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Abstract: Beams with fast and continuously-tunable orbital angular momentum (OAM) have 
potential applications in classical and quantum optical communications, sensing, and in the 
study of beam propagation through turbulence. An acousto-optical deflector (AOD) is a 
sophisticated, well-studied device that continuously and rapidly tunes the deflection angle of 
an output beam. The log-polar HOBBIT setup can generate beams with OAM by wrapping 
elliptically shaped Gaussian beams with linear phase tilt to a ring. By combining the linear 
tilted output from the AOD with the OAM generation capabilities of the HOBBIT system, the 
generated OAM modes become continuously tunable at high speeds measured on the order of 
400 kHz. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction

As interest in the exploration of orbital angular momentum (OAM) properties grows, fast 
switching between different OAM modes is a key technique needed to thoroughly explore 
applications. A common approach in both classical and quantum OAM communications uses 
different OAM modes as symbols or bits. The capability of switching or hopping between 
OAM modes can increase data rate dramatically [1–5]. Studies of OAM beams in turbulent 
environments suggests that different OAM modes have different propagation performances 
through turbulence [6,7]. Fast switching between OAM modes will benefit such studies by 
enabling the exploration of a wide range of OAM modes. Other sensing related applications 
that could benefit from rapidly-tunable OAM include beam steering through scattered media 
[8], particle manipulation using three dimensional beams [9], object rotation detection 
[10,11], temperature sensing [12], and motion detection [13]. 

So far, one of the most popular techniques for mode switching uses spatial light 
modulators (SLM), a device that has a very limited switching speed. Digital micro-mirror 
devices (DMD) can boost switching speeds up to tens of kHz [4], which is comparable with 
the switching speed of a direct OAM mode emitter [14]. The DMD micro-mirror pitch limits 
the spatial resolution, while the mode emitter is only capable of tuning integer OAM modes. 
Fractional OAM modes, also referred to as non-integer [15], continuous [16], successive [16], 
and rational [17] modes are another interesting aspect of study. This is primarily because it is 
almost impossible to generate an entirely pure integer OAM state. Secondly, it has been 
analytically deduced that fractional OAM Bessel beams could form an infinite number of 
orthogonal subsets of OAM modes [18], which can further benefit classical and quantum 
optical communication. Thirdly, the fractional OAM Bessel beams preserve the non-
diffracting properties that integer OAM beams possess [16]. This property is key for beam 
propagation applications, including propagation through turbulence and turbid environments. 
Moreover, it has been found that a group of fractional OAM modes generated by a synthesis 
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of Laguerre-Gaussian (LG) modes have good structural stability on propagation to the far 
field [19]. These LG mode-based fractional OAM states can be used in both classical and 
quantum communication. 

The proposed fast tunable OAM generation technique utilizes an optical geometric 
transformation [20–23] known as the log-polar transform [24–33]. Refractive log-polar 
elements were first explored as an efficient OAM mode sorter in 2010 [24]. In 2013, 
Mirhosseini used a fan-out diffractive beam-copying method to increase the log-polar mode 
sorter separation efficiency up to 95% [27]. In 2013, Mhlanga successfully sorted more than 
forty HeNe Bessel beam OAM modes. In 2015, the same elements were successfully used to 
demultiplex OAM modes with higher mode selectivity and better efficiency than that of 
cascaded beam splitters [25]. In 2015, Morgan designed and fabricated a diffractive version 
of the log-polar elements for OAM mode (de)multiplexing [33]. In 2016, Srimathi used the 
same log-polar elements for an underwater communication link [28]. In 2017, Ruffato made a 
compact demultiplexing version of the log-polar elements operating at 632.8 nm [30,31]. In 
2017, Lightman 3D printed a log-polar mode sorter, which working for a broad-spectrum of 
light [32]. In 2018, Ruffato redesigned the log-polar diffractive elements and explored the 
non-paraxial regime property, which is a good example of diffractive device miniaturization 
[34]. 

The acousto-optical deflector (AOD) is a reasonably fast modulation device that is 
commonly used for stable phase modulation and beam shaping [35]. Bessel beams have been 
generated using an AOD array [36] and a cylindrical axisymmetric AOD [37]. In this work, a 
novel technique for OAM switching and tuning using an AOD in conjunction with a log-polar 
coordinate transformation system is demonstrated. The maximum mode switching speed for 
the experimental setup is measured on the order of 400 kHz, which is determined by the 
acoustic velocity of the crystal as well as the beam diameter. For a different AOD and a 
reduced beam size, this speed has the potential of reaching tens of MHz with sub-
microsecond response time — far higher than the kHz level switching methods mentioned 
above. Typically, AODs have a very high damage threshold and are widely used in high 
power laser systems for beam deflecting and laser pulse generation. The integration of an 
AOD also opens up high power and direct energy related applications for our HOBBIT 
system. 

2. Method 

The two log-polar coordinate transform optics work as a pair to perform the optical 
transformation of wrapping a linear-distributed beam into an annular-distribution. The 
mapping process involves two customized diffractive phase optics: the wrapper which 
performs the line to ring transformation, while the phase-corrector corrects the phase 
distortion introduced by the wrapper upon propagation. Interestingly, if a length-wise linear 
phase is applied along the linear-distributed beam, this will be transformed as well, producing 
a spiral phase which has been encoded onto the wrapped-ring. Therefore, the far field of this 
ring shape beam carries OAM. 

As the basis of this work, the optical setup used to generate OAM modes is shown in Fig. 
1(a). In this technique, a Gaussian input beam is passed through an AOD. When a voltage 
signal with the central frequency of the AOD is applied, the 1st order deflection of the 
Gaussian input is at the Bragg condition with the Gaussian beam propagating along the 
optical axis. In this orientation, the Gaussian beam has a flat wavefront and the designed 
system will generate an OAM mode of charge equal to zero. When the frequency of the 
acoustic wave deviates from this center frequency, the beam is instead deflected by some 
additional angle along the horizontal direction as shown in Fig. 1(a). The deviation away from 
the Bragg condition results in the 1st order deflection with a tilted phase relative to the axis of 
propagation. The output of the AOD is then passed through a 4-f embedded line generator, 
used as a dual-axis manipulator. The output of the 4-f embedded line generator is an elliptical 
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beam with an elongated length and a suppressed height with a phase tilt along the horizontal 
direction specific to the applied acoustic frequency. This elliptical beam then propagates 
through the log-polar HOBBIT optics that wrap the ellipse into an asymmetric annular-
distribution. Overall, this results in an elliptical Gaussian beam with linear phase being 
wrapped into an asymmetric ring with azimuthal OAM phase, which is the angular spectrum 
of the asymmetric Bessel-Gauss beams. The seminal concept of asymmetric Bessel beams 
and its physically realistic version, asymmetric Bessel-Gauss beams, have been proposed and 
studied by Kotlyar in 2014 [38,39]. In 2018, a general case of asymmetric Mathieu beams has 
been analytically derived and experimentally generated by Barcelo-Chong, who showed the 
recovery of asymmetric Bessel modes when the ellipticity parameter approaches zero [40]. 
Bessel-Gauss beams are well known for their nondiffracting behavior, but this property relies 
on the size of the Gaussian envelope. A larger Gaussian envelope produces more ringing, 
which in turn produces the longer Rayleigh range. In this case, a small Gaussian envelop is 
used, which will reduce the nondiffracting behavior. In addition, the azimuthal distribution of 
the angular spectrum of the asymmetric Bessel-Gauss beams is different from Kotlyar’s 
papers [38,39], which will be discussed in detail later in this paper. 

 

Fig. 1. (a) The proposed AOD concept, (b) illustration of the beam profiles at the AOD, after 
the line generator and after the log-polar optics and (c) the momentum vector diagram. 

The input to the AOD has a Gaussian distribution with the diameter of the beam defined 

as 2w0 as shown in Fig. 1(b). The momentum vector of incident photon is ik


, that of the 

diffracted photon is dk


, and that of the phonon is K


. According to the principle of 

momentum conservation, the momentum vector of the diffracted photon should be equal to 
the sum of the momentum vectors of the incident photon and of the acoustic phonon, 

d ik k K= +
  

, shown in Fig. 1(c). The notation ,0dk


 and ,d mk


is used for the diffracted photon’s 

momentum vector when the far-field beam has charge 0 and m, respectively. The OAM mode 
index m = l + α is a continuous charge number in which l is the integer part and α is the 
fractional part, which is defined as a positive real number 0≤α<1. The Bragg angle is greatly 
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exaggerated in Fig. 1(a) for visual clarity, and a general Bragg angle equation can be 
represented as 

 ( ) 0 0
B B

a

sin ,
22 i

K f

Vk

λθ θ≅ = =



  (1) 

Where λ0 is the electromagnetic wave Doppler shifted wavelengths corresponding to the 
OAM charge 0, Va is the acoustic velocity and f0 is the driving frequency of the AOD that 
results in the Bragg condition, and it’s also the frequency corresponding with charge 0 output. 
The 1st order diffractive angle is 2θB. By deviating the applied frequency away from the 
Bragg condition, Δfm = |f0-fm|, where fm is the AOD driving frequencies corresponding with 
charge m output, there is a change in the deflection angle of the beam for charge m as 

 00 0
0

a a a a

,m mm m m m
m m

f ff f f

V V V V

λλ λ λθ θ θ
⋅ −⋅ ⋅ ⋅ Δ

Δ = − = − ≈ =  (2) 

where λm is the electromagnetic wave Doppler shifted wavelengths corresponding to the 
OAM charge m. Since these wavelengths are extremely close with each other, differing by 
femtometers for a 532 nm input signal, we assume λm ≈λ0. The angle deviation after the line 
generator, mθ ′Δ , will be scaled by the magnification of the 1st 4-f system according to 

 1

2

,m m

F

F
θ θ′Δ = Δ  (3) 

where F1 and F2 are the focal lengths of the lenses L1 and L2, respectively, in Fig. 1. 
According to the paraxial approximation, this angle deviation corresponds to charge m and 
can be represented by 

 ( )tan ,
2π

m
m m

m

a

λθ θ′ ′Δ ≈ Δ =  (4) 

where parameter a is one design parameter of the optics which controls the active area in 
which the line to ring transform is performed in the wrapping procedure. The length of the 
active area is 2πa, where any portion of a beam that exceeds this length will not be 
transformed and therefore the corresponding power is lost. Combining Eqs. (2)–(4) results in 
an expression for charge m as a function of the frequency change from the Bragg condition 
given by 

 
( ) 1

a 2

2π
.ma f F

m
V F

Δ
=  (5) 

As shown in Fig. 1, the 1st order deflected beam exiting the AOD is a Gaussian 
distribution, which can be expressed as 

 

( ) ( ) ( )( )
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w
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w

 +
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 +
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 

 (6) 

where u and v are both Cartesian coordinates, fc is the input laser’s central frequency, 

( )2πcosz m mk θ λ= Δ  and ( )2πsin 2πu m m m mk θ λ θ λ= Δ ≈ Δ are the wavenumbers along the 
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z and u direction, and finally (fc + fm) and λm are the electromagnetic wave Doppler shifted 
frequency and wavelength corresponding to the OAM charge m. After passing through the 
AOD, the beam is sent to the line generator to be shaped into an elliptical Gaussian 
distribution using lenses L1, L2 and L3 with focal lengths F1, F2 and F3, respectively. The 
elliptical Gaussian beam now has diameters in both dimensions, defined as 2wv = 2w0F3/F2 
and 2wu = 2w0F2/F1. The elliptical beam can be expressed as 

( ) ( )( )
2 2

line c2 2
, exp exp i 2π .m z u

u v

u v
U u v f f t k z k u

w w

  
 ′ ′= − + + − −       

 (7) 

where the wavenumber along z direction is ( ) ( )1 22πcos 2πcosz m m m mk F Fθ λ θ λ′ ′= Δ = Δ , 

and the wavenumber along u direction is 2πu m mk m aθ λ′ ′= Δ = . 

The elliptical Gaussian beam is then incident on the log-polar optics which have been well 
studied [24,25,41,42]. The HOBBIT mapping process uses two customized log-polar optics: 
the wrapper that maps the elliptical Gaussian beam to an asymmetric ring profile, and the 
phase-corrector that corrects the phase distortion introduced by the wrapper. Since the 
elliptical line has a horizontal Gaussian distribution, the HOBBIT system wraps it into an 
asymmetric ring with a ring radius, ρ0, defined from the origin to peak intensity location and 
width, 2wring, as shown in Fig. 1(c). Given the log-polar mapping equation of 

( )arctanu a y x aφ= = , the near-field output from the proposed HOBBIT system is given by

( ) ( )
( )

( )( )
2 2

0
near c2 2

ring

, exp exp i 2π ,
π

m zU m f f t k z
w

ρ ρ φρ φ φ
β

  −
   ′ = − + − + + −     

 (8) 

where ρ and φ are both the radial and azimuthal polar coordinates in the near-field plane, 

( )0 0expb v aρ = −  is the wrapped ring’s radius defined from the origin to peak intensity

location, ( )( ) ( )( )ring 0 0exp exp 2v vw b v w a v w a = − − − − +   is the wrapped ring’s half 

width, v0 is the input elliptical Gaussian beam’s offset from the center of the wrapper, wv = 
w0F3/F2 is the half width of the input elliptical Gaussian beam, a is the log-polar optics design 
parameter which scales the transformed line length in unwrapping procedure, b is another log-
polar optics design parameter which scales the transformed ring size in the wrapping 
procedure. This parameter is proportional to the wrapped ring radius, ρ0. And finally β = 
w0F2/(πaF1) is the ratio of input elliptical Gaussian line’s length to the designed input line 
length 2πa. The Fourier transform of Eq. (8) can then be derived as 

( ) ( )( ) ( )
2

0
far c2

G

2π
, exp exp i 2π exp i ,m z n n

n m

r
U r A f f t k z B n J r

Fw

ρθ θ
λ

∞

=−∞

   
 ′= − + −    

  
 (9) 

where r and θ are both the radial and azimuthal polar coordinates in the far field plane, 

( )2 5 2
ring 0π 2A w fβ ρ λ= − , ( )G ringπmw F wλ= , F is the focal length of the Fourier lens, 

( ) ( ) ( )( )1 22 2i 2exp π 4 Im erfi i π 2
n

nB l n l nβ α β α−    = − − + − + + −   , erfi(x) = erf(ix)/i is

the imaginary error function, and finally Im(z) gives the imaginary part of complex number z. 
As one can tell, the far-field of the ring shaped beam in Eq. (9) is the combination of a group 
of Bessel-Gaussian (BG) beams carrying OAM. Intuitively, it is a weighted linear 
combination of every possible integer OAM phase carrying nth-order Bessel function of the 1st 
kind modulated by the same Gaussian envelop. The parameter Bn is the weighting or selection 
factor, which distributes the power within the central 2 to 3 modes and decays rapidly as m 
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approaches positive and negative infinity. When α = 0, then m = l, meaning an integer charge 
will be select as n = l, and Bl is the maximum value. As α increases, the central weighting 
factor Bn’s maximum value will move from n = l to n = l + 1. This means fractional-charged 
OAM-carrying BG beams are a linear combination of integer BG beams. Considering the α = 
0 case, the Bn parameter has the property of 

 ( )1 , 0, 1, 2, 
k

m k m kB B k− += − =   (10) 

The far-field complex amplitude described by Eq. (9) can be rewritten as 
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(11) 

This indicates that these beams are comprised of only one integer OAM phase exp(imθ), and 
the Bessel term of ( )02πm m mB J r Fρ λ dominates, since Bm is the maximum of Bn. The 

standing wave terms ( )1 0 0sin 2π πm m m mm FB J r F rθ λ ρ λ ρ+⋅  and 

( ) ( )1 1 0 1 0cos 2π 2πm m m m mB J r F J r Fθ ρ λ ρ λ+ + −⋅ −    contribute to the asymmetric intensity of 

this group of BG beams. In fact, the rest of the Bn factors are really small in comparison with 
the central term and contribute minimally to the BG beam, but still in the form of standing 
waves. As shown in Eq. (9), the fractional-charged OAM beams are essentially the 
combination of integer-charged OAM beams. For each of these integer components, the 
parameter Bn works as a window to distribute the power between the integer charge OAMs 
and decays rapidly as parameter n approaches positive and negative infinity. 

As can be seen in Eq. (11), a change in β only affects the weighting factor Bn. 
Conceptually, when β is very small, very little power will be contained at the edges of the 
active zone on the log polar elements. When this whole area is wrapped, there will be a highly 
asymmetric ring. As β approaches 1, the distribution about the wrapped ring becomes more 
azimuthally Gaussian. In fact, as β increases beyond 1, the distribution about the wrapped 
ring becomes more azimuthally uniform and the weighting factors Bl ± 1 decrease, but more of 
the power will be clipped by the log-polar optic aperture. This results in a lower power 
efficiency of the system but higher modal symmetry. Equation (9) not only describes the 
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distribution of integer charge numbers, but also fractional charge numbers. Figure 2 shows 
the analytic intensity and phase profiles using simulation parameters λ = 532 nm, β = 0.66, 
wring = 329 µm, ρ0 = 850 µm, using 5 central terms, and for the focal length of Fourier lens F 
= 400 mm. Due to the small radius of the Gaussian envelope, only one faint ring of the 0th 
order Bessel-Gaussian beam appears in the simulations and experimental results. 

Fig. 2. Analytic intensity and phase profiles for m = ± 3, ± 1.2 and 0. 

The log-polar coordinate transform theory assumes that the input is a rectangular shaped 
beam [20–23]. This notion in fact reduces the translation efficiency of such systems due to the 
fact that a Fourier transform of a rectangular function contains high spatial frequency 
components. On the other hand, the Fourier transform of a Gaussian shape produces another 
Gaussian distribution. In the HOBBIT system presented above, an elliptical Gaussian beam is 
easily generated from a Gaussian input. This has the added benefit of a higher power 
efficiency compared to that of a rectangular beam input. 

3. Diffractive phase-only optics and experiment setup

3.1 Diffractive phase-only optics 

The diffractive log-polar HOBBIT elements are fabricated using a photolithographic method 
in our cleanroom facility. As shown in Fig. 3(a), 6 row × 6 column devices has been 
fabricated on a single wafer. The optics are optimized for the wavelength of 532 nm, and have 
a pixel size of 2 μm × 2 μm and 24 = 16 phase levels. The design parameter a is 1.8/π mm and 
b is 2 mm. The microscope profiles of a wrapper and phase-corrector are shown in Fig. 3(b) 
and (c). Scanning-electron microscopy (SEM) images of the fabricated optics are shown in 
Fig. 3(d) and (e) with magnification of 130 ×. The theoretical diffraction efficiency of a 4-
layer lithographic process diffractive phase element is about 98%. After applying a 99.9% 
transmission anti-reflection (AR) coating on each surface of the HOBBIT optics, the mean 
transmission efficiency of both the wrapper and phase corrector combined has been measured 
to be 91% with 0.5% standard deviation from charge −10 to 10. 
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Fig. 3. (a) Multiple log-polar device fabrication on a single wafer, (b) the microscope image of 
central part of wrapper and (c) phase corrector, (d) the 130 × magnification SEM inspection of 
device center of wrapper and (e) phase corrector. 

3.2 Experiment setup and results 

The AOD couples up to 70% of the optical energy into its 1st diffraction order. This deflection 
angle is continuously tunable by adjusting the frequency of the acoustic signal. As mentioned 
above, our experimental setup applies a 4-f system to image the AOD output deflection angle 
into the line shape beam’s linear phase and another 4-f system to elongate the circular 
Gaussian beam into an elliptical Gaussian beam. The elliptical Gaussian beam is incident 
upon the wrapper and then is mapped into an azimuthally asymmetric ring shaped beam 
during propagation to the phase corrector. After phase correction at the second optical 
element, the ring-shaped beam carrying OAM phase will form a BG beam in the far-field. A 
diagram of the experimental setup is shown in Fig. 4. 
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Fig. 4. Diagram of the acousto-optic deflector, line-generator and log-polar transformation 
optics. 

The deflected beam was generated using a Gooch & Housego AODF 4120-3. This AOD 
is constructed using a tellurium dioxide (TeO2) crystal, with a Bragg angle of 2.9°, computed 
by Eq. (1), as shown in Fig. 5. The acoustic velocity is 0.65 mm/µs, typical for the shear 
mode of a TeO2 crystal. An input beam with a diameter of approximately 1.5 mm can be 
deflected at a rate of approximately 434.8 kHz, corresponding to a measured switching speed 
of 2.3 µs. Higher switching speeds are achievable in other materials such as quartz and fused 
silica. The acoustic velocity of such devices can be an order of magnitude above the shear-
mode TeO2 devices. By decreasing the beam size through a crystal and with a faster acoustic 
velocity, switching speeds could be further increased into the tens of megahertz. A picture of 
the compact experimental setup is shown in Fig. 5. The transmission efficiency of each 
surfaces of the 3 optics in the line generator is 99%, and the total transmission efficiency of 
log-polar OAM generator is 91%. Taking into account the 70% AOD’s 1st order diffractive 
efficiency (DE), the total system efficiency is approximately 60%. Given a 30 mW input 
power, the output BG beam is approximately 18 mW. The current setup is restricted to only 
one linear polarization due to the requirements of the AOD. However, there are other types of 
AODs that are polarization insensitive. In this case, different polarization states could be used 
in the HOBBIT system since the log-polar optics are polarization insensitive. 
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Fig. 5. Picture of the continuously tunable OAM generation system. 

The focal lengths L1 and L2 are F1 = 50 mm and F2 = 100 mm respectively, parameter a = 
1.8/π mm, and the frequency index corresponding to Δm = 1 interval is Δf1 = 0.36 MHz. A 
series of rings with different OAM phases are output from the log-polar HOBBIT optics. The 
far-field of this group of ring shape OAM phase carrying beams are BG beams [29]. The 
generated BG beams are experimental generated, imaged and simulated using Eq. (9) as 
shown in Fig. 6. The experimental results have good agreement with the simulation results. A 
comparison of the radius of the dark vortex to the corresponding charge numbers as well as 
driving signal frequencies is shown in Fig. 7 for both the experimental and simulated beam 
profiles. This radius was measured by finding the inner radial location of the half-maximum 
amplitude. The simulation is an approximation of an infinite series. The slight dips in the 
curve are a result of truncating the infinite series to obtain this approximation. The DE of the 
m = −5 beam is 8.8% lower than the DE of the m = 5 beam because the deviation away from 
the Bragg condition that has the highest DE. 

Fig. 6. Comparison of analytic expression with β = 0.663 and ρ0 = 850 µm. 
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Fig. 7. The simulated and experiment results of BG beams central dark area’s radius vary with 
charge number as well as AOD driving signal’s frequency. 

The deflection angle of the 1st order AOD output is continuously tunable, therefore the 
OAM phase is continuously tunable as well. The intensity distributions of the fractional OAM 
modes spanning from charge −1.2 to + 1.2 in steps of 0.6 are shown in Fig. 8. The charge 
numbers are verified by the single stationary cylindrical lens method [43–45] as −1.21 ± 0.03, 
−0.63 ± 0.03, −0.01 ± 0.08, 0.64 ± 0.02 and 1.21 ± 0.02. Two independent methods were used
to verify the OAM charge numbers. First, the dark center of the beam intensity was measured
and second, a single stationary cylindrical lens method was used. Both independent methods
agree and are consistent with the designed OAM charge numbers. See Visualization 1 for a
video of the demonstrating scan for charges −3 to + 3 in steps of 0.2.

Fig. 8. Experimentally generated and simulated fractional OAM BG beams. 

4. Conclusion

In conclusion, we have proposed a method of cascading an AOD with the HOBBIT log-polar 
transform optical system to rapidly and continuously tune the output OAM mode of a BG 
beam. This means the HOBBIT system has the capability of generating tunable fractional 
OAM modes. The OAM mode is controlled through the AOD driving frequency, which 
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controls the amount of linear tilt to be wrapped into a ring through the log-polar 
transformation. The tuning speeds of AODs are limited by the velocity of the acoustic wave 
through the crystal, which has the potential to well exceed conventional mode manipulators 
such as DMDs, SLMs, and single electrically contacted thermos-optical controlled vortex 
emitters. The scalar form of the far-field HOBBIT has been analytically derived, resulting in a 
group of asymmetric fractional BG beams. See Visualization 1 for a video demonstrating a 
scan for charges −3 to + 3 in steps of 0.2. 

This technique provides a fast and continuous OAM carrying BG beam tuning solution. 
This HOBBIT system may benefit a multitude of areas not limited to communication from 
classical to quantum applications, particle optical manipulation, beam shaping, laser beam 
machining, microscopy, microlithography, direct energy, filamentation, as well as sensing 
through turbulence in air and underwater environments. OAM is rapidly gaining interest in all 
of these areas and the tunable capabilities of this system has the potential to open up the in-
depth study of these modes under various conditions, including environments that change 
slowly such as turbulence. Also, the AOD can support a superposition of driving frequencies 
that result in multiple OAM modes being generated simultaneously. Because of this, future 
work will consist of exploring coherent combinations of OAM modes from this AOD based 
HOBBIT system. 

5. Appendix

The full derivation of the far field asymmetric Bessel Gaussian beam is presented in this 
appendix. The near-field output from the proposed HOBBIT system represented by Eq. (8) 
can be rewritten as separable functions with respect to only ρ or φ terms, 
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Since the far field light distribution is the Fourier transform of the near-field, then 
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As shown in Eq. (15), there are two Fourier transforms that need to be solved. It is well 
known that the Fourier transform of a Gaussian expression is a Gaussian as well. The other 
Fourier transform term is more interesting and complicated. Starting with the definition of the 
polar coordinate Fourier transform, 
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the term of interest in Eq. (15) can be written as, 
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Appling Jacobi−Anger expansion: 

( ) ( ) ( )2π 2π
exp i cos i exp i .

n

n
nm m

r J r n
F F

ρ θ φ ρ θ φ
λ λ

+∞

=−∞

   
− − = − −      
   

  (18) 

Then Eq. (17) can be re-written as, 
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The azimuthal integral can be solved by [46] 
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The far field light distribution in Eq. (15) reduces to the final analytic terms as given by Eq. 
(9), in which the Bn term is the weighting term and shifts power between different Bessel 
terms. Considering the α = 0 case, given n = m + k = l + k, k = 0, 1, 2… 
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Consider the case of n = m – k = l – k, 
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The imaginary error function is an odd function, therefore 
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In summary, applying the recurrent property for Bessel functions of the 1st kind, Eq. (9) will 
reduce into Eq. (11). 
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