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LES Modeling of Non-local Effects using Statistical
Coarse-graining

Principal Investigator: Karthik Duraisamy
Co-Principal Investigator: Venkat Raman

Executive summary

The development of coarse-grained and reduced-complexity simulation models continues to be
a pacing research challenge in computational physics. For instance, state-of-the-art techniques
such as Large Eddy Simulation models are still not effective in many flows – such as turbulent
combustion – in which sub-filter scales have a significant impact on transport processes. The
major obstacle is to effectively reconcile the loss of information in the coarse-graining process and
numerical discretization. The broad goal of our work is to approach multiscale/multi-physics
modeling with:

• Minimal heuristics and phenomenology

• Consideration of numerical implementation

• Algorithmic efficiency

• Provable (non-linear) stability

• Scalable implementation

• Applicablity to complex discretizations

• Applicable to arbitrarily complex physics/PDEs

We pursue several lines of attack towards this end, leveraging and further developing recent
advances in mathematical formalisms to obtain physically and numerically consistent models.
Demonstrations are performed on a spectrum of problems ranging from simple dynamical sys-
tems to turbulence to multi-physics simulations. The main focus of this project is the establish-
ment of a paradigm for multiscale modeling that combines the Mori-Zwanzig (MZ) formalism of
Statistical Mechanics with the Variational Multiscale (VMS) method. The MZ-VMS approach
leverages both VMS scale-separation projectors as well as phase-space projectors to provide a
systematic modeling approach that is applicable to non-linear partial differential equations. The
MZ-VMS framework leads to a closure term that is non-local in time and appears as a convo-
lution or memory integral. The resulting non-Markovian system is used as a starting point for
model development. A major contribution of this work is that we have been able to unravel some
of the complexities of MZ-based modeling and make it accessible to the broader computational
science community.

Significant accomplishments:

1
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• Developed a parameter-free predictive MZ closure, the dynamic-MZ-τ model. This tech-
nique has similarities to the dynamic Smagorinsky model of turbulence, but the functional
form comes from math and not physics.

• Discovery that for the finite memory model, the memory term is driven by both an orthog-
onal projection of the coarse-scale residual and jumps at element interfaces. This insight
provides the first links between MZ-based models and existing stabilization techniques.

• MZ formulation for Spectral, Finite Element (Continuous & Discontinuous Galerkin), &
Projection-based reduced order models for PDEs

• For discontinuous Galerkin method (for compressible NS), an establishment of connections
between MZ-based methods, upwinding, and artificial viscosity.

• Developed efficient a priori strategy to extract memory kernels from an ensemble of tar-
geted fine scale simulations.

• First development/application of MZ-based techniques to wall bounded turbulent flows,
to Discontinuous Galerkin, Magnetohydrodynamic turbulence, and combustion.

• the MZ-VMS technique is intimately connected to the numerical discretization. The search
for the ideal fully resolved model (i.e. before coarse-graining) for compressible flows led us
to entropy conservative methods. Consequently, we developed entropy-stable and entropy
conservative formulations for multi-component flows. We also proved an minimum entropy
principle for the multicomponent compressible Euler equations.

• As an off-shoot of the above work, our search for the ideal MZ closure led us to non-local
(temporal memory) data-driven closures and reduced order modeling using approximate
inertial manifolds and convolutional neural networks.

Publications

1. Parish, E., Duraisamy, K., A Dynamic Sub-grid Scale Model for Large Eddy Simulations
based on the Mori-Zwanzig formalism,” Journal of Computational Physics, Vol. 349, 2017.

2. Gouasmi, A., Parish, E., Duraisamy, K., A Priori Estimation of Memory Effects in Reduced
Order Modeling of Nonlinear Systems Using the Mori-Zwanzig formalism, Proc. Royal Soc.
Ser A, Vol. 473, 2017.

3. Pan. S., Duraisamy, K., “Data-driven Discovery of Closure Models,” SIAM Journal on
Applied Dynamical Systems, 2018.

4. Pan. S., and Duraisamy, K., “Long-time predictive modeling of nonlinear dynamical sys-
tems using neural networks,” Complexity, 2018.

5. Gouasmi, A., Murman, S., Duraisamy, K., Entropy Conservative Schemes and the Reced-
ing Flow Problem, Journal of Scientific Computing, 2019.

6. Hassanaly, A., and Raman, V., Emerging trends in numerical simulations of combustion
systems, M. Hassanaly and V. Raman, Proceedings of the Combustion Institute, 2019.
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7. Barwey, S., Hassanaly, M., An, Q., Raman, V., Steinberg, A., Experimental data-based
reduced-order model for analysis and prediction of flame transition in gas turbine combus-
tors, Combustion theory and modeling, 2019.

8. Gouasmi, A., Duraisamy, K., Murman, S., Tadmor, E., A minimum entropy principle in
the compressible multicomponent Euler equations, ESAIM: Mathematical Modelling and
Numerical Analysis, 2019.

9. Parish, E., and Duraisamy, K., A Unified Framework for Multiscale Modeling using the
Mori-Zwanzig Formalism and the Variational Multiscale Method,” arXiv:1712.09669, 2018.

10. Gouasmi, A., Murman, S., Duraisamy, K., On Entropy stable temporal fluxes, arXiv:1807.03483,
2018.

11. Pradhan, A., Duraisamy, K., Variational Multiscale Closures for Finite Element Discretiza-
tions Using the Mori-Zwanzig Approach, arXiv:1906.01411, 2019.

12. Gouasmi, A., Duraisamy, K., Murman, S., Formulation of Entropy-Stable schemes for the
multicomponent compressible Euler equations, arXiv:1904.00972, 2019.

13. Parish, E., Wentland, C., Duraisamy, K., The Adjoint Petrov-Galerkin Method for Non-
Linear Model Reduction, arXiv:1810.03455, 2019.

14. M. Akram, M. Hassanaly, V. Raman, A priori analysis of reduced description of dynamical
systems by approximate inertial manifolds (AIM), 2019.

PhD Theses

1. Parish, E., Variational Multiscale Modeling and Memory Effects in Turbulent Flow Simu-
lations, Dept of Aerospace Engineering, Univ of Michigan, Ann Arbor, 2018. Subsequently,
John Von Neumann Fellow at Sandia National Labs.
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pressible Flows, Dept of Aerospace Engineering, Univ of Michigan, Ann Arbor, 2019.
Subsequently, NASA Post Doctoral Fellow.
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1 Introduction

Future aircraft engines as well as secondary combustion systems (for instance, augmentors) will
increasingly rely on highly turbulent burning of molecularly premixed fuel/air mixtures. Such
systems can bring down emissions levels dramatically, but are subject to combustion instabilities,
a situation in which there exist strong interactions between flame propagation, heat release,
turbulent flow and acoustics. Numerical simulation techniques have the potential to augment
our theoretical understanding in the above problems and ultimately serve as a design tool. The
central challenge in simulations of the aforementioned turbulence and combustion phenomena
arises from the need to represent an enormous disparity of time and length scales which makes
direct numerical simulations impractical in realistic problems. There is thus a need for models
that can efficiently represent transport, chemical kinetics and the interaction of turbulence and
chemistry. It is well-accepted that approaches based on Large Eddy Simulations (LES) represent
the minimum required fidelity to capture the relevant physics.

LES is a powerful approach for simulating complex turbulent and reacting flows of interest
to propulsion applications. The traditional approach to LES is to apply a low-pass filter to the
governing equations, generating resolved and unresolved terms. Transport equations are solved
for the resolved terms, while the unresolved terms are modeled using the resolved field. Tradi-
tional closure methodologies for LES utilize simple models evoking effective subgrid “viscosity”
type arguments (or rely on numerical dissipation) to represent the unresolved stresses that result
from the filtering process. These subgrid-scale (SGS) models have been successful in problems
in which the resolved scales drive the dominant transport processes. In many other problems –
such as in the near-wall region of a turbulent boundary layer – the necessary resolution required
of a high-quality LES renders such simulations prohibitively expensive unless a high degree of
empiricism is introduced into the modeling process. Further, since combustion occurs exclu-
sively at the small scales, the influence of chemical reactions and unresolved turbulence on the
large-scale flow evolution requires careful consideration.

In general, theoretical developments and semi-empirical models have thus far provided in-
sights and qualitative connections to parameters and phenomena from unresolved scales. It is
well-argued that for LES to be sufficiently accurate at a reasonable cost, there needs to be a closer
link between the SGS model and the mathematics of the filtering/coarse-graining process. Such a
predictive capability that also consistently couples information across multiple scales from sub-
grid to poorly-resolved to well-resolved is of critical importance and is the target of the proposed
work.

This project advances our fundamental understanding of multiscale modeling and develops a
rigorous modeling framework by combining the Mori-Zwanzig (MZ) formalism of statistical me-
chanics with the variational multiscale (VMS) method. This approach leverages scale-separation
projectors as well as phase-space projectors to provide a systematic modeling approach that is
applicable to complex non-linear partial differential equations. A schematic of the approach
is shown in Figure 1. The rest of this document provides background, discussion and some
highlights of the developments in this project.

4
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Figure 1: Schematic of the use of the Mori-Zwanzig formalism as a procedure for multiscale
modeling. Rectangles: Equations, 6-sided figures: Mathematical procedure, Rounded rectangles:
Modeling assumptions.

5
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2 Multiscale Decomposition

We consider the initial-value problem

∂u

∂t
= R(u) x ∈ Ω, t ∈ (0, T ), (1)

where the operator R is a linear or non-linear differential operator. The governing equations
are subject to boundary and initial conditions,

u(x, t) = 0 x ∈ Γ, t ∈ (0, T ), (2)

u(x, 0) = u0 x ∈ Ω. (3)

We focus on weighted residual solutions to Eq. 1, which requires defining a test and trial space.
Let V ≡ H1

0 (Ω) denote the trial space and W the test space. The weighted residual problem is
defined as follows: find u ∈ V such that ∀w ∈ W,(

w,
∂u

∂t

)
=

(
w,R(u)

)
. (4)

2.1 Variational Multiscale Method

The variational multiscale method utilizes a decomposition of the solution space into a coarse-
scale resolved space Ṽ ⊂ V and a fine-scale unresolved space V ′ ⊂ V. In VMS, the solution space
is expressed as a sum decomposition,

V = Ṽ ⊕ V ′. (5)

Let Π̃ be the linear projector onto the coarse-scale space, Π̃ : V → Ṽ. Various choices exist
for the projector Π̃, and here we exclusively consider Π̃ to be the L2 projector,

(w̃, Π̃u) = (w̃, u), ∀w̃ ∈ Ṽ, u ∈ V.
The fine-scale space, V ′, becomes the orthogonal complement of Ṽ in V such that,

(w̃,Π′u) = 0 ∀w̃ ∈ Ṽ, u ∈ V,
where Π′ = I− Π̃. With this decomposition, the solution can be represented as,

u = (Π̃ + Π′)u = ũ+ u′,

and the same for w. It is assumed that ũ and u′ are homogeneous on Γ. By virtue of the linear
independence of the fine and coarse trial spaces, governing equations can be separated into two
sub-problems,

(w̃, ũt) = (w̃,R(ũ+ u′)), ∀w̃ ∈ Ṽ (6)

(w′, u′t) = (w′,R(ũ+ u′)), ∀w′ ∈ V ′ (7)

ũ(x, t) = 0, u′(x, t) = 0, x ∈ Γ, t ∈ (0, T ), (8)

ũ(x, 0) = ũ0, u′(x, 0) = 0, x ∈ Ω. (9)

The philosophy of VMS is to develop an approximation for the fine-scale state, u′, and inject it
into the coarse-scale equation.

6
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Ṽ

V ′

k

Figure 2: Graphical illustration of the decomposition of the solution space V into subspaces Ṽ
and V ′ in the frequency domain. The wavenumber is k. The subspace Ṽ corresponds to the low
frequency, ”coarse-scale” subspace and is resolved in a numerical method. The subspace V ′ is
the high frequency ”fine-scale” subspace and is not resolved in a numerical method. We consider
a decomposition that obeys V = Ṽ ⊕ V ′, with V ′ being L2 orthogonal to Ṽ.

3 Mori-Zwanzig Formalism

3.1 Semi-Discrete Setting

3.2 Transformation to Phase Space and the Liouville Equation

The integrating factor approach described in the previous section relies on the principle of
superposition and is limited to linear systems. The MZ procedure addresses non-linearity by
casting the original semi-discrete Galerkin system as a partial differential equation that exists in
phase space. It is worth emphasizing that, although the Mori-Zwanzig formalism has its roots in
the work of Mori and Zwanzig, the work of Chorin and collaborators5,7,10 is a significant revamp
of the formalism and extends the concept to general systems of ordinary differential equations.
The following discussion is inspired by 5 and we refer the reader to both5 and6 for clarification
on any of the following points.

To formally remove the fine-scale variables, the Mori-Zwanzig approach is used. The starting
point for the approach is to transform the ODE system into a linear partial differential equation,

∂

∂t
v(a0, t) = Lv(a0, t); v(a0, 0) = g(a0), (10)

where L is the Liouville operator and is given by,

L =

∞∑
j=0

(wj ,R(u0))
∂

∂a0j
. (11)

Equation 10 is referred to as the Liouville equation and is an exact statement of the original
dynamics. The Liouville equation describes the solution to Eq. 1 for all possible initial condi-

7
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tions. The advantage of reformulating the system in this way is that the Liouville equation is
linear. This linearity allows for the use of superpostion and aids in the formal removal of the
fine scales.

The solution to Eq. 10 can be written as,

v(a0, t) = etLg(a(a0, 0)). (12)

The operator etL, which has been referred to as a “propagator”, evolves the solution along
its trajectory in phase-space. The operator etL has several interesting properties. Most notably,
the operator can be “pulled” inside of a non-linear functional,

etLg(a(a0, 0)) = g(etLa(a0, 0)). (13)

This is similar to the composition property inherent to Koopman operators19. With this prop-
erty, the solution to Eq. 10 may be written as,

v(a0, t) = g(etLa(a0, 0)). (14)

The implications of etL are significant. It demonstrates that, given the trajectories a(a0, t),
the solution v is known for any observable g. Noting that L and etL commute, Eq. 10 may be
written in the semi-group notation as,

∂v

∂t
= etLLv(a0, 0). (15)

A set of equations for the resolved modes can be obtained by taking g(a0, 0) = ã0,

∂

∂t
etLã = etLLã. (16)

3.2.1 Projection Operators and the Liouville Equation

We proceed by decomposing the Hilbert space H, into a resolved and unresolved subspace,

H = H̃ ⊕ H′. (17)

The associated projection operators are defined as P : H → H̃ and Q = I − P. The following
projection operator is considered,

Pf(ã0,a
′
0) =

∫
H
f(ã0,a

′
0)δ(a′0)da′0, (18)

which leads to
Pf(ã0,a

′
0) = f(ã0, 0). (19)

The projectors P and Q are orthogonal to each other. Other projections, such as conditional
expectations are possible 5, but will not be pursued in the present work. It is important to
emphasize that the projectors P andQ operate on functions ofH and are fundamentally different
from the L2 projectors Π̃ and Π′. With the projection operators, the Liouville equation can be
split as,

∂

∂t
etLã0 = etLPLã0 + etLQLã0. (20)

8
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The objective now is to remove the dependence of the right hand side of Eq. 20 on the unresolved
scales, a′ (i.e. QLã). To demonstrate how this may be achieved, consider the partial differential
operator governed by the semigroup etL written as,

∂

∂t
− L = 0. (21)

We will refer to Eq. 21 as the homogeneous problem. Consider now the inhomogeneous problem
with forcing PL,

∂

∂t
− L = −PL. (22)

Making use of the identity I = P +Q, the inhomogeneous problem can be written as

∂

∂t
−QL = 0. (23)

Eq. 23 is referred to in the literature as the orthogonal dynamics operator, and can be concep-
tualized as a Liouville operator with forcing. The evolution operator given by the orthogonal
dynamics is etQL. Here, we can leverage the linearity of the partial differential operators and
make use of superposition. The solution to the orthogonal dynamics equation can be expressed
in terms of solutions to the homogeneous Liouville equation through Duhamel’s principle (in
operator form),

etL = etQL +

∫ t

0
e(t−s)LPLesQLds. (24)

Inserting Eq. 24 into Eq. 20, the generalized Langevin equation is obtained,

∂

∂t
etLã0 = etLPLã0︸ ︷︷ ︸

Markovian

+ etQLQLã0︸ ︷︷ ︸
Noise

+

∫ t

0
e(t−s)LPLesQLQLã0ds︸ ︷︷ ︸

Memory

. (25)

The system described in Eq. 25 is precise and not an approximation to the original ODE system.
For notational purposes, define

Fj(a0, t) = etQLQLa0, Kj(a0, t) = PLFj(a0, t). (26)

We refer to K(a0, t) as the memory kernel. It can be shown that solutions to the orthogonal
dynamics equation are in the null space of P, meaning PFj(a0, t) = 0. By the definition of fully
resolved initial conditions, the noise-term is zero and we obtain,

∂

∂t
etLã0 = etLPLã0 +

∫ t

0
e(t−s)LPLesQLQLã0ds. (27)

Equation 27 can be written in a more transparent form,

(w̃, ũt) = (w̃,R(ũ)) +

∫ t

0
K(ã(t− s), s)ds, (28)

where Kj(a0, t) = PLetQLQLa0. Note that the time derivative is represented as a partial deriva-
tive due to the Liouville operators embedded in the memory.
Remarks

9
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1. Equation 28 is precisely a Galerkin discretization of Eq. 1 with the addition of a memory
term originating from scale separation.

2. Equation 28 is a non-local closed equation for the coarse-scales.

3. Evaluation of the memory term is not tractable as it involves the solution of the evolution
operator, etQL. This is referred to as the orthogonal dynamics and is discussed in the
following section. Instead, Eq. 28 is viewed as a starting point for the construction of
closure models.

4 The Memory Term: Insight and Modeling

The MZ-VMS procedure itself does not provide a reduction in computational complexity as it
has replaced the fine-scale state with a memory term. This memory term relies on solutions
to the orthogonal dynamics equation, which is intractable in the general case. The MZ-VMS
procedure instead provides an exact representation of the fine-scale state in terms of the coarse-
scales. This is used as a starting point for model development. In this section, we expand
our discussion of the orthogonal dynamics equation and discuss several modeling strategies. In
particular we discuss the value of the memory kernel at s = 0 and demonstrate that many
existing MZ models are residual-based closures.

4.1 The orthogonal dynamics

In the Variational Multiscale method, the fine-scale state is parameterized in terms of the coarse-
scale state by virtue of a fine-scale Green’s function. The Mori-Zwanzig procedure instead uses
Duhamel’s principle to relate the solution of the orthogonal dynamics equation to the Liouville
equation. This allows for the elimination of fine-scales. The evolution operator of the orthogonal
dynamics is given by etQL. It is important to recognize that, while the evolution operator etL

is a Koopman operator, no such result exists for etQL in the general non-linear case. As a
consequence, evaluating terms evolved by etQL requires one to directly solve the orthogonal
dynamics equation. This is, in general, intractable.

To help clarify the interaction of the memory term and the orthogonal dynamics, Figure 3
depicts the memory term in s − t space. In Figure 3a, the evolution of the solution in time is
denoted by the solid blue line at s = 0. To evaluate the memory, solutions to the orthogonal
dynamics equation, F (ã(t), s), must be evolved in psuedo-time s using initial conditions that
depend on the solution at time t. This is depicted by the dashed red lines in Figure 3. This leads
to a three-dimensional surface in s − t space, as seen in Figure 3. Evaluation of the memory
integral then requires a path integration backwards in time along the dashed-lines in Figure 3a,
yielding the shaded yellow region in Figure 3b.

A quantity that is of particular interest is the memory kernel evaluated at s = 0, which is
denoted by the solid blue line. This term, K(ã(t), 0), drives the memory term and is typically
leveraged to develop closure models17,20 within the MZ setting. A clear derivation for the smooth
case is presented in Ref. 21 and we present the important result,

K(ã(t), 0) =

∫
Ω

∫
Ω

(w̃R′)(x)Π′(x, y)(R(ũ)− f)(y)dΩydΩx, (29)

10
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s

t

K(ã(t), 0)

Line of integration

K(ã(t), s)

Figure 3: Graphical depiction of the mechanics of the memory term.

where R′ = ∂R
∂ũ .

Remarks

1. Equation 29 shows that the memory is driven by an orthogonal projection of the coarse-
scale residual. If this residual is zero, no information is added to the memory. Further, if
the coarse-scale residual is fully resolved, no information is added to the memory.

4.2 Models for the Memory

The construction of an appropriate surrogate to the memory term requires an understanding
of the structure of the orthogonal dynamics equation. Due to the challenges associated with
the solution of very high-dimensional partial differential equations, to the knowledge of the
authors no direct attempt has been undertaken to solve the orthogonal dynamics equation. The
most general attempt to extract the memory term and orthogonal dynamics is presented in5,
where Hermite polynomials and Volterra integral equations are used to approximate the memory
(and hence orthogonal dynamics). This procedure was shown to provide a reasonably accurate
representation of the memory for a low-dimensional dynamical system. The procedure, however,
is intractable for high-dimensional problems. This fact is exemplified in the work of Bernstein3,
where the methodology is applied to the Burgers equation.

In Gouasmi et al.15 we extract the memory by assuming that the semi-group emerging
from the orthogonal dynamics equation is a composition operator. This allows the orthogonal
dynamics to by solved by virtue of an auxiliary set of ordinary differential equations. This
method was shown to be exact for linear systems. It further provided reasonable results for
mildly non-linear problems and suggested the presence of finite memory effects. The success
of the method, however, is problem-dependent and its accuracy is challenging to assess, from a
theoretical standpoint.

Despite the complexity and minimal understanding of the orthogonal dynamics, various
surrogate models for the memory exist. These models are typically based on series expansions or
geometrical arguments and have been applied to problems of varying complexity. The majority

11
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of analytic models for the MZ memory term involve repeated applications of projection and
Liouville operators. These may be written as,

etLPL(QL)nã0 =

(
w̃,
(
R′Π′

)nR(ũ)

)
etL(PL)nQLã0 =

(
w̃,R′Π′

(
R′Π̃

)n−1R(ũ)

)
.

4.2.1 The τ-model

The τ -model is structurally equivalent to Chorins original t-model, but contains a different time-
scale that is motivated by the idea that memory has a finite support in time. The model is given
by, ∫ t

0
K(ã(t− s), s)ds ≈ τ

(
w̃,R′Π′R(ũ)

)
. (30)

where τ is the memory length. We developed a dynamic procedure to compute τ in Ref. 20.
The methodology leverages the Germano identity and assumes scale similarity to construct an
energy transfer constraint between two-levels of coarse-graining. The appeal of the proposed
model, which we refer to as the dynamic-MZ-τ model, is that it is parameter-free and has a
structural form imposed by the mathematics of the coarse-graining process (rather than the
phenomenological assumptions made by the modeler, such as in classical subgrid scale models).
To promote the applicability of M-Z models in general, we present two procedures to compute
the resulting model form, helping to bypass the tedious error-prone algebra that has proven to be
a hindrance to the construction of M-Z-based models for complex dynamical systems. We have
demonstrated the model in the context of Large Eddy Simulation closures for Burgers equation,
rotating turbulence, Magneto-hydro dynamic turbulence, and turbulent channel flow.

5 Connections of MZ-VMS with Existing Concepts

In Section 4, it was seen that all models utilize the term K(ã(t), 0), which is written equivalently
as etLPLQLã0. This value drives the memory term and has been discussed throughout the
previous sections. We consider the memory kernel at s = 0 for the FEM case. Recall that this
term appears as

M̃K(ã(t), 0) =

∫
Ω

∫
Ω

(w̃R′)(x)Π′(x, y)(R(ũ)− f)(y)dΩydΩx

+

∫
Ω

∫
Γ
(w̃R′)(x)Π′(x, y)b(ũ(y))dΓydΩx

+

∫
Γ

∫
Ω

(w̃b′)(x)Π′(x, y)(R(ũ)− f)(y)dΓydΩx

+

∫
Γ

∫
Γ
(w̃b′)(x)Π′(x, y)b(ũ(y))dΓydΓx,

(31)

where R′ = ∂R
∂ũ and b′ = ∂b

∂ũ . The term Π′ is the L2 projection onto the fine-scales,

Π′(x, y) = w′
T

(x)M′−1
w′(y). (32)
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Remarks

1. The memory is driven by the residual of the coarse-scales projected onto V ′. When the
residual of the coarse-scales is negligible, no additional information is added to the memory.
Models such as the t and τ -model are inactive. Further, if the coarse-scale residual is non-
zero but exists only in Ṽ, models such as the t and τ -model are again inactive and no
information is added to the memory.

2. The orthogonal projection, Π′, can be conceptualized as a mechanism to enforce the ap-
proximation to constrain the fine-scale state to the correct trial space, V ′. A significant
body of work on orthogonal subgrid-scale models in the context of the Variational Multi-
scale Method has been undertaken by Codina8,9,16,2.

3. The boundary terms in the FEM formulation give rise to surface integrals. As will be
shown later, these surface integrals can, in turn, give rise to jump operators between
elements and can add artificial diffusion to the system.

4. It is seen that the orthogonal projector, Π′(x, y), can be viewed as an approximation to
the fine-scale Green’s function. This will be discussed in the next section.

5.1 The τ-model and an orthogonal approximation to the fine-scale Green’s
function

Approximating the memory with the τ -model gives rise to the following closed equations for the
coarse-scales,

(w̃, ũt) + (w̃,R(ũ))− τM̃K(ã(t), 0) = (w̃, f). (33)

5.2 Residual-Based Artificial Viscosity

To further clarify the role of the etLPLQLã0 term, we consider the hyperbolic conservation law,

∂u

∂t
+∇ · F(u) = 0 in Ω. (34)

The semi-discrete system obtained through the FEM discretization is,∫
Ω

wutdΩ +

∫
Ω

w∇ · F(u)dΩ +

∫
Γ

wb(u,n)dΓ = 0, (35)

where again b is a boundary operator, and n is the normal vector at element interfaces. Appli-
cation of the MZ-VMS procedure leads to∫

Ω
w̃utdΩ +

∫
Ω

w̃∇ · F(ũ)dΩ +

∫
Γ

w̃b(ũ,n)dΓ = M̃

∫ t

0
K(ã(t− s), s)ds. (36)

The value of the memory at s = 0 can be expressed as,

M̃K(ã(t), 0) =

∫
Ω

w̃∇ · F′(q)dΩ +

∫
Γ

w̃b′(q,n)dΓ, (37)
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where q is given by, ∫
Ω

w′qdΩ =

∫
Ω

w′∇ · F(ũ)dΩ +

∫
Γ

w′b(ũ,n)dΓ. (38)

The term F′ = ∂F
∂ũ is the flux Jacobian and b′ is the numerical flux function linearized about ũ.

The resulting coarse-scale equation for the τ -model is∫
Ω

w̃utdΩ +

∫
Ω

w̃∇ ·
(
F(ũ)− τF′(q)

)
dΩ +

∫
Γ

w̃
(
b(ũ,n)− τb′(q,n)

)
dΓ = 0. (39)

Consider now Eq. 34 augmented with an artificial viscosity term that is proportional to the
orthogonal projection of the divergence of the flux,

∂u

∂t
+∇ · F = τ∇ · F′(Π′∇ · F). (40)

A standard discretization technique for this second order equation is to split it into two first
order equations1,

∂u

∂t
+∇ ·

(
F(u)− F′(q)

)
= 0, (41)

with
q = Π′∇ · F(u). (42)

Assuming that the boundary operators are handled analogously, the discretization of Eq. 41 and
Eq. 42 through finite elements leads to precisely Eqns. 38 and 39.
Remarks

1. For a hyperbolic conservation law, the memory is driven by a non-linear term that acts as
a type of non-linear artificial viscosity.

2. The magnitude of the artificial dissipation is proportional to the projection of the flux onto
the fine-scales. If the flux term is fully resolved, no information is added to the memory.

3. Due to the appearance of the orthogonal projector, it is difficult to comment on the sign
of the artificial viscosity. While proofs exist showing that the term etLPLQLã0 is globally
dissipative in certain settings17, no such result is readily apparent in the general case.

6 Reduced Order Modeling

We extended the MZ-τ model to projection-based reduced order modeling in Ref. 22. The
method is designed to be applied at the semi-discrete level and displays commonalities with the
adjoint-stabilization method used in the finite element community as well as the least-squares
Petrov-Galerkin4 approach used in non-linear model order reduction. Theoretical error analysis
shows conditions under which the new method, termed the Adjoint Petrov-Galerkin ROM, may
have lower a priori error bounds than the Galerkin ROM. In the case of implicit time integration
schemes, the Adjoint Petrov-Galerkin ROM was shown to be capable of being more efficient than
least-squares Petrov-Galerkin when the non-linear system is solved via Jacobian-Free Newton-
Krylov methods. Additionally, numerical evidence showed a correlation between the spectral
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radius of the reduced Jacobian and the optimal value of the stabilization parameter appearing
in the Adjoint Petrov-Galerkin method. When augmented with hyper-reduction, the Adjoint
Petrov-Galerkin ROM was shown to be capable of producing accurate predictions within the
POD training set with computational speedups up to 5000 times faster than the full-order
models. This speed-up is a result of hyper-reduction of the right-hand side, as well as the ability
to use explicit time integration schemes at large time-steps. A study of the Pareto front for
simulation error versus relative wall time showed that, for the compressible cylinder problem,
the Adjoint Petrov-Galerkin ROM is competitive with the Galerkin ROM. Both the Galerkin
and Adjoint Petrov-Galerkin ROM were more efficient than the LSPG ROM for the problems
considered.

7 Entropy Conservative and Stable Formulations

Non-linear stability is a desirable, but elusive topic in the analysis of numerical methods for
complex PDEs. There are many notions of non-linear stability, but we will consider Entropy
stability in the sense of Tadmor23.

A number of systems of conservation laws imply additional conservation equations for math-
ematical entropies, namely scalar convex functions of the conserved variables. For instance, the
compressible one dimensional Euler equations imply:

∂(−ρs)
∂t

+
∂(−ρus)
∂x

= 0,

where s = ln(p)γln(ρ) is the specific entropy. In shock calculations, another well-established
guideline is that entropy should be produced across shocks. In more formal terms, this is
equivalent to requiring that the numerical scheme should be consistent with the inequality:

∂(−ρs)
∂t

+
∂(−ρus)
∂x

≤ 0

Building from extensive theoretical work on the structure of such systems, Tadmor23 intro-
duced discretizations which are consistent with either the conservation equation for entropy or
the entropy inequality at the semi-discrete level. The scheme is termed Entropy-Conservative
(EC) in the first case and Entropy-Stable (ES) in the second case.

8 Non-linear Stability of MZ-τ models

We will now consider the stability of the MZ-τ models. The starting point (i.e. the fully resolved
numerics) should be Entropy conservative. Consider the governing equations in weighted residual
form,

(w,ut) + (w,R(u)) = 0. (43)

For simplicity, the following derivation will neglect boundary operators. To derive an evolution
equation for entropy, first set w = vT ,

(vT ,ut) = −(vT ,R(u)) = 0. (44)
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Note that it is only possible to set w = vT for formulations where v is in the subspace spanned
by the basis functions. This is the case when one discretizes in entropy variables, but not when
one discretizes in conservative variables. Proceed by splitting v into coarse and fine scales,

(ṽT ,R
(
u(ṽ + v′))) + (v′

T
,R
(
u(ṽ + v′))) = 0. (45)

Setting v′ = 0, it is seen that,
(ṽT ,R

(
u(ṽ))) = 0. (46)

Now set v′ = εh,
(ṽT ,R

(
u(ṽ + εh))) + (εhT ,R

(
u(ṽ + εh)) = 0. (47)

Expanding in a Taylor series and using the chain rule,

(ṽT ,R
(
u(ṽ)) + ε(hT ,R

(
u(ṽ)) + (ṽT ,

∂R
∂u

∂u

∂v
εh)) + ε2(hT ,

∂R
∂u

∂u

∂v
εh) = 0. (48)

Setting,
h = Π′vR(u(ṽ)),

where Π′v is the projection onto the fine scales (i.e. the fine-scale mass matrix) as defined by
the entropy variables,

Π′vf = w′T
[ ∫

w′
∂u

∂v
w′TdΩ

]−1

(w′, f). (49)

The entropy evolution for the τ and VMS(ε) models is given by,(
ṽT ,

∂

∂t
u(ṽ)

)
+

(
ṽT ,R

(
u(ṽ)

))
+

(
ṽT , τ

∂R
∂u

∂u

∂v
Π′vR(u(ṽ))

)
<= 0 ∀τ > 0. (50)

It is seen that, in an entropy conservative formulation, the t, τ , and VMS(ε) models dissipate
entropy. Hence, the schemes are entropy stable.

8.1 Example

As an example, if one begins with an an entropy conservative flux18 for the Burgers equation,

F̂ (uR, uL) =
1

6

(
uR

2 + uLuR + uL
2
)
, (51)

application of the MZ-τ leads to the corresponding flux function is

f(uR, uL) =
1

6
(u2

L + uLuR + u2
R)− τ

18
(5u2

L + 8uLuR + 5u2
R). (52)

For all τ > 0, the above is an entropy stable flux function. The choice of τ controls the amount
of dissipation added to the system.

For an initial condition u(x, 0) = sin(x), Figure 4 shows results of Discontinuous Galerkin
simulations using one element and a third order polynomial (four total DOFs). The results are
compared to a projected solution that was obtained using p = 127. In Figure 4, one can see that
simulations run using an entropy conservative flux and central flux under-predict the dissipation
in resolved entropy. The entropy conservative flux leads to no net decrease in entropy, while the
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Figure 4: Numerical solutions to the Burgers’ equation using 1 element with p = 3.

central flux leads to a slight decrease in entropy. The results of the Roe scheme are not shown
in Figure 4 as they are comparable to the central flux. Figure 4 shows the importance of the
flux function for the MZ-VMS models. It is seen that the t-model constructed from the central
flux rapidly goes unstable. This instability is not surprising since the central flux does not
guarantee entropy conservation and hence it is possible for the MZ-VMS model to add entropy
to the system. The t-model constructed from an entropy conservative flux provides a stable and
accurate solution.

9 Contributions to Entropy stable methods

Having recognized that Entropy conservative formulations offer a route to provable non-linear
stability of MZ formulations, we made several advances to the theory of EC/ES methods. The
following is a summary:

A key question in the use of ES methods is how much entropy should be produced by
the scheme at a certain level of under-resolution. This problem has been so far studied by
considering different ES interface fluxes in the spatial discretization, only because they can be
tuned to generate a certain amount of entropy. In Ref. 12 note, we point out that, in the context
of space-time discretizations, the same applies to ES interface fluxes in the temporal direction.

The current state-of-the-art solves the compressible Navier-Stokes equations for a single-
component perfect gas in chemical and thermal equilibrium. As a first step towards enabling
the use of EC/ES schemes in complex applications such as Hypersonics and Combustion, we
formulated ES schemes for the multicomponent compressible Euler equations in Ref. 13. Special
care had to be taken as we discovered that the theoretical foundations of ES schemes begin to
crumble in the limit of vanishing partial densities.

The realization that ES schemes can only go as far as their theory led us to review some of it.
A fundamental result supporting the development of limiting strategies for high-order methods is
the minimum entropy principle proved by Tadmor for the compressible Euler equations. It states
that the specific entropy of the physically relevant weak solution does not decrease. In Ref. 14,
we prove a minimum entropy principle for the mixtures specific entropy in the multicomponent
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case, which implies that the aforementioned limiting strategies could be extended to this system.
In Ref. 11 (two journal submissions are upcoming on this topic), we study the behavior

of ES schemes in the low Mach number regime, where shock-capturing schemes are known
to suffer from severe accuracy degradation issues. A classic remedy to this problem is the
flux-preconditioning technique, which consists in tweaking artificial dissipation terms to enforce
consistent low Mach behavior. We showed that ES schemes suffer from the same issues and that
the flux-preconditioning technique can improve their behavior without interfering with entropy-
stability. Furthermore, we demonstrated analytically that these issues stem from an acoustic
entropy production field which scales improperly with the Mach number, generating spatial
fluctuations that are inconsistent with the equations. An important outgrowth of this effort is
the discovery that skew-symmetric dissipation operators can alter the way entropy is produced
locally, without changing the total amount of entropy produced.
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