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ABSTRACT

The work performed under this grant addresses two important aspects that affect accurate

computation and prediction of transition to turbulence in hypersonic boundary layers: (i) the

non-linear breakdown toward turbulence physics is not well understood in hypersonic boundary

layers; and (ii) computational methods based directly on gas kinetic theory have not been as well

developed, despite their inherent advantages for computing hypersonic flows. Three studies are

performed to address the above gaps in the current state of the art. In the first study, critical mathe-

matical framework to analyze and understand the non-linear internal-kinetic energy interactions

and subsequent spectral energy transfer is developed. The second study develops and validates

a promising gas kinetic scheme (GKS) for high-speed wall bounded flows. Validation studies are

performed in flows ranging from subsonic speeds to convective Mach number of about 6. The

scheme and code are validated against benchmark data and linear theory results. The third study

examines perturbation growth and non-linear breakdown to transition at various speeds. The

contrast between incompressible flow and hypersonic flow non-linear breakdown physics is well

established. Overall, the studies performed under this proposal, lead to valuable advances in our

ability to compute and predict the transition phenomenon in hypersonic boundary layers.

1
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1 Introduction

Much progress has been made in recent years toward understanding, modeling and predicting

transition and turbulence processes in hypersonic boundary layers. Two areas in which there are

significant deficiencies and more efforts are needed are (i) Understanding the non-linear processes

in the breakdown toward turbulence; and (ii) Development of appropriate numerical schemes and

tools based on Gas Kinetic Theory that are more appropriate for high-speed flows than Navier-

Stokes equations. This work addresses these two areas of importance for predictive simulations of

hypersonic transition in flows of interest to Air Force.

The first objective of this work is to investigate the key non-linear processes occurring during

the early stages of breakdown toward turbulence in hypersonic boundary layers. Specifically, we

seek to contrast the non-linear breakdown physics in incompressible and compressible flows. The

focus is on pressure-related non-linear processes. This is due to the fact that there is a funda-

mental change in the character of pressure from low to high Mach numbers. While much effort

has been expended on linear stability theories for compressible flows, a corresponding effort

in understanding non-linear effects have been lacking. One key factor that renders non-linear

effects different in compressible flows is the emergence of dilatational field and internal energy

fluctuations. In incompressible transition, perturbation kinetic energy grows and cascades to

smaller scales leading to ‘de-correlation’ of the flow field and turbulence. However, at high speeds,

perturbation kinetic energy can be converted into internal energy of the mean flow or fluctuations.

Thus, the perturbation energy available for breakdown to small scales can be significantly lower.

The canonical incompressible non-linear spectral transfer is profoundly modified at hypersonic

speeds. Despite this critical change in the character of non-linear process, the underlying physics of

the phenomenon has not been investigated in the past. There is a compelling need to understand

the non-linear kinetic-internal energy interactions and spectral growth in hypersonic boundary

layers.

The second aspect of the work is the development of a Gas Kinetic Scheme (GKS) to compute

transition and turbulence in hypersonic flows. At the current stage, most of the hypersonic flow

computations are still being performed with compressible Navier-Stokes solvers with modifications

to account for various high-speed, high-enthalpy effects. While such solvers are adequate, at

hypersonic flow conditions, there are tremendous advantages to using numerical schemes based

on the more fundamental Boltzmann equation.

Toward the above objectives, three studies were undertaken.

1. Study 1 develops the fundamental framework and governing equations needed to analyze

internal energy interactions and its spectral distribution in a manner similar to that of

kinetic energy analysis. To emulate the role of velocity in kinetic energy analysis, a new

variable (φ∼p
p where p is pressure) is introduced to enable the examination of internal

energy dynamics. Evolution equations for the mean and fluctuating components of φ are

2
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derived. These equations enable precise examination of mean–turbulent flow internal energy

interactions, internal–kinetic energy exchange and spectral distribution of internal energy.

2. Study 2 focuses on the compressible linear stability theory (CLST) to determine the most

unstable modes at different Mach numbers. Linearized perturbation equations are derived

and an eigenvalue analysis is performed. A code is developed to solve for the most unstable

mode and its shape. DNS with randomly perturbed pressure field are performed and the

most unstable mode and mode shapes are compared with CLST for verification of linear

analysis code. The verified linear analysis code enables the study of Mach number effects on

the stability of low wavenumbers and reaffirms the relevance of the effective gradient Mach

number, M e
g .

3. Study 3 characterizes the nonlinear evolution of perturbations in high Mach number Poiseuille

flow and contrasts the behavior against equivalent incompressible flow. The focus is on the

effect of changing nature of pressure (with Mach number) on three crucial processes: (i)

internal energy evolution; (ii) kinetic-internal energy exchange; and (iii) evolution of ki-

netic energy spectrum. We perform direct numerical simulations of plane Poiseuille flow

at different Mach numbers subject to a variety of initial perturbations. In all high-speed

cases considered, pressure dilatation leads to energy equipartition between wall-normal

velocity fluctuations (dilatational kinetic energy) and pressure fluctuations (a measure of

internal energy). However, the effect of pressure-dilatation on kinetic energy spectral growth

can be varied. In cases wherein pressure-dilatation is larger than turbulent kinetic energy

production, spectral growth is considerably slower than in equivalent low Mach number case.

When pressure-dilatation is smaller than production, the spectral growth is only marginally

affected. As a consequence, in high-speed Poiseuille flow the spectral growth rate varies

with wall-normal distance depending on the local pressure effects. These findings provide

valuable insight into the nonlinear aspects of breakdown towards turbulence in high speed

wall-bounded shear flows.

2 Study 1: Internal-Kinetic Energy Interactions and Spectral En-

ergy Transfer

2.1 Introduction

Kinetic energy dynamics such as inter-scale transfer and spectral distribution are key features

of turbulence and have been the subject of several investigations over many decades. In incom-

pressible flows, wherein density is constant and uniform, the velocity (ui ) evolution equation,

Navier-Stokes or the momentum conservation equation, forms the basis of kinetic energy analysis.

3
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For example, scale-to-scale energy transfer characteristics are dictated by the triadic interactions in-

cumbent in the advective term of the spectral Navier-Stokes equation. The kinetic energy spectrum

is computed from Fourier-transforming the auto-covariance function of the velocity field.

The advent of compressibility renders the kinetic energy dynamics more complicated due to

two factors: (i) spatio-temporal variations in density; and (ii) interactions with internal energy.

Some of the complexities in kinetic energy dynamics due to density variations can be adequately

addressed by considering density-weighted velocity field – ρui leading to Favre-averaging. But

investigation of scale-to-scale transfer and spectral distribution require additional considerations.

A new variable
p
ρui , first proposed by Kida and Orszag (1992), has been utilized in many works for

computing kinetic energy spectrum in compressible turbulence.

The focus of this study is on the investigation of internal energy dynamics and its interaction

with kinetic energy. It is desirable to investigate and characterize internal energy interactions in

turbulence in a manner similar to that of kinetic energy analysis. Many studies perform insightful

investigations of turbulent fluctuations of pressure. However, such studies do not address internal

energy spectral distribution or transfer in a manner similar to that of kinetic energy. For example,

the scale-to-scale transfer of internal energy cannot be computed from the advection term in the

spectral pressure equation. Further, the turbulent internal energy spectrum is not the same as the

turbulent pressure spectrum. To overcome these limitations, Miura and Kida (1995) propose a new

internal energy variable (φ∼p
p) corresponding to velocity for investigating the internal energy

spectrum.

The objective is to extend the proposal of Miura and Kida and develop the mathematical

framework and evolution equations required for performing a comprehensive and rigorous analysis

of turbulent internal energy dynamics based on φ. Similar to kinetic energy analysis, we aim at

partitioning the internal energy into two parts corresponding to contribution of the mean field

and the fluctuating field. The equations based on φ will enable rigorous investigations of (i)

internal–kinetic energy interactions at each scale; (ii) mean–turbulent internal energy exchange;

and (iii) spectral distribution of internal and total energies in a turbulent flow field. The proposed

framework is very important for a comprehensive understanding of total energy dynamics and

spectral energy distribution in high-speed, compressible transition and turbulent flows.

4
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2.2 Governing Equations

The compressible Navier-Stokes equations for a calorically perfect ideal gas form the basis of this

analysis:

∂ρ

∂t
+ ∂

∂x j
(ρu j ) = 0, (1a)

∂(ρui )

∂t
+ ∂(ρui u j )

∂x j
=− ∂p

∂xi
+ ∂τi j

∂x j
, (1b)

∂

∂t

( p

γ−1

)
+ ∂

∂x j

( pu j

γ−1

)
= ∂

∂x j

(
κ
∂T

∂x j

)
−p

∂uk

∂xk
+τi j

∂ui

∂x j
, (1c)

p = ρRT, (1d)

where ρ is the fluid density, ui is velocity component, τi j is the viscous stress tensor, p is the gas

pressure, γ is ratio of specific heats at constant pressure and volume, κ is the coefficient of thermal

conductivity, T is the temperature, xi is the spatial coordinate and t is time. The viscous stress

tensor is given by:

τi j =µ
(∂ui

∂x j
+ ∂u j

∂xi

)
+λ∂uk

∂xk
δi j , (2)

where µ is the coefficient of dynamic viscosity, λ is the coefficient of second viscosity and δi j is the

Kronecker delta.

Nonlinear evolution of perturbations is highly dependent on interactions between kinetic and

internal energies. We first analyze the kinetic (K ), internal (e) and total (E) energy equations to

identify the key interactions:

∂K

∂t
+ ∂(K uk )

∂xk
+ ∂

∂xk

[
puk −τi k ui

]
= p

∂uk

∂xk
−τi j

∂ui

∂x j
, (3a)

∂e

∂t
+ ∂(euk )

∂xk
+ ∂qk

∂xk
=−p

∂uk

∂xk
+τi j

∂ui

∂x j
, (3b)

∂E

∂t
+ ∂(Euk )

∂xk
+ ∂

∂xk

[
puk −τi k ui +qk

]
= 0, (3c)

where,

K = 1

2
ρui ui , e = p

γ−1
, qk =−κ ∂T

∂xk
and E = K +e. (4)

Equations (3a) and (3b) indicate interactions between kinetic and internal energy via pressure-

dilatation and viscous action. Pressure-dilatation permits a two-way exchange while viscous action

can only lead to a one-way transfer from kinetic to internal energy.
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2.3 Framework Development and Energy Interactions

It is important to recognize that the mean kinetic energy of the flow has two contributions: the

kinetic energy associated with the mean flow field and that associated with the fluctuations.

K = Km +k where, Km = 1

2
ρŨiŨi and k = 1

2
ρu′′

i u′′
i . (5)

where Ũi a Favre averaged velocity and u′′
i is the corresponding fluctuation field.

Governing equation for Km and k are well known and can be written as:

∂Km

∂t
+ ∂(KmŨ j )

∂x j
+ ∂

∂x j

[
ρu′′

i u′′
j Ũi +pU j −τi j U i

]
=ρu′′

i u′′
j

∂Ũi

∂x j
+p

∂U k

∂xk

−τi j
∂U i

∂x j
+u′′

k

∂p

∂xk
−u′′

k

∂τk j

∂x j
,

(6)

and

∂k

∂t
+ ∂(kŨ j )

∂x j
+ ∂

∂x j

[1

2
ρu′′

i u′′
i u′′

j +p ′u′
j −τ′i j u′

i

]
=−ρu′′

i u′′
j

∂Ũi

∂x j
+p ′∂u′

k

∂xk

−τ′i j

∂u′
i

∂x j
−u′′

k

∂p

∂xk
+u′′

k

∂τk j

∂x j
.

(7)

In incompressible flows, the spectral transfer and distribution of kinetic energy across different

scales of motion can be examined by performing Fourier transform of u′
i . However, Fourier

transform of u′′
i alone is not enough for scale-to-scale analysis of compressible flows. As proposed

by Kida and Orszag (1992), similar spectral energy analysis of compressible flows requires a new

variable,

wi =p
ρu′′

i , (8)

to account for spatio-temporal variations in density. The Fourier transform of the auto-correlation

function of wi yields the kinetic energy spectrum. The quartic interactions for turbulent kinetic

energy cascade are also reduced to triadic interactions.

Unlike kinetic energy, it is more complicated to clearly identify the internal energy associated

with the mean (or background field) and the turbulent internal energy. In the linear regime, when

the density fluctuations are small, Sarkar (1991) identified that the potential energy incumbent

in pressure fluctuations can be approximated as p ′p ′/(2γp). However, this representation is

inadequate when the density fluctuations are large. Miura and Kida (1995) propose a more general

approach which is valid for strongly compressible flows. They propose a new variable,

φ≡p
e =

√
p

γ−1
, (9)
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for examining the internal energy spectrum in simple isotropic flows. The justification is that φ2

corresponds to internal energy. Using the relation γp = ρa2, where a is the speed of sound, φ can

be written as:

φ= 1√
γ(γ−1)

p
ρa. (10)

Eq. (10) shows that φ includes density-weighted acoustic speed information which relates to the

internal energy of the system. The state variable φ for internal energy is thus analogous to wi for

turbulent kinetic energy. φ can now be decomposed using Reynolds averaging:

φ=φ+φ′ where, φ=
√

p

γ−1
and φ′ =

√
p

γ−1
−

√
p

γ−1
. (11)

With this formulation, it is possible to clearly separate the mean internal energy of the flow into a

mean field and a fluctuating field contribution,

e =φ2 =φ φ+φ′φ′ therefore, em =φ φ and et =φ′φ′. (12)

The strong similarity of internal energy decomposition in eq. (12) and kinetic energy partitioning

in eq. (5) is clearly evident. The spectral transfer and spectral distribution of turbulent internal

energy can be characterized from the behavior φ′ much in the same manner as the turbulent

kinetic energy transfer/distribution can be analyzed using wi =p
ρu′′

i . The Fourier transform of

the auto-correlation of φ′ yields the turbulent internal energy spectrum. Thus, φ′−wi interactions

hold the key to examining internal–kinetic energy exchange.

The mean and the fluctuation pressure field can be written in terms of the internal energy

velocity variable φ as:

p = (γ−1)
[
φ φ+φ′φ′

]
and p ′ = (γ−1)

[
φ′φ′+2φφ′−φ′φ′

]
. (13)

We can clearly see that mean and fluctuating pressure have a linear and nonlinear component:

p = pm +p t and p ′ = p ′
m +p ′

t (14)

where,

pm = (γ−1)φ φ and p t = (γ−1)φ′φ′,

p ′
m = 2(γ−1)φφ′ and p ′

t = (γ−1)
[
φ′φ′−φ′φ′

]
.

(15)

Here, pm and p t are the components of mean pressure associated with the mean field and the

perturbation field respectively. Similarly, p ′
m and p ′

t are the components of fluctuating pressure

associated with the mean field and the perturbation field. pm and p ′
m can also be understood as

7
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Figure 1: Interactions between kinetic and internal energies in the nonlinear regime using eqs. (6,7,17b,17d)

linear (or rapid) components while p t and p ′
t as nonlinear (or slow) components.

We can now derive the evolution equations for em =φ φ and et =φ′φ′. We start with the internal

energy equation, eq. (3b) and use definitions e =φ2 and p = (γ−1)φ2 to obtain an equation for φ:

∂φ

∂t
+uk

∂φ

∂xk
=−γ

2
φ
∂uk

∂xk
+ f

2φ
where, f =

[
− ∂qk

∂xk
+τi j

∂ui

∂x j

]
. (16)

The governing equations for φ, em , φ′ and et can now be expressed as:

∂φ

∂t
+Ũk

∂φ

∂xk
+u′′

k

∂φ

∂xk
+u′′

k

∂φ′

∂xk
=−γ

2

[
φ
∂Ũk

∂xk
+φ∂u′′

k

∂xk
+φ′∂u′′

k

∂xk

]
+ f

2φ
− 1

2φ

( f φ′

φ

)
. (17a)

∂em

∂t
+ ∂(emŨk )

∂xk
+ ∂

∂xk

[
φ φ u′′

k +2φ φ′u′′
k +qk

]
= τi j

∂U i

∂x j
+τ′i j

∂u′
i

∂x j
−pm

∂U k

∂xk

+2u′′
kφ

′ ∂φ
∂xk

+ (2−γ)

2(γ−1)
p ′

m

∂u′
k

∂xk
−

( f φ′

φ

)
.

(17b)

∂φ′

∂t
+Ũk

∂φ′

∂xk
+u′′

k

∂φ

∂xk
+u′′

k

∂φ′

∂xk
−u′′

k

∂φ

∂xk
−u′′

k

∂φ′

∂xk
=− γ

2

[
φ′∂Ũk

∂xk
+φ∂u′′

k

∂xk
+φ′∂u′′

k

∂xk
−φ∂u′′

k

∂xk
−φ′∂u′′

k

∂xk

]
+

( f

2φ

)′
.

(17c)

∂et

∂t
+ ∂(etŨk )

∂xk
+ ∂

∂xk
[φ′φ′u′′

k ] =−p t
∂U k

∂xk
−p ′∂u′

k

∂xk
−2u′′

kφ
′ ∂φ
∂xk

− (2−γ)

2(γ−1)
p ′

m

∂u′
k

∂xk
+

( f φ′

φ

)
. (17d)
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The equations for φ, em , φ′ and et in eqs. (17a), (17b), (17c) and (17d) constitute the framework

required to describe internal energy interactions. The kinetic–internal energy interactions specif-

ically the energy exchanges amongst Km , k, em and et are summarized in figure 1. The double

solid arrow represents a two-way exchange while a dashed one-way arrow represents a single sided

transfer of energy.

2.4 Conclusions

In this study, we have established a framework for examining internal energy of any fluid flow

governed by the compressible Navier-Stokes equations. Analogous to fluid velocity, a suitable

thermodynamic state variable for internal energy is identified (φ ∼ p
p). It is shown that φ is

proportional to density-weighted acoustic speed which relates to the internal energy of the system.

Defining internal energy in terms of φ allows partitioning of the mean internal energy of the flow

into the mean field and perturbation field contributions, similar to mean kinetic energy. It is also

established that spectral behavior of turbulent internal energy can be rigorously examined using φ′.
Governing equations for em and et are derived to identify key internal–kinetic energy interactions.

It is anticipated that this framework will be important for analysis and modeling of energy dynamics

in high-speed compressible transition and turbulent flows.

3 Study 2: Development and validation of Gas Kinetic Solver For

Wall-Bounded Flow

3.1 Introduction

In Study 1, a general analysis of the full equations is performed to identify the prominent interac-

tions between the two components of kinetic and internal energy. In this study we perform a linear

stability analysis to develop more insight into the most unstable modes at different Mach numbers.

For incompressible flows the linear stability analysis leads to the well known Orr-Sommerfeld

equations, the solution of which is the OS mode. Similar linear analysis, developed by Mack (1984),

can be performed for compressible flows to identify the most unstable modes and its shape at

different Mach number. Due to its simple geometry and intrinsic scientific value, Poiseuille flow

has long been used to study wall effects on turbulence and other fluid phenomena. Indeed, in-

compressible turbulent Poiseuille or channel flow is one of the most widely investigated flows in

literature. Therefore, it is reasonable to investigate compressible Poiseuille flow to understand

fundamental processes in wall-bounded flows before proceeding to other flow configuration. The

objective of this study is to perform a linear stability analysis for wall-bounded flows and identify

the effect of Mach number on the most unstable modes. Toward that end we perform the following

tasks:

9
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Figure 2: Problem Setup

1. Perform a linear stability analysis and derive the governing equations.

2. Develop a code to solve the above set of equations and identify the most unstable modes and

its shape.

3. Verify the code using direct numerical simulations (DNS) of randomly perturbed pressure

field.

4. Identify the effect of Mach number on the most unstable modes.

3.2 Compressible linear stability equations

We consider Poiseuille flow as the canonical problem for this analysis as shown in figure 2. The flow

variables are non-dimensionalized as follows,

x∗
i = xi

L
, t∗ = U0

L
t , µ∗ = µ

µ0
, κ∗ = κ

κ0

u∗
i = ui

U0
, p∗ = p

p0
, T ∗ = T

T0
, ρ∗ = ρ

ρ0
, f ∗

b = L

U 2
0

fb ,
(18)

where L is the channel half width, µ0 is the initial U0 is the initial centerline velocity, p0 is the initial

uniform pressure, T0 is the initial uniform temperature, ρ0 is the initial uniform density and fb is a

constant body force applied to drive the flow. The base flow considered for the stability analysis of

full set of linearlized compressible equations is given by,

u∗
i = (1− y∗2,0,0), p∗ = 1, T ∗ = 1, ρ∗ = 1, f ∗

b = 2

Re
. (19)

The base flow temperature and density are assumed to be uniform. This assumption is validated

using DNS simulations for the duration of evolution considered in this paper. Under these as-

sumptions the coefficient of dynamic viscosity (µ) and thermal conductivity (κ) can be considered
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constants for the linear stability analysis. Therefore,

µ∗ = 1 and κ∗ = 1. (20)

The flow variables are expressed as a sum of the base field and small perturbations,

A∗ = A
∗+ A∗′

. (21)

The linearized perturbation equations are derived and can now be expressed as,

∂ρ∗′

∂t
+
∂u∗′

j

∂x j
+ (1− y∗2)

∂ρ∗′

∂x1
= 0, (22a)

∂u∗′
i

∂t
+ (1− y∗2)

∂u∗′
i

∂x1
−2y∗u∗′

2 δi 1 =− 1

γM 2

∂p∗′

∂xi
+ 2

Re
ρ∗′

δi 1 + 1

Re

[ ∂2u∗′
i

∂x j∂x j
+ 1

3

∂2u∗′
j

∂xi∂x j

]
, (22b)

∂p∗′

∂t
+ (1− y∗2)

∂p∗′

∂x1
+γ

∂u∗′
j

∂x j
= γ

Re Pr

∂2T ∗′

∂x j∂x j
− 4γ(γ−1)M 2 y∗

Re

[∂u∗′
1

∂x2
+ ∂u∗′

2

∂x1

]
, (22c)

p∗′ = ρ∗′ +T ∗′
, (22d)

where (.)∗
′

represents the fluctuations in the flow variables. The dimensionless parameters, Mach

number (M), Reynolds number (Re) and Prandtl number (Pr ) are defined as,

Re = ρ0U0L

µ0
, Pr = µ0cp

κ0
, M = U0√

γRT0
. (23)

Normal mode analysis is now performed by representing the flow variables as follows,

A∗′ = A(y)e ι(αx+βz−ωt ), (24)

where A represents velocity components, temperature, density or pressure. The system of equations

is reduced to an eigenvalue problem,

Bψ=ωIψ, (25)

where ω is the growth rate for each mode, (α,β) and ψ= [û1, û2, û3, ρ̂, T̂ ]T is the mode shape. The

general form of eigenvalue problem of the linearized perturbation equations can be referred to

from Ramachandran et al. (2016). A code is developed to solve the above eigenvalue problem and

identify the mode, mode shape and its corresponding growth rate.

3.3 Results

Before analyzing the effect of Mach number on the most unstable modes predicted through linear

theory, it is important to verify the linear stability code. As a first step, the code is verified to
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Mc = 3.0 Mc = 4.0 Mc = 6.0

T (K ) 60 60 60
ρ0 (kg m−3) 0.04 0.0267 0.02

U (y ; t = 0) (m s−1) 465.8
(
1− y2

L2

)
698.7

(
1− y2

L2

)
931.6

(
1− y2

L2

)
Table 1: Initial base flow conditions for verification with DNS.

Mach Number CLST [Growth Rate] DNS

3.0 (5,0) [0.029] (5,0)
4.5 (3,0) [0.078] (3,−1)
6.0 (4,0) [0.081] (4,0)

Table 2: Verification of most unstable mode.

reproduce the OS mode and its shape at low Mach numbers as predicted using the Orr-Sommerfeld

equations. Verification at higher Mach numbers is performed using DNS of randomly perturbed

pressure field. We consider three Mach numbers for verification as shown in table 1 along with

the Initial base flow properties for each Mach number. The Reynolds number is kept constant at

Re = ρU0L/µ= 93900 for all simulations.

Random perturbations in the pressure field are initialized as,

p ′

p
= A(2r −1), A = 0.25, (26)

where r is a random number uniformly distributed between [−1,1]. Simulations are performed

using isothermal temperature boundary condition which is also the boundary condition used in the

linear stability analysis. We first verify the dominant unstable modes after lapse of initial transience

for the three cases. The mode number predicted from linear analysis code is observed to match

exactly with the DNS simulations for two cases - Mc = 3.0 and Mc = 6.0 and is in close proximity

for Mc = 4.5. We now compare the predicted mode shape for these unstable modes between DNS

and CLST. The mode shape through DNS is established using 18 wall normal planes in the flow

and by determining the turbulent kinetic energy amplitude of the unstable mode. Figures 3 and

Figure 3: Mode shape comparison between DNS and LST results for Mc = 3.0.

12

DISTRIBUTION A: Distribution approved for public release.



Figure 4: Mode shape comparison between DNS and LST results for Mc = 6.0.

Figure 5: Mode shape comparison between DNS and LST results for Mc = 4.5.

Figure 6: Mode shape comparison between unstable modes (3,0) and (3,−1) for Mc = 4.5.

Figure 7: Effect of Mach number on most unstable modes.
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4 compare the mode shapes for all flow variables for Mc = 3.0 and Mc = 6.0 respectively. The

mode shapes predicted by LST can be observed to match very well with the DNS results validating

the developed linear stability code. We now compare the mode shape for Mc = 4.5 for the most

unstable mode predicted using linear analysis i.e. (3,0) in figure 5. The mode shape for (3,0)

matches well with DNS however, the most unstable mode predicted by DNS is relatively oblique

i.e. (3,−1). In figure 6 we compare the mode shape of pressure fluctuations for (3,0) and (3,−1). It

can be clearly seen that the mode shapes and growth rates of these modes is very similar. Xie et al.

(2017) have shown that compressibility suppresses streamwise modes and the suppression effect

of compressibility reduces as the obliqueness of the mode increases. Keeping these effects in mind

it is understandable that the most unstable mode in DNS is a relatively oblique mode instead of a

streamwise mode.

Having validated the code using DNS, we now study the effect of Mach number on the unstable

modes predicted through CLST. Figure 7 compares the stability curves across all (α,β) for different

Mach numbers with the most unstable mode and its growth rate highlighted on the figure. Even

though the number of unstable modes keep increasing as we increase the Mach number, the low

wavenumbers (highlighted within the white box) are stabilized for high Mach number cases which

were originally most unstable for low Mach numbers. It can therefore, be concluded that low

wavenumbers are stabilized due to the velocity - pressure interactions at high Mach numbers. This

effect can be characterized using the effective gradient Mach number (Xie et al. 2017), defined as

M e
g = S

κa
cosβ where S = ∂U

∂y
, (27)

as the relevant parameter. M e
g is inversely proportional to wavenumber causing high wavenumbers

to experience a low effective gradient Mach number thereby reducing compressibility suppression.

It also includes the effect of obliqueness since streamwise modes experience the highest M e
g

whereas the spanwise modes are unaffected. These inferences will prove useful in understanding

the effect of velocity-pressure interactions on the nonlinear processes. The variation in the most

unstable mode number as a function of Mach number is left as future work.

3.4 Conclusions

In this study, we have performed a compressible linear stability analysis and developed a code to

solve eigenvalue problem. The code is validated by comparing the most unstable mode and its

shape with DNS of randomly perturbed pressure field at various Mach numbers. Initial random

pressure perturbations lead to development of the most unstable mode (mode number and shape)

predicted by CLST. It is also established that low wavenumbers are stabilized for compressible cases

affirming the relevance of the effective gradient Mach number, M e
g for compressible flows. These

insights in the linear regime are important before analyzing the effect of compressibility on key
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nonlinear processes such as scale to scale cascade of energy.

4 Non-linear Breakdown in hypersonic wall bounded flow

Pressure undergoes a transformative change as the Mach number increases from incompressible

to compressible regime. In incompressible flows, pressure is a Lagrange multiplier governed

by the Poisson equation and its sole purpose is to maintain a divergence-free velocity field. At

high Mach numbers pressure is a thermodynamic state variable and its evolution is governed

by energy conservation and state equations. Emergence of wave-like character in the pressure

field engenders a dilatational velocity component at high Mach numbers. Flow-thermodynamic

interactions enabled by the dilatational field become significant and profoundly affect the flow field.

The pressure field performs work on the velocity field via the pressure-dilatation interaction leading

to kinetic-internal energy exchange. Compressibility effects in the linear stability regime and fully

developed turbulence have been reasonably well investigated in literature. Study of nonlinear

development of velocity perturbations is critically important for understanding and modeling

breakdown toward turbulence in hypersonic boundary layers. Despite recent progress, many

important fundamental aspects of nonlinear processes - specifically those due to the change in the

action of pressure - are not well understood. It is well known that dilatational fluctuations exhibit

vastly different spectral transfer characteristics than solenoidal velocity field. Further, the effect

of energy exchange between kinetic and internal forms on spectral evolution is not established

in wall-bounded flows. Recall that in incompressible turbulence, kinetic energy is conserved in

the nonlinear spectral transfer process. It is therefore reasonable to expect that transient spectral

evolution in incompressible and compressible flows can potentially be significantly different. Thus

motivated, the goal of this study is to examine the nonlinear spectral evolution in high-speed

wall-bounded flows with a focus on pressure effects. Toward this end, we undertake the following

tasks:

1. Analyse the governing equations to establish the key role of pressure and dilatation on the

nonlinear evolution of perturbations.

2. Perform direct numerical simulations of perturbation evolution (linear and early nonlinear

stages) in Poiseuille flows at incompressible and compressible Mach numbers.

3. Examine the effect of pressure-dilatation on internal energy evolution and kinetic energy

spectral growth at different Mach numbers.

4. Examine the spectral growth in different wall-normal regions of high Mach number flow as a

function of local pressure-dilatation level. Then the contrast between the spectral evolution

in high and low speed wall bounded flows can be clearly established.
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4.1 Analysis

Energy equipartition: Turbulent kinetic energy has two components, energy in solenoidal fluctua-

tions and that in dilatational fluctuations. Only the dilatational component of turbulent kinetic

energy interacts with internal energy. Previous studies of compressible shear flows have shown

dilatational field to be dominated by the wall-normal component of velocity perturbations. The

inviscid evolution of the wall normal component of turbulent kinetic energy (k(2) = ρu′′
2 u′′

2 /2),

which is approximately the dilatational kinetic energy, is given by:

∂k(2)

∂t
+ ∂(k(2)Ũ j )

∂x j
+ ∂

∂x j

[1

2
ρu′′

j u′′
2 u′′

2 +p ′u′′
2δ j 2

]
=−ρu′′

2 u′′
j

∂Ũ

∂x2
+p ′∂u′′

2

∂x2
−u′′

2

∂p

∂x2
. (28)

The inviscid evolution of normalized pressure-variance [p ′p ′/(2γp)] which is the potential energy

incumbent in the pressure fluctuations is given by:

1

2γp

[
∂(p ′p ′)
∂t

+ ∂(p ′p ′Ũk )

∂xk
+ ∂

∂xk

(
p ′p ′u′′

k

)]
=−p ′u′′

k

γp

∂p

∂xk
−p ′∂u′′

k

∂xk

−
(
1− 1

2γ

) 1

p

[
p ′p ′∂Ũk

∂xk
+p ′p ′∂u′′

k

∂xk

]
.

(29)

Since the velocity gradients in the wall-normal component in planar shear flows are dominant the

following approximation can be made:

p ′∂u′′
k

∂xk
∼ p ′∂u′′

2

∂x2
. (30)

It is evident that pressure-dilatation leads to a harmonic exchange between normalized pressure-

variance and the wall-normal component of turbulent kinetic energy k(2). Due to the harmonic

nature of this interaction, equipartition of energy between these two energy forms can be expected.

Relevant parameter: The evolution of turbulent kinetic energy (k) in compressible flows in

eq. (7) shows three major inviscid mechanisms that influence the evolution of k as: production(
Pk =−ρu′′

i u′′
j
∂Ũi
∂x j

)
, pressure-dilatation mechanism

(
p ′d ′′ = p ′ ∂u′′

k
∂xk

)
and pressure work on mean of

Favre fluctuations
(
u′′

k
∂p
∂xk

)
. In the early nonlinear regime, the last term is likely to be small compared

to production and pressure-dilatation. Therefore, Pk and p ′d ′′ remain as the two important inviscid

mechanisms affecting the evolution of turbulent kinetic energy and spectral transfer. We propose

that the pressure-dilatation to production ratio is the important non-dimensional parameter that

governs the degree of compressibility effect on kinetic energy evolution. Thus,

|p ′d ′′| > |Pk | => Large compressibility effects,

|p ′d ′′| < |Pk | => Small compressibility effects.
(31)
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Figure 8: Initial perturbations

4.2 Problem Setup

This study can be considered an extension of Xie et al. (2017) which examines the linear mech-

anisms. Thus, we use the same flow configuration and parameter range of investigation. The

computational domain is a rectangular box of dimension 8L×2L×4.64L and the setup can be seen

in figure 2. Temporal simulations are performed and the evolution is considered in dimensionless

shear time defined as:

St = x∗ = U0t

L
. (32)

The base flow is perturbed with a triad of disturbances of as shown in figure 8 following the studies

of Sivasubramanian and Fasel (2015). The disturbances are superposed on different wall-normal

profiles. We consider the following initial perturbation profiles:

1. The incompressible Orr-Sommerfeld (OS) perturbation profile which generates Tollmien-

Schlichting (TS) waves leading to first mode instability.

2. A dilatation-free arbitrary perturbation profile given by,

u′
1 =U0 sin

(
π

x2

L

)
sin

(
2π

x1 +x3 tanβ

Lx1

)
,

u′
2 =U0

( 2L

Lx1

)[
cos

(
π

x2

L

)
+1

]
cos

(
2π

x1 +x3 tanβ

Lx1

)
,

u′
3 = 0,

(33)

where Lx1 is the domain length in the streamwise direction and L is the half channel width.

We will refer to this profile as the arbitrary initial profile.

3. A hybrid profile which is a linear superposition of OS and the arbitrary profiles. This profile

will be referred to as combined initial profile.

4. The most energetic Mack mode (at Mc = 6.0) determined using the linear analysis code

developed in previous study. This profile will be referred to as Mack mode profile.

17

DISTRIBUTION A: Distribution approved for public release.



Initial Initial Perturbation amp. Initial Turbulence
Case Profile Spectra (% of U0) Intensity (I0)

1 OS β= (−60◦,0◦,60◦) (1.33,1.33,1.33) 0.9%
2 OS β= (−60◦,0◦,60◦) (0.83,0.83,0.83) 0.56%
3 OS β= (−60◦,0◦,60◦) (0.33,0.33,0.33) 0.22%
4 OS β= (−60◦,0◦,60◦) (0.1,3.8,0.1) 1.48%
5 OS β= (−60◦,0◦,60◦) (0.1,1.0,0.1) 0.39%
6 OS β= (−45◦,0◦,45◦) (1.33,1.33,1.33) 0.9%
7 Arbitrary β= (−60◦,0◦,60◦) (0.95,0.95,0.95) 0.9%
8 Arbitrary β= (−60◦,0◦,60◦) (0.33,0.33,0.33) 0.31%
9 Combined β= (−60◦,0◦,60◦) (0.6,0.6,0.6) 0.7%

10 Combined β= (−60◦,0◦,60◦) (0.15,0.15,0.15) 0.18%
11 Mack Mode β= (−60◦,0◦,60◦) (1.12,1.12,1.12) 0.9%
12 Mack Mode β= (−60◦,0◦,60◦) (0.16,0.16,0.16) 0.12%

Table 3: Simulations performed.

The initial turbulence intensity is maintained at I0 = 0.9% for the cases considered for detailed

discussion in this study. We define the initial turbulence intensity (I0) as,

I0 =
√

2k0/ρ0

U0
(34)

where, k0 is the initial turbulent kinetic energy, ρ0 is the initial density and U0 is the initial centerline

velocity.

4.3 Results

Since the results for the first three profiles have already been submitted in previous reports, we will

present only the results for the Mack mode profile. The objective here is to perform a quantitative

comparison of kinetic energy spectral evolution between low and high Mach number cases. The

comparison of OS mode evolution at low and high Mach numbers presents useful insight. However,

that comparison does not account for the fact that OS mode is not the most unstable perturbation

at high speeds. We propose that a meaningful comparison should examine the evolution of most

unstable mode specific to each Mach number. Therefore, here we will compare and contrast the

spectral evolution of the perturbation field initialized with OS mode for low Mach number and

the Mack mode for high Mach number. The most unstable Mack mode is determined from linear

stability theory as explained in the previous study. In each simulation, a triad (one streamwise and

two oblique) of the appropriate perturbation modes are superposed on the background field at the

initial time – see table 3. Then the evolution of various flow quantities are examined.

We first examine the kinetic energy evolution in the two high Mach number simulations (Cases

11 and 12) in Figure 9. The kinetic energy of the higher initial perturbation intensity simulation
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Figure 9: Volume averaged turbulent kinetic energy evolution for different perturbation intensities with Mack
mode initial profile at high Mach number and OS initial profile at low Mach number. Initial perturbations
with β= 0◦,±60◦ are equally energized.

Figure 10: Evolution of volume averaged ρu′′
2 u′′

2 and p ′p ′/γp for Mack mode initial profile.

(Case 11) deviates from that of the lower perturbation intensity case at about St ∼ 28. The onset of

nonlinearity of the low Mach number case with OS initial profile (Case 1) happens around St ∼ 15.

This reiterates that compressibility leads to an extended linear regime. Interestingly, upon the onset

of nonlinearity, the growth rate of turbulent kinetic energy of the initial high intensity simulation

(Case 11) is lower than that of the low intensity case (Case 12). This suggests that the new scales of

motion produced by nonlinear spectral transfer may be more stable than the initial Mack mode.

We also investigate the volume-averaged wall-normal component of turbulent kinetic energy

(k(2)) and the normalized pressure variance (p ′p ′/2γp) for Case 11. Figure 10 shows the two energies

to be nearly equal. This reaffirms the fact that pressure-dilatation continues to enforce energy

equipartition.

As previously established, pressure-dilatation to production ratio is a key feature that influences

spectral evolution in compressible turbulence. As we expect the compressibility effect to depend on

distance from the wall, we examine pressure-dilatation levels at different wall-normal planes. The

three planes considered are - near wall plane (y/L =−0.86), intermediate plane (y/L =−0.73) and
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Figure 11: Comparison of pressure-dilatation (p ′d ′′) to production (Pk ) ratio at different y−planes for
Mc = 6.0 initialized with Mack mode profile.

a far-wall plane (y/L =−0.5). Figure 11 shows the temporal evolution of |p ′d ′′/Pk | at each of these

planes. It can be inferred from the figure that (i) the near wall plane experiences the highest levels

of |p ′d ′′/Pk | ratio and (ii) the relative importance of pressure-dilatation decreases with increasing

wall distance. The near and intermediate locations experience moderate levels of dilatation effects

within St ∈ [30,48] and at later times (St > 48), the near-wall plane experiences very high levels of

pressure-dilatation.

We now proceed to compare the spectral evolution at different wall-normal distances in high

(Case 11) and low (Case 1) Mach number Poiseuille flows. It must be noted that the wavenumber

values and mode profiles are very different for the two cases. The normalized (by streamwise

length, Lx) wavenumber of the most unstable mode is unity at low Mach number and four at

high Mach number. The wavenumbers associated with the oblique modes are a little higher than

the streamwise ones due to the nature of initialization. Figures 12 and 13 compare the spectral

evolution of high and low Mach number cases at different times. The initial spectra at all wall-

normal distances are identical. For the low Mach number case with OS initial profile (figure 13) the

spectra continue to be nearly identical for all three planes throughout the period of time considered.

The high Mach number Poiseuille flow presents a completely different scenario (figure 12). The

spectra on the three planes are reasonably similar until about St ∼ 50. At later stages, however,

vast differences in the spectra are evident. The differences between the spectra arise at about the

time when the pressure-dilatation to production ratio grows to large values. The near-wall plane,

with the highest values of |p ′d ′′/Pk |, clearly exhibits the least amount of kinetic energy and the

narrowest spectrum. The kinetic energy level and spectral width of the intermediate plane are both

larger than than those of near-wall plane. As was shown earlier, the intermediate plane experiences

moderate levels of pressure-dilatation. The far-wall plane, with little or no pressure-dilatation,
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Figure 12: Evolution of turbulent kinetic energy line spectra for high Mach flow initialized with Mack mode
profile at near wall (y/L =−0.86), intermediate (y/L =−0.73) and far wall (y/L =−0.5) planes.

Figure 13: Evolution of turbulent kinetic energy line spectra for low Mach flow initialized with OS profile at
near wall (y/L =−0.86), intermediate (y/L =−0.73) and far wall (y/L =−0.5) planes.
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exhibits the largest value of kinetic energy and the widest spectrum. These findings clearly imply

that in high-speed Poiseuille flow, the nonlinear effects are onset at different rates at different wall-

normal locations. Specifically, the spectral growth is slowest near the wall and is progressively faster

away from the wall. On the contrary, the onset nonlinear processes are reasonably independent of

wall-normal distance at low speeds.

5 Conclusions

Compressibility profoundly affects the nonlinear evolution of the perturbation field in high Mach

number flows. Emergence of dilatational fluctuations leads to the onset of kinetic–internal energy

exchange via pressure-dilatation mechanism. This study contrasts the nonlinear stages of turbulent

kinetic energy growth, flow-thermodynamic interactions and spectral growth in compressible and

incompressible wall-bounded shear flows. The key inferences from this study are summarized

below.

1. The wall-normal component of the perturbation field is shown to be dominantly dilatational

in nature. The turbulent kinetic energy of wall-normal fluctuations is nearly equipartitioned

with normalized pressure-variance in the linear and nonlinear regimes in the overall flow

field (volume-averaged sense), at each y−plane and even at each wavenumber. In high speed

flows, equipartition is achieved regardless of the initial profile of perturbations.

2. Pressure-dilatation to production (|p ′d ′′/Pk |) ratio is identified as the important non-dimensional

parameter which characterizes the degree of compressibility effects on turbulent kinetic

energy evolution.

3. When |p ′d ′′| > |Pk |:

(a) The growth rate of turbulent kinetic energy is highly suppressed relative to a similar low

Mach case.

(b) The spectral transfer rate is significantly reduced leading to slow down in spectrum

growth at high speeds.

4. When |p ′d ′′| < |Pk |, effect of compressibility on turbulent kinetic energy growth and spectral

transfer of energy remains insignificant. The flow field evolves similar to a comparable low

speed flow.

The above inferences are important for understanding and modeling the laminar-turbulent bound-

ary layer transition process for high-speed flows. The slowdown in spectral energy transfer may

cause an extended linear and nonlinear phase of the perturbation field evolution. The rate of

spectral growth can also be reduced and breakdown to turbulence maybe delayed for compressible

flows.
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6 Publications and Presentations

Journal Articles

1. A. Mathematical framework for analysis of internal energy dynamics and spectral distribution

in compressible turbulent flows. A Mittal, SS Girimaji. Physical Review Fluids 4 (4), 042601,

2019 (This paper was selected as the Editor’s pick, an honor given to only 10% of accepted

papers).

2. Effect of pressure-dilatation on energy spectrum evolution in compressible turbulence. DS

Praturi, SS Girimaji. Physics of Fluids 31 (5), 055114, 2019.

3. Nonlinear evolution of perturbations in high Mach number wall-bounded flow: Pressure-

dilatation effects. Mittal, Ankita; Girimaji, Sharath (submitted)

The work conducted under the grant also resulted in 4 conference presentations.
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