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1. Introduction 

Many dynamic applications of piezo-electric and piezo-magnetic substances 

require modeling that rigorously obeys the basic principles of Newtonian 

mechanics and thermodynamics laws. This sort of modeling is required, for 

instance, when dealing with high-rate phenomena and, especially, shock-waves 

analysis. In this report, we suggest such models for magnetoelastic substances. The 

most difficult in this analysis are not mathematical or computational difficulties, 

for which different models have been suggested over the 19th and 20th centuries; 

the most difficult are the obstacles implied by total misunderstanding of the 

fundamentals like energy, entropy, and stresses. John von Neumann justly claimed 

that “Nobody knows what entropy really is,” whereas Richard Feynman wrote, “It 

is important to realize that in physics today, we have no knowledge what energy 

is.” Because of that, we are destined to build our theories on the more or less 

intuitive basic concepts. Of course, these concepts are not arbitrary, but they in no 

way can be treated as ultimate truth. More often than not, we choose the 

fundamentals based on limited applied targets and deliberately sacrifice the 

universality for the sake of simplicity. Although, in our opinion it is important to 

present the basic assumptions in the compact, observable, and clear form, 

preferably in mathematical form. For the studies of polarizable or magnetizable 

fluids or solids, we suggest using the central concept of the Cardinal tensor, 

described in Grinfeld and Grinfeld (2019), where we did so for the static problems 

of polarizable solids. In this report, we generalize that approach for dynamic 

problems of magnetizable fluids and solids.   

There are plenty of applications of magnomechanics in general engineering, 

mechanics, and physics, and in the defense-related applications in particular. 

Interested readers are referred to the world-known manuals of Stratton (1941), 

Landau and Lifshitz (1960), Vonsovsky (1974), Tamm (1979), as well as to the 

monographs of Moon (1984), Rosensweig (1985), Abele (1993), Kraus (1993), 

Visintin (1994), Bertotti (1998), Skomski and Coey (1999), Furlani (2001), among 

many others. 

The classic medium-level manual for theoretical physicists is the one of Landau 

and Lifshitz (1960). It does not pursue the goal of giving the exhaustive 

presentation of the subject. Landau always emphasized that novices should not care 

too much about fundamentals. They mostly have to learn how to solve practical 

problems expecting that a really deep understanding should come at the later stages 

of combined learning and practical work. On the other hand, the book of Landau 

and Lifshitz (1960) is far deeper than the mathematically more rigorous books, not 
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even speaking about the infinitely deeper understanding of the physical nature of 

the phenomena. One more important feature of Landau and Lifshitz’s course of 

theoretical physics is the permanent emphasis on the crucial role of 

thermodynamics. The readers of this report are referred to Landau and Lifshitz 

(1960) if they are interested in the thermodynamics extensions. 

In this report, we touch thermodynamics of magnetization or polarization quite 

superficially. We are talking about the internal energy density  per unit mass of 

the substance, which is treated as a function of the polarization density P  or 

magnetization density M , and of the so-called actual metrics 
ab
X . At the same 

time, we ignore the thermal arguments like entropy density  or the absolute 

temperature T . Nonetheless, our master systems are, more or less, directly 

applicable to the adiabatic and isothermal cases. In the adiabatic case (in the 

absence of shock waves), the entropy density remains fixed pointwise; in the 

isothermal case, the absolute temperature remains as a fixed constant. Therefore, in 

the first case, the function  is just the internal energy density ( , , )a
ab

e X P  or 

( , , )a
ab

e X M  at fixed , whereas in the second case,  is just the free energy 

density ( , , )a
ab
X P T  or ( , , )a

ab
X M T  at fixed T .  

It is possible to simultaneously treat (with minor distinctions in notation) electric 

polarization and magnetization because we ignore any macroscopic currents and, 

in this situation, we can introduce the potential of the magnetic field. 

2. Simplest Master Systems for Magnetizable and Polarizable 
Substances 

In Grinfeld and Grinfeld (2019), we formulated a new master system applicable to 

the analysis of polarizable and/or magnetizable solids. The central distinction of the 

suggested approach consists in the systematic usage of the Cardinal Aleph tensor. 

By choosing different thermodynamic potentials, the suggested approach can be 

recommended for the analysis of a wide variety of static or dynamic engineering 

systems. Given the variety of possible applications, the system is relatively simple 

and can be analyzed not only computationally but also analytically. However, to 

make the analytical and computational results simpler and more transparent, it 

makes sense to adjust the general system for different applications. It can be done 

in different ways.  

We present a slightly modified master system of Grinfeld and Grinfeld (2019). The 

modifications concern two aspects: 1) we use the magnetization rather than the 
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polarization terminology, and 2) we add the inertia terms targeting applications to 

dynamic problems. 

When dealing with anisotropic polarizable substances, it is convenient to use the 

mixed Eulerian–Lagrangian description of continuum media. Consider the 

immobile spatial coordinate system referred to by the coordinates 
iz  (the reference 

indexes from the middle of the Latin alphabet , ,i j k  run the values 1, 2, 3) and 

assume that our space is Euclidean. In this space, we consider a material body B, 

referred to the material coordinates 
ax  (the material indexes from the beginning of 

the Latin alphabet , ,a b c  run the values 1, 2, 3 as well). We accept the standard 

concepts of the covariant and contravariant indexes and accept the standard 

agreement regarding summation over the repeat covariant and contravariant 

indexes of the same type (i.e., of the reference or material type).  

In addition to two different coordinates, we distinguish between two different 

configurations—the initial and current configurations of the body. Let the functions 

( , )i i az z x t  be the Eulerian coordinates in the current configuration of the 

material point with the material coordinates 
ax  at the moment of time t . We use 

the notation ( , )a a ix x z t  for the inverse of the function ( , )i az x t . Let us use the 

notation 
ij
Z  for deformation-independent metrics of the reference spatial system, 

and the notation 
ab
X  for the deformation-dependent metrics of the actual material 

configuration. These two metrics are connected by the relationships  

 
. . . .
. . . .

( , ) ,i i a b
ab ij a b ij ab i j
X x t Z z z Z X x x  (1) 

where the mixed shift-tensors .
.
i
a
z  and .

.
a
i
x  are defined as  

 . .
. .

( , ) ( , )
,

i a
i a
a ia i

z x t x z t
z x

x z
 (2) 

The reference and the coordinate configurations are characterized by the current 

covariant bases ( )
i
zZ  and contravariant bases and ( , )

a
x tX , respectively. 

We use the standard notation 
i
 and 

a
 for the reference and material 

contravariant differentiation in the metrics of the actual configuration.  

Magnetization is a vector quantity. A distributed magnetization field is 

characterized by the density per unit mass M  or per unit volume M , where  

is the mass density. Vector M  can be decomposed with respect to the material 

basis a
a

MM = X or the spatial basis. By definition, in vacuum, the magnetization 
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vector M  is equal to zero. Thus, it experiences a discontinuity jump across the 

body’s boundary .  

The bulk energy density  per unit mass is given as a function of the actual material 

metrics ,
ab
X the Lagrangian components 

aM  of the magnetization vector per unit 

mass, and fixed material constants or tensors, which we do not mention explicitly:  

 ( , )a
ab
X M  (3) 

The magnetoelastic Aleph tensor 
ij

 is defined as follows 

 
. .
. .

( )

1 1
2

8 4
ij i j k ij i j

c d k

cd

z z H H Z H H
X

 (4) 

where 
iH are the Eulerian component of the magnetic field.  

The bulk dynamics equation reads 

 

i
j i ij
j j

V
V V

t
 (5) 

where 
iV are the Eulerian components of the velocity field and  is the mass 

density. 

The velocity field 
iV  is defined as  

 
( , )

( , )
i

i z x t
V x t

t
 (6) 

We can also consider the velocity components as a function of the Eulerian 

coordinates 
iz ; we will use the notation ( , )iV z t  for this function. The functions 

( , )iV x t  and ( , )iV z t  are different functions. This should not create any confusion 

even we do not show the arguments explicitly—which of the two functions is meant 

should be clear from the context; for instance, in Eq. 5 we mean ( , )i iV V z t  . 

The momentum condition at the boundary with vacuum reads 
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. .
. .

( )

1 1
2

4 8

1 1

4 8

i j i j k ij
c d k j

cd sub

i j k ij
k j

vac

z z H H H H Z N
X

H H H H Z N

 (7) 

The relationships in Eqs. 3–6 should be amended with the magnetostatics bulk 

equations and boundary conditions 

 
( , )

i i

z t
H

z
 (8)  

 0i
i
B  (9)  

with the magnetic induction 
iB  defined as 

 4i i iB H M  (10) 

Equation 8 reflects the fact that in the absence of macroscopic electric current, the 

magnetic field is irrotational. Equation 9 reflects the fact that the magnetic 

induction is always divergence-free. 

At the interfaces, the fields ( , )z t , ( , )
i
H z t , and ( , )iB z t  and/or their derivatives 

experience finite jumps. Those jumps are not arbitrary but satisfy the boundary 

constraints of magnetostatics 

 0  (11) 

and  

 0i
i

B N  (12) 

The bulk equations (Eqs. 3–6 and 8–10) should be amended with the following 

thermodynamics-prompted relationship 

 
( , )a
ab

a a

X M
H

M
 (13) 

To get the mathematically closed master system, the relationships in Eqs. 1–13 

should be amended with the initial conditions and conditions at infinity.  
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The functions ( , )z t  and ( , )iV z t  satisfy the classical mass conservation equation 

 ( ) 0i
i
V

t
 (14) 

In hydrodynamics, Eq. 14 is used explicitly. However, in mechanics of solids there 

is no need to use Eq. 14.  

Inserting Eq. 10 in Eq. 9 we get 

 ( 4 ) 0i i
i
H M  (15) 

Also, using Eq. 8 we can rewrite Eq. 11 as follows 

 ( 4 ) 0i i
i

M  (16) 

Combining the thermodynamic identity (Eq. 13) with the magnetostatics 

relationship (Eq. 8), we get 

 .

( , )a aab
i ia

X M
x

M
 (17) 

3. Model of Magnetizable Fluid 

Fluid is a special case of solid deformable function. Often fluids are described with 

mathematical systems that are considerably simpler than the general master systems 

for solids. Sometimes, but not always, the simplifications are possible for 

polarizable fluids. Let us consider a special model of the substance described by 

the following energy density   

 ( , ) ( )
2

a a b
ab ab
X M X M M  , (18) 

where  is a positive constant. 

In the energy density (Eq. 18), the dependence upon the actual metrics 
ab
X  enters 

not only explicitly through the term a b
ab
X M M , but also implicitly through the 

density term  ( ) . Namely, we get 
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2ln ab

ab

X
X

 (19) 

Using Eqs. 18 and 19, we get   

 ( , ) ( ( ))
2

a a b
ab ab ab
X M X X M M  , (20) 

and we arrive at the following formula: 

 
. .
. .

( )

1

2 2
i j ij i j
c d

cd

z z Z M M
X

, (21) 

as implied by the chain 

 

. . . .
. . . .

( )

1 1

2 2 2 2
i j cd c d i j ij i j
c d c d

cd

z z X M M z z Z M M
X

 

Inserting Eq. 20 in the definition (Eq. 4) of the Aleph tensor, we get 

 2 1 1

8 4
ij ij i j k ij i j

k
Z M M H H Z H H  (22) 

Using Eq. 21 we can rewrite the bulk momentum Eq. 5 as 

 

 
2 1 1

8 4

i
j i
j

ij i j k ij i j
j k

V
V V

t

Z M M H H Z H H

 (23) 

The bulk thermodynamics Eq. 13 for the model (Eq. 20) implies 

 
i i
H M  (24) 

Using Eq. 24, we get the following relationship for the magnetic induction 

 

 
4

i i
B H  (25) 
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Combining the bulk magnetostatic Eq. 9 with Eq. 25 we get 

 

 0i
i
H  (26)  

Inserting Eq. 8 in Eq. 26, we arrive at the Laplace equation  

 0i
i

 (27) 

In the case of a magnetofluid media, the general momentum boundary condition 

(Eq. 7) at the boundary with vacuum reads  

 

 

2 1 1

4 8

1 1

4 8

ij i j i j k ij
k j

fluid

i j k ij
k j

vac

Z M M H H H H Z N

H H H H Z N

 (28) 

The magnetostatics boundary conditions imply 

 0  (29) 

and  

 
4 i i

i fluid i vac
N N  (30) 

The system (Eqs. 23–30) should be amended with the mass conservation equation 

(Eq. 14). Thus, in the case under study we eliminated the explicit use of the 

equations ( , )a a ix x z t . This fact significantly simplifies the general master 

system for magnetizable solids. 
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4. Linearized Master System for Deformable Magnetizable 
Solids 

We choose an affine reference coordinate system with the time-independent metrics 

, ij
ij
Z Z . Consider a uniform configuration with the uniform and time-independent 

shift tensors 
. .

. . . .
,

a i ia
i i a a
x x z z , the uniform and time-independent metrics 

,
ab

ab ab
ab
X X X X , and the vanishing fields 

0i a a iH M B V .  

Let 
.

. .
, , , , , , , ,
ia ab i a a i

i a ab
x z X X H M B V  be the small time- and coordinate-

dependent perturbations of the equilibrium fields. Let us establish the linearized 

master system for the perturbations.  

To within the first order terms, the relationship (Eq. 4) implies 

2 2
. .

( ) . .

( ) ( ) ( )
0 0

2
cd cd cd cda a

ij a i j
ab c da

X Xab cd X Xcd
M M

X M z z
X X X M

 (31) 

Differentiating Eq. 31, we get 

2 2
. .
. .

( ) ( ) ( )
0 0

2 ( )
cd cd cd cda a

ij

a
i j

a b b a c da
X Xab cd X Xcd
M M

t

M
V V z z

X X tX M

 (32) 

where we used the relationship 

 

 
( , )

ab
a b b a

X x t
V V

t
 

 

We can now rewrite Eq. 32 as follows 
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 . . . . . .
. . . . ( ) . .

ij a
abcd k l i j cd i j

a b c d k l a c d

M
C z z z z V C z z

t t
 (33) 

 

In Eqs. 33 and following we use the following notation: 

 

 

2

( ) ( )
0

22

( )
0 0

4 ,

,
2 ,

cd cda

cd cd ab aba a

abcd

X Xab cd
M

a
abcd

a aba a b
X Xcd X X
M M

C
X X

X M
C C

X M M M

 (34) 

 

The linearized bulk dynamics equation reads 

 

i
ij

j

V

t
 (35) 

Differentiating Eq. 35 with respect to t  and using Eq. 33, we arrive at the linearized 

momentum bulk equation 

 

2
. . . . . .
. . . . ( ) . .2

i a
abcd k l i j cd i j

j a b c d k l a c d

V M
C z z z z V C z z

tt
 (36) 

Linearizing the magnetostatics Eq. 16, we get 

 
.
.

4 ( )i i a
i i a

z M  (37) 

Linearizing Eq. 17, we get eventually 

 
. .

. . . .

b
a bc a k j

ab i a i b c k j i

M
C x C x z z V

t t
 (38) 

To establish Eq. 38 we first get, using Eq. 17  

2 2

.

( )

( , ) ( , )
( )

a ab
aab ab

b c c b i ia b a
bc

X M X MM
V V x

t tM M M X
 (39) 
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and then, the symmetry, we rewrite Eq. 39 as 

2 2

.

( )

( , ) ( , )
2

a ab
aab ab

b c i ia b a
bc

X M X MM
V x

t tM M M X
 (40) 

At last, using the definitions Eq. 34, we rewrite Eq. 40 as Eq. 38. 

Under the assumptions regarding the ground configuration, the linearized 

momentum boundary condition (Eq. 7) implies 

 
. . . . . .
. . . . ( ) . .

0
a

abcd k l i j cd i j
a b c d k l a c d j

sub

M
C z z z z V C z z N

t
 (41) 

whereas the linearized boundary conditions (Eqs. 11 and 12) read 

 0  (42) 

and  

 
.
.

4 0i i a
a i
z M N , (43) 

respectively. 

5. Magnetoelastic Bulk Waves 

Let us rewrite the system (Eqs. 36–38) as follows: 

 

2

( )2

i k
ijkl ij

j k l k

V M
C V C

tt
 (44) 

 4 ( )i i
i i

M  (45)  

 

i
ij

ki k i j k

M
C C V

t t
 (46) 

where the magnetoelastic modules with the spatial indices are defined as follows: 

 . . . . . . .
. . . . . . . . .

, ,ijkl abcd k l i j ij cd i j a a b
a b c d k a c d k ij ab i j

C C z z z z C C z z x C C x x  (47) 

Consider the following solutions of the bulk system (Eqs. 44–46): 
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( )iii t k z

m m
m m

V W e

M

 (48) 

Inserting Eq. 48 in Eqs. 44–46, we arrive at the system of linear algebraic equations 

 
2( )il ijkl ij k

j k l j k
z C k k W k C  (49) 

 4i i
i i
k k ik  (50) 

 i ij
ki k i j k

i C iC kW k  (51) 

Excluding  between the Eqs. 50 and 51, we get  

 
2

4 0
| |

i iji k
ki k i j

k k
C C kW

k
 (52) 

as implied by the chain: 

 

2

2

, 4
| |

4 0
| |

i ij ii
ki k i j k

i iji k
ki k i j

k
i C iC kW k i

k
k k

C C kW
k

 

Let us introduce the following vectors 

 
1
, i

i i i

k
m k

k
 (53) 

The vector 
i
m  is not necessarily real. Obviously, the vector 

i
 is real and 

normalized:  

 1
i

 (54) 

Then, we can rewrite Eqs. 49 and 51 as follows 

 ( )il ijkl ij k
j k l j k

z C m m W mC  (55) 

 ( 4 ) 0i ij
ki i k i k j
C mC W  (56) 
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Let us consider a special case, when the tensor 
ki
C  has the form 

 
ki ki
C z  (57) 

Now, we can rewrite Eq. 56 as follows 

 ( 4 ) 0i ij
ki i k i k j
z mC W  (58) 

Resolving Eq. 58 with respect to 
i
, we get 

 
1 4

4
k k l kl ij

i l j
z mC W  (59) 

Indeed, contracting Eq. 58 with 
k
, we get 

 
( 4 )

ij
i k k

i i j

C
m W  (60) 

Now, combining Eq. 59 with Eq. 57, we get Eq. 58. 

Eliminating 
k

 between Eqs. 54 and 59, we get  

 

( )

1 4

4

in ijkn
j k n

ij k l kl mn
j k m l n

z C m m W

mC z m C W
 (61) 

or  

01 4

4

in

ijmn k l kl ij mn n
j m k l j m

z

W
C m m z C C m m

 (62) 

or else  

4 ( 4 )
0

( 4 )

k l kl
in ijmn ij mn

k l j m n

z
z c c c m m W  (63) 

where 

 
1 1

,ijmn ijmn ij ij
k k

c C c C  (64) 
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We can also rewrite Eq. 62 in the form 

 2 4 ( 4 )
0

( 4 )

k l kl
in ijmn ij mn

k l j m n

z
z c c c k k W  (65) 

6. Conclusion 

Many dynamic applications of piezo-electric and piezo-magnetic substances 

require modeling that rigorously obeys the basic principles of Newtonian 

mechanics and thermodynamics laws. This sort of modeling is required, for 

instance, when dealing with high-rate phenomena and, especially, shock-waves 

analysis. In this report, we suggested such models for magnetoelastic substances.  

In Section 2, we postulated the closed master system that allows one to model 

magnetoelastic or electroelastic systems without any assumptions of smallness of 

deformations and electromagnetic fields. The central element of our model is the 

Cardinal Aleph tensor, which has some common features with the stress tensor of 

the classical theory of elasticity and the Maxwell tensor of electromagnetic stresses. 

For the substances of any crystallographic symmetry, the Cardinal tensors appear 

to be symmetric. In Section 3, we specify and simplify our general master system 

for the case of ferrofluid. In Section 4, we specify our general system for the case 

of small magnetic fields and deformation, thus reducing the general nonlinear 

system to the linear one. At last, in Section 5, we provide a novel analysis of the 

linear piezomagnetic waves in solids. 
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