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Abstract: Nonlinear frequency generation of light-carrying orbital angular momentum 
(OAM), which facilitates realization of on-demand, frequency-diverse optical vortices, would 
have utility in fields such as super-resolution microscopy, space-division multiplexing and 
quantum hyper-entanglement. In bulk media, OAM beams primarily differ in spatial phase, so 
the nonlinear overlap integral for self-phase matched χ(3) processes remains the same across 
the 4-fold degenerate subspace of beams (formed by different combinations of spin and 
orbital angular momentum) carrying the same OAM magnitude. This indistinguishable nature 
of nonlinear coupling implies that supercontinuum generation, which substantially relies on 
self/cross-phase modulation, and Raman soliton shifting of ultrashort pulses typically results 
in multimode outputs that do not conserve OAM. Here, using specially designed optical fibers 
that support OAM modes whose group velocity can be tailored, we demonstrate Raman 
solitons in OAM modes as well as the first supercontinuum spanning more than an octave 
(630 nm to 1430 nm), with the entire spectrum in the same polarization as well as OAM state. 
This is fundamentally possible because spin-orbit interactions in suitably designed fibers lead 
to large effective index and group velocity splitting of modes, and this helps tailoring 
nonlinear mode selectivity such that all nonlinearly generated frequencies reside in modes 
with high spatial mode purity. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction and background
Light-carrying orbital angular momentum (OAM) [1] has recently received tremendous
attention due to potential applications in classical [2–4] and quantum communications, [5–7]
super-resolution microscopy [8,9], manufacturing [10], sensing [11] and exo-planet detection
[12]. While a majority of these investigations have considered the linear properties of OAM
beams, their nonlinear optical properties have been less studied. For the case of second order
(χ(2)) optical nonlinearities, reported investigations of spontaneous down-conversion, up-
conversion and second harmonic generation [13–15] suggest that the behavior of OAM light
beams shares the rules of conventional nonlinear optics, and thus appropriate phase matching
with χ(2) crystals results in desired nonlinear frequency generation. Corresponding studies of
third order (χ(3)) optical nonlinearities, responsible for a host of effects ranging from Raman
scattering to supercontinuum generation, however, present a more intricate picture.
Propagation of an intense ultrashort pulse laser in an optical vortex state has been shown to
lead to supercontinuum generation [16] that preserves phase singularities that are the hallmark
of OAM beams, but the resultant mode content was distributed across a range of beams with
different OAM magnitudes. In the limited case of optical fibers that support only the first
OAM mode order (in addition to the Gaussian-shaped fundamental mode), it is possible to
obtain clean Raman scattering into single, pure vector modes [17] because the unique
polarization distribution of vector modes, in conjunction with the strong polarization-
dependence of χ(3) nonlinearities, dictates that strong nonlinear coupling is possible only to a
mode that substantially resembles the pump mode (in intensity and polarization distribution).
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This special case notwithstanding, a generalized methodology to nonlinearly frequency-
convert, or obtain spectrally diverse, OAM beams with high spatial coherence and mode 
purity has not been possible, though doing so would be of great utility to a variety of 
applications that require on-demand OAM beams of different colors, for which the only 
broadband solutions require independent generation of white light that is then transformed 
with a wideband mode converter [18,19]. 

The electric field, E(r, φ, z) of an OAM mode in optical fibers is given by: 
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where F(r) represents the radial distribution of the electric field (which is substantially similar 
for modes of the same L ), L is the topological charge associated with an OAM of L  per 

photon, φ  is the azimuthal angle, σ ±  denotes the (circular) polarization states associated 

with a spin angular momentum (SAM) of ±  per photon, and β is the propagation constant, 
related to the effective index, neff, of the mode by 2 /effnβ π λ=  (λ is the free-space 

wavelength). Note the subscripts of β, representing two degenerate spin-orbit aligned states 
(SOA) where the sign of L  and σ  are the same, and two degenerate spin-orbit anti-aligned 
states (SOAA) where these two quantities are opposite in sign, respectively. In bulk media, 
for a given magnitude L  of OAM, βSOA = βSOAA, and modes with the four combinations of 

SAM and OAM are four-fold degenerate (in β or neff, and hence also in group velocity, group 
velocity dispersion (GVD) and higher-order dispersion terms). Third-order nonlinear coupling 
between different modes is governed by the field overlap integral 

 *
,j k j kF E E dA=   (2) 

where the subscript jE  and kE  denote the normalized fields associated with two different 

modes. From Eq. (2), it is immediately apparent that nonlinear interactions would have 
similar strengths when coupling modes of the same or opposite sign of L  since their radial 
field profiles are nearly identical. This implies that nonlinear scattering (due to Raman or 
self/cross-phase modulation) from a “pump” mode in L  would occur, with equal 
probabilities, to a mode with the same L  as well as a mode with the opposite topological 
charge of −L . In addition, as the pulses propagate, their envelopes continue to temporally 
overlap due to the aforementioned four-fold degeneracy, enabling the nonlinear interaction to 
build up. This explains why nonlinearly generated supercontinua of OAM beams in bulk 
media have, thus far, resulted in multimode outputs. 

2. Nonlinear evolution of OAM beams in fibers 
The situation is dramatically different in an optical fiber. Due to the confinement potential of 
the waveguide, SOA and SOAA modes have different propagation constants –a result of spin-
orbit interactions in the presence of dielectric anisotropies [20]. We have previously shown 
that this spin-orbit effect can be exacerbated by fiber design, and lifting this degeneracy (i.e. 
making |βSOA−βSOAA|) large) avoids linear mode mixing during fiber propagation through 
lengths as long as 13 km [21]. In addition, angular momentum conservation rules dictate that 
even the degenerate orthogonally polarized modes do not mix in the linear regime [22]. Thus, 
in a suitably designed optical fiber, the four-fold degeneracy of OAM modes depicted in Eq. 
(1) reduces to two 2-fold-degenerate subspaces, and coupling even within the doubly 
degenerate modes is inhibited. The nonlinear overlap integral (Eq. (2), however, remains the 
same, and linear mode stability does not guarantee nonlinear mode selectivity. Here, we show 
that the aforementioned degeneracy-lifting criteria that enabled stable linear behavior of 
OAM modes in fibers also facilitates controllable nonlinear interactions for ultrafast pulses of 
OAM beams in fibers. Figure 1(a) illustrates this effect: for a spin-orbit aligned pump 
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launched polarization state as well as the orthogonal polarization state, respectively. Spatial 
integration of the camera intensity pattern across the two images reveals that the power ratio 
in the launched, versus the orthogonal polarization bins remains 6 dB (i.e. 75% power remain 
in the launched polarization state) across the spectrum [Fig. 5(c)]. This confirms the 
polarization (hence SAM) preserving behavior of the nonlinear process. Within the launched 
polarization bin, the relative modal content in SOA and SOAA is found by utilizing the fact 
that the L  = 14 OAM state (converted from L  = 8 SOA) diffracts more than the L  = 2 

state (converted from L  = 8 SOAA) in free-space, as shown in Fig. 5(b); hence, the relative 

powers in the desired mode with respect to other modes is found by spatial integration of the 
four spatially separated regions (Region 1 corresponding to L  = 14 and Region 3 

corresponding to L  = 2, and Region 2 and 4 composed of power in all other parasitic 

modes). Using this method, we find that the mode purity is better than 13 dB (>95%) across 
the spectral bandwidth [Fig. 5(d)]. This confirms that the dominant OAM content at all the 
nonlinearly generated frequencies is same as the launched pump state. We additionally 
confirm that both OAM and polarization are preserved across the generated supercontinuum 
when L  = + 7; σ +  state is used as the pump, indicating that the phenomenon is not 
dependent on OAM charge of the pump. 

The measurement technique to discern mode purity above rests on two assumptions, both 
of which we show to be valid: (a) the intensity profiles of modes of the same, first, radial 
order (the primary mode orders used for the pump and probed in this experiment) need to be 
similar across different order of L . This is substantially true for the air core fibers used in 
our experiments. In contrast to free-space or bulk media, the intensity profiles of modes with 
different L  depends weakly on L , because the high index contrast of the waveguide 
offering confinement plays the dominant role here. (b) power in other radial mode orders is 
assumed to be negligible. This validity of this assumption arises from the fact that intensity 
line cuts of the near field profiles all OAM modes exiting from our fiber [see Fig. 5(e)] match 
very well with simulated intensity profiles for our fiber – we find that an intensity overlap 
integral between the two yield 98% coincidence. Moreover, theoretically constructed intensity 
profiles assuming incoherent addition with other radial orders shows that obtaining such a 
high overlap would have meant that the other radial mode orders would have a maximum of 
0.5% power, which is indeed negligible. 

5. Discussion, summary and conclusions 

These experiments reveal an interesting and highly useful attribute of nonlinear optics with 
OAM fiber modes – all nonlinear products arising from ultrafast pulse nonlinear effects 
conserve both polarization and OAM. Recall that this is fundamentally due to the effect of 
spin-orbit interactions in the air-core fiber, which results in group-velocity walk-off between 
spin-orbit aligned and anti-aligned states. Hence, self-phase matched nonlinear effects, such 
as Raman scattering or supercontinuum generation, with OAM beams can achieve high 
spatial coherence only in media that offer optical confinement with cylindrical symmetry, 
such as optical fibers or whispering gallery modes in ring resonators, but not in bulk media, 
where non-exclusive nonlinear coupling occurs. 
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