
A PICTURE IS WORTH A BILLION BITS: ADAPTIVE
VISUALIZATION OF BIG DATA

UNIVERSITY OF WASHINGTON

JULY 2020

FINAL TECHNICAL REPORT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

AFRL-RI-RS-TR-2020-135

 UNITED STATES AIR FORCE ROME, NY 13441 AIR FORCE MATERIEL COMMAND

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any purpose other
than Government procurement does not in any way obligate the U.S. Government. The fact that the
Government formulated or supplied the drawings, specifications, or other data does not license the holder
or any other person or corporation; or convey any rights or permission to manufacture, use, or sell any
patented invention that may relate to them.

This report is the result of contracted fundamental research deemed exempt from public affairs security
and policy review in accordance with SAF/AQR memorandum dated 10 Dec 08 and AFRL/CA policy
clarification memorandum dated 16 Jan 09. This report is available to the general public, including
foreign nations. Copies may be obtained from the Defense Technical Information Center (DTIC)
(http://www.dtic.mil).

AFRL-RI-RS-TR-2020-135 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN
ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE CHIEF ENGINEER:

/ S / / S /
STEVEN DRAGER GREGORY HADYNSKI
Work Unit Manager Assistant Technical Advisor

 Computing & Communications Division
 Information Directorate

This report is published in the interest of scientific and technical information exchange, and its publication
does not constitute the Government’s approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information
if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

JULY 2020
2. REPORT TYPE

FINAL TECHNICAL REPORT
3. DATES COVERED (From - To)

OCT 2015 – DEC 2019
4. TITLE AND SUBTITLE

A PICTURE IS WORTH A BILLION BITS: ADAPTIVE VISUALIZATION
OF BIG DATA

5a. CONTRACT NUMBER
FA8750-16-2-0032

5b. GRANT NUMBER
N/A

5c. PROGRAM ELEMENT NUMBER
61101E

6. AUTHOR(S)

Rastislav Bodik,Luis Ceze, Alvin Cheung, Michael Ernst,
Dan Grossman, Zachary Tatlock, Emina Torlak, and Xi Wang

5d. PROJECT NUMBER
BRAS

5e. TASK NUMBER
SU

5f. WORK UNIT NUMBER
WA

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University Of Washington
Office Of Sponsored Programs
4333 Brooklyn Ave Ne
Seattle WA 98195-0001

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/RITA DARPA
525 Brooks Road 675 North Randolph St
Rome NY 13441-4505 Arlington VA 22203-2114

10. SPONSOR/MONITOR'S ACRONYM(S)

AFRL/RI
11. SPONSOR/MONITOR’S REPORT NUMBER

AFRL-RI-RS-TR-2020-135
12. DISTRIBUTION AVAILABILITY STATEMENT
Approved for Public Release; Distribution Unlimited. This report is the result of contracted fundamental research
deemed exempt from public affairs security and policy review in accordance with SAF/AQR memorandum dated 10 Dec
08 and AFRL/CA policy clarification memorandum dated 16 Jan 09
13. SUPPLEMENTARY NOTES
14. ABSTRACT
This report documents the results achieved by the University of Washington SandCat team under the Defense Advanced
Research Projects Agency Building Resource Adaptive Software Systems program. This effort focused on developing
static and dynamic adaptations of computer systems, as a modern system stack is forced to (1) accommodate the
growth in data volume and data bandwidth at rates exceeding Moore's Law; and (2) support energy-efficient mobile
devices that can neither store all necessary data nor perform the computation at the desired real-time latency. To meet
these two goals, SandCat technology automates adaptation by aggressively approximating both the data and the
computation, as well as by performing the computations incrementally. In particular, the Sandcat project responded to
two needs for adaptation: (1) the rapid change in hardware, systems software, and application workloads; and (2) the
increased complexity of computer systems, especially at the interfaces, which were intended to hide the complexity. A
major milestone in the research area of program synthesis was achieved, as the synthesis technology developed by
SandCat reached parity with human programmers on about a dozen different programming tasks. Several components
of SandCat technology have been transitioned into the commercial marketplace, including verified lifting which ships in a
commercial photo editing product; the Rosette architecture which is being used in the Synthetic Minds startup; and the
machine learning kernels which are being commercialized by OctoML.
15. SUBJECT TERMS
Adaptation; system verification; program synthesis
16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF

ABSTRACT

UU

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON
STEVEN DRAGER

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
NA

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

30

i

 TABLE OF CONTENTS

1. SUMMARY ... 1

2. INTRODUCTION ... 3

3. METHODS, ASSUMPTIONS, AND PROCEDURES ... 5

3.1 Program Synthesis .. 5

3.2 Refinement ... 6

4. RESULTS AND DISCUSSION .. 7

4.1 Challenge Problem I.1: Adaptive Large-Scale Visualization .. 7

4.2 Challenge Problem I.2: Adapting an Application to a new File System 8

4.3 Challenge Problem II.1: Automatic Adaptation of Legacy Code for Parallel Execution
using Verified Lifting ... 10

4.4 Challenge Problem II.2: A QoS-Adaptive Image Store ... 10

4.5 Challenge Problem II.3: Adaptive File Systems .. 12

4.6 Challenge Problem III.1: Numerical Adaptations with Herbie 13

4.7 Challenge Problem III.2: Finding Bugs in Dynamic Adaptation Systems with Staccato13

4.8 Staccato: Debugging Systems that Adapt via Dynamic Configuration Updates 14

5. CONCLUSIONS.. 17

REFERENCES .. 18

LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS ... 26

Approved for Public Release; Distribution Unlimited.
1

1. Summary

The University of Washington (UW) SandCat project, an effort within the Defense Advanced
Research Projects Agency (DARPA) Building Resource Adaptive Software Systems
(BRASS) program, responded to (1) the rapid change in hardware, systems software, and
application workloads; and (2) the trend towards increased complexity of computer systems,
especially at the interfaces which were intended to hide the complexity. The rapid change
requires adapting existing applications and infrastructure but the complexity makes the
adaptation more difficult. The SandCat project developed methods that analyze existing
components and synthesize new ones. The SandCat adaptations were semantic and mostly
performed offline. The goal was to aid programmers and system designers who currently
adapt code by manually rewriting the code. The project selected problems from across the
entire systems stack, from the central processing unit (CPU) to compute kernels and data
structures, and from disk devices to file systems, and databases.

The synthesis technology developed by SandCat reached parity with human programmers on
about a dozen different programming tasks, which is a major milestone in the research area
of program synthesis. Some problems solved by SandCat have been automatically solved for
the first time. The tools developed by the team enabled new adaptations of software to
hardware, including the synthesis of:

1. surprising optimizations for floating-point expressions (Herbie) [1, 2, 3, 4, 5],

2. new mappings of computations onto graphics processing units (GPUs) not achievable
by existing compilers (Swizzle Inventor) [6, 7], and

3. ultra-low-precision machine learning (ML) kernels (TVM) [8, 9].

The technology also synthesized artifacts that semantically summarize existing
implementations, enabling:

1. performance portability to new platforms and hardware (verified lifting) [10, 11, 12,
13], and

2. automatic authoring of memory models and file system crash consistency models
(memSynth and Ferrite) [14, 15, 16]

Approved for Public Release; Distribution Unlimited.
2

These advances were enabled by new infrastructure, including:

• the Cozy synthesizer of data structures [17, 18],

• the Rosette generator of synthesizers [19, 20, 21, 22], and

• the STAle Configuration and Consistency Analysis Tool (Staccato) automatic checker
of adaptation mechanisms [23, 24, 25].

The technology has transitioned to practice, as the results of verified lifting ship in a
commercial photo editing product (Adobe Photo-shop); the Rosette architecture is being used
in the Synthetic Minds startup; and the ML kernels are being commercialized by OctoML.

Approved for Public Release; Distribution Unlimited.
3

2. Introduction

Problem Description: Big-data analytics is overwhelmed by the volume of data to process
and store. On the compute side, today’s analytics is already slow and power-hungry,
executed in a batch job on a data center, rather than in real-time on a laptop or a sensor
device. On the storage side, the data volume forces us to discard old logs and give up
precision with data compression. If data creation trends continue, these challenges will only
become exacerbated.

The University of Washington SandCat project investigates how analytics can keep up with
growing datasets and more sophisticated analytics algorithms, and how it will deliver
interactive data analysis.

The premise of our research plan was that improvements in computation and storage will
come with increasingly unbalanced tradeoffs: processors will increase parallelism at the cost
of more complex shared-memory models spanning CPU, GPU, and field programmable gate
array (FPGA) integrated on the same chip; file systems will increase their throughput by
sacrificing data consistency after system crashes; and storage devices may increase their
capacity at the cost of increasing the error rate. Across the entire system stack, we will see
the proliferation of software specialized to an application domain and a class of hardware,
forcing us to migrate applications and reformulate algorithms to new programming models.

Research Goals: We have designed components of a computer stack that adapt to the
adversity that arises when data volume impairs analysis latency or exceeds disk capacity. For
example, we specialize the system execution to the quality of service (QoS) specification, by
approximating the computation and the stored data [26].

We also adapt to the opportunity provided by new technologies that sacrifice correctness or
introduce complexity to increase performance, by restoring the correctness of affected system
components and by developing programmer tools that help overcome complex system
interfaces, such as memory models.

We explore these adaptations on a system stack comprising data visualization, data analytics,
image store, a file system, storage devices, and data servers distributed across a network. We
are especially interested in an adaptation that spans multiple layers of the stack, such as
adapting the image store to data analytics algorithms by tuning on the fly the quality of
retrieved images.

Approved for Public Release; Distribution Unlimited.
4

Impact: This project developed technologies for specializing system components and
adapting them to similar changes in other components. The adaptations restored component
correctness, took advantage of new resources, and traded quality for efficiency. Beyond
specialization and adaptation, we delivered methods and tools for designing, implementing,
and verifying systems for the era of growing system complexity. Our tools produce not only
programs but other artifacts required for system design, such as semantic models and
specifications of component interfaces.

Approved for Public Release; Distribution Unlimited.
5

3. Methods, Assumptions, and Procedures

Our project has primarily relied on two classes of techniques — program synthesis and
refinement. During the four years of UW SandCat under the DARPA BRASS program, we
have developed them into surprisingly versatile technologies.

3.1 Program Synthesis

A program synthesizer produces a program that satisfies a given specification. The
specification can be a reference implementation; a validation test suite; a designer-supplied
example execution; a desired safety property; or a multi-modal combination of these
artifacts. The synthesized program will be found by searching the programs in a Domain-
Specific Language (DSL) designed by the synthesizer author with the help of a domain
expert.

We have synthesized both high-performance implementations of system components [27]
and specifications of system artifacts, such as legacy analytics programs and system
interfaces [12]. Synthesis of specifications is obtained for free by viewing specifications as
programs from a specially designed DSL. This enables inference of specifications from
execution traces and other readily obtained artifacts. The synthesized specification can in
turn be used to synthesize implementations or other specifications. For example, we have
automatically obtained a specification of a shared-memory model from litmus tests, which
are small multithreaded programs describing the behavior of the memory model; this
memory model can be used to synthesize a fence-based synchronization of a multithreaded
program running on hardware with this model [14].

Compared to a compiler, a synthesizer produces the program by searching the space of DSL
programs, looking for one that satisfies the specification. This search can be performed by
reduction to satisfiability modulo theories (SMT) constraint solving, for example. In contrast,
a compiler uses rewrite rules to mechanically lower the source program to its
implementation. Whenever a compiler can be used for a given domain, it is preferred over
synthesis, which is usually slower than compilation. However, (1) synthesis requires no
rewrite rules, just the DSL; and (2) synthesis specifications need not be full source-code
programs — synthesis can generate code from tests, traces, and other partial-specifications
that may be easier to obtain than a full executable specification. This is especially beneficial
for synthesis of semantic specifications such as models of shared memory, crash models of
file systems, and interfaces for other components.

Approved for Public Release; Distribution Unlimited.
6

3.2 Refinement

Refinement is a methodology for proving program correctness gradually rather than in a
single monolithic proof. The monolithic proof is decomposed into several simpler proofs,
which act as refinement steps in lowering the specification (i.e., an abstract version of the
program) into an implementation (i.e., a fully concrete program). A well-designed refinement
methodology provides abstractions for each step, facilitating fully automatic proofs, and (in
future work) and the automatic synthesis of the intermediate programs and the final
implementation. We have used refinement to automatically verify a file system, a distributed
protocol, and also to prove the absence of bugs in a dynamic software adaptation protocol.

In our work on refinement, we focused on developing frameworks for programmers, so that
they can develop their advanced systems and simultaneously obtain proofs of correctness
[28]. Our specific priorities are developing reusable abstractions for the intermediate layers,
i.e., the refinement variants of the source-level program. We also seek to automate the
verification, at each layer, so that we can propose adapted code variants automatically (with a
synthesizer) and reliably accept them if they verify [29].

Approved for Public Release; Distribution Unlimited.
7

4. Results and Discussion

This report cannot describe in depth all results developed by the SandCat project.
Publications [30] [31] [6] [32] [33] [34] [35] [36] [37] [38] [39] [13] [40] [41] [42] [17] [43]
[44] [45] [22] [28] [15] [9] provide such depth. This report highlights those projects that have
been evaluated by the BRASS technical area (TA) 4 performers in the three phases of the
project.

In Phase I, we developed and evaluated an adaptive large scale visualization (Challenge
Problem (CP) I.1). This work was based on our work on automatically generating
visualization layout engines [46, 47]. We also designed and evaluated how an application can
adapt to a file system with weaker consistency properties (CP I.2).

In Phase II, we demonstrated adaptations using data-processing applications (CP II.1) that
read from and write to a QoS-adaptive image store (CP II.2). Both CP II.1 and CP II.2 take
advantage of an adaptive file system (CP II.3), as detailed in this subsection.

In Phase III, we solved three Challenge Problems. CP III.1 is motivated by the current state-
of-the-art in numerical adaptation, which is characterized by painstaking manual effort of a
numerical methods expert. Our goal was to demonstrate the feasibility of replacing important
parts of such efforts using automated analysis and rewriting with Herbie. In CP III.2, we
provided for evaluation Staccato, our dynamic-analysis tool for detecting and repairing errors
in systems that adapt via dynamic reconfiguration. Lastly, in CP III.3, we solved a Constraint
Satisfaction Problem using the case study of Flight Test Adaptation provided by Southwest
Research Institute (SwRI).

4.1 Challenge Problem I.1: Adaptive Large-Scale Visualization

In this problem, we optimized two visualizations of hierarchical data sets. The two
visualizations were a treemap and circlepacking.

Data Sets: The test data sets contain students and their grade point average (GPAs),
Scholastic Aptitude Test (SAT) scores, and birthdates. The data set is tree-hierarchical in that
it groups students into classrooms, schools, and city. There are thus four layers of data. This
was a synthetic data set, generated randomly using the parameters for 103,252 students in 64
schools and 2,461 classes and expected to be tested on data sets of 10,000s of students.

Interactive data exploration (the perturbation): The user can explore questions such as
how the GPA correlates with the SAT score, and how the birthday affects GPA and SAT.
The size of each student’s rectangle (in treemap) or circle (in circlepacking) corresponds to a

Approved for Public Release; Distribution Unlimited.
8

linear mix of GPA and SAT scores, which can be controlled using a slider. The size of the
rectangles and circles for classes, schools, and cities is the aggregate of student score
mixtures. The set of visualized students can also be sub-selected interactively based on their
birthdays; the second slider selects the range of birthdays.

In response to slider movement, the analysis and visualization are recomputed. On a small
data set, the graphics adjusts in real time as the slider moves. On large data files, the
computation cannot keep up with the animation frame rate of 60 frames per second; the
computation takes longer than the frame interval of 16ms. We thus consider the user-driven
slider movement to be a perturbation to which the visualization needs to adapt.

Adaptation: To maintain responsiveness of the analysis and visualization, we approximate
the computation in two ways: (1) we do not analyze the entire tree, skipping over the details
in the lower layers of the tree; and (2) we avoid the layout and drawing of visual elements on
which analysis was not performed. So, by measuring the time of the analysis and layout, we
elide the students, classrooms, and schools as needed to maintain the frame rate.

4.2 Challenge Problem I.2: Adapting an Application to a new File
System

Applications such as SandCat’s big-data analytics system depend on persistent storage to
record their state. Ensuring this data remains consistent after a system crash requires the
application writer to understand subtle, file-system-dependent crash consistency guarantees.
Rather than navigate these challenges directly, most applications delegate to a library layer
offering higher-level guarantees, such as an atomic operation to replace the contents of a file.
The library layer (such as that implemented by SQLite) strives to provide these higher-level
operations with the minimal synchronization necessary to both preserve data integrity and
maximize performance on the particular file system they run on.

Looming changes in persistent storage media and in file systems, and the corresponding
crash guarantees they provide, will require re-implementing these library layers. On the
hardware side, new shingled magnetic recording (SMR) disks offer increased density but
allow writes to overlap existing unrelated data. Non-volatile memory technologies such as
Intel’s Optane, which entered the market in 2017, change the granularity of write atomicity
and so require different synchronization patterns. On the file system side, developers
continually update file system technology to better match today’s workloads. For example,
Apple Inc. recently upgraded millions of iOS devices to the new Apple File System (APFS).
Each of these changes include different crash guarantees that libraries must understand and
correctly address.

Approved for Public Release; Distribution Unlimited.
9

Given this proliferation of different crash guarantees, manually updating libraries to be
correct for each platform will be tedious and error-prone. Instead, systems should be able to
automatically adapt to new crash consistency models provided by the underlying storage
stack. This adaptation could take as input the library implementation for an operation (e.g.,
atomic replacement), the top-level specification that operation offers (e.g., atomicity), and the
crash consistency model for the new storage stack. Our adaptation engine, Ferrite,
automatically inserts synchronization into the implementation to make it crash-safe on the
given stack, and either guarantees it has inserted only the minimal synchronization necessary,
or reports that the implementation cannot be made safe with synchronization alone (i.e.,
algorithmic changes are necessary) [15].

The setup: Imagine a big-data analytics system is running on a cluster of Linux nodes, each
using some file system. This file system has certain crash consistency properties that are
translated by a library layer for use the application running on the file system.

Change: Imagine that we load a new file system. This could happen as a result of porting the
data set to new technology drives that demand a new file system. This new file system could
be faster but could be less resilient to crashes. As a result, the library can no longer protect
the data integrity of the data set on the new file system.

This challenge problem exercises changes in the internal consistency models resulting from
installation of new components. Specifically, the perturbation in this CP will be the upgrade
to a new file system which are developed for new kinds of disks and new work-loads. File
systems differ in how they behave in the presence of crashes (in the file system itself or in the
components above the file system or due to power losses or kernel panics). This is the result
of aggressively caching and reordering data operations to improve performance. If a crash
occurs between reordered operations, the disk may store an inconsistent data structure,
leading to catastrophic data losses. Unfortunately, the Portable Operating System Interface
(POSIX) standard has been largely silent on the behavior of file systems after a system crash.

Adaptation Scenario: A new file system will be added to existing file systems. The stack
above the file system (database, data analytics, and the web server) will be able to use both
the new and the existing file systems. The new file system may be faster but offers fewer
guarantees. In this case, the applications needs to decide which of their storage needs can
correctly use the file system. If the file system offers stronger guarantees, then the
applications can remove synchronization between file system operations.

To ensure data integrity, components running on top of the file system need to be written to
account for the crash model of the underlying file system. We formalize the idea of the crash
model, and developed techniques for checking if a client component is correct with respect to

Approved for Public Release; Distribution Unlimited.
10

a file system’s crash model. The crash model is analogous to the memory model developed
for shared memory systems. We described the background in our paper on the Ferrite
checker [15].

Testing: The evaluation system offers knobs that will configure properties of the new file
systems. We configured the file system by defining its behavior by means of a set of litmus
tests (see paper for examples of litmus tests [15]). This behavior was implemented with the
model checker that we developed for Ferrite. The performance and correctness was evaluated
by examining the data integrity of applications after crashes induced artificially in the test
system.

4.3 Challenge Problem II.1: Automatic Adaptation of Legacy Code
for Parallel Execution using Verified Lifting

The platform in this challenge problem comprises a file system, a data processing
application, and its clients. The mission scenario was to preserve the semantics of the original
application while adapting the runtime environment to massively parallel, distributed data
processing frameworks.

This challenge problem demonstrates that it is possible to automatically rewrite originally
sequential, non-distributed applications to leverage modern distributed data processing
frameworks (e.g., Hadoop MapReduce, Spark, Flink), without manual code modification.
Because the automatic rewrite preserves all original application invariants, it also greatly
reduces the debugging and testing burden associated with a manual rewrite.

The CP platform uses a new compiler construction technique called verified lifting to
automatically rewrite application code. Verified lifting uses program synthesis and
verification (instead of syntax-directed rules) to search for efficient rewrites and proofs of
their correctness.

Success was measured by generating provably correct translations of code fragments in the
original program to MapReduce constructs, and evaluating the correctness and performance
of the generated program running on the target framework.

4.4 Challenge Problem II.2: A QoS-Adaptive Image Store

The platform in this challenge problem comprises a key-value store of image data, its clients,
and its underlying file system. The mission scenario is to maximize both client throughput
and the quality of retrieved images, under constraints of limited memory and storage media
bandwidth, and limited storage capacity.

Approved for Public Release; Distribution Unlimited.
11

This challenge problem demonstrates the ability to preserve intent (maximizing image
quality and client throughput) under perturbations in the CPU, memory, storage media, and
client components of the ecosystem. Specifically, the platform will dynamically adapt to
increases in offered load (from clients or competing tenants of its memory, storage, and
compute resources) by reducing the quality of retrieved images, within configured quality
constraints. Additionally, the platform will dynamically adapt to limited storage capacity
(e.g., in space-limited IoT devices or expensive media like flash, Random Access Memory
(RAM), or non-Volatile Random Access Memory (NVRAM) by pruning data corresponding
to image quality above the minimum configured level. These adaptations also work the other
way, of course: an increase in available memory/storage bandwidth (which could be from
improved hardware as well as reduced client demand) allows the platform to increase the
quality of retrieved images, and an increase in available storage capacity allows us to store
more high-frequency data per image (although it does not guarantee it will be used).

The key technology enabling this challenge problem is a customized progressive Joint
Photographic Experts Group (JPEG) format, which reduces both the storage and bandwidth
costs of rendering a single stored image at multiple resolutions. Rather than storing multiple
versions of the same image for each supported resolution (or storing a single high-resolution
version of the image and transcoding to lower resolutions on the fly), the format stores all
frequency coefficients of the (maximum-resolution) image in scan order. The result is that
any prefix of the full sequence can be used to reconstruct the image, with resolution
determined by the length of the prefix (a mapping of file offsets to supported resolutions is
stored)–the more of the sequence you read, the higher-quality the resulting image. No data
needs to be duplicated to store different resolutions of the same image, and the transcoding
process needs to read only the data actually required to reconstruct the image at a desired
resolution (rather than the entire original image). This storage- and bandwidth-optimized
format gives rise to two distinct adaptations: storage constraints can be addressed by simply
truncating the sequence of frequency coefficients (to an offset corresponding to the minimum
supported resolution), and bandwidth constraints (in memory or storage) can be addressed by
reading a shorter prefix of the sequence of frequency coefficients (again corresponding to
some supported resolution).

Success was measured by verifying that the adaptations described above successfully
preserve intent (maximizing image quality and client throughput) under perturbations in
client load and storage capacity. In particular, the platform should be able to realize a
significant gain in throughput and storage utilization over conventional approaches (e.g.,
maintaining duplicate images at multiple resolutions, or a single version with on-the-fly
transcoding), while satisfying a minimal image quality constraint (measured in peak signal-
to-noise ratio).

Approved for Public Release; Distribution Unlimited.
12

The relative optimality of the challenge stage approach can be quantified by comparing its
space and computation requirements to the two extreme baseline approaches: 1) store pre-
rendered versions of all images at each supported resolution and return them directly, or 2)
store a single high-resolution version of each image and transcode an image at the requested
resolution on the fly. Approach 1) gives the best possible computational performance, at the
worst possible storage cost, while approach 2) gives the best possible storage cost, with the
worst possible computational performance. If we plot these three approaches as points on a
computation-storage graph, the challenge stage approach should strictly dominate the two
baseline approaches (i.e., its point lies below the line between the other two points), and its
relative optimality is given by the orthogonal distance (in normalized units) of its point from
the line between the two baseline points.

4.5 Challenge Problem II.3: Adaptive File Systems

The main motivation of CP 3 is that long-running computer systems need file systems that
can adapt to hardware changes to meet their storage requirements over time. For example,
when a storage device is upgraded to media with different characteristics (e.g., smaller/larger
atomic write unit size or a battery-backed disk with a stronger consistency guarantee), the file
system should be able to take advantage of these changes to achieve better performance
while guaranteeing correctness.

In Phase 1, we have demonstrated how to adapt applications to changes in file system
consistency models, in which we envision how future file systems may relax/reorder
operations to strike a balance between consistency and performance. Our system in phase 1
guarantees 1) correctness, that applications will achieve the same level of consistency when
adapting to a new file system; and 2) optimality, that applications will use the minimum
number of file system flushes.

In Phase 2, we focused on how to implement a set of such new file systems. In other words,
we generated a set of file system implementations with different consistency requirements
with respect to hardware changes.

The key enabling technology for adaptive file systems was push-button formal verification.
The file system is carefully designed and decomposed into layers; each layer allowed us to
gradually adapt file systems into a more sophisticated, performant implementation. Our
system checks the correctness of these implementations through a satisfiability modulo
theories solver, Z3. The modular design of the file system allows Z3 to efficiently reason
about the correctness of file systems before and after adaptations. We also use Z3 to optimize
the file system, for instance, by checking whether it is correct to remove certain disk
operations for better performance when adapting a file system to a new type of disk.

Approved for Public Release; Distribution Unlimited.
13

Success was measured in two ways: 1) correctness, that a new file system achieves the
required consistency level; and 2) optimality, that a new file system implementation uses the
minimal number of disk barrier operations.

4.6 Challenge Problem III.1: Numerical Adaptations with Herbie

The original version of Herbie, a system to detect inaccurate floating point expressions and
finds more accurate replacements, regime inference was often inaccurate (it was missing
some regimes and inferring poor branches for others). As part of the BRASS SandCat effort,
we improved regime inference to support effective adaptation to new input ranges. As we
continued to improve regime inference, Phase 3 CP 1 evaluated Herbie’s ability to help adapt
programs to compute accurately on new inputs. The motivation for this style of adaptation
comes from a classic problem with writing floating-point code: developers naively translate
real-number expressions from engineering references (or sometimes even just Wikipedia)
and test the code on a few inputs. This often produces results which seem accurate enough on
a handful of simple test cases. However, once deployed, the system receives additional inputs
which trigger bad rounding errors for key expressions (kernels) in the computation. Our goal
was to demonstrate that Herbie’s synthesis and regime inference can adapt such kernels
automatically (offline) to fix such issues.

For each kernel benchmark, we specified a set of “typical inputs” informed by the domain the
kernel is drawn from and the papers and/or unit tests associated with the kernel’s application.
We will also specified a set of “target inputs” for each kernel that corresponded to
deployment in a more general context (e.g., if the kernel was extracted from a particular
application and then included as part of a library). Success depended on the number of
benchmarks Herbie adapted to handle the broader range of target inputs and the degree to
which accuracy in those new regimes is maintained or improved. Our goal was to
successfully adapt more than 25% of cases automatically.

4.7 Challenge Problem III.2: Finding Bugs in Dynamic Adaptation
Systems with Staccato

In this Challenge Problem, we provided the evaluators real-world web applications that
contained dynamic-reconfiguration errors; our Staccato dynamic-analysis tool for detecting
and repairing such errors; and a testing framework for analyzing Staccato’s effectiveness on
these applications.

In particular, the CP targeted adaptable systems that support online configuration changes
without a restart of the system, which we termed a dynamic configuration update (DCU). We
focused on two types of configuration adaptation errors: 1) failure to propagate con-

Approved for Public Release; Distribution Unlimited.
14

figuration updates to all system components, and 2) failure to apply configuration updates
atomically. In addition, we demonstrated that Staccato can automatically repair some types of
errors at runtime without interrupting normal execution.

4.8 Staccato: Debugging Systems that Adapt via Dynamic
Configuration Updates

Mission-critical systems must be adaptable to different environments, mission parameters,
and resource constraints. To promote usability across a wide array of deployment scenarios,
adaptable software will often support a set of configuration options, which allow a trained
user to set parameters that control a program’s execution. For example, a system may allow
the user to configure the location of the database used for durable storage, or the number of
threads to use for data processing. However, a program’s execution environment is often
dynamic, and can change mid-execution, which in turn necessitates changing the values for
some configuration options. For example, database servers may become unavailable, or the
number of threads used for processing must be reduced in response to resource availability
changes. Mission-critical software is often subject to stringent uptime requirements and
restarting the system to effect a configuration change is infeasible. Thus, to accommodate
configurability and robustness, many systems support configuration options that can be
changed at runtime. We call a configuration change at runtime a dynamic configuration
update.

Unfortunately, it is difficult to implement dynamic configuration updates correctly. A bug in
Solr, an open-source text search and indexing server, demonstrated this. The user may
configure a set of analyzers that process text entering the system. These analyzers can
remove stop words, apply tense normalization, etc. The user may also dynamically
reconfigure the set of analyzers used, e.g., to remove or add stop words. Although Solr
reported that changes to the relevant configuration option were successfully applied, the
analyzers were not actually updated to reflect the new settings. Solr would then silently
misprocess data and incorrectly answer user queries. The only indication that something was
wrong was Solr’s output, which required careful inspection on the part of the user. We found
similar defects in multiple applications.

Staccato is a tool developed at UW that uses runtime monitoring to detect errors in dynamic
configuration update mechanisms. Our tool checks one of two alternative correctness
conditions for DCU systems, as chosen by the programmer. The first condition states that old
versions of configuration options may not be used after a configuration up-date. The second
states that only one version of a configuration option may be used during a single method
execution. Both conditions provide a possible specification of program behavior in the

Approved for Public Release; Distribution Unlimited.
15

presence of dynamic configuration updates. The choice of correctness condition is
application specific, and given by the programmer in the form of a few high-level
annotations.

In addition to bug finding, Staccato provides support for program repair and bug avoidance.
Staccato can transparently repair program schedules to hide insufficient synchronization
around configuration accesses. In addition, when Staccato detects a value built from an out-
of-date configuration, it calls a programmer-provided callback to update the stale value. This
feature can even be used to support dynamic configuration updates for options that
previously required a restart.

We demonstrated that: 1) Staccato is effective at finding configuration adaptation errors in
real programs with minimal annotations, and 2) the repair callback mechanism can avoid
bugs discovered in practice.

In the challenge problem of Runtime Monitoring and Bug Finding, for each application, we
developed a test suite that simultaneously exercises the core functionality of the web
application while randomly mutating the configuration. We provided a test harness that runs
these test suites along with the Staccato dynamic analysis without automatic repair enabled.
The test harness allowed setting the parameters that control the random mutation.

Prior investigation has identified a set of incorrect dynamic-configuration behaviors possible
in these applications. Each test-suite execution that produces a Staccato “found bug” will
produce a stack-trace indicating where the monitoring detected a violation of the appropriate
correctness condition. We provided a script that classifies these stack-traces to indicate
whether the reports are due to a known incorrect behavior (a “true positive”) and
conservatively assume any other report is a “false positive”. Success was defined as finding
at least one error in each application with a false positive rate under 5%.

In the challenge problem Repair and Update, we identified violations reported by the above
test suite that can be mitigated with Staccato’s automatic repair mechanism. In addition, we
identified areas in the three benchmarks where the repair mechanism can be used to
transparently introduce dynamic configuration update support. We added the necessary
repair/update callbacks and provided a test harness that runs an extended version of the test
suite above with Staccato’s automatic repair enabled. This extended test suite will
additionally mutate the configuration options for which we added update support. We
defined success for the repair callbacks as correctly introducing an update without leading to
new violations. Success for a repair callback was defined as avoiding a true positive observed
when Staccato is run without repair support. Additional success criteria were defined as

Approved for Public Release; Distribution Unlimited.
16

allowing the application to continue running successfully, and correct response to future
requests. Overall success was defined as a 90% success rate across both types of callbacks.

Approved for Public Release; Distribution Unlimited.
17

5. Conclusions

The University of Washington SandCat project responded to (1) the rapid change in
hardware, systems software, and application workloads; and (2) the trend towards increased
complexity of computer systems, especially at the interfaces which were intended to hide the
complexity, by developing methods to automate analyzing existing components and
synthesizing new ones. The SandCat adaptations are semantic and mostly performed in an
offline mode. The technology itself aids programmers and system designers’ productivity
through automation, by overcoming existing manual code rewriting methods to adapt code.
The results have been demonstrated on challenge problems from across the entire systems
stack, from the CPU to compute kernels and data structures, and from disk devices to file
systems, and databases.

A major milestone in the research area of program synthesis was achieved, as the synthesis
technology developed by SandCat reached parity with human programmers on about a dozen
different programming tasks. Several components of SandCat technology have been
transitioned into the commercial marketplace, including verified lifting which ships in a
commercial photo editing product (Adobe Photoshop); the Rosette architecture which is
being used in the Synthetic Minds startup; and the ML kernels which are being
commercialized by OctoML.

Approved for Public Release; Distribution Unlimited.
18

References

[1] Panchekha P, Sanchez-Stern A, Wilcox JR, Tatlock Z (2015) Automatically improving
accuracy for floating point expressions. Proceedings of the 36th ACM SIGPLAN Conference
on Programming Language Design and Implementation, Portland, OR, USA, June 15-17,
2015, eds Grove D, Blackburn S (ACM), pp 1–11. https://doi.org/
10.1145/2737924.2737959.
Available at https://doi.org/10.1145/2737924.2737959

[2] Sanchez-Stern A, Panchekha P, Lerner S, Tatlock Z (2018) Finding root causes of
floating point error. Proceedings of the 39th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2018, Philadelphia, PA, USA, June 18-22,
2018, eds Foster JS, Grossman D (ACM), pp 256–269. https://doi.org/
10.1145/3192366.3192411.
Available at https://doi.org/10.1145/3192366.3192411

[3] Thien D, Zorn B, Panchekha P, Tatlock Z (2019) Toward multi-precision, multi-format
numerics. 2019 IEEE/ACM 3rd International Workshop on Software Correctness for HPC
Applications (Correctness), Denver, CO, USA, November 18, 2019, eds Laguna I, Rubio-
Gonzalez´ C (IEEE), pp 19–26. https://doi.org/10.1109/Correctness49594.2019.00008.
Available at https://doi.org/ 10.1109/Correctness49594.2019.00008

[4] Becker H, Panchekha P, Darulova E, Tatlock Z (2018) Combining tools for
optimization and analysis of floating-point computations. Formal Methods - 22nd
International Symposium, FM 2018, Held as Part of the Federated Logic Conference, FloC
2018, Oxford, UK, July 15-17, 2018, Proceedings, eds Havelund K, Peleska J, Roscoe B, de
Vink EP (Springer), Lecture Notes in Computer Science, Vol. 10951, pp 355–363.
https://doi.org/10.1007/978-3-319-95582-7n 21.
Available at https://doi.org/10.1007/978-3-319-95582-7 21

[5] Damouche N, Martel M, Panchekha P, Qiu C, Sanchez-Stern A, Tatlock Z (2016)
Toward a standard benchmark format and suite for floating-point analysis. Numerical
Software Verification - 9th International Workshop, NSV 2016, Toronto, ON, Canada, July
17-18, 2016, [collocated with CAV 2016], Revised Selected Papers, eds Bogomolov S,
Martel M, Prabhakar P, Lecture Notes in Computer Science, Vol. 10152, pp 63–77.
https://doi.org/10.1007/978-3-319-54292-8n 6.
Available at https://doi.org/10.1007/978-3-319-54292-8 6

[6] Phothilimthana PM, Elliott AS, Wang A, Jangda A, Hagedorn B, Barthels H, Kaufman
SJ, Grover V, Torlak E, Bod´ık R (2019) Swizzle inventor: Data movement synthesis for

https://doi.org/10.1145/2737924.2737959
https://doi.org/10.1145/2737924.2737959
https://doi.org/10.1145/2737924.2737959
https://doi.org/10.1145/3192366.3192411
https://doi.org/10.1145/3192366.3192411
https://doi.org/10.1145/3192366.3192411
https://doi.org/10.1109/Correctness49594.2019.00008
https://doi.org/10.1109/Correctness49594.2019.00008
https://doi.org/10.1109/Correctness49594.2019.00008
https://doi.org/10.1007/978-3-319-95582-7_21
https://doi.org/10.1007/978-3-319-95582-7_21
https://doi.org/10.1007/978-3-319-54292-8_6
https://doi.org/10.1007/978-3-319-54292-8_6

Approved for Public Release; Distribution Unlimited.
19

GPU kernels. Proceedings of the Twenty-Fourth International Conference on Architectural
Support for Programming Languages and Operating Systems, ASP-LOS 2019, Providence,
RI, USA, April 13-17, 2019, eds Bahar I, Herlihy M, Witchel E, Lebeck AR (ACM), pp 65–
78. https://doi.org/10.1145/3297858.3304059.
Available at https://doi.org/10.1145/3297858.3304059

[7] Phothilimthana PM, Thakur A, Bod´ık R, Dhurjati D (2016) Scaling up
superoptimization. Proceedings of the Twenty-First International Conference on
Architectural Support for Programming Languages and Operating Systems, ASPLOS ’16,
Atlanta, GA, USA, April 2-6, 2016, eds Conte T, Zhou Y (ACM), pp 297–310.
https://doi.org/10.1145/2872362.2872387.
Available at https://doi.org/10.1145/2872362.2872387

[8] Cowan M, Moreau T, Chen T, Bornholt J, Ceze L (2020) Automatic generation of
high-performance quantized machine learning kernels. CGO ’20: 18th ACM/IEEE
International Symposium on Code Generation and Optimization, San Diego, CA, USA,
February, 2020 (ACM), pp 305–316. https://doi.org/10.1145/3368826.3377912.
Available at https://doi.org/10.1145/3368826.3377912

[9] Bornholt J, Torlak E, Grossman D, Ceze L (2016) Optimizing synthesis with
metasketches. Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2016, St. Petersburg, FL, USA, January 20 -
22, 2016, eds Bod´ık R, Majumdar R (ACM), pp 775–788. https://doi.org/
10.1145/2837614.2837666.
Available at https://doi.org/10.1145/2837614.2837666

[10] Ahmad MBS, Cheung A (2016) Leveraging parallel data processing frameworks with
verified lifting. Proceedings Fifth Workshop on Synthesis, SYNT@CAV 2016, Toronto,
Canada, July 17-18, 2016, eds Piskac R, Dimitrova R, EPTCS, Vol. 229, pp 67–83.
https://doi.org/10.4204/EPTCS.229.7.
Available at https://doi.org/10.4204/ EPTCS.229.7

[11] Ahmad MBS, Cheung A (2017) Optimizing data-intensive applications automatically
by leveraging parallel data processing frameworks. Proceedings of the 2017 ACM
International Conference on Management of Data, SIGMOD Conference 2017, Chicago, IL,
USA, May 14-19, 2017, eds Salihoglu S, Zhou W, Chirkova R, Yang J, Suciu D (ACM), pp
1675–1678. https://doi.org/10.1145/3035918.3056440.
Available at https://doi.org/10.1145/3035918.3056440

https://doi.org/10.1145/3297858.3304059
https://doi.org/10.1145/3297858.3304059
https://doi.org/10.1145/2872362.2872387
https://doi.org/10.1145/2872362.2872387
https://doi.org/10.1145/2872362.2872387
https://doi.org/10.1145/3368826.3377912
https://doi.org/10.1145/3368826.3377912
https://doi.org/10.1145/2837614.2837666
https://doi.org/10.1145/2837614.2837666
https://doi.org/10.1145/2837614.2837666
https://doi.org/10.4204/EPTCS.229.7
https://doi.org/10.4204/EPTCS.229.7
https://doi.org/10.4204/EPTCS.229.7
https://doi.org/10.1145/3035918.3056440
https://doi.org/10.1145/3035918.3056440

Approved for Public Release; Distribution Unlimited.
20

[12] Ahmad MBS, Cheung A (2018) Automatically leveraging mapreduce frameworks for
data-intensive applications. Proceedings of the 2018 International Conference on
Management of Data, SIGMOD Conference 2018, Houston, TX, USA, June 10-15, 2018,
eds Das G, Jermaine CM, Bernstein PA (ACM), pp 1205–1220. https://doi.org/
10.1145/3183713.3196891.
Available at https://doi.org/10.1145/3183713.3196891

[13] Ahmad MBS, Ragan-Kelley J, Cheung A, Kamil S (2019) Automatically translating
image processing libraries to halide. ACM Trans Graph 38(6):204:1– 204:13.
https://doi.org/10.1145/3355089.3356549.
Available at https://doi.org/10.1145/3355089.3356549

[14] Bornholt J, Torlak E (2017) Synthesizing memory models from framework sketches
and litmus tests. Proceedings of the 38th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2017, Barcelona, Spain, June 18-23, 2017, eds
Cohen A, Vechev MT (ACM), pp 467–481. https://doi.org/10.1145/3062341.3062353.
Available at https://doi.org/10.1145/3062341.3062353

[15] Bornholt J, Kaufmann A, Li J, Krishnamurthy A, Torlak E, Wang X (2016) Specifying
and checking file system crash-consistency models. Proceedings of the Twenty-First
International Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’16, Atlanta, GA, USA, April 2-6, 2016, eds Conte T, Zhou Y
(ACM), pp 83–98. https://doi.org/10.1145/2872362.2872406.
Available at https://doi.org/10.1145/2872362.2872406

[16] Sigurbjarnarson H, Bornholt J, Torlak E, Wang X (2016) Push-button verification of
file systems via crash refinement. 12th USENIX Symposium on Operating Systems Design
and Implementation, OSDI 2016, Savannah, GA, USA, November 2-4, 2016, eds Keeton K,
Roscoe T (USENIX Association), pp 1–16.
Available at https://www.usenix.org/conference/osdi16/technical-
sessions/presentation/sigurbjarnarson.

[17] Loncaric C, Torlak E, Ernst MD (2016) Fast synthesis of fast collections. Proceedings
of the 37th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2016, Santa Barbara, CA, USA, June 13-17, 2016, eds Krintz C,
Berger E (ACM), pp 355–368. https://doi.org/10.1145/2908080.2908122.
Available at https://doi.org/10.1145/2908080.2908122

[18] Loncaric C, Ernst MD, Torlak E (2018) Generalized data structure synthesis.
Proceedings of the 40th International Conference on Software Engineering, ICSE 2018,

https://doi.org/10.1145/3183713.3196891
https://doi.org/10.1145/3183713.3196891
https://doi.org/10.1145/3183713.3196891
https://doi.org/10.1145/3355089.3356549
https://doi.org/10.1145/3355089.3356549
https://doi.org/10.1145/3355089.3356549
https://doi.org/10.1145/3062341.3062353
https://doi.org/10.1145/3062341.3062353
https://doi.org/10.1145/3062341.3062353
https://doi.org/10.1145/2872362.2872406
https://doi.org/10.1145/2872362.2872406
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/sigurbjarnarson
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/sigurbjarnarson
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/sigurbjarnarson
https://doi.org/10.1145/2908080.2908122
https://doi.org/10.1145/2908080.2908122

Approved for Public Release; Distribution Unlimited.
21

Gothenburg, Sweden, May 27 - June 03, 2018, eds Chaudron M, Crnkovic I, Chechik M,
Harman M (ACM), pp 958–968. https://doi.org/10.1145/3180155.3180211.
Available at https://doi.org/10.1145/3180155.3180211

[19] Torlak E, Bod´ık R (2014) A lightweight symbolic virtual machine for solver-aided
host languages. ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’14, Edinburgh, United Kingdom - June 09 - 11, 2014, eds O’Boyle
MFP, Pingali K (ACM), pp 530–541. https://doi.org/10.1145/2594291. 2594340. Available
at https://doi.org/10.1145/2594291.2594340

[20] Nelson L, Bornholt J, Gu R, Baumann A, Torlak E, Wang X (2019) Scaling symbolic
evaluation for automated verification of systems code with serval. Proceedings of the 27th
ACM Symposium on Operating Systems Principles, SOSP 2019, Huntsville, ON, Canada,
October 27-30, 2019, eds Brecht T, Williamson C (ACM), pp 225– 242.
https://doi.org/10.1145/3341301.3359641.
Available at https://doi.org/10.1145/3341301.3359641

[21] Bornholt J, Torlak E (2018) Finding code that explodes under symbolic evaluation.
PACMPL 2(OOPSLA):149:1–149:26. https://doi.org/10.1145/3276519.
Available at https://doi.org/10.1145/3276519

[22] Porncharoenwase S, Bornholt J, Torlak E (2020) Fixing code that explodes under
symbolic evaluation. Verification, Model Checking, and Abstract Interpretation - 21st
International Conference, VMCAI 2020, New Orleans, LA, USA, January 16-21, 2020,
Proceedings, eds Beyer D, Zufferey D (Springer), Lecture Notes in Computer Science, Vol.
11990, pp 44–67. https://doi.org/10.1007/978-3-030-39322-9n 3.
Available at https://doi.org/10.1007/978-3-030-39322-9 3

[23] Toman J, Grossman D (2016) Staccato: A bug finder for dynamic configuration up-
dates. 30th European Conference on Object-Oriented Programming, ECOOP 2016, July 18-
22, 2016, Rome, Italy, eds Krishnamurthi S, Lerner BS (Schloss Dagstuhl - Leibniz-Zentrum
fur¨ Informatik), LIPIcs, Vol. 56, pp 24:1–24:25. https://doi.org/10.
4230/LIPIcs.ECOOP.2016.24.
Available at https://doi.org/10.4230/LIPIcs.ECOOP. 2016.24

[24] Toman J, Grossman D (2018) Legato: An at-most-once analysis with applications to
dynamic configuration updates. 32nd European Conference on Object-Oriented
Programming, ECOOP 2018, July 16-21, 2018, Amsterdam, The Netherlands, ed Millstein
TD (Schloss Dagstuhl - Leibniz-Zentrum fur¨ Informatik), LIPIcs, Vol. 109, pp 24:1–24:32.
https://doi.org/10.4230/LIPIcs.ECOOP.2018.24.

https://doi.org/10.1145/3180155.3180211
https://doi.org/10.1145/3180155.3180211
https://doi.org/10.1145/2594291.2594340
https://doi.org/10.1145/2594291.2594340
https://doi.org/10.1145/2594291.2594340
https://doi.org/10.1145/3341301.3359641
https://doi.org/10.1145/3341301.3359641
https://doi.org/10.1145/3341301.3359641
https://doi.org/10.1145/3276519
https://doi.org/10.1145/3276519
https://doi.org/10.1007/978-3-030-39322-9_3
https://doi.org/10.1007/978-3-030-39322-9_3
https://doi.org/10.4230/LIPIcs.ECOOP.2016.24
https://doi.org/10.4230/LIPIcs.ECOOP.2016.24
https://doi.org/10.4230/LIPIcs.ECOOP.2016.24
https://doi.org/10.4230/LIPIcs.ECOOP.2016.24
https://doi.org/10.4230/LIPIcs.ECOOP.2018.24

Approved for Public Release; Distribution Unlimited.
22

Available at https:// doi.org/10.4230/LIPIcs.ECOOP.2018.24

[25] Toman J, Grossman D (2017) Taming the static analysis beast. 2nd Summit on
Advances in Programming Languages, SNAPL 2017, May 7-10, 2017, Asilomar, CA, USA,
eds Lerner BS, Bod´ık R, Krishnamurthi S (Schloss Dagstuhl - Leibniz-Zentrum fur¨
Informatik), LIPIcs, Vol. 71, pp 18:1–18:14. https://doi.org/10.4230/
LIPIcs.SNAPL.2017.18.
Available at https://doi.org/10.4230/LIPIcs.SNAPL.2017.18

[26] Mazumdar A, Moreau T, Kim S, Cowan M, Alaghi A, Ceze L, Oskin M, Sathe V
(2017) Exploring computation-communication tradeoffs in camera systems. 2017 IEEE
International Symposium on Workload Characterization, IISWC 2017, Seattle, WA, USA,
October 1-3, 2017 (IEEE Computer Society), pp 177–186.
https://doi.org/10.1109/IISWC.2017.8167775.
Available at https://doi.org/10.1109/IISWC.2017.8167775

[27] Phothilimthana PM, Liu M, Kaufmann A, Peter S, Bod´ık R, Anderson TE (2018)
Floem: A programming system for nic-accelerated network applications. 13th USENIX
Symposium on Operating Systems Design and Implementation, OSDI 2018, Carlsbad, CA,
USA, October 8-10, 2018, eds Arpaci-Dusseau AC, Voelker G (USENIX Association), pp
663–679.
Available at https://www.usenix.org/conference/osdi18/presentation/phothilimthana.

[28] Sigurbjarnarson H, Nelson L, Castro-Karney B, Bornholt J, Torlak E, Wang X (2018)
Nickel: A framework for design and verification of information flow control systems. 13th
USENIX Symposium on Operating Systems Design and Implementation, OSDI 2018,
Carlsbad, CA, USA, October 8-10, 2018, eds Arpaci-Dusseau AC, Voelker G (USENIX
Association), pp 287–305.
Available at https://www.usenix.org/conference/osdi18/presentation/sigurbjarnarson.

[29] Nelson L, Sigurbjarnarson H, Zhang K, Johnson D, Bornholt J, Torlak E, Wang X
(2017) Hyperkernel: Push-button verification of an OS kernel. Proceedings of the 26th
Symposium on Operating Systems Principles, Shanghai, China, October 28-31, 2017
(ACM), pp 252–269. https://doi.org/10.1145/3132747.3132748.
Available at https://doi.org/10.1145/3132747.3132748

[30] Wang C, Feng Y, Bod´ık R, Cheung A, Dillig I (2020) Visualization by example.
PACMPL 4(POPL):49:1–49:28. https://doi.org/10.1145/3371117.
Available at https://doi.org/10.1145/3371117

https://doi.org/10.4230/LIPIcs.ECOOP.2018.24
https://doi.org/10.4230/LIPIcs.ECOOP.2018.24
https://doi.org/10.4230/LIPIcs.SNAPL.2017.18
https://doi.org/10.4230/LIPIcs.SNAPL.2017.18
https://doi.org/10.4230/LIPIcs.SNAPL.2017.18
https://doi.org/10.1109/IISWC.2017.8167775
https://doi.org/10.1109/IISWC.2017.8167775
https://doi.org/10.1109/IISWC.2017.8167775
https://www.usenix.org/conference/osdi18/presentation/phothilimthana
https://www.usenix.org/conference/osdi18/presentation/phothilimthana
https://www.usenix.org/conference/osdi18/presentation/sigurbjarnarson
https://www.usenix.org/conference/osdi18/presentation/sigurbjarnarson
https://doi.org/10.1145/3132747.3132748
https://doi.org/10.1145/3132747.3132748
https://doi.org/10.1145/3371117
https://doi.org/10.1145/3371117
https://doi.org/10.1145/3371117

Approved for Public Release; Distribution Unlimited.
23

[31] Hagedorn B, Elliott AS, Barthels H, Bod´ık R, Grover V (2020) Fireiron: A scheduling
language for high-performance linear algebra on gpus. CoRR abs/2003.06324. 2003. 06324
Available at https://arxiv.org/abs/2003.06324.

[32] Chasins SE, Mueller M, Bod´ık R (2018) Rousillon: Scraping distributed hierarchical
web data. The 31st Annual ACM Symposium on User Interface Software and Technology,
UIST 2018, Berlin, Germany, October 14-17, 2018, eds Baudisch P, Schmidt A, Wilson A
(ACM), pp 963–975. https://doi.org/10.1145/3242587.3242661.
Available at https://doi.org/10.1145/3242587.3242661

[33] Haynes B, Mazumdar A, Balazinska M, Ceze L, Cheung A (2019) Visual road: A video
data management benchmark. Proceedings of the 2019 International Conference on
Management of Data, SIGMOD Conference 2019, Amsterdam, The Netherlands, June 30 -
July 5, 2019, eds Boncz PA, Manegold S, Ailamaki A, Deshpande A, Kraska T (ACM), pp
972–987. https://doi.org/10.1145/3299869.3324955.
Available at https://doi.org/10.1145/3299869.3324955

[34] Moreau T, Chen T, Ceze L (2018) Leveraging the VTA-TVM hardware-software stack
for FPGA acceleration of 8-bit resnet-18 inference. Proceedings of the 1st on Reproducible
Quality-Efficient Systems Tournament on Co-designing Pareto-efficient Deep Learning,
ReQuEST@ASPLOS 2018, Williamsburg, VA, USA, March 24, 2018, eds Ceze L, Jerger
NDE, Falsafi B, Fursin G, Lokhmotov A, Moreau T, Sampson A, Stanley-Marbell P (ACM),
p 5. https://doi.org/10.1145/3229762.3229766.
Available at https://doi.org/10.1145/3229762.3229766

[35] Moreau T, Chen T, Vega L, Roesch J, Yan EQ, Zheng L, Fromm J, Jiang Z, Ceze L,
Guestrin C, Krishnamurthy A (2019) A hardware-software blueprint for flexible deep
learning specialization. IEEE Micro 39(5):8–16. https://doi.org/10.1109/MM.2019. 2928962.
Available at https://doi.org/10.1109/MM.2019.2928962

[36] Luo L, Nelson J, Ceze L, Phanishayee A, Krishnamurthy A (2018) Parameter hub: a
rack-scale parameter server for distributed deep neural network training. Proceedings of the
ACM Symposium on Cloud Computing, SoCC 2018, Carlsbad, CA, USA, October 11-13,
2018 (ACM), pp 41–54. https://doi.org/10.1145/3267809.3267840.
Available at https://doi.org/10.1145/3267809.3267840

[37] Chen T, Zheng L, Yan EQ, Jiang Z, Moreau T, Ceze L, Guestrin C, Krishnamurthy A
(2018) Learning to optimize tensor programs. Advances in Neural Information Processing
Systems 31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS

https://arxiv.org/abs/2003.06324
https://doi.org/10.1145/3242587.3242661
https://doi.org/10.1145/3242587.3242661
https://doi.org/10.1145/3299869.3324955
https://doi.org/10.1145/3299869.3324955
https://doi.org/10.1145/3229762.3229766
https://doi.org/10.1145/3229762.3229766
https://doi.org/10.1109/MM.2019.2928962
https://doi.org/10.1109/MM.2019.2928962
https://doi.org/10.1109/MM.2019.2928962
https://doi.org/10.1145/3267809.3267840
https://doi.org/10.1145/3267809.3267840

Approved for Public Release; Distribution Unlimited.
24

2018, 3-8 December 2018, Montreal,´ Canada, eds Bengio S, Wallach HM, Larochelle H,
Grauman K, Cesa-Bianchi N, Garnett R, pp 3393–3404.
Available at http://papers.nips.cc/paper/7599-learning-to-optimize-tensor-programs.

[38] Lee VT, Mazumdar A, del Mundo CC, Alaghi A, Ceze L, Oskin M (2017) POSTER:
application-driven near-data processing for similarity search. 26th Inter-national Conference
on Parallel Architectures and Compilation Techniques, PACT 2017, Portland, OR, USA,
September 9-13, 2017 (IEEE Computer Society), pp 132–133.
https://doi.org/10.1109/PACT.2017.25.
Available at https://doi.org/10.1109/ PACT.2017.25

[39] Willsey M, Lee VT, Cheung A, Bod´ık R, Ceze L (2019) Iterative search for
reconfigurable accelerator blocks with a compiler in the loop. IEEE Trans on CAD of
Integrated Circuits and Systems 38(3):407–418. https://doi.org/10.1109/TCAD.2018.
2878194.
Available at https://doi.org/10.1109/TCAD.2018.2878194

[40] Iyer S, Konstas I, Cheung A, Zettlemoyer L (2018) Mapping language to code in
programmatic context. Proceedings of the 2018 Conference on Empirical Methods in Natural
Language Processing, Brussels, Belgium, October 31 - November 4, 2018, eds Riloff E,
Chiang D, Hockenmaier J, Tsujii J (Association for Computational Linguistics), , pp 1643–
1652. https://doi.org/10.18653/v1/d18-1192.
Available at https://doi.org/10.18653/v1/d18-1192

[41] Wang C, Cheung A, Bod´ık R (2018) Speeding up symbolic reasoning for relational
queries. PACMPL 2(OOPSLA):157:1–157:25. https://doi.org/10.1145/ 3276527.
Available at https://doi.org/10.1145/3276527

[42] Kamil S, Cheung A, Itzhaky S, Solar-Lezama A (2016) Verified lifting of stencil
computations. Proceedings of the 37th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2016, Santa Barbara, CA, USA, June 13-17,
2016, eds Krintz C, Berger E (ACM), pp 711–726.
https://doi.org/10.1145/2908080.2908117.
Available at https://doi.org/10.1145/2908080.2908117

[43] Ernst MD, Macedonio D, Merro M, Spoto F (2016) Semantics for locking
specifications. NASA Formal Methods - 8th International Symposium, NFM 2016,
Minneapolis, MN, USA, June 7-9, 2016, Proceedings, eds Rayadurgam S, Tkachuk O
(Springer), Lecture Notes in Computer Science, Vol. 9690, pp 355-372. 372.
https://doi.org/10.1007/978-3-319-40648-0_27.

http://papers.nips.cc/paper/7599-learning-to-optimize-tensor-programs
https://doi.org/10.1109/PACT.2017.25
https://doi.org/10.1109/PACT.2017.25
https://doi.org/10.1109/PACT.2017.25
https://doi.org/10.1109/TCAD.2018.2878194
https://doi.org/10.1109/TCAD.2018.2878194
https://doi.org/10.1109/TCAD.2018.2878194
https://doi.org/10.18653/v1/d18-1192
https://doi.org/10.18653/v1/d18-1192
https://doi.org/10.1145/3276527
https://doi.org/10.1145/3276527
https://doi.org/10.1145/3276527
https://doi.org/10.1145/2908080.2908117
https://doi.org/10.1145/2908080.2908117
https://doi.org/10.1145/2908080.2908117
https://doi.org/10.1007/978-3-319-40648-0/_27

Approved for Public Release; Distribution Unlimited.
25

Available at https://doi.org/10.1007/978-3-319-40648-0_27

[44] Mullen E, Zuniga D, Tatlock Z, Grossman D (2016) Verified peephole optimizations
for compcert. Proceedings of the 37th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2016, Santa Barbara, CA, USA, June 13-17,
2016, eds Krintz C, Berger E (ACM), pp 448–461.
https://doi.org/10.1145/2908080.2908109.
Available at https://doi.org/10.1145/2908080.2908109

[45] Woos D, Wilcox JR, Anton S, Tatlock Z, Ernst MD, Anderson TE (2016) Planning for
change in a formal verification of the raft consensus protocol. Proceedings of the 5th ACM
SIGPLAN Conference on Certified Programs and Proofs, Saint Peters-burg, FL, USA,
January 20-22, 2016, eds Avigad J, Chlipala A (ACM), pp 154–165. 165.
https://doi.org/10.1145/2854065.2854081.
Available at https://doi.org/10.1145/ 2854065.2854081

[46] Meyerovich LA, Torok ME, Atkinson E, Bod´ık R (2013) Parallel schedule synthesis
for attribute grammars. ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPoPP ’13, Shenzhen, China, February 23-27, 2013, eds Nicolau A, Shen X,
Amarasinghe SP, Vuduc RW (ACM), pp 187–196. https://doi.org/
10.1145/2442516.2442535.
Available at https://doi.org/10.1145/2442516.2442535

[47] Hottelier T, Bod´ık R (2015) Synthesis of layout engines from relational constraints.
Proceedings of the 2015 ACM SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA 2015, part of SPLASH
2015, Pittsburgh, PA, USA, October 25-30, 2015, eds Aldrich J, Eugster P (ACM), pp 74–
88. https://doi.org/10.1145/2814270.2814291.
Available at https://doi.org/10.1145/2814270.2814291

https://doi.org/10.1145/2442516.2442535
https://doi.org/10.1145/2442516.2442535
https://doi.org/10.1145/2442516.2442535
https://doi.org/10.1145/2814270.2814291
https://doi.org/10.1145/2814270.2814291

Approved for Public Release; Distribution Unlimited.
26

List of Symbols, Abbreviations, and Acronyms

APFS Apple File System
BRASS Building Resource Adaptive Software Systems
Cozy not an acronym, a data structure synthesizer
CP Challenge Problem
CPU Central Processing Unit
DARPA Defense Advanced Research Projects Agency
DCU Dynamic Configuration Update
DSL Domain Specific Language
Ferrite not an acronym, framework to develop file system crash-consistency models
FPGA Field Programmable Gate Array
GPA Grade Point Average
GPU Graphics Processing Unit
Herbie not an acronym, automatically rewrites floating point expressions for accuracy
IoT Internet of Things
JPEG Joint Photographic Experts Group
MemSynth not an acronym, language and tool for verifying, synthesizing, and

disambiguating memory consistency models
ML Machine Learning
NVRAM non-Volatile Random Access Memory
POSIX Portable Operating System Interface
QoS Quality of Service
RAM Random Access Memory
Rosette not an acronym, programming language to build verification and synthesis tools
SandCat not an acronym, a whole-stack platform for exploring software adaptation
SAT Scholastic Aptitude Test
SMR Shingled Magnetic Recording
SMT Satisfiability Modulo Theories
Staccato STAle Configuration and Consistency Analysis Tool
SwRI Southwest Research Institute
TA Technical Area
UW University of Washington

	TABLE OF CONTENTS
	1. Summary
	2. Introduction
	3. Methods, Assumptions, and Procedures
	3.1 Program Synthesis
	3.2 Refinement

	4. Results and Discussion
	4.1 Challenge Problem I.1: Adaptive Large-Scale Visualization
	4.2 Challenge Problem I.2: Adapting an Application to a new File System
	4.3 Challenge Problem II.1: Automatic Adaptation of Legacy Code for Parallel Execution using Verified Lifting
	4.4 Challenge Problem II.2: A QoS-Adaptive Image Store
	4.5 Challenge Problem II.3: Adaptive File Systems
	4.6 Challenge Problem III.1: Numerical Adaptations with Herbie
	4.7 Challenge Problem III.2: Finding Bugs in Dynamic Adaptation Systems with Staccato
	4.8 Staccato: Debugging Systems that Adapt via Dynamic Configuration Updates

	5. Conclusions
	References
	List of Symbols, Abbreviations, and Acronyms

