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A B S T R A C T

Cell-to-cell variations can drastically affect the performance and the reliability of battery packs. This study
provides a model-based systematic analysis of the impact of intrinsic cell-to-cell variations induced by differ-
ences in initial state of charge, state of health, capacity ration, resistance and rate capability. The impact of these
cell-to-cell variations was evaluated on the performance of battery packs of different topologies, from series to
parallel, and chemistries. For each chemistry and topology, simulations were performed with different levels for
each type of intrinsic variation as well as all variations together in order to investigate the combined effects. The
most salient changes were observed for cells connected in series. The calculated incremental capacity response
for the pack and the single cells was used to select different features of interest that changed depending on the
type of variation. From this methodology, the automatic quantification of the variations was attempted at the
pack and single cell level. Cell-to-cell variations make each battery pack unique; their quantitation is essential for
accurate monitoring.

1. Introduction

In order to meet energy and power requirements, vehicle battery
packs typically comprise a high number of cells connected in series and
parallel. Battery pack performance can be altered by several factors,
both intrinsic and extrinsic. Intrinsic factors are defined as incon-
sistencies in materials and in manufacturing processes [1,2]. Extrinsic
factors include those caused by the environment, e.g., different ca-
lendar age for single cells, and non-uniform current or temperature
distributions [1,3]. Altogether, these inconsistencies could be referred
as cell-to-cell variations (CtCV) [4,5]. CtCV are quite common despite
efforts to mitigate them by improving battery designs, manufacturing,
and quality control processes as well as by battery management system
regulations. To optimize battery pack performance, and ensure proper
control, it is desirable to understand and quantify these variations.
Several methodologies have been proposed before assembly [1,6] but
limited work has been done on a practical method to quantify CtCV
after assembly. Since CtCV makes each battery pack unique, quanti-
fying their extent and determining their origins within the battery
management system (BMS) would increase the overall accuracy of the
battery pack balancing [7], state of charge (SOC), and state of health

(SOH) tracking algorithms [8–11].
A discussion on the origins of the CtCV is out of the scope of this

paper. For such a discussion, the reader is referred to an article by
Rumpf et al. [1]. The extent of initial CtCV within a batch of cells,
although not reported often enough, has been the topic of multiple
studies in the literature [1,4–6,12–30]. For the nominal capacity, most
reported variations were below±5% although some higher variations
were reported [29]. Looking at the initial SOC, some studies reported
variations below±5% [6,20,26], while others reported higher varia-
tions of± 8.5% [27] or above [29,30]. However, in the latter case, the
cells were over 7 years old [30] and thus suffered significant self-dis-
charge. For the ohmic resistance, variations were found to range be-
tween± 3% [30] and± 30% [19]. Rate capability variations, the ratio
of the nominal capacity to the maximum capacity, were reported to
be±0.1 [20] and±3% [6]. Maximum capacity variations were be-
tween± 0.2% [20] and± 1.5% [6] and SOH variations around±0.5%
[26,27].

CtCV could drastically influence the assembly performance and
durability [29,31–33]. Most studies on pack modeling noted the effect
of CtCV on the battery performance [28,34–37], but few proposed
methods to foresee their impact. Using a modified multi-Equivalent
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Circuit Model (ECM) approach, we previously investigated the impact
of CtCV for single cells (SC) in series [38] and parallel [39]. Zhou et al.
[40,41] and Zhang et al. [29] studied the impact of different para-
meters, such as manufacturing variations and self-discharge rates, using
a set of standard ECMs in series. Miyatake et al. [18] have experi-
mentally evaluated the influence of capacity CtCV on the discharge
capacity for different module topologies, both series and parallel, but
did not investigate any other parameters. Jiang et al. [33] measured cell
variations of a 95S5P 18.5 kWh LFP battery pack after aging and
showed a maximum of 7% SOC variation reduced the maximum
available capacity of the pack by 25%. Paul et al. [24] studied initial
nominal capacity and resistance variations. Quantifying the mean and
the standard deviation, Zhang et al. [29] analyzed the effect of capacity
and SOC CtCV in a 104S3P battery pack and found that SOC variations
had a significant impact on pack capacity. Zhou et al. [41] developed a
96S1P LFP battery pack model to evaluate the impact of CtCV. The
results revealed that performance was mainly affected by the coulombic
efficiency (loss of lithium inventory), self-discharge rate, and tem-
perature. They claimed that the initial parameters (capacity, SOC and
resistance) as well as the resistance growth with aging have little effect
on capacity fade. This finding opposed other studies [24,33]. More
recently, Rumpf et al. [37], used multiphysics multidimentional mod-
eling to look for the impact of capacity, resistance, and temperature on
the performance of battery packs of different topologies.

Through statistical analysis or simulations, previous literature in-
vestigated the effect of CtCV induced by temperature, SOC, resistance,
capacity and coulombic efficiency. However, none of these studies
proposed a systematic study of the different sources of CtCV and their
combined impact on the cell voltage response and capacity, in-
dependently of the cell chemistry and the topology. This work is aimed
at characterizing the impact of different types and levels of CtCV oc-
curring at the same time on battery packs of different topologies and
chemistries and at providing a framework to investigate the relation-
ship between cell quality and performance without requiring extensive
testing. Initial variations of maximum capacity, SOC, SOH, resistance
and rate capability were considered. This methodology was repeated on
three of the most common Li-ion cell chemistries and on the three main
battery pack topologies comprising cells in series and/or parallel. This
study focused on CtCV that were pertinent to new battery packs and
used the battery pack model presented in a previous publication [42].
The changes in voltage response were discussed from an incremental
capacity (IC) point of view [43] using the feature of interest approach
[8].

2. Experimental

All simulations performed in this work were undertaken using the
Hanalike model described in detail within our previous work [42] and
summarized in Fig. 1. The model combines several previously published

and validated models. The use of the alawa toolbox [44,45] allows si-
mulating cells with different chemistries and age based on half-cell
data. The apo and ili ECM models allows simulating cells with different
amounts of active material, morphologies, and resistance [46]. Based
on the topology, the data is then handled by kaulike [39] for paralleling
and by anakonu [3] for cells or modules connection in series.

In this investigation, battery packs consisting of 49 single cells were
simulated for three chemistries and three topologies. The number of
single cells was chosen to be large enough to be representative of large
battery packs, while small enough to limit calculation time. For each
chemistry and topology, the five most common types of CtCV based on
our literature survey were simulated, each at five levels of intensity.
The total number of unique simulations considered in this work was
450 (225 packs for 2 different rates).

The three chosen chemistries consisted of graphite intercalation
compound (GIC) as the negative electrode with LiMn2O4 (LMO),
LiAlxNiyCo1−x−yO2 (NCA) and LiFePO4 (LFP) as positive electrodes. All
these chemistries are commercially available and considered for either
transportation or storage applications. For convenience, since the ne-
gative electrodes are the same in all three cases, the cells were referred
to by their positive electrodes. The data was obtained from electrodes
harvested from commercial cells. The electrodes were tested in half-cell
configurations versus metallic lithium. Additional details on the cells as
well as the disassembly and testing procedures are out of the scope of
this paper and can be found in [3] for LMO, [26,47] for NCA, and
[48,49] for LFP. The cells specifications, including nominal voltages
and cutoffs, are summarized in Table 1.

The three investigated topologies were nS1P, 1SmP and mPnS. In
the nS1P configuration, the 49 cells are connected in series. In the 1SmP
configuration, the 49 cells were connected in parallel. This configura-
tion is usually used in laptops or notebooks [50,51]. In the mPnS
configuration, the 49 cells were organized as 7 cells in parallel forming
one of the 7 modules connected in series. Similar to the nSmP config-
uration, this topology optimizes output energy and power but, as cells
are not connected in series then paralleled, the mPnS topology can be
used even if one cell failed. Hence, the mPnS configuration is the pre-
ferred topology for automotive applications, e.g. in the Tesla Model S
[52], and it was thus chosen over the nSmP topology for this study.

For each battery pack, five types of intrinsic CtCV were considered,
Table 2. First, the initial SOC variation (SOCi) which can occur when
cells were not charged to the same open circuit voltage at the end of the
formation step. In this paper, SOC was defined as the ratio between the
available and the maximum capacity. The second CtCV considered was
the single-cell state of health (SOH). These inhomogeneities can be
introduced by using cells with different calendar ages (stored for dif-
ferent amounts of time or in different conditions). In this work, it was
assumed that calendar aging was driven solely by loss of lithium in-
ventory whose impact was emulated using the ‘alawa toolbox [44,45].
SOH was defined as the ratio between the capacity at a given SOH and

Fig. 1. Schematic representation of the Hanalike model.
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the capacity at 100% SOH. The third CtCV studied was the capacity
ration (Qr) in mAh/%SOC, a proxy to the cell maximum capacity (i.e.
the capacity for 100% SOC). Variations in Qr can occur when batteries
have differences in electrode size or loading [6]. Variations in ohmic
resistance (R) were also considered. They can arise from battery in-
trinsic parameters such as separator thickness or extrinsic ones such as
connections with terminals. Finally, variations in rate capability (RC)
were investigated. They can originate from variations of the electrode
architecture [2] affecting the power ability. RC was defined as the ratio
between the C/2 nominal capacity and the maximum capacity. In ad-
dition, simulations were undertaken with all CtCV (All) occurring at the
same time to investigate combined effects.

Simulations were all started with a small rest from a fully charged
state and were stopped when the discharge cutoff voltage was reached
at the single cell or pack level. C/25 discharges were used to evaluate
the impact of SOCi, SOH and Qr with five levels of variations,
0%,± 1.25%,±2.50%,±3.75%,± 5.00%. C/2 simulations were

used to study of the effect of R and RC variations to magnify their in-
fluence. For R, the extent of the CtCV was increased to
0%,± 3.75%,±7.50%,±12.50%,± 15.00% to better match the lit-
erature. Values for the CtCV parameters (SOCi, SOH, Qr, R, RC, or all)
were chosen randomly within a normal distribution. The normal dis-
tribution ensured that the average values were the same for all battery
packs independently of the amplitude and the nature of the cell-to-cell
variations. Additionally, it more closely represented reality
[13,24,28,29,33] than a full random selection. The different CtCVs
were considered independent of each other to the exception of SOH
variations that induces Qr variations as capacity is lost. Since SOCi,
SOH and RC values above 1 were not physically possible, the average
value for these parameters was chosen to be 95% instead of 100% so
that± 5% simulations were achievable. To mitigate the possible impact
of the random values, all simulations were repeated up to 30 times.
There was little difference in the results from 30- and 10-repetition
experimental designs. Consequently, a 10-repetition experiment was
chosen to limit simulation times. The iteration times for the model [42]
were set at 1/300th the selected rate for simulations in parallel, 1/
1500th the simulated rate for simulations in series and 1/20th of the
relaxation time. This varying iteration time is used to perform simula-
tions based on the number of points per charge or discharge and not
time.

3. Results

The slight variation of voltage induced by the CtCV is difficult to
describe on a voltage vs. capacity curve because of the large voltage
window. To circumvent this issue, a derivative of the curve, IC (dQ/
dV= f(V), [43]) is used in the rest of this work to enhance the visibility
of the voltage variations. Fig. 2 presents the C/25 battery packs IC
curves (ICP) associated with the variations of SOCi, SOH, Qr, and all
(rows) as function of the pack topology (columns) for the LMO battery.
The curves are the average of the 10 repetitions for each set of condi-
tions. Standard deviations were on average below 0.5%. Similar figures
for the NCA and LFP batteries are provided in supplementary Fig. S1.
Overall, the CtCV had little impact on the voltage response of the cell
with only some slight variations at high voltage, feature of interest

Table 1
Specifications of cell chemistries.

Cathode material LMO NCA LFP

Anode material GIC GIC GIC
Nominal voltage 3.5 V 3.35 V 3.075 V
Charge cut-off voltage 4.2 V 4.2 V 3.65 V
Discharge cut-off voltage 2.8 V 2.9 V 2.5 V
Original publication [3] [26,47] [48,49]

Table 2
Cell-to-cell variations summary.

Abbr. Definition Range

Initial SOC SOCi From initial open circuit voltage ± 5%
SOH SOH Maximum capacity/maximum capacity

fresh cell
± 5%

Capacity ration Qr Maximum capacity/100 ±5%
Ohmic resistance R From ohmic drop when current is applied ± 15%
Rate capability RC Nominal capacity/maximum capacity ± 5%

Fig. 2. LMO C/25 average voltage variations (10 repetitions) induced by SOCi, SOH, Qr, and All CtCV for the three simulated topologies. Areas with the most
variations were deemed to be a feature of interest (FOI) and labeled as FOI1, FOI2 and FOI3.
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(FOI) 1, an intensity decrease in-between the two high voltage peaks
(FOI2) and, most significantly, a broadening of the low voltage peak
(FOI3).

For SOCi variations (first row of graphs in Fig. 2), only the 49S1P
configuration exhibited a substantial change to the IC curves. The
changes to FOI2 and FOI3 were particularly noticeable. For all the other
variations, similar changes can be observed for 49S1P and 7P7S (first
and third columns of graphs in Fig. 2). The only difference was the
intensity of the changes. The SOH CtCV had a larger impact on the
49S1P topology than the 7P7S topology; while, for the Qr variation, the
inverse was true. In contrast, the voltage response from the 1S49P

simulation showed no observable change attributable to the CtCV. Si-
milar observations were made for the NCA and LFP batteries at C/25
(Fig. S1).

Fig. 3 presents the C/25 single cells IC signatures (ICSC) for the±
5% LMO simulations as a function of the topologies (columns) and the
CtCV (rows). Similar data for the NCA and LFP batteries are presented
in Fig. S2. Looking at SOCi variations, the impact at the SC level de-
pended on the topology. For the series configuration, discharges started
at different voltages based in the initial SOC. For configurations with
paralleling, all SC started at the same voltage but the usage was dif-
ferent until the balancing between the cells was completed in the

Fig. 3. ±5% LMO C/25 variations induced by SOCi, SOH, Qr, and All CtCV for the three simulated topologies and the 49 single cells. Different colors correspond to
different single cells. Areas with the most variations were deemed to be a FOI and labeled as FOI1, FOI2 and FOI3.

Fig. 4. ±5% LMO C/25 variations induced by SOCi, SOH, Qr, and All CtCV for the three simulated topologies and the 49 single cells plotted as a function of pack
voltage instead of single cell voltages. Different colors correspond to different single cells. Areas with the most variations were deemed to be a FOI and labeled as
FOI1, FOI2 and FOI3.
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middle of the high voltage peak. IC curves were overlapping at lower
voltages because, besides the initial SOC, the cells were identical. In
contrast, the SOH variations modified the entire voltage response of the
cell. The impact of SOH variations without balancing can be seen in the
voltage response of the 49S1P configuration. The intensity of first high
voltage peak was most affected by the SOH CtCV. The position of the
low-voltage peak shifted toward higher voltages. Putting cells with
different SOH in parallel broadened all the peaks. In comparison to the
change induced by variations in the SOH of the cells, the changes on the
SC level induced by Qr were slight. This relatively small effect was
expected because the variations affected all peaks uniformly and thus,
the changes were less visible. It should be noted that the values were
centered around the average with a normal distribution; therefore, a
few cells did have large deviations from the average. For the variations
of all parameters at the same time, the sum of all the previous ob-
servations were seen. Similar observations were made for the NCA and
LFP batteries (Fig. S2).

Fig. 4 displays the IC signatures of the SC at the pack level for the
LMO simulations as a function of the topologies (columns) and CtCV
(rows) where the x-axis is the pack voltage instead of the single cell
voltage (ICSC/P) as in Fig. 3. As explained in our previous work where
the model was introduced [42], this ICSC/P representation highlighted
the usage of the different SCs and differentiated the variations observed
in the IC curves for the battery packs. Similar data for the NCA and LFP
batteries are presented in Fig. S3. The high voltage changes resembled
the ones in Fig. 3 but, in this representation, the origin of the broad-
ening of FOI3 was clearly visible. For some of the single cells, FOI3 was
significantly affected. This observation could not be made from Fig. 3
because some cells finished their discharge before others. Toward the
end of discharge, the voltages of the cells that were already fully dis-
charged decreased rapidly compared to the others in the pack. As a
result, the pack voltage decreased rapidly and FOI3 broadened for the
cells that were yet to complete this electrochemical process. The dis-
crete grouping for the 7P7S simulations was induced by the fact that
there are 7 strings and thus only 7 different currents for the 49 cells.

For interested readers, the differential voltage curves (dV/dQ) as-
sociated with this study are included in Fig. S4 for the LMO cell, in
Fig. 5 for the NCA cell, and in Fig. S6 for the LFP cell. The variations
shared similitudes with the IC analysis and did not provide any addi-
tional information.

Fig. 5 shows the voltage response of an NCA battery pack discharged
at C/2 with up to± 15% R variations and± 5% RC variations. Fig. S7
presents the voltage response of LMO and LFP cell with up±15% R
variations. The influence of the other CtCVs was similar at C/25 (not
shown). RC changes of± 5% could not be properly taken into account
by the model for LMO and LFP. As explained in a previous publication
[42], RC changes were determined by scaling the rate vs. normalized
capacity curve so that the nominal capacity corresponded to the RC.
However, this scaling could not be performed for the LMO and LFP cells
in this study because these high-power electrodes exhibited too small a
capacity difference between the rates tested in this experiment.

Both R and RC variations did not influence the voltage signature of
the battery pack except for LMO where FOI3 was slightly affected, Fig.
S7. Looking at the 49S1P ICSC curves for all chemistries, changes of
resistances shifted the IC curves along the voltage axis but their usage
was the same as proven by the overlapping ICSC/P curves. However, for
the 1S49P, the resistance variations had a different impact with dif-
ferent intensity for the IC peaks. The 7P7S battery pack exhibited a
combination of both behaviors. Changes in rate capability did not no-
ticeably affect the shape of the voltage response of the SC and, by ex-
tension, of the battery pack except when the cells were connected in
series where some slight differences were visible.

4. Discussion

The model was successful in simulating all the different conditions.

Fig. 6 presents the capacity retention differences associated with all
simulations for the LMO, NCA and LFP cells arranged in all topologies
at C/25. It must to be noted again that the average values for all
parameters were the same despite any variation. At first glance, it ap-
peared that the 49S1P configuration was more prone to capacity re-
tention differences induced by CtCV (8% at most) than the 7P7S (5%),
and the 1S49P (< 1%) configurations. However, looking into more
detail at the individual CtCV data, the impact of SOCi in the 49S1P
configuration was similar for all three chemistries and accounted for a
3% difference on average in capacity retention for the± 5% variations.
For the 7P7S topology, the loss was the same for LFP and below 1% for
LMO and NCA. The SOH CtCV induced up to 8% deviation in the ca-
pacity retention for the 49S1P configuration regardless of the cell
chemistry. For the 7P7S configuration, the deviations were of 5% for
LFP, 3% for LMO and 1% for NCA. The effect of SOH was also the most
substantial for each case (Fig. 6). For the capacity ration, the deviation
was around 3% in series for all three chemistries; while, it was 2.5% in
the 7P7S configuration for the LMO and LFP chemistries and close to 0
for NCA. In all cases, the retention was worst when all CtCV varied at
the same time (All), which indicated there were combined effects.
Overall, the impact of CtCV was similar for all chemistries with NCA
being the least susceptible of the three. The maximum difference in
capacity retention was recorded for the serial configuration at around
15% for one of repetition when all CtCVs varied at the same time. This
finding highlighted how combined variations in the±5% range could
drastically affect the performance of a battery pack. At± 3.75%
and±2.5% variations, the maximum deviations were 11% and 6%,
respectively, in the serial configuration. For the 7P7S configuration, the
maximum deviation was around 8%. The± 15% R variations did not
result in any change on the capacity retention irrespective of the
chemistry and the topology. The± 5% RC variations induced between
2 and 4% capacity loss for NCA-based battery pack with the cells in
series (not shown).

The model also provided the variation of rate at the single-cell level.
This capability may be particularly useful for the battery packs with
cells connected in parallel because it will provide information on the
internal balancing. The rate variations for the C/25 LMO simulations
are shown in Fig. 7. The variations for the C/25 NCA and LFP simula-
tions are provided in supplementary Fig. S8. The visualization of the
rate enabled the analysis of the internal balancing within the battery
packs and complemented the observations from Figs. 3 and 4. For packs
with SOCi CtCV, most of the variations were within the first five hours
during which balancing brought each of the cells to the same SOC.
Some changes were also visible toward end of discharge for the 7S7P
simulations. These changes were likely induced by disparities between
properties of the cells in the string. For instance, some cells might be
closer to end of discharge than others and hence, would exhibit greater
voltage variations. The impact of variations of Qr were also easily ex-
plained. Since variations in Qr only modified the amount of active
material, the rate was mostly stable but slightly different for each SC.
Variations of SOH produced more complex current balancing because
SOH CtCV induced changes in the voltage response of the cell. Since
voltage must be constant across the parallel configuration, balancing
was necessary at all SOCs depending on the SOH-induced voltage
changes. The All rate variations corresponded to a mix of the effects of
the three CtCV types which held true for all chemistries including NCA
and LFP (Fig. S8). In the mid SOC range, once balancing is complete,
the rate of discharge differences between cells are oscillating along the
phase transformations in the electrodes, i.e. following the IC peaks. This
is especially visible for SOH variations in LFP (Fig. S8) because of the
well-defined voltage plateaus requiring more accommodation (steep
voltage changes). These rate differences could induce some temperature
gradients in the pack and thus lead to inhomogeneous aging. This will
be investigated once a thermal component is added to the model.

Looking at the R and RC CtCVs, Fig. 8, the rate variations occurred
at different SOCs. For R, there was more discrepancy at the beginning
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and at the end of discharge. The discrepancy at the beginning of dis-
charge was due to the different initial voltage drops within the SC;
while, the discrepancy at the end of discharge was due to some SCs
becoming fully discharged before the others. For RC, rate variations are
overall smaller and there was more discrepancy in the middle of dis-
charge because this is where the voltage varied the least with SOC and

thus where the larger accommodations were needed to equalize all the
voltages.

CtCVs were shown to have a significant impact on performance.
CtCVs will differ from pack to pack and thus should be estimated in
every case, if possible automatically by the BMS. Since the different
CtCVs induced different voltage variations at the pack level, it might be

Fig. 5. NCA C/2 voltage variations induced by R and RC for the three simulated topologies. First two rows showcase the average IC signatures of the packs (10
repetitions), the third and forth rows the IC signatures of the single cells, and the fifth and sixth rows show the IC signature of the single cells on the pack voltage
scale. Different colors correspond to different single cells for ICSC and ICSC/P.

Fig. 6. Average pack C/25 capacity evolution as a function of CtCV for the four simulated topologies. Errors bars represents the deviation for the 10 repetitions for
each set of conditions.
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possible to diagnose them by analyzing the pack response. Fig. 9 plots
the evolution of the FOIs as function of the degree of CtCV for SOCi,
SOH, Qr, and all the variations at the same time. Variations for NCA and
LFP are provided in Fig. S9. SOC variations only affected FOI2 for the
49S1P configuration. Despite showing many differences at the SC level
(Fig. 3), FOI1 did not change at the pack level for 49S1P. Variations in
SOH affected FOI2 for all configurations, whereas SOH variations in-
fluenced FOI3 only in 49S1P and 7P7S. Qr variations slightly affected
FOI3 for all but 1S49P configuration and FOI2 for configurations with
paralleling. Looking at all the variations at the same time, a full diag-
nosis from the voltage response at the pack level was not possible. In-
deed, FOI2 and FO3 were influenced by all CtCV, but FOI1 was in-
variant. Moreover, the associated error bars were large and thus, the
estimation was not accurate. This assessment remained true for NCA
and LFP (Fig. S9).

Although the CtCV could not be quantified at the pack level, they

might be at the SC level. Fig. 10 presents some automated estimations
based on the All simulations, where everything was varying at the same
time. Looking at SOC variations, the initial voltage was a good indicator
for the 49S1P topology (Pearson's correlation coefficient ρ= .97 vs.
ρ < .1 for SOH and Qr variations, respectively) but it was not for the
1S49P and 7P7S configurations (ρ < .3 at best) because of the initial
balancing. To some degree, the SOC variations could be deciphered
from the initial current for the paralleling topologies but the correlation
was not as strong because it was also impacted by SOH and Qr varia-
tions (−.97 and −.92 for 1S49P and 7P7S respectively). It should be
noted that the correlation decreased significantly when the rate in-
creased to 0.66 at C/2, Fig. 11, because R and RC also affected the
initial voltage and the initial current. From Fig. 3, the best option to
automatically estimate the SOH was the area under the high voltage
peak. Unfortunately, it was also varying with changes to Qr, with si-
milar ρ values (in the vicinity of .9) and thus no estimation was

Fig. 7. LMO C/25 current variations induced by SOCi, SOH, Qr, and All CtCV for the two topologies with paralleling at the 49 single-cell level.

Fig. 8. NCA C/2 current variations induced by R and RC CtCV for the two topologies with paralleling at the 49 single-cell level.

M. Dubarry, et al. Journal of Energy Storage 23 (2019) 19–28

25



possible. Concerning the Qr, it can be estimated from the relaxation
voltages before and after the discharge by calculating the associated
SOC and relating them to the exchanged capacity for all topologies [3]
(ρ∼ .98). In that case, there was also a correlation with SOH (ρ∼ .8)
which was expected since capacity lost induce both Qr and SOH to
decrease. Results were similar for NCA and LFP (Fig. S10).

5. Conclusions

This study investigated the impact of several normally distributed
intrinsic CtCV, individually or as a whole, on battery pack voltage re-
sponse and capacity retention. It was found that, for all chemistries,
CtCV do not affect battery pack with batteries connected in parallel

Fig. 9. LMO C/25 FOI variations as a function of the level of CtCV.

Fig. 10. Variations of the SC initial voltage (FOI1), initial current, area of the high voltage peak, and measured capacity ration as a function of the level of CtCV for
LMO at C/25.
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because of the possibility of self-balancing. When cells are connected in
series, CtCV had much more of an impact on the assembly performance
and that effect is chemistry dependent, NCA cells being the less af-
fected.

The proposed methodology allowed investigating the relationship
between cell quality and performance. This methodology highlights
that the effect from different CtCV could be additive for packs with cells
connected in series. In view of a potential BMS implementation, nothing
at the pack level was deemed accurate enough for automated estima-
tion of the CtCV from the battery pack electrochemical response. At the
single-cell level, the initial SOC and Qr could be deciphered auto-
matically at low rate but the accuracy of the estimation will drop with
increasing rate because of the influences of the variations in resistance
and rate capability.

Future studies could evaluate different characterization options,
other types of CtCV such as different duty cycles (e.g. cell incon-
sistencies due to cycling) [12,14,17,27,53], operating conditions (e.g.
temperature gradients), distributions (e.g. random vs. normal), and self-
discharge rate. In addition, the impact of one bad cell in a batch on the
performance of the entire battery pack could be investigated. Ad-
ditionally, it could be interesting to change the single cell model from
the alawa toolbox to a Newman type model to investigate the impact of
gradients in electrode properties, such as electrode thickness, porosity,
tortuosity and others on CtCVs and overall pack performance.
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