematically addressed using a Floquet approach. The theory
developed indicates that the unstable spectral domains associated with such geometric parametric instabilities can be signifi-
cantly altered as the power levels injected in a parabolic multimode fiber increase. These predictions are in excellent agreement
with experimental data gathered from graded-index multimode structures.

© 2018 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5044659

I. INTRODUCTION
For decades, the landscape of fiber optic technologies

has been dominated by single-mode fibers (SMFs). Monomode
optical waveguide structures have been successfully used not
only in telecommunications but also in a variety of nonlin-
ear optical settings.1–10 The emergence of photonic crystal
fibers and the prospect of controlling at will their disper-
sion characteristics have further enriched the field of nonlin-
ear fiber optics.11,12 In the last few years, there has been a
resurgence of interest in deploying multimode fibers (MMFs)
as a means of enhancing the bandwidth of telecomm sys-
tems through the use of space-division multiplexing.13 Moti-
vated by these developments, the study of nonlinear wave
interactions in MMFs has recently received considerable
attention.14–20 In such heavily multimoded nonlinear environ-
ments, all the modes involved dynamically interact through
the χ(3) processes of self-phase and cross-phase modulation,
four-wave mixing, and stimulated Raman scattering. In this
respect, MMFs can provide a versatile platform to investi-
gate altogether new nonlinear propagation phenomena such
as spatiotemporal dynamics,21–23 spatial beam self-cleaning,24

rogue waves,25 and spatiotemporal mode-locking26 to men-
tion a few. In this respect, graded-index (GRIN) MMFs play

a prominent role due to the fact that the differential group
delay between modes can be considerably suppressed.27,28 In
this same parabolic index guiding system, the mode propaga-
tion constants happen to be equidistant, and as a result, beam
revivals in the form of compressions and expansions period-
ically occur during propagation, as schematically depicted in
Fig. 1. As recently indicated in a number of theoretical and
experimental studies, under nonlinear conditions, this nat-
ural periodic beam behavior can give rise to a special class
of parametric instabilities—better known as geometric para-
metric instabilities (GPIs).29,30 Unlike modulational instability,
GPI can take place in both the normal and anomalous disper-
sion regimes. Indeed, as shown in a number of recent stud-
ies, the GPI mechanism plays an important role in inciting
supercontinuum generation in GRIN MMFs even in the normal
dispersion region.31,32

In general, nonlinear light propagation in a MMF is a com-
plex problem to analyze since it involves coupled spatial and
temporal effects between hundreds or thousands of modes.
Along these lines, several numerical studies have been carried
out to describe the space-time dynamics in parabolic MMFs
based on perturbative schemes.29 Another avenue in investi-
gating these effects is to describe nonlinear pulse propagation
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FIG. 1. Periodic compressions and expansions of an optical
beam in a GRIN MMF, as a consequence of the equidistant
distribution of propagation eigenvalues.

in such structures after reducing the (3 + 1)D Gross-Pitaevskii
equation into a simpler (1 + 1)D nonlinear Schrödinger equa-
tion.33 Clearly, of interest will be to develop a formalism
capable of capturing all the produced GPI sidebands, in both
dispersion regimes—including the case where self-focusing
revivals in MMFs could be an issue.

In this work, we present a rigorous analysis of GPI effects
in MMFs that includes dispersion effects to all orders, while at
the same time, it accounts for spatial self-focusing oscillations.
Note that under these conditions, a perturbative treatment
is no longer valid. To analyze this problem, we employed an
exact Floquet scheme as a means to obtain the correspond-
ing stability diagrams and their associated gain spectra for
the system under consideration. Analytical results supported
by numerical simulations indicate that as the input power is
increased, the generated GPI sidebands in GRIN MMFs tend
to move closer to the pump wavelength, thus experiencing
higher amplification rates.

II. THEORETICAL ANALYSIS OF GPI
A. Variational approach

We begin our analysis by expressing the optical electric
field propagating in a nonlinear parabolic MMF in the form
E = ϕei(kz−ω0t), where ϕ(x, y, z, t) represents the field envelope.
In this case, the nonlinear dynamical evolution equation gov-
erning this envelope takes the form of a generalized nonlinear
Schrödinger equation (GNLSE) in the presence of a parabolic
potential, i.e.,

i
∂ϕ

∂z
+

1
2k
∇2
⊥ϕ−

k∆
a2

(x2 +y2)ϕ+
∞∑
n=2

inβ(n)
0

n!
∂nϕ

∂Tn +k0n2 |ϕ |
2ϕ = 0. (1)

In the above equations, k = k0n0, k0 = ω0/c, n0 is the
refractive index at the center of the GRIN MMF core, ∆ is the
relative refractive index difference, and a is the core radius.
In addition, β(n)

0 = dnk/dωn denotes the nth dispersion coef-
ficient evaluated at the carrier frequency ω0, n2 stands for
the nonlinear Kerr coefficient associated with silica glass, and
T = t − z/3g represents a time coordinate system that moves
at the group speed 3g. In deriving Eq. (1), we implicitly assumed
that all the modes involved in the weakly guiding MMF share
the same linear polarization, once they are excited on-center
by a linearly polarized Gaussian beam. While our treatment
assumes an infinite parabolic profile having an equidistant dis-
tribution of propagation eigenvalues, one should also keep in
mind the effects arising from a cladded finite size core where
this distribution is disturbed for the highest-order modes.

Nevertheless, in both our theory and experiments, we prac-
tically assume that only lower-order sets of LP0m modes are
excited, in which case beam oscillations are still expected to
take place.

To analyze this problem, we adopt a solution of the form
ϕ(x, y, z, T) = u(z, T)G(x, y, z), while assuming continuous wave
(CW) conditions. In order to investigate the stability of the
CW component, we write u(z, T) = 1 + ε (z, T), where ε (z, T)
describes a small complex perturbation (—ε— � 1). For conve-
nience, the amplitude of the background wave was taken here
to be unity. Direct substitution of these latter forms in Eq. (1)
readily provides the following results:

i
∂G
∂z

+
1

2k
∇2
⊥G −

k∆
a2

(x2 + y2)G + k0n2 |G |2G = 0, (2)

i
∂ε

∂z
G + G

∞∑
n=2

inβ(n)
0

n!
∂nε

∂Tn + k0n2 |G |2G(ε + ε ∗) = 0. (3)

In order to eliminate the (x, y) spatial dependence in Eq. (3),
we then multiply all terms with G∗(x, y, z) and subsequently
integrate over the transverse plane. By doing so, we obtain

i
∂ε

∂z
+
∞∑
n=2

inβ(n)
0

n!
∂nε

∂Tn + k0n2(ε + ε ∗)

∫ ∫
dxdy |G |4∫ ∫
dxdy |G |2

= 0, (4)

where in general, the ratio of the two overlap integrals [the
last term of Eq. (4)] can still be a function of z. Equation (2)
can be further treated using a variational approach, along
the lines described in Refs. 34 and 35. In this respect, we
first normalize Eq. (2) using the dimensionless coordinates
X = x/σ, Y = y/σ, with σ being the spot size of the fundamen-
tal mode σ = (a/k)1/2(2∆)−1/4. Finally, the longitudinal axis is
normalized according to ξ = z

√
2∆/a. From here, Eq. (2) can be

rewritten as

i
∂g
∂ξ

+
1
2
∇2
⊥g −

1
2

(X2 + Y2)g + |g |2g = 0, (5)

where g =
√
γG and γ = k0n2a/

√
2∆ is indicative of the

nonlinearity involved. The corresponding Lagrangian density
associated with Eq. (5) is given by

L(X,Y, ξ) =
i
2

(
g
∂g∗

∂ξ
− g∗

∂g
∂ξ

)
+

1
2

�����
∂g
∂X

�����

2

+
1
2

�����
∂g
∂Y

�����

2

+
1
2

(X2 + Y2) |g |2

−
1
2
|g |4. (6)
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In what follows, we solve Eq. (5) by adopting a Gaussian
ansatz for the spatial beam profile, i.e.,

g(X,Y, ξ) = A(ξ) exp
[
−
X2 + Y2

2W2(ξ)
+ ib(ξ)(X2 + Y2)

]
, (7)

here, A(ξ) is a complex field amplitude and W(ξ) is a normal-
ized beam spot size (W = 4a/σ), where 4a(ξ) is the actual spot
size (in µm) of this CW Gaussian optical beam as a function of
distance ξ . Moreover, b(ξ) is related to the phase curvature of
this same beam.

By substituting Eq. (7) in Eq. (6) and after introducing the
reduced Lagrangian density 〈L(ξ)〉 = ∬∞−∞dXdYL(X,Y, ξ), we
obtain the following results, after applying the Euler-Lagrange
equations:

d
dξ

(
i
W2

4
A
)
= −i

W2

4
dA
dξ

+
W4

2
A
db
dξ

+
A
2

(
1
2

+ 2b2W4
)

+
W4

4
A

−
W2

4
|A |2A, (8)

d
dξ

(
−i

W2

4
A∗

)
= i

W2

4
dA∗

dξ
+
W4

2
A∗

db
dξ

+
A∗

2

(
1
2

+ 2b2W4
)

+
W4

4
A∗

−
W2

4
|A |2A∗, (9)

i
W
2

(
A
dA∗

dξ
− A∗

dA
dξ

)
+ 2W3 |A |2

db
dξ

+ 4 |A |2b2W3 + W3 |A |2

−
W
4
|A |4 = 0, (10)

d
dξ

(
W4

2
|A |2

)
= 2 |A |2bW4. (11)

By combining Eqs. (8) and (9), we find

d
dξ

( |A |2W2) = 0, (12)

from where one can deduce the following power conservation
law: |A |2W2 = |A0 |

2W2
0 = C2

0, where W0 and A0 are, respec-
tively, the normalized initial spot size and the scaled peak
electric field amplitude (associated with g(X, Y, ξ)) when the
Gaussian beam size is either a maximum or a minimum. In
the previous expressions, C2

0 represents the normalized input
power. From Eqs. (8)–(10), we can then derive the following
differential equation

db
dξ
=

1
2W4

− 2b2 −
1
2
−
|A |2

4W2
, (13)

while from Eqs. (11) and (12), we get

dW
dξ
= 2bW. (14)

Equations (13) and (14) then directly lead to the following
second-order Ermakov36 differential equation that describes
the evolution of the normalized spot size during propagation:

d2W
dξ2

=
1

W3
*
,
1 −

C2
0

2
+
-
−W. (15)

Equation (15) represents the main result of the variational
approach. After a linearization procedure,36 this Ermakov
equation can be directly solved. A particular solution of rel-
evance to the discussion here is given by

W2(ξ) =
W2

0

2
[1 + C + (1 − C) cos(2ξ)], (16)

where C = 1/W4
0− |A0 |

2/2W2
0 is a dimensionless parameter that

provides a measure as to the relative strengths of diffraction
versus self-focusing effects. If C > 1, diffraction effects domi-
nate, whereas if C < 1, then self-focusing prevails. In the case
where C = 1, the two processes are balanced and, in principle,
can lead to a spatial soliton solution. Equation (16) remark-
ably shows that the beating frequency in a parabolic MMF
does not depend on the power levels used. In other words,
even close to self-focusing, the beam oscillation period along
z (ẑ = πa/

√
2∆) remains invariant, exactly as expected from

linear conditions.

We note that identical results could have been directly
reached from the Virial theorem associated with the (2 + 1)D
NLSE, as first obtained by Pitaevskii.37 In this respect, Eq. (16)
can be obtained from the evolution of the second moment
under the assumption of a Gaussian ansatz. Beam propagation
simulations also support this Gaussian assertion.

B. Hill’s equation
In Sec. II A, we obtained an analytical expression capa-

ble of describing the beam spot size during propagation, even
in the presence of self-focusing effects. In what follows, we
will analyze the temporal stability properties of the CW back-
ground, by considering the evolution dynamics of the per-
turbation ε (z, T), as dictated by Eq. (4). Note that under the
Gaussian ansatz, the ratio of overlap integrals in Eq. (4) is
proportional to the ratio W2

0/W
2(ξ). As a result, the beam oscil-

lations in this parabolic fiber lead to an equivalent nonlinear-
ity that happens to be periodic with propagation distance. It
is exactly this cyclic dependence that leads to GPI. By again
adopting normalized coordinates and fields (X, Y, ξ , g), Eq. (4)
takes the scaled form

i
∂ε

∂ξ
+

a
√

2∆

∞∑
n=2

inβ(n)
0

n!
∂nε

∂Tn +
|A0 |

2W2
0

2W2(ξ)
(ε + ε ∗) = 0. (17)

The properties of this latter equation can be investigated
by assuming a perturbation having two angular frequency
sidebands at ±Ω,

ε (ξ ,T) = D1(ξ)eiΩT + D2(ξ)e−iΩT, (18)

where D1,2(ξ) are the corresponding amplitudes. By adopting
an approach similar to the one outlined in Ref. 38, Eqs. (17) and
(18) can lead to the following two equations:
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dD4

dξ
+

a
√

2∆


D3

∞∑
n=1

β
(2n)
0

(2n)!
Ω

(2n) − D4

∞∑
n=1

β
(2n+1)
0

(2n + 1)!
Ω

(2n+1)


+
|A0 |

2W2
0

W2(ξ)
D3 = 0, (19)

dD3

dξ
+

a
√

2∆


D4

∞∑
n=1

β
(2n)
0

(2n)!
Ω

(2n) − D3

∞∑
n=1

β
(2n+1)
0

(2n + 1)!
Ω

(2n+1)

= 0, (20)

where D3(ξ) = D1(ξ) + D∗2(ξ) and D4(ξ) = D1(ξ) − D∗2(ξ). One
can directly show that this system can be further reduced to a
second-order differential equation for D3(ξ), i.e.,

d2D3

dξ2
+i

2a
√

2∆
βodd

dD3

dξ
+



a2

2∆
β2
e −

a2

2∆
β2
odd +

a
√

2∆
βe
|A0 |

2W2
0

W2(ξ)


D3 = 0,

(21)
where βodd(Ω) ≡

∑∞
n=1 Ω

(2n+1)β
(2n+1)
0 /(2n + 1)! and

βe(Ω) ≡
∑∞

n=1 Ω
(2n)β

(2n)
0 /(2n)! are by definition two dispersion

functions involving either odd or even terms.

Equation (21) can be subsequently simplified by using
a change of variables D3(ξ) = P(ξ) exp (−iaβoddξ/

√
2∆) from

where one can obtain a Hill’s equation

d2P
dξ2

+
a2

2∆
[β2

e + βek0n2 |A0 |
2W2

0f(ξ)]P = 0, (22)

where f(ξ) = 1/W2(ξ). Equation (22) describes the dynam-
ics of the GPI sidebands, by taking into account dispersive
effects to all orders. We note that higher-order dispersive
effects can profoundly alter the stability diagram, to the point
that the GPI sidebands expected from only quadratic dis-
persion can totally disappear, depending on the magnitude
and sign of higher-order dispersive terms. In addition, unlike
perturbative schemes, our formalism can treat this problem
even under high intensity conditions, where the beam spot
size revivals can be significantly affected by the power levels
involved.

III. STABILITY ANALYSIS AND GPI GAIN
A. Stability diagrams

As previously indicated, Eq. (22) encompasses all the sta-
bility properties of the GPI process in a parabolic MMF. This
equation is now analyzed using Floquet theory. To do so, one
should keep in mind that the Fourier coefficients of the term
f(ξ) in Eq. (22) are given by

f(ξ) =
2

W2
0[1 + C + (1 − C) cos(2ξ)]

=
1
2
a0 +

∞∑
m=1

am cos (2mξ),

(23)

where

am =
2

W2
0

√
C

*
,

2
√
C − 1 − C
1 − C

+
-

m

, m = 0, 1, 2, . . . . (24)

We emphasize that the coefficients am now depend on the
overall power conveyed in this GRIN MMF, as described by the
parameter C. Next, to identify the boundaries (in parameter
space) of the stability diagram, we assume periodic solutions
of period 2π. In other words, the solution of Eq. (22) can be
represented by a Fourier series39,40

P(ξ) = eµξ
∞∑

n=−∞
dneinξ . (25)

In this case, to find the boundaries of the stability diagram
(separating stable from unstable regions), we will set the expo-
nent to be µ = 0. Substitution of Eqs. (23)–(25) in Eq. (22) leads
to the following set of homogeneous linear equations:

· · · +
ρ

2
a2dn−4 +

ρ

2
a1dn−2 +

(
η +

ρ

2
a0 − n2

)
dn +

ρ

2
a1dn+2

+
ρ

2
a2dn+4 + · · · = 0, (26)

where the stability parameters are η ≡ a2β2
e /2∆ and ρ ≡

a2βek0n2 |A0 |
2W2

0/2∆. This set of equations admits non-trivial
solutions provided that the determinant formed by the
coefficients of dn(n = 0, ±1, ±2, . . .) in Eq. (26) is itself zero,

������������������������������

...

η + ρ
2 a0 − 4 0 ρ

2 a1 0 ρ
2 a2

0 η + ρ
2 a0 − 1 0 ρ

2 a1 0

· · ·
ρ
2 a1 0 η + ρ

2 a0 0 ρ
2 a1 · · ·

0 ρ
2 a1 0 η + ρ

2 a0 − 1 0
ρ
2 a2 0 ρ

2 a1 0 η + ρ
2 a0 − 4

...

������������������������������

= 0. (27)
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The stability diagram associated with this Hill’s equation
can be subsequently extracted by determining the boundaries
between stable and unstable regions. This is accomplished by
separately solving the determinant of Eq. (27) when the index
n is even or odd, in which case the solutions have a period π

or 2π, respectively. By merging these solutions, the transition
curves (separating stable and unstable regions) can be deter-
mined. Even more importantly, the stability dynamics of the
Hill’s equation (22) are only dictated by the even dispersion
function βe(Ω), while the odd βodd(Ω) is inconsequential for
the GPI.

B. GPI gain spectrum
In Sec. III A, we outlined a systematic procedure with the

help of which one can determine the stability diagram bound-
aries associated with the GPI process. Clearly of importance
will be to evaluate the corresponding GPI gain spectra, as dic-
tated by the Hill’s equation (22). Evidently, in Eq. (25), the real
part of µ (only possible in the unstable regions of the GPI
diagram) represents a normalized gain coefficient for a spe-
cific frequency sideband Ω, conveyed in the parameters η and
ρ. By substituting Eq. (25) in (22) and after considering only
even terms of the index n, we obtain the same set of homo-
geneous equations (26); only this time we assume that µ , 0,
which implies that the coefficient of dn in (26) is now instead
η + ρa0/2 + (µ + in)2.

The complex exponent µ can then be determined by set-
ting the infinite determinant formed by the coefficients of dn,
also known as Hill’s determinantal, to zero,

�������������������

...

η + ρ
2 a0 + (µ − 2i)2 ρ

2 a1
ρ
2 a2

· · ·
ρ
2 a1 η + ρ

2 a0 + µ2 ρ
2 a1 · · ·

ρ
2 a2

ρ
2 a1 η + ρ

2 a0 + (µ + 2i)2

...

�������������������

= 0.

(28)
Surprisingly the roots of the aforementioned Hill’s deter-
minantal equation can be analytically obtained through the

following closed form expression:40

sin2
(

1
2
πiµ

)
= ∆(0) sin2

(
1
2
π

√
η +

ρ

2
a0

)
, (29)

where ∆(0) is the determinant corresponding to µ = 0 (at the
boundaries of the stability diagram). Using Eq. (29), one can
evaluate µ as a function of the parameters η and ρ. In general,
µ can be complex (in the unstable regions) or purely imaginary
(stable regions). As previously indicated, if µ happens to be
complex, then the corresponding frequency Ω will experience
gain.

IV. NONLINEAR PROPAGATION IN GRIN MMF
AND EXPERIMENTAL OBSERVATION OF GPI

Based on the results of Secs. II and III, we next analyze the
GPI mechanism in actual parabolic MMF settings. For demon-
stration purposes, in our study, we assume a core radius of
25 µm and a relative index difference of ∆ = (n0 − nclad)/n0
≈ 1 × 10−2. The operating wavelength is taken to be 1064 nm,
and the peak power used ranges from 30 kW to 500 kW. The
actual input spot size of the Gaussian beam injected in the
GRIN MMF is here assumed to be 13.5 µm, and the Kerr coef-
ficient n2 = 1.2 × 10−22 m2/V2. Note that in this MMF, the
beam undergoes periodic oscillations having a spatial period
of 0.55 mm. The parameters η and ρ associated with the sta-
bility diagrams are then evaluated based on the even and
odd dispersion functions βe(Ω) and βodd(Ω) as obtained from
the refractive index Sellmeier expansion associated with sil-
ica glass.41 Using the aforementioned parameters and with
the help of Eq. (27), one can then determine the boundaries
of the stability diagram for a given input power, by scanning
through the coordinates ρ and η + ρ, as shown in Fig. 2(a). As an
example, for the assumed parameters, we here present these
diagrams for two different power levels, 30 kW (blue curves)
and 500 kW (red curves). The unstable regions where GPI is
possible are shown in yellow. Of course, once the η, ρ param-
eters are linked through the actual silica Sellmeier expansion,
they provide an operational curve as shown by the black and
green curves corresponding to 30 and 500 kW, respectively, in

FIG. 2. (a) Stability diagrams depicting stable and unstable
GPI regions as extracted from the Hill’s equation when the
input power is 30 kW (blue curves) and 500 kW (red curves).
The black (30 kW) and green (500 kW) curves correspond
to the operating parameters of our system as the frequency
varies. (b) GPI gain spectra associated with the stability dia-
grams of (a) and (c) GPI sidebands obtained from numerical
simulations. The parameters used here are λ0 = 1064 nm,
a = 25 µm, and 4a = 13.5 µm. The propagation length is
taken to be 10 cm when the power is 30 kW and 0.6 cm at
500 kW.
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Fig. 2(a). The crossing of these latter curves with the unstable
regions provides the GPI gain regions as a function of fre-
quency. Clearly, as the input power is increased to 500 kW, the
transition curves separating stable and unstable regions are
significantly altered, in such a way that the unstable regions
become wider [Fig. 2(a)], signifying broader frequency bands in
which GPI can take place. On the other hand, for lower pow-
ers, this line is close to ρ ∼ 0 [black curve in Fig. 2(a)], and
the GPI sidebands are considerably narrower and can thus be
described via standard perturbative methods. However, this
is not the case as the power increases where the Hill’s equa-
tion needs to be formally treated, as done in Secs. II and III. In
this regime, because of self-focusing effects, the higher-order
harmonics in the Fourier series expansion of f(ξ), resulting
from more severe beam expansions/compressions, play an
important role in determining the boundaries between stable
and unstable domains in the stability diagram. The actual gain
(∝ µ) of the GPI sidebands can also be directly obtained from
Eq. (29). The GPI gain spectra are depicted in Fig. 2(b) as a
function of frequency Ω/2π, for 30 and 500 kW. Note that as
the power increases, the GPI gain is considerably enhanced,
while the peaks of the sidebands are shifted toward the pump
wavelength. In addition, the spectral width of these GPI side-
bands also increases with power. Again, this is a consequence
of the large variations in spot size, as expected from the emer-
gence of self-focusing effects. It is worth mentioning that the
500 kW level is quite below that for self-focusing collapse in
bulk silica (∼3 MW).

In order to numerically verify our analytical predictions,
we accordingly performed a set of simulations using beam
propagation methods. As suggested in Ref. 33, the (3 + 1)D
problem of Eq. (1) can be approximately reduced to a (1 + 1)D
NLSE after assuming a solution of the form ϕ(x, y, z, T) =
u(z, T)G(x, y, z), where the spatial beam profile G(x, y, z) was

taken again to be Gaussian. By doing so, the envelope u(z, T) is
found to obey

i
∂u
∂z

+
∞∑
n=2

inβ(n)
0

n!
∂nu
∂Tn +

k0n2 |A0 |
2W2

0

2W2(z)
|u |2u = 0, (30)

where again W2(z) is given by Eq. (16), which implicitly
accounts for any possible self-focusing. The generated GPI
sidebands, as predicted by Eq. (30), are provided in Fig. 2(c)
as a function of frequency for both 30 and 500 kW. These
numerical results are in excellent agreement with theoretical
predictions based on Eqs. (27) and (29). The tendency for the
sidebands to move toward the pump wavelength as the power
increases is also evident in Fig. 2(c).

Finally, a series of experiments have been conducted in
GRIN MMFs with different core radii. In our experiments, we
used two different parabolic fibers having core diameters of
60 µm and 80 µm. The length of both fibers was ∼5 m. A Q-
switched microchip laser was used at 1064 nm (400 ps, 95 µJ,
and 500 Hz) with a peak power of ∼185 kW. Both fibers had
a numerical aperture of NA = 0.2. For these parameters, the
beam in these parabolic MMFs oscillates with a period of
0.666 mm for the 60 µm diameter MMF and with a period of
0.888 mm for the 80 µm diameter MMF. At this wavelength,
the 60 µm diameter fiber can support up to 313 modes (in
both polarizations), while the 80 µm diameter fiber can sup-
port up to 557 modes. Figure 3(a) shows the expected GPI
gain spectra (using the results of Sec. III), corresponding to
these two fibers at ∼185 kW. Similarly, Fig. 3(b) depicts the GPI
gain as obtained from beam propagation methods, Eq. (30), for
these fibers—in agreement with the gain peaks of Fig. 3(a). The
measured GPI gain spectra from these two fibers are shown
in Figs. 3(c) and 3(d) when the peak power is ∼185 kW. In
both cases, we obtained good agreement between theory and

FIG. 3. GPI gain spectra as obtained from (a) analytical
procedures and (b) numerical simulations in two differ-
ent parabolic MMFs having core diameters of 60 µm and
80 µm. Experimentally measured GPI spectra from a ∼5 m
long (c) 60 µm core diameter MMF and (d) 80 µm. In
(a)–(d), the peak power was ∼185 kW. The green dotted
lines indicate the pump frequency (1064 nm), while the blue
(red) dotted lines correspond to the blue (red) GPI peaks,
as predicted analytically in (a).
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experiment concerning the actual positions of the GPI peaks.
The shifting and widening of the GPI sidebands in the exper-
imentally measured spectra of Figs. 3(c) and 3(d) are also in
agreement with analytical predictions. Interestingly, as the
core radius increases and hence the number of modes, the GPI
sidebands experience a shift and become wider as predicted
theoretically in the gain spectrum of Fig. 3(a) and corroborated
by numerical simulations [Fig. 3(b)].

V. CONCLUSION
In this work, we have presented a rigorous analysis of

the GPI process in GRIN MMFs. Our approach is general
and accounts for dispersion to all orders, as well as for high
intensity conditions. The problem was effectively casted as a
Hill’s equation and was subsequently investigated using Flo-
quet techniques. By doing so, we were able to obtain the
corresponding stability diagrams and GPI gain spectra. Our
results indicate a considerable change in the unstable regions,
as the input power increases. Experimental results obtained
from GRIN MMFs having different core radii corroborate our
analytical predictions. Of interest will be to analyze similar
problems based on the methodology presented in this paper.
These may include, for example, the case where a Gaussian
beam is launched off-axis (with or without angular momen-
tum) or when an elliptic input beam is used—in which case
the beam oscillation frequencies may be incommensurate. Our
results could pave the way toward a better understanding of
the GPI sideband generation and supercontinuum production
in MMFs, especially at high power levels where perturbative
schemes could be inapplicable.
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