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Abstract: Ultra-compact, low-loss, fast, and reconfigurable optical components, enabling 
manipulation of light by light, could open numerous opportunities for controlling light on the 
nanoscale. Nanostructured all-dielectric metasurfaces have been shown to enable extensive 
control of amplitude and phase of light in the linear optical regime. Among other 
functionalities, they offer unique opportunities for shaping the wave front of light to introduce 
the orbital angular momentum (OAM) to a beam. Such structured light beams bring a new 
degree of freedom for applications ranging from spectroscopy and micromanipulation to 
classical and quantum optical communications. To date, reconfigurability or tuning of the 
optical properties of all-dielectric metasurfaces have been achieved mechanically, thermally, 
electrically or optically, using phase-change or nonlinear optical materials. However, a 
majority of demonstrated tuning approaches are either slow or require high optical powers. 

Arsenic trisulfide (As2S3) chalcogenide glass offering ultra-fast and large ( )3χ nonlinearity as 

well as a low two-photon absorption coefficient in the near and mid-wave infrared spectral 
range, could provide a new platform for the realization of fast and relatively low intensity 
reconfigurable metasurfaces. Here, we design and experimentally demonstrate an As2S3 
chalcogenide glass based metasurface that enables reshaping of a conventional Hermite-
Gaussian beam with no OAM into an OAM beam at low intensity levels, while preserves the 
original beam’s amplitude and phase characteristics at high intensity levels. The proposed 
metasurface could find applications for a new generation of optical communication systems 
and optical signal processing. 

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

The discovery of the fact that photons can carry an orbital angular momentum (OAM) opened 
a new area of optical physics and led to new understanding of a wide range of phenomena [1–
4]. The OAM beams possess an azimuthal phase dependence of ( )exp ilϕ , where the angle 

ϕ  is the azimuthal coordinate and the quantized topological charge is denoted by l ∈  [5]. 

The OAM beams find important applications, including light-atom interactions [6], 
manipulation of microscopic objects [7], imaging [8,9], and optical communications [10–13]. 
Conventionally, OAM beams are generated using spiral phase plates or spatial light 
modulators [1]. These bulk-optics based devices suit laboratory experiments, but may not be 
compatible with integrated optics systems that require ultra-compact and flat optical 
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components. Recently, first steps toward the realization of microscale, planar optical 
components based on liquid crystal technology (q-plates) [14] and optical metasurfaces [15–
28] have been made. While the majority of these previously demonstrated structures aimed at 
producing the OAM beams with particular topological charges fixed by their designs, 
reconfigurability is one of the desired characteristics allowing switching from one charge to 
another or from the OAM beam to a beam not carrying an OAM. More recently, electrically 
tunable q-plates [29] as well as mechanically, electrically, thermally and optically tunable 
metasurfaces have been demonstrated [30–40]. Nevertheless, a majority of the tuning 
approaches demonstrated to date were not able to simultaneously realize ultra-fast speed and 
high efficiency. 

Nonlinear optical interactions offer a promising way for ultra-fast, picosecond scale, and 
efficient optical switching, tuning and reconfiguration [41–45]. Recently, several material 
platforms, including silicon [39,41,44] and GaAs, have been used to realize nonlinear light-
matter interactions in optical metasurfaces [45–47]. However, while silicon and GaAs have 
both high linear refractive indices and Kerr nonlinearities, and low linear losses in the 
telecommunication range, their two-photon absorption (TPA) coefficients are large, resulting 
in a low figure of merit. On the contrary, As2S3 chalcogenide (ChG) glass displays a very 
good nonlinear figure of merit [48] in both the near-infrared and the mid-wave infrared 
spectral bands [49,50]. Moreover, its excellent nano-structuring properties, which enable 
patterning with resolution superior to polymer photoresists, enable a resist-free approach that 
simplifies fabrication of the As2S3-based devices to a single-step process [51]. Therefore, we 
choose the ChG-glass platform to realize a reconfigurable metasurface. In this work, we 
design, fabricate, and experimentally demonstrate an As2S3 metasurface capable of reshaping 
a conventional Hermite-Gaussian beam with no OAM into an OAM beam at low intensity 
levels, while preserving the original beam’s amplitude and phase characteristics at high 
intensity levels. Such intensity dependent performance is enabled by the Kerr nonlinearity of 
ChG glass and carefully designed metasurface that relies on guided resonances of the 
nanoholes made in the ChG thin film. 

2. Basic concept of a reconfigurable metasurface 

The basic concept of the proposed metasurface device is illustrated in Fig. 1. The input 
Hermite-Gaussian beam is transmitted through the metasurface and acquires different phase 
distribution depending on the input-light intensity. We design our metasurface such that, in 
the low-intensity regime, the phase acquired in the even quadrants (II and IV) is larger than 
for the odd quadrants (I and III). The phase distribution directly after the metasurface has a 
stepwise profile with the values given in row 2 in Table 1. After propagation, this step-wise 
phase change smoothens and becomes a continuously varying phase that characterizes OAM-
carrying beams. Therefore, in the low-intensity regime, the HG beam, upon transmission 
through our metasurface, is transformed into a beam that carries OAM. For a high intensity 
input beam, the phase introduced by the metasurface is uniform, and the input HG beam 
maintains its phase and intensity distribution and does not acquire the OAM. The output beam 
reconfigurability is enabled by the design of the metasurface described in detail below that 
uses highly nonlinear ChG glass. Switching between low- and high-intensity regimes allows 
for dynamic introduction of the OAM in the beam. 
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Figures 2(f) and 2(g) show the dependence of the transmittance and the phase of the 
transmitted light on the hole diameter d , at the wavelength 0λ , for two different values of the 

linear refractive index of the ChG glass. Here, the modification of the linear refractive index 
of the ChG glass is assumed to be uniform in the entire film, and is not a result of nonlinear 
effects. These simulations are used as guidance for our design, and the validity of this 
approach is confirmed by the full nonlinear results presented in Fig. 3. 

As illustrated in Fig. 1, our metasurface design requires the relative phase shift between 
the odd and even quadrants to be 90° in the low-intensity regime, and 0°  in the high-intensity 
regime. Based on the result shown in Fig. 2(g), we observe that these two conditions are 
fulfilled for the choice of the hole diameter 580od = nm and 372ed = nm, where od and ed

denote the hole diameters in odd and even quadrants, respectively. For the structure with 

od d= , the resonance is located far away from the operation wavelength, and the structure is 

insensitive to small change in refractive index. At the same time, for the chosen parameters 
the transmittance remains above 70% , as seen in Fig. 2(f). The remaining energy is reflected 
back, since the structure is lossless. 

3.2 nonlinear simulations 

In order to confirm that the predictions based on uniform linear index changes give us a 
correct design, we performed nonlinear simulations for the hole arrays with the chosen hole 
sizes od and ed . The results shown in Fig. 3(b) confirm that for the low intensity (intensity of 

the incident plane wave equal to 2.4 MW/cm2, which corresponds to the intensity used in the 
experiment), the phase difference between the odd and even quadrants is equal to 88°. When 
the intensity is increased to 1.2  GW/ cm2, the waves transmitted through both structures are 
in phase, as illustrated in Fig. 3(c). The maps of the nonlinear refractive index modification 

nΔ  indicate that in the case of the non-resonant structure ( od d= ), the maximum 

0.005nΔ ≈ , while for the resonant structure ( ed d= ), the maximum 0.04nΔ ≈ . Figures 3(d) 

and 3(e) show the transmittance and phase change corresponding to the input intensity change 
from 2.4 MW/cm2 to 1.2  GW/ cm2. Despite the non-uniform distribution of the refractive 
index change in the nonlinear case, the phase changes predicted using the results shown in 
Fig. 2(g) are in good agreement with the full nonlinear simulations. The nonlinear simulations 
were performed in COMSOL Multiphysics. 
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the 90° phase difference moves 4 nm away from the designed working wavelength (see 
Appendix B for the details). The linear simulations in CST do not take into account the 
nonlinear index distribution induced by the HG beam in the metasurface. Unfortunately, the 
nonlinear simulations of the large structure are prohibited by time and memory requirements. 
Nevertheless, the approximate linear simulations are in good agreement with the experiment 
results. 

6. Conclusion 

To conclude, we have experimentally demonstrated that the light transmitted through an all-
dielectric metasurface can be reshaped between a beam with no OAM and a beam carrying a 
well-defined OAM, dependent on the intensity of the input light. The reconfigurability is 
enabled by the strong Kerr effect in the ChG film, leading to an ultra-fast response. The 
nonlinear response of the film was enhanced by the use of a resonant design of the 
metasurface pattern yielding a larger index change as compared to an unpatterned film. 
Moreover, the metasurface is characterized by a high transmission efficiency around 50% in 
both the low- and high-intensity modes of operation. Finally, the use of the ChG-glass 
platform allows for simplification of the fabrication procedure as the As2S3 glass itself acts as 
an electron-beam resist. This nonlinear reconfigurable metasurface will find applications in 
ultra-fast and compact optical communication systems, optical signal processing and all 
optical switching. 

Appendix 

A. Band structure simulations 

In Figs. 2(d), (e) in the main text, we showed the electric and magnetic field distributions 
corresponding to two spectrally separated resonances supported by the structure with the hole 
diameter 320d = nm. To illustrate the origin of the guided resonances and characterize them, 
in Fig. 7, we show the band structure, transmittance, and phase as functions of frequency for 
the structure with the same parameters. Figs. 7(a) and 7(b) show the band diagram of the 
studied structure with the close-up of the spectral range of interest in the vicinity of the center 
of the first Brillouin zone (Γ point). At the Γ point, both even and odd the modes of the 
metasurface can be represented as a superposition of four the modes (with the same parity) of 
a uniform slab. Normally incident light impinging on the metasurface does not have an in-
plane k-vector component and can couple to the modes of the structure located at the Γ point. 
The coupling efficiency depends on the symmetry of the field distribution of the modes and 
on its overlap integral with the field of the incident wave. As shown by Fan et al, [52,53], 
normally incident light can only couple to the degenerate modes at the Γ point. These 
degenerate odd and even modes are indicated in Fig. 7(b), and their spectral position matches 
with the transmittance dips visible in Fig. 7(c). Fig. 7(d) reveals two distinct phase jumps at 
the resonant frequencies/wavelengths with the amplitudes close to 180± ° . 
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