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(YIP) A Multiscale Morphing Continuum
Analysis on Energy Cascade of Compressible
Turbulence

PI: James Chen *
Final Report

Multiscale Computational Physics Lab

Department of Mechanical and Aerospace Engineering
University at Buffalo — The State University of New York

1 Goal and Major Achievements

The goal of the project is to construct a statistical morphing continuum theory
to model the complex and non-equilibrium eddies in compressible turbulence.
In the past three year, the team has (1) established the statistical basis of the
morphing continuum theory; (2) validated a computationally effective numeri-
cal scheme for compressible turbulent flows; (3) investigated the application of
morphing continuum theory for compressible turbulence, nonequilibrium flows
and turbulence energy transfer. In Summer 2018, the PI and his research team
also moved from Kansas State University (K-State) to University at Buffalo —
The State University of New York (UB) to resume his academic career. In early
202, the PI was promoted to Associate Professor with tenure at UB. In the
duration of the project, the team, including the PI and the graduate students,
are recognized in numerous national and international awards.

Overall, the PI and his research team have published at least nine journals,
five conference papers, eleven conference presentations and seven invited talks.
Detailed publication list can be find in the later sections. There are four gradu-
ate students (one US citizen and three international students) supported in this
project. This project also resulted in two students completing PhD degrees (in
2018 and 2020) and one receiving MS degree in 2020. The research outcome
from this project has also been featured in more than 20 media outlets, includ-
ing a feature article in Aerospace Testing International (a UK-based aerospace
magazine) [64].

2 Kinetic Description of Morphing Continuum

A continuum theory can be deduced from a kinetics-based approach, e.g. Kinetic
Theory, or a mathematics-based framework, e.g. rational continuum mechanics.

*funded by AFOSR through award number FA9550-17-1-0154
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The team has established the kinetic foundation for morphing continuum at the
equilibrium state [[14, [15] previously. In the second year, the team further the
derivation to a linear deviation from the equilibrium distribution to account for
the nonequilibrium state of the fluid flows. Such derivations were also consistent
with the governing equations deduced from rational continuum mechanics by
Eringen [26] and Hansen [B6]. The team also found the pathway to reduce
MCT back to Navier-Stokes equations.

2.1 Kinetic Theory for Morphing Continuum at Equilib-
rium

The Boltzmann equation and kinetic theory have been considered as the fun-
damental equations of hydrodynamics and combine atomic-level physics with
statistical averaging. It is well known that the Navier-Stokes equations can
be deduced from kinetic theory and the Boltzmann equations using a first or-
der approximation. However, it should be emphasized that the original Bolz-
mann equation and kinetic theory are based on a monatomic particle assump-
tion. Therefore, more ad hoc approximations have to be made for diatomic
or polyatomic molecular gases. Assuming the dynamics of the collisions do
not depend on the vibrational energy, Curtiss extended the original formula-
tions for the Boltzmann equation and found the generalized Boltzmann equation
(Boltzmann-Curtiss equation) as [23, 24]

f(X,p,¢,M,t) = /f(x7p7¢7M)EVib7T7 t) dEVide7
o po M.
(6t+m(‘)x+la¢>f§zﬁ’ (1)

where x is the position, p the linear momentum, ¢ the orientation, M the
angular momentum, Z the collision integral integrated over 8 molecules that
interact with a given molecule, and I the moment of inertia. It should be
noted that Curtiss did not provide a distribution function for the Boltzmann-
Curtiss equations. This study presents a distribution that works well with the
Boltzmann-Curtiss equations.

Let x be any conserved kinetic variable associated with a molecule of velocity
v and angular velocity w located at x, such that in any collision at x one has
{p1, w1, P2, w2} — {p},w), Py, wh} so that x1 + x2 = xi + xi where x1 =
X(X1,p1,w1). The conservation theorem relevant to the Boltzmann-Curtiss
equation can be obtained by multiplying Eq. E] on both sides by x and integrating
over v/ and w’. The collision term vanishes and the average value, (A), is
obtained as

fd3 IdS

/d3 /d3 /Af, (2)

where n(x,t) = [ d® v d3w' f(x,p,w, ).
Assume the inner structure as a rigid sphere and has no distribution inside
the molecule, i.e. % = 0. In the absence of body force and couple moment,
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the conservation equation is

0 195% X\
0 0 ox,
= &@X) + @mxvﬁ —n{v; 8xi> =0 (3)

The Boltzmann-Curtiss distribution is

ﬂnww>:nC§£fln{—m“Z;“ﬂﬂ. (1)

The corresponding probability density function has the proper normalization,

ie.,

oo ma/3 3 m V/2 + 'wl2

/ i exp I i) Bvdiw=1. (5)
oo \27k0O 2k0

Here m is the mass of the molecule, j is the microinertia for the inner structure
and k is the Boltzmann constant. One can understand microinertia through the
concept of moment of inertia. Microinertia is a measurement of the resistance

of the internal structure to changes to its rotation and can be defined as

Sau P Tmrmdy
>l )
fAv’ de

where 7, is the local coordinate from the centroid of the internal structure and
Av’ is the volume of the inner structure.

It should be noted that following the equipartition of energy, Ei, = %NDQFnkG,
the internal energy can be shown to be

J=2(rmrm) =2

B = 50 = 5 (V) +5(™)) (6

where Npor is the number of the degrees of freedom in a polyatomic molecule
and n is the number of the molecules in the system. The velocity v; and the
angular velocity w; can be decomposed as v; = U; + v} and w; = W; + wi.

The equations for fluid dynamics involving particles with inner structure
can be derived by calculating the moments of the Boltzmann-Curtiss equations
for quantities that are conserved in collisions of the molecules. There are four
conserved quantities y, i.e., the mass y; = m, the total linear momentum
x2 = mv} = m(v; + e;jrw;Tk), the angular momentum x3 = mjw,, and the
total energy x4 = %m(vivi + jwiw;).

If x1 = m is chosen and inserted into Eq. H, one obtains

0 0
&@Lm) + 8733i<nmvi> =0, (7)

With nm = p and (v;) = U, the continuity equation is obtained as

0
—p+

ot (pUi> =0. (8)

axi
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If xo = mv} = m(v; + eijpw;re), Eq. H becomes

0
T (nmw,) + a(nmejmnwmrn) + a—ﬁ(nmvwﬁ
+ %mmejmnwmrnvi} =0, (9)
or
8 a a /. ./ !, !
g (PUi) + 5~ (pUilj) = =5~ (p(vivg) + pejmntn(viwn,)) . (10)

Here U ; = Uj + €¢jmnWmnry is the total averaged velocity with the fluctuating
velocity integrated over the volume of the molecule being zero.The quantity
t?j"ltzman“ = p(vjv;) is the stress similar to that in the classical Boltzmann
equation and ticj“rtiss = pejmnTn(Ujw),) is the asymmetric part of the stress
due to the rotation discussed by Curtiss [24], Eringen [4, 26], Stokes [75] and
others [[16]. It should be noticed that the integral for the symmetric part of the
stress, t?j‘)ltzmann, is different from the one in the classical Boltzmann equation
due to the distribution function used; however, the derivation still yields the
gas pressure and the classical symmetric stress tensor at Boltzmann-Curtiss
distribution, namely

thltzmann _

5. tBoltzmann,viseouS
i = — ..

= p(vjv})

3 17
L 3 m(v'24jw’?
<2 [f i () v

It is also straightforward to prove that p(v,v,) = p(v,v,) = p(viv,) = nkf and

define the gas pressure as p = +p(v/ 2> when the system is at the Boltzmann-
Curtiss distribution.

For a rotating body, one of the important quantities is angular momentum.
Therefore, the third kinetic variable is x3 = mjw,,, where j is the inertia of the
subscale sturcture. With the substitution of x3, Eq. B becomes

a(nmjwnﬁ + %(nmjwmvﬁ =0
. 0 9 0
5 (PiWm) + 5= (piWnli) = =5 (pj{w,v])) (12)

where the right-hand term, m;,, = pj{w,,v}), is the combination of the moment
stress due to rotation and the asymmetric part of the Cauchy stress, ticj‘”“SS =
PEjmnTn (Viw),).

In classical kinetic theory, the internal energy density is defined as e =
(v}, v},); however, because of the rotating effect of the molecule, the internal
energy density should be re-defined as e = 3 ((v},,v/,) + j(wh,w,)). Similarly, the
total energy is classically defined as %m(vmvm), but due to the rotation effects
of the molecule it should now be defined as %m(vmvm + jWmW, ). This can also

be stated as %m(e—i— Un U+ iWi, Wy, ). After inserting the last kinetic variable,
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i.e., total energy, x4 = %m(vmvm + jwmwm), Eq. B is now

%@e) - (pet’)

8 U,

Mo = (Pemjnrn@zwj» — p(vjvy,) o
1 R Y A an

5332 ( p(<’UmUm’UZ> +J<wmwnvi>)> pj<wmvi> axl ’ (13)
or
0
En (pe) Bz, (peU;)
- t?n]ir:lSSU tgyolltzmannUmJ - qi,i - mimWnL,i- (14)

It should be noted that because of the molecular rotation, the heat flux den-
sity has an additional term involving rotation and is now defined as ¢; =
Lo((0), v, 00) + ity o).

If the mean free path is small compared to other characteristic lengths, the
system rapidly comes to a local equilibrium. In classical kinetic theory, it is
well known that the zero-order approximation reduces the Boltzmann equations
to the governing equations for inviscid flow (i.e., Euler equations). Here, the
zero-order approximation is applied to the Boltzmann-Curtiss equations. First
assume that the gas has a local Boltzmann-Curtiss distribution, with slowly
varying temperature, density, velocity and rotation, so the distribution can be
approximated by

3 )

my/j m(v'? + jw'?)

mvJ v TJw ) 1
27rk0) P [ 2k0 (15)

It should be noted that the Boltzmann-Curtiss distribution is not the exact
solution to Eq. [l however, it serves as a reasonable approximation just as the
Maxwell-Boltzmann distribution serves as a good approximation for classical
kinetic theory. In the previous section, it has already been shown that (viv}) =
3nkf and consequently, the pressure becomes

f(X,V,w) ~ fo (X,V7w) :n(

tBoltzmann,O PO

j
m(v? +jw?)] 5 5
//’n/UZ'UJ (m) exp |:2k9 d°v'd’w

In addition, it is straightforward to prove that

Vi 3 2 2
urtiss m(v + w
tg tiss,0 fe]mnrn//nv wm <2 k9> exp |:_(2k'9]):| BV Pw’ = 0,
3 2 12
14 J m(vE W) s s
j//nw (2 k@) exp[ — o0 }dvdw—o,

-\ 3 :
P , my/j m(v”? + jw’)
=5, //n(vﬁnv;nvg + jw,whvl) (27rk9> exp {—M dv'dPw' = 0.
(17)
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With these results, the transport equations become

%er 3?1% (pUi) =0,

% (pU;) + a% (pUU;) = _a% (nk0d;;)
% (PWim) + 51 (piWmU;) = 0,

% (pe) + % (peU;) = —nkbU; ;

(18)

2.2 First-order Boltzmann-Curtiss Equations

Researchers have been heavily relying on vorticity to characterize the flow
physics of vortices, eddies and molecular rotations [63]. However, vorticity-
based descriptions are often found inadequate or inconsistent when the vorticity
field deviates from local rotations [35]. Those cases are considered as flows with
strong local spins. It should be emphasized that spin is different from vorticity.
Vorticity is defined by curl of velocity. In other words, it is a consequent motion
of the translation. On the other hand, spin can be an independent motion. One
could use the solar system as an example. Each planet spins on its own axis
while moving on its own orbits. The translational veocities of any two planets
are used to calculate their corresponding vorticity; however, such quantity does
not represent the spinning of either planets.

Flows with strong local spin have been the focus of extensive theoretical, ex-
perimental, and numerical work for decades [26, B8, 41, 43, 60, 81]. High-speed,
turbulent, compressible, reacting, and polyatomic gas flows all involve complex
interactions based on strong local spin. The Wang Chan-Uhlenbeck equation
accounts for molecular spin through the lens of quantum mechanics, treating
each different quantum state as a separate species of molecule [83]. This addi-
tional rigor adds more complexity to the distribution function and the dynamics
of the collision integral. For classical physics, however, local rotation may affect
the dynamics of the entire flow. Turbulent flows, in particular, may produce
additional angular momentum from the smallest eddies. The rotation of these
smallest eddies affects the energy and momentum transfer at the inertial length
scales, requiring researchers to develop methods that capture this additional
small-scale angular momentum. The most effective of these analytical meth-
ods have revealed deeper physical or mathematical characteristics to previously
well-tested theories of fluid dynamics [, 26, 27, 2&, 45, [4].

For monatomic gases composed of infinitesimal particles, any kinetic theory
needs to track only the position and translational velocity of the particles. These
assumptions greatly simplify the probability distribution of particles, as well as
the transport equation used to describe the evolution of that distribution. When
the particles are given a finite size and allowed to rotate, additional motions
bring additional degrees of freedom to the system. If the angular motion of the
particles is independent from the translational motion and is dependent on its
orientation, then the transport equation has the form [[15, 24]:

N
ot maxi 1 8<I>Z B ot

)coll (19)
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Here m denotes the mass of a particle, p; represents the linear momentum, M;
the angular momentum, I the moment of inertia of a particle, and ®; the Euler
angle with respect to the center of mass of the particle.

The solution f(p;, ®;,x;,t) gives the probability a particular particle will
possess the values of the given variables, and generalizes the motion of the sys-
tem by simplifying the interactions of individual particles. For instance, this
solution is absent of dependencies on vibrational energy or vibrational motion,
as the dynamics of individual collisions are assumed to be independent of these
variables. The right-hand side of equation [I9 accounts for the cumulative effect
of collisons on the distribution. For this description, the particles are treated as
spheres, so all axial orientations of the distribution are equivalent, i.e. indepen-
dent of the Euler angle. Therefore, the Boltzmann-Curtiss transport equation

becomes: 9 9 of
Di _ /97
(Bt maa,) = Cag)een (20)

Equilibirum solutions to this equation should look similar to the Maxwell-
Boltzmann distribution function, as the remaining terms are concerned with
linear momentum. Still, the presence of an independent angular rotation, w;,
changes the distribution of kinetic energy of the particles. From Boltzmann’s
principle, the equilibrium solution to equation RQ can be approximated as [[14]:

vml 4 m(vjvp) + I(wpwp)
org ) CP 20 )
Here, the perturbed velocity, v; = v;—Uj, for mean velocity U; and the perturbed
gyration, w;, = w;, — W), for mean gyration W), are introduced. The form of this
distribution function differs from the classical Boltzmann distribution function
46, [77], which assigns a 3/2 power to the terms in front of the exponential. The
increased exponential in equation R1| arises due to the additional contribution to
the momentum by the gyration, w;,. The number density, n, of the particles is
found by integrating the distribution function f over all the perturbed variables,
v’/ and w’, which is now a six-dimensional integral:

n://d3v’d3w’f0 (22)

The superscript indicates that this function only serves as a zeroth-order ap-
proximation to the true solution. In equation R1, the mean thermal energy 6,
mean velocity and mean gyration are assumed to vary slowly in time due to the
rapid number of collisions, ensuring a rapid return to equilibrium. The thermal
energy, 6 = kT, contains the Boltzmann constant k and absolute temperature
T. Clagsical kinetic approaches by Huang [39] and by Gupta et al for granular
fluids [B4] often group the Boltzmann constant with the characteristic temper-
ature to focus on the thermal energy of the system. The velocity and gyration
perturbations represent the rapid fluctuations of the spheres, and provide the
main source of any dynamics at equilibrium. Furthermore, the moment of in-
ertia of a sphere can be expressed in terms of a parameter j [18], known as
the microinertia. This parameter comes from the averaging of spatial coordi-
nates attached to the sphere, allowing one to show that j = %dQ where d is the
diameter of the sphere [18]. Substituting I = mj into equation @ yields:
my/j m(vjyy + jwpw,)

FO(ws, vi,wis t) = n(m)gexp(f2—e) (23)

fo(xivvivwivt) = n(

(21)
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This equilibrium distribution function represents the starting point for the ki-
netic theory derivation, providing an abstract description of the system. To
account for the evolution of the physical motion of a particle, the balance laws
must be derived. The average of a quantity A is here defined by the following
expression:

(A) = %//Af(xi,%wmt)dg”/d?)wl (24)

where n is the number density of the particles and is found by integrating the
distribution function f over all the perturbed variables, v/ and w’. The mean
velocity and gyration are naturally obtained from (v) and (w). Therefore, any
balance laws governing the mean velocity and mean gyration must come by
averaging the transport equation R( for some conserved quantity x(z;, p;):

O nPin) (22X _g

% () +
X ox; " m m 0x;

ot (25)
Note that all potential time derivatives vanished as x is a function of mo-
mentum and position alone. The collisional term emerging from the averag-
ing of the right-hand side of equation is also presumed to vanish, namely,
(x(z;, pi)(%)com = 0. Huang proved this statement for any conserved quantity
[B9], and his proof will be discussed with the effects of collisions in more detail.

The balance laws come by letting y equal the conserved values of mass m,
linear momentum m(v; +eipl7°lwp), angular momentum mr;ryw, and total energy
m(e+3vjv]+rprew,w)). The new velocity associated with the linear momentum
arises from the combined motion of the classical translational velocity, v;, and
the contribution of the gyration to the total velocity, €;,7wp [B0]. The angular
momentum is the standard expression involving the the cross product of the
local angular velocity induced by the gyration, r,w,, and the radial coordinate
emerging from the center of mass of the particle, r;.

Finally, the conserved quantity of energy contains the kinetic energy asso-
ciated with the local angular velocity, r,w,, and adds this to the traditional
translational kinetic energy. Substituting the conserved quantities of mass, lin-
ear momentum, angular momentum, and energy for x into the conservation
equation and letting the averages of the variables equal their mean values
and splitting total variables into mean and fluctuating components, the balance
laws become:
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Continuity

0 0
5"t om (pU1) =0 (26)

Linear Momentum
a 8 a /i / /
&(PUs) + aTCl(PUsUl) + %(P@svﬁ + (pespqirqwy)) =0 (27)

Angular Momentum

o, . o, . 0 .
a(mwwp) + %(PZSPWpUl) + aiml(p@sz?“’;vl/» =0 (28)

Energy

1 e

S 0E) o (peUL) o3 kol + pioel) — o) =0 (29)
Here, the properties (v'x) = 0 and (w’x) = 0 are employed. Additionally, the
term (€;p0s7Wp) = 0 as this can_be viewed as an integral of the fluctuating
component of the total velocity [6, 14]. Also, the term i,, = 7,1y is used
to represent the product of the coordinates, r,, emerging from the center of
mass of the particle. These coordinates measure the relative deformation of a
particle, tracking how the surface varies about the center of mass. The tensor
ipq is related to the earlier parameter j, known as the microinertia. For spherical
particles, ipq is reduced to ipq0pq = %pp, Which can be shown to equal %j [18].
Applying this reduction to i, the balance laws become:

Continuity

2" + %(PUZ) =0 (30)
Linear Momentum

L (0U) + 2= (pUSU) + o (ple0f) + (pespaviratsl) = 0 (31
ot s 3:171 sVl 625[ sVl spq ¥l q%p

Angular Momentum

0 ,3pjW, 0 ,3piWU, 9 [ 3jwivy,

a2 tan T et 0 (32)
Energy

B 3 o1, ., 3jwwu e\ _

a(l)e) + %(PeUl) + 87;15@1}57)5% + T> P(UZ%> =0 (33)

These conservation equations feature material derivatives for the mean flow vari-
ables as well as gradients of products of perturbed variables. These perturba-
tions are variables in the distribution function, and so can be treated separately.
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Defining these expressions in the following way:

. ! !,
3jwpwpvg

1
G0 = Slpufefel, + (3)
5 = —p(ulyuh) (35)
tgb“ = _p<vlo¢€6pqrqw;/)> (36)
3jwh!
Mag = —p % (37)

Here, g, denotes the heat flux, tggl gives the Boltzmann stress, tggr yields the
Curtiss stress, and m,p introduces the moment stress. Plugging these expres-
sions into the balance laws gives:

Continuity

0 0

Ik + %(PUZ) =0 (38)
Linear Momentum

6 8 8 Bol Cury __

at (pUS) + axl (pUSUl) - axl (tls + tls ) =0 (39)
Angular Momentum

g, . a , .

5 (PiWs) + ale(MWeUz) -
Energy

0

wl N

0 0 aq de .
a(pe) + %(WUZ) + T '0<vl<97xl> =0 (41)

Indeed, the expressions @, @, @, and @ refer to familiar stresses that require
a more detailed treatment. At the moment, they represent only source or sink
terms for the momentum and energy of the flow. These terms can be deter-
mined from the definition of the average in equation P4 using the equilibrium
distribution in equation R3, which would give a very rough approximation of
how they contribute to the balance laws. A more thorough treatment of their
contribution, however, requires the derivation of a distribution function that
accounts for departures in the fluid from equilibrium. For this function, the
Chapman-Enskog process is followed to derive a first order approximation to
the solution of the Boltzmann transport equation R0.

The right-hand side of the transport equation R(] tracks the gain or loss of
particles due to collisions in some small time interval. For the equilibrium distri-
bution function in equation R3, the assumption was made that a large number of
binary collisions occurred over a short time interval, meaning that any deviation
from equilibrium would result in a rapid return to equilibrium. These binary
collisions affect the initial rotation and velocity of the particle instantaneously
at the moment the particles collide. Huang studied these binary collisions con-
sidering molecules with only translational velocities [39]. The existence of spin
within molecules was treated through the lens of quantum mechanics, denoting
different spin states as separate species of molecules. In order to account for
these different spins, then, one would need to solve the Wang Chang-Uhlenbeck
equation [83] for the distribution function of each of these molecular species,
with a collisional integral that accounts for the cross-section calculated from

10
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the quantum states of these species. Here, the Boltzmann-Curtiss distribution
function described in equation R3J treats gyration as an additional classical vari-
able applicable to the same molecules throughout the domain, thus requiring
only one solution to describe the distribution of rotation throughout the system.
Additionally, the collisional integral is easier to calculate since the rotational
motion is treated as a classical motion.

The collision rate on the right-hand side of the Boltzmann transport equation

is given by the following integral:

0
(G = [ o2 ol 0, 640y = P Tl (5387 - o) (12)

Here, Py and P; refer to the total final and initial momenta, p; and py refer to
the initial momenta of the colliding particles while their primed counterparts,
p} and p) each refer to their respective final linear momentum. As mentioned
previously, these linear momenta contain an added term to the classical linear
momentum, p; = mv;, found in the Boltzmann transport equation. Here, the
Boltzmann-Curtiss linear momentum, p; = m(v; + €;pmwy), includes an ad-
ditional contribution from the component of the local rotation moving in the
direction of the translational velocity. The transition matrix T; contains the
elements of the operator T'(E) that converts the particle from its initial to final
state in the collision. Finally the distribution functions f; and fs refer to the
distributions of particles containing momenta p; and py respectively while the
primed distribution functions contain the final momenta values denoted by the
primed counterparts pj and p,. Any conserved quantity for a particle initiating
a binary collision, Y, integrated with the collision integral 42 vanishes. Huang
proved this result by interchanging the momenta variables before and after the
collision and integrating over pre-collision and post-collision linear momenta
[B9). When equation 19 is used on the right-hand side of the Boltzmann-Curtiss
transport equation , the Wang Chan-Uhlenbeck equation is obtained [83]:

(

This treatment will look at a simplified version of this equation.
In observing the effect of collisions on equation @3, it is important to rec-

) = / Py d°p, d°ply 6'(Py — P |Tril> (F3fl — foft)  (43)

m (9£EZ

ognize that ( gt Jeott = 0 for the equilibrium Boltzmann-Curtiss distribution
function defined in equation R3. This result emerges from the fact that the
coefficients in equation 3 do not depend on the velocity v; [39]. To get a good
approximation of the collision integral 2, higher order approximations of f are
needed. If the distribution function ¢ is defined by the expression:

g(xiapiat) :f(xivpiat) 7f0(xiapiat) (44)

then the collision integral, e.g. equation @, can be approximated with the
following expression:

Jeoll & /d po A3} dPply 5 (P — P)|Tri|?

fz 91 — fzgl +92f1 92f?) (45)

where squared terms involving g have been neglected due to their presumed
smaller magnitude in relation to f°. Indices associated with different distri-
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bution functions again correspond to the initial and final distributions of the
particles in the binary collisions. To assess the relative magnitude of the terms
within equation {5, the second term on the right-hand side can be calculated
by the expression:

“orGpret) [ e o Bl Py - PYTP = -2 a0

Here, the time constant 7 incorporates all the physics associated with the tran-
sition from initial to final states, including the transfer of angular momentum
through the new variable of gyration. A more in-depth treatment of the gyra-
tion and the characteristic time constants associated with its evolution will be
given in the later part of the report.

Given the order-of-magnitude estimate to the collision integral @, the right-
hand side of the Boltzmann transport equation can be given a simpler treatment
with the expression:

Ao ==L - 2 )
ot/ T T

The first-order distribution function, g, measures the probability that large num-
bers of particles will exit their equilibrium state purely through collisions. The
time constant 7 now gives an approximation for the entire distribution departing
from equilibrium through collisions. Therefore, this time constant should char-
acterize the transition of all degrees of freedom to and from their equilibrium
states. If the time-scale of the problem is reduced such that only one motion
departs from equilibrium, as Parker considered for internal rotation [57], then
this time constant can be scaled to focus on this relaxation process. If further
approximations are needed to account for additional physics, the relaxation time
can be expanded into a series of terms that take into account these additional
interactions. Chen et al applied this approach [13] to generate an expression
for the characteristic collision time scale of turbulent eddy interactions. Such
expansions have the benefit of incorporating multiple physical processes within
one time constant, allowing for the interaction of rotation and translation to
affect the relaxation of the distribution function simultaneously.

If equation @ is substituted into the transport equation R(}, an approximate
form of the transport equation known as the Bhatnagar, Gross, and Krook
(BGK) equation is obtained [[7]:

g = —r(g +uin) (0 +9) (15)
Since g measures the probability of large numbers of particles deviating from
their equilibrium state, its relative magnitude to f° matters greatly in terms
of what kind of system is being described. For this paper, it suffices to show
what forces and properties are influencing the mean flow when slight deviations
to equilibrium occur. Therefore, it can be assumed that g << f°, reducing
equation @§ to the form:

__ 9. 9w
g = T(a"_vzaxi)f (49)

This equation gives a formula for finding ¢ entirely in terms of derivatives of f9.
Still, the variables in the transport equation §g are present in f° only through
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its independent variables. Therefore, to get the spatial derivates of f°, the
following derivatives of its independent variables are calculated:

of _ f°
hCA 50
o " 7 (50)
afO B m(v'2 —|—jw’2) fO
0 - G e )G &1)
of° _mw; g
ov, ~ 0! (52)
af — mjwl
oW, (53)
Using the chain rule, the expression for ¢ in equation @ can be written as:
1 1, m(v? + jw? mu,
9= () + LI i)+ (M) Dy
p 0 20 0 (54)
mjw;
+ (M2 D)

where D(X) = (% + viﬁ)X . The material derivatives present in equation
can be derived from the zeroth order balance laws. To obtain the zeroth

order approximations of the equations B8, BY, #d, K1, the terms related to the
perturbation of the velocity and gyration are eliminated, yielding:
op  opUp
E + o (55)
0 0 0
Az s a_ s) — — 0
5 (V) + 5 (pUUL) = =5 (nf) (56)
g( W)+i( iWsU;)) =0 (57)
ot PIVVs 81‘[ pPIVWsUr) =
0 0 nf oU,
—(nd — (nd - _~774
ot ")+ g 00D = =5 50, (58)

It should be noticed that the angular momentum equation, e.g. equation @,
is decoupled with the linear momentum equation, e.g. equationq@ at the
equilibrium state. At the same time, the linear momentum equation (equation
@) is identical to the classical Euler equation.

From these approximations to the balance laws, the material derivatives

)
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found in equation @ are obtained:

, 0 ou,

D(p) = l@x p— % (59)
q
, 0 10U,
D(9) = 33?1 —0 — ggﬁixq (60)
0 10
D(U;) = Uf% i pax = —(nb) (61)

With these final expressions substituted back into equation @, the final form
of g is given as:

6/) 8Uz
3 m@?+jw?),, ,00 00U,
—%“‘7ﬁf‘”@wm‘§ai>
' ! (63)
aU 19
mjw.. , ,0W;

+ v

()i g

Here, the first order distribution is now expressed entirely in terms of the mean
and perturbed flow properties. All that remains is to find the first order ap-
proximations to the equations B4, Bf, BA, and B7 to obtain non-zero expressions
for the missing terms in the first-order balance laws BU, Bl|, B2, and

For the first-order approximations to the above stresses, the definitions must
now involve volume integrals of the first-order distribution function g:

qt = ?// VIVl + whwhvh ) gdov' dw’ (64)
n
5211 —p//’U UBQdB /dS l (65)

€557 = = [ [ corisuigdv'is (66)

— 30,7// W, Bgd?) /d3 / (67)

These volume integrals are more easily evaluated if they can be converted into
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surface integrals. Applying albragic identities to the volume integrals yields:

qé _ [8ﬂ2glp7 //dvldw/(vlﬁw/2+jvl4w/4)

4 m(?+ jw?)
A

(68)
(O s -3 00
270 20 Ozg
00
= —(4n710)=——
(dnt )8za
Bol,l 167277)/ 6 2, MV \3
fas _[ T =2
2 4 a2
eap(— MW EICT) s
260
oU,  0Ug oU,
25 " Bma T om) (69)
_ 167T2p7— /v’4w'2 (rU/2 +jw/2)(m\/j)3
30 6 276
m(v'? + jw?) ou;
exp(fT)dv’dw' 5aﬁa—xl
oUu, 9OU, nth ,0U;
=G+ o)~ g (g 0o
wr 1672 prmyj m\/j
tS@ 1 [ 00 ( ot )3/v'4w’4
m(v? + jw'?). ., , ow,
emp(—T)dw dv’ egpqqu: (70)
oW,
= (nTe)Eﬂpqranp
48727 pj*m my/j
1 12,12,/ 10 3
Mg —lw w v wﬁvawlvp(?mg )
m(v? + jw?), | OW (71)
emp(—T)dw dv i
- (3n7j9)3Wﬁ
N 2 04

The reduced forms of these stresses appear to follow familiar patterns. The heat
flux in equation 8 appears to demonstrate a direct proportionality relationship
with the temperature gradient. The Boltzmann stress contains terms related
to the familiar strain-rates and divergences of the velocity. Still, these stresses
all have nonlinear dependence on the temperature, meaning that simplifications
will have to be made before direct comparisons with classical fluids can occur.
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Equations @, @, @ and EI serve as the constitutive models for the first order
approximation to the Boltzmann-Curtiss distribution and close the governin
equations. A direct substitution of the stresses found in equations @, @, @
and [71] into the first-order balance laws B, B9, {(, and @1 yields

Continuity

o 0 (72)
Pt %(PUZ) =0

Linear Momentum

0 0
a(PUs) + aTCl(PUlUs)

) oU,  OU,. nrd U, (73)
R

ow,
o (nT0€spgrq Wlp) =

Angular Momentum

g . 9 . B) _OW, (74)
E(MWS) + ale(P]WsUl) ~ om [(nT30) o ]=0

Energy

B B B) 00 de (75)
JR— — —_— — 4 — —_— — =

5 Pe) + o2, (pel) a%l( nto 690;) plul 8acl> 0

These equations contain derivatives of nonlinear terms and products of spatially
varying variables. For this first-order approximation to the balance laws, the

roducts of gradients of terms are presumed to vanish. Furthermore, equation
@ contains a spatial derivative of the spatial coordinate 7, that has its origin at
the center of mass of the spherical particle. Looking at [l|, the expression for this
coordinate is easily derived in terms of the Eulerian coordinates: r; = x} — z;.
Therefore, ggi = —¢;. Clearly the derivative is zero unless the components
of x and r are the same. Taking this derivative into account, removing terms
associated with products of gradients, and allowing for the existence of body

forces, the governing equations become:

Figure 1: Illustration of the relationship between coordinates r; and x;
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Continuity

o 9 (76)
Frizas aTL,l(PUz) =0

Linear Momentum

) B) P 0*U, 2 09U

a(PUs) + aTUl(PUsUl) + o, nTﬁ(axlaxl + §ax1x5)_ (77)

oW,
nﬂ%quaTq —pFs=0
P

Angular Momentum

9 0 92w, (78)
—(piWs) + =—(pgWsUi) — n7j0 > —pLy=0

o7 PIWa) + 5 (0iWsU)) — 7 o m —p

Energy

2 79
2001+ et — (et 0o 2 =0
In the preceding equations the body forces pFs and pLs have been introduced
to account for external phenomena unrelated to the stresses previously intro-
duced. Body forces for the linear momentum are easily found from the classical
approach and require no special treatment. In the independent angular momen-
tum equation, however, the factors affecting pL, are more subtle. P illustrates
a body force created by the presence of vorticity near an individual particle.
The connection between the two particles is symbolized by the coefficient v;..
The motion of the right-hand particle creates the classical rotational motion,
or macroscopic angular velocity, which induces the local rotation of the left
particle. The amount of influence the angular velocity has on the gyration is
determined by the value of v,.. The body force disappears once the local rota-
tion of the left particle equals the angular velocity, represented by half of the
vorticity. De Groot and Mazur characterized this body force as an asymmetric
pressure tensor [25], which had a linear relationship with the difference between
the gyration and the angular velocity:

ou,

interior __
pLg = Vr(€spq
Oz

- 2Ws) (80)
Here, v, is designated as the “rotational viscosity,” measuring the strength of
induced gyration on a particle caused by the presence of a difference between
its gyration and the local vorticity. This interior body force couples the local
rotation with the translational velocity, ensuring that the linear momentum
equation [/1] and angular momentum equation [(§ remain intertwined as long as
the value of pL™*ri°T remains non-zero. The total angular momentum body
force, pLs, can be viewed as the sum of this induced interior force and any
external body moment force, pL, = p(Lnterior 4 [ exterior)

The continuity equation @Dis clearly the classical continuity equation for the
mean velocity field. The deviation from classical kinetic theory becomes clear
in the momenta equations. The compressible Navier-Stokes linear momentum
equation, with the assumed satisfaction of Stokes’s hypothesis, has the form:

) 3 oP U, 2u U

5t PU) + 5 PUU) + 5 g = 3 9mdm.

pFy=0  (81)
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Figure 2: Diagram of the angular momentum body force Ls. Presence of vor-
ticity induces gyration of left structure, with the strength of the coupling effect
determined by v,.

Here, 1 is the dynamic viscosity of the classical fluid. Comparing equations @
and |77, the formulations are very similar, with the molecular viscosity from the
Navier-Stokes equations represented by the expression n76, as is expected from
the first-order approximation to the Boltzmann transport equation [39]. The
reduction of equations g, [/7, and to the Navier-Stokes description will be
discussed in more detail in the later part of the report.

The new term introduced by the preceding kinetic description has the form,
nT@equ%—Z:. Here, the new variable of gyration, W, produces an additional
source of linear momentum due to its transverse gradient. A notable insight
is that the expression in front of the gyration gradient is also n76, suggesting
that the new term may contain a coefficient similar to the viscosity presented in
classical fluids theory. To understand the meaning and importance of this new
term in the linear momentum equation, the linear momentum equation from
MCT is presented [@]

0 0 oP
*(pUs) + 7(pUsUl) + oz,

ot 8%’1
02U, 0%U,
B ()\ + //') axlaxs B ('u + K/) 8.%18%[

ow,
EALE RN )
Oxy p

— KRé€spq

Here, A represents the second coefficient of viscosity and a new coupling coeffi-
cient, x, is added to the total viscosity of the MCT fluid. Additionally, this cou-
pling coefficient corresponds to the coefficient described in P, as it determines
the strength of the force induced by relative rotation within the MCT fluid.
This theory, derived from the approach of rational continuum thermomechan-
ics (RCT) [@, @, @, @], starts with the same picture of the fluid and derives
governing equations from kinematic and thermodynamic principles for a fluid
with spherical particles. Comparing equations [77 and B2, the term associated
with the transverse gradient in the kinetic equation now has a counterpart term
associated with the coupling coefficient x. Therefore, the first-order approxima-
tion to the Boltzmann-Curtiss transport equation produces a linear momentum
equation consistent with the MCT formulation. Comparisons between the ex-
pressions for the coefficients in front of identical terms in these equations will
shed light into the validity of these expressions for the new coefficients in MCT.
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The simplification of the collisional term in equation @ presumes that a
singular relaxation time can be used to describe the transition from the real
distribution function f to the equilibrium distribution function f°. Due to
the extra degrees of freedom introduced by the local rotation of the molecules,
this relaxation time cannot be equated directly to the case of classical fluids.
Still, as Chen et al demonstrated [L3], expressions for a singular relaxation
time can incorporate multiple processes or models involving several degrees of
freedom. These expressions typically start from a base time constant applied to
the relaxation of the motions of the molecular motion. In the current treatment,
this base relaxation time would apply to the gyration.

De Groot and Mazur investigated the case of viscous flow in an isotropic
fluid, but allowed for asymmetry in the pressure tensor. This asymmetry re-
quired for the consideration of an independent conservation theorem for angu-
lar momentum. Furthermore, pressure asymmetry generated “internal angular
momentum,” .S, which arose from the local angular velocity, w,, of groups of
particles at a point in the system. From conservation of angular momentum, De
Groot and Mazur derived a balance equation for the internal angular momentum
[25):

ds,
P dr 21, (83)

Here, II, is the asymmetrical component of the pressure tensor. Internal angu-
lar momentum could be easily related to the angular velocity through S, = Iwy,
where I denoted the average moment of inertia of the constituent particles. The
asymmetric pressure tensor, however, needed a more nuanced treatment. By de-
riving relations for the conservation of internal energy and entropy production,
De Groot and Mazur found the thermodynamic force associated with the asym-
metric pressure tensor [25]. This force emerged from a difference between the
local and classical angular velocities, ws — %equvqyp. Invoking Curie’s principle
[22] regarding thermodynamic fluxes and forces, De Groot and Mazur derived
the following relation [25]:

ov
Il = v, (2w — ESPq@ch) (84)
p

Clearly, the asymmetric pressure tensor mirrors the body force found in equation

, indicating that the body force of the kinetic description can be obtained from
a consideration of thermodynamic fluxes and forces. Given this closure relation,
the conservation of internal angular momentum in equation B3 became:

dwg 2u,
g = pr s gy

pl
This equation is equivalent to the kinetic angular momentum equation @ with
the diffusion terms eliminated. Therefore, the kinetic theory is shown to obtain a
more general form of a conservation equation. For the case of initially zero local
angular velocity and constant vorticity, the solution to equation 85 becomes:

1 Ovg _t
= 5681%187%(1 —e 70) (86)

) (85)

Ws

where the decay of the local angular velocity is characterized by a relaxation
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time constant, 7,, that has the form:
_rr
T 4,

Measurements of diatomic hydrogen and deuterium mixtures at p = 1 atm and
T = 77K by Montero et al give a value of 2.20 x 10~8s for the rotational relax-
ation time [54]. Thus, the assumptions of zero initial local rotation, constant
vorticity, and absence of external forces, leads to the derivation of a charac-
teristic relaxation time that exclusively applied to internal angular momentum.
These assumptions become relevant when the characteristic time is sufficiently
reduced such that macroscale phenomena, such as the vorticity, can be approxi-
mated as constant compared with the evolution of local rotation. In these short
time scales, equilibrium is achieved for the local rotation once it approaches
the constant vorticity. Equation provides a suitable first approximation of
the characteristic relaxation time, 7, used in our kinetic theory description. De
Groot’s characterization of local angular velocity as the mean angular velocity
of groups of particles matches the physical picture of our kinetic theory descrip-
tion. The addition of body forces into the governing kinetic theory equations
can also incorporate the thermodynamic forces found in De Groot and Mazur’s
treatment. The rotational viscosity, v,., has a counterpart through the coupling
coefficient  in the MCT linear and angular momentum equations [15]. There-
fore, numerical simulations of the kinetic and MCT descriptions should be able
to determine the appropriate conditions for the use of equation B7 in this first
order approximation.

The introduction of local rotation, ws, as an independent variable has re-
sulted in a slightly different physical picture from the classical fluids description
shown in the Navier-Stokes equations. The angular momentum equationp@ is
not derived from the linear momentum equation |77, while the classical vortic-
ity equation can only be derived from the classical linear momentum equation
previously shown in equation B1|. Still, the physical picture from which equa-
tions |76, |77, [7§, and are derived differs from Boltzmann’s classical picture
of a monatomic gas only through the introduction of the variable of gyration.
When the gyration of a particle is distinct from macroscopic rotation, as de-
fined by the angular velocity, %esabgTU;’, the new form of the linear momentum
equation and the independent angular momentum equation can provide
an alternative description to the classical Navier-Stokes picture. The difference
of vorticity and gyration forms an objective (frame-indifferent) description of
rotational motion, absolute rotation, as [L5]

(87)

To

QAR — esabg—Z’ — 2W, (88)

The disappearance of absolute rotation indicates that vorticity is solely respon-

sible for the local rotation and the dependence of gyration vanishes. Thus, such

relation is called as angular equivalence. When zero absolute rotation occurs,

i.e. angular equivalence, the gyration provides no new insight from the classi-

cal description. Therefore, the governing equations derived in previou% sections
b

should reduce to the Navier-Stokes equations. Setting W, = %ﬁwbgTa in the
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governing momentum equations ﬁ and @ yields:

Reduced Linear Momentum

0 0 oP 0%U, 2 0%,

a. S a_ S a0 9 o -

gi PVt g U + 5 = o+ 3 dmiday) (89)

o 1 oU,

nTaequail’p(§esab87[L‘a) - pFe =0

Reduced Angular Momentum

0 ouy 0 oU,,

7t et ) T gy (Pt g, U~ (90)
2

ntt 0 (esab 8Ub) - 2pL§xterior =0

Oxq

The common terms of the microinertia j and 1 have been eliminated from
equation @ A key observation from equation P is the absence of the interior
body force, pLirterior described in equation B(. The difference in rotational
motions necessary for the inducement of gyration on a particle has vanished,
thus making pLinterior — (). Meanwhile, equation matches the form of the
vorticity equation, derived from the curl of the Navier-Stokes linear momentum
equation B1I:

6x18xl

0 oU, 0 oU,
a (Pesabaiza) + 57501 (PESabaixaUl)
9?2 oU, oF,
- sa - sa = 1
u(?x;@xl (e b@a:a) pe b oz, 0 (01)

Looking at the reduced linear momentum equation @, further manipulations
will show how this equation matches the classical picture. Using the identity for
the Levi-Civita tensor €sqp€spq = 0apdpg — daqdpp and contracting the appropriate
indices, equation B9 becomes:

0 0 oP o°Us | 2 U,
ot P T g U+ g = G0, T 3 dmo,

ntd , 09U, 02U

2 (8x38xp  Oz,0x,

)—
(92)

)—pFs=0

Grouping together like terms yields the type II of the Navier-Stokes linear mo-
mentum equation:

0 0 OP nrf 09U,
A R P UL R R e
Tl 9%U,
6 0,0z, —pE =0 (93)

The form of the classical momenta equations is achieved when local rotation
is indistinguishable from macroscopic rotation. Still, the precise formulation
found in equations P3 and P( requires a more detailed treatment. Following the
classical kinetic theory formulation and Boltzmann distribution, it leads to the
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Boltzmann-Curtiss Equation

8?51 =0 No angular dependence

Boltzmann Equation

S =0 NSTypel Ny
Inviscid NS Type IT equi.

Figure 3: Pathway from morphing continuum theory to Navier-Stokes theory

Type I of the Navier-Stokes equations [39]:

0 0 oP
= (pUs) + —(pUsU) + o

ot Oz
0*Us  nt0 0°U,
0x;0x; 3 0Ox,0zx, pEs =0 (94)

—n1l

In the type II of the Navier-Stokes equations, i.e. equation @, the expression
for the coeflicient in front of the diffusion term is half that value in the Typel, i.e.
equation P4, due to the contribution from the new term associated with the curl
of the gyration. This term originally contained a coeflicient that matched the
form of the classical viscosity, but applied to the contribution of local rotation
not found in the classical description. The temperature dependence of viscous
rotational motion appears to have a slightly different limiting behavior as the
particle rotation begins to resemble macroscopic motion.

Figure B shows the map between morphing continuum theory and Navier-
Stokes equations from both the perspective of kinetic theory and rational con-
tinuum mechanics. From a kinetic point of view, Boltzmann equation can be
obtained by dropping the angular dependence in the Boltzmann-Curtiss equa-
tion. For Boltzmann equations, two different distribution functions can be used
to further deriving the conservation equations. The first one is the classical
Boltzmann distribution. When the system is at the Boltzmann distribution
(zero-th order approximation), i.e. equilibrium, the Boltzmann equation leads
to Euler’s equations. Furthermore, if the system is linearly deviated from the
Boltzmann distribution (first order approximation), type I of the Navier-Stokes
equation can be obtained. Similarly, if the Boltzmann -Curtiss distribution is
adopted, the zero-th order approximation also leads to the Euler’s equation. It is
noticed that the first order approximation of the Boltzmann-Curtiss distribution
is assumed for the system, the transport equation leads to morphing continuum
theory as presented in this study. Interestingly, one of the correlations between
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morphing continuum theory and the type II of the Navier-Stokes equations is
the angular motion equivalence or the vanishing absolute rotation. As discussed
in the previous section, the type I and II of Navier-Stokes equation differ in the
angular motion dependence of the distribution functions. This concludes the
theoretical development and relations between classical and morphing continua.

2.3 Objective Q-Criterion for Vortex&Eddy Visualization

Speziale devoted part of his career laying down the fundamentals of objectiv-
ity and investigated the requirement of objectivity over Galilean invariance for
turbulence simulation [0, 71, 72, 73, [f4]. More recently, Haller showed the in-
consistency of vortex identification with the classical velocity gradient-based ap-
proaches and emphasized the importance of the objectivity or frame-indifference
for vortex visualization [35]. The classical Q-criterion under NS framework re-
lies on the second invariant of the velocity gradient, eg. 211, = wv;;v;; —
v 505, = Q35 — Si;55:; where v; ; is velocity gradient, S;; = %(vi’j + ;i)
and Q;; = %(Uz i— vj,i). It has been proven that the symmetric part of velocity
gradient, S;;, is objective; however the antisymmetric part , €2;; is only Galilean
invariant.

The objectivity or frame-indifference emphasizes the invariance between two
reference frames. Let a rectangular frame, M, be in relative rigid motion with
respect to another one, M’. A point with rectangular coordinate xj at time ¢
in M will have another rectangular coordinate xj at time ¢’ in M’. Since the
reference frames are rigid motion with respect to each other, the motion between
two frames can be described as (') = Qri(t)z(t) + bi(t) where Qg () is the
rigid body rotation matrix between two frames and bg(t) is the translation
between two frames. If the time derivative is performed on motion, it leads to
v (t') = Qui(t)zi(t) + Qui(t)vi(t) + by(t). The velocity gradient between two
frames can then be found as vy, (¥') = Qi () Qumi(t) + Qur()Qup (t)vy (1)

Therefore, the symmetric part of the velocity gradient between two frames is
proven to be objective by S}, = %(v;’m(t’)+v;n’k(t’)) = Qi (1) Qup(t) 2 (vip(t)+
Up(t)) = Qut(t)Qumyp(t) Sty Where Qp(t)Qumi(t) + Quu()Qui(t) = £ QuuQr =
4 §em = 0.

Nevertheless, the antisymmetric part is found to be ), = %(v;677n(t’ ) —

U;mk,(tl)) = Qr1(t)Qup(t) U p + %(le(ﬁ)le(ﬂ — Qmi(t)Qri(¢)). If the rotation
matrix Qy; is no longer time dependent, ie. le(t)le(t) = le(t)le(t)) =0,
Qp; is invariant. In other words, the antisymmetric part is Galilean invariant
and only stays invariant between two frames with translation.

In MCT, the Cauchy stress is related to the velocity gradient and gyra-
tion through an objective strain-rate tensor, ag; = vk + €lkmwm and al,, =
QmiQniar;- The objectivity of ag; can be proven through a process similar to
the aforementioned paragraph on velocity gradient. The orientation of inner
structure is described by the director tensor, xrx. The director and its time
derivative between two frames with rigid body motions can be shown as

Xiere (') = Qim ()X (t)

N ~
ClkmWm X1k — kaXmK + kaeambwaaK
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where Xmrx = €ambWhXak, Wp is the rotational velocity of an inner structure.
After multiplying another director tensor on eq. P5, one can obtain emkpw; =
Qkamp + Qmanteatbwb

From the previous paragraph, one can recall the velocity gradient described
in two frames are related as v, ; = QumpQrkp + @maQrtvar Therefore, one can
see that

(U;n,k + emkpwé) = QmaQrt(eetpwp + Ua,t)- (96)

Equation @ proves the strain rate tensor, ag.,, is objective.

As opposed to using the velocity gradient in NS equations for vortex identi-
fications with Q-criterion, MCT relies on the strain rate tensors. The classical
Q-criterion with the velocity gradient can be found as the second invariant of
the velocity gradient, i.e. Q = %(vi7ivj,j — v Vi) = %(Qiiji —5i;S;:), where
S;; is the symmetric part and €;; is the antisymmetric part of the velocity gra-
dient. Following a similar derivation, the MCT strain rate tensor can also be
divided into a sum of a symmetric and antisymmetric part.

1 1

St = gl + ag) = 5 (v + vig) (97)
1 1

QYT = (@i —azi) = S (vji = vij + 2€jimwim) (98)

It should be emphasized that since a;; is objective, the addition or subtraction
between objective tensors, e.g. SMCT and Q%CT, remain objective. As a results,
an objective Q-criterion for MCT is proposed as the second invariant of the
strain rate tensor, a;;, ie.

1
QT = 5 (@iiaj; — aija;i)
1
= Q(Ul}ivj,j — Uj,ivi,j — 2’[)j71'6ijmwm + 2wmwm)
1 (@] C C C
= i(ﬂx QYT — gMCETgMCT) (99)

Using Cartesian Coordinate , the objective Q-criterion can be written as

MCT _
Q =Vz,zVy,y + Vz,aVz,2 + Vy,yVz,2

- (’U%y?}y’z + Vz,2Vzx + vy,zvz,y)
— (Vyz = Vag)wz — (V2 — Vz0)Wy

= (Vzy — vy )we + W?c + w; + W? (100)

The symmetric part is the same as the one in NS theory showing the nor-
mal expansion of the flow behaviors. However, the physical meaning of the
anti-symmetric part, 23°7, should be understood as absolute rotation. The
off-diagonal part of an anti-symmetric matrix can be represented by a vector.
Therefore, one can rewrite the antisymmetric part as a vector of absolute rota-
tion (AR.), i.e.A.R. = eiij%{CT = €jkVj,i — 2wk ~V xU— 24

The first half of the A.R. is vorticity (V x @) describing the relative rota-
tion between two inner structure while the second half (&) is the self-spinning
of an inner structure. In other words, A.R. measures the phase shift or the
rotational speed difference between the relative rotation and the self-spinning
motion. This is the true rotation between two inner structures in a continuum
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and it does not change even when observed from different reference frames. If
A.R. is zero, it implies that the
relative revolution between two in-
ner structures is equal to the self-
spinning motion. Therefore, two in-
ner structures always face each other
with the same side, like the Earth and
the Moon. Without a global coordi-
nate, the inner structure behaves as if
there is no motion. Mathematically,
A.R. = 0 reduces MCT back to NS
equations [p1]. This mathematical re-
lation implies that if one believes vor-

Figure 4: Hairpin eddy structure iden- tiCity can completely resolve all pos-

tified by the objective Q-Criterion with sible rotation without self-spinning
MCT gyration, NS theory and MCT are

equivalent. It is noted that Trues-

dell followed the monumental work by
Grad [B2] and derived a balance law of internal rotation [80, 82]. De Groot
and Mazur also discussed a similar governing equation in their book [25]. The
concept of the internal rotation is similar to the new degrees of freedom, gy-
ration, in MCT. However, De Groot and Mazur derived the balance law from
a mechanics perspective so the time evolution of the intrinsic rotation is only
governed by the antisymmetric part of Cauchy stress, i.e. ex;;t;;. On the other
hand, the constitutive equation of gyration in MCT was derived from the classi-
cal nonequilibrium thermodynamics. Therefore, there is an additional moment
stress, i.e. myg,;. Consequently, there is a dissipation or diffusion mechanism
in the balance law of angular momentum, i.e. wy . The diffusion of gyration
leads to the heat and eventually the irreversible entropy generation.

Figure {| shows the iso-surface of the objective Q-Criterion for the coherent
eddy structure in the transonic flow over a three-dimensional bump. The iso-
surface is colored by the magnitude of the absolute rotation (A.R.). The hairpin
structure of the eddies are clearly seen without being limited by the Galilean
invariance.

3 Numerical Validation of MCT and Applica-
tions

The team has also developed a finite volume-based numerical solver for com-
pressible flows with shock preservation. The accuracy of the numerical solver
has been proven to be second order in space and time [12]. The numerical so-
lution was compared with the test case of 2-D compression ramp (experiments
done by Kuntz [48]) for validation. The details of validation is published in
Physical Review Fluids [12].

3.1 Numerical Scheme for Morphing Continuum
The team has presented a second-order shock-preserving scheme for morphing

continuum. The following part shows the scheme is second order accurate and
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has been used in several of the PI's publications. These publications include a
study in supersonic turbulence published in Physical Review Fluids [12], one in
transonic turbulence in AIAA Journal [84] and hypersonic flows in ATAA and
APS conferences [2].

The presented numerical scheme has also been shown computationally ef-
fective. The numerical solver has been implemented in the structure for par-
allel computing. Beyond the numerical and computational optimization, the
multiscale nature of MCT also shows the computational advantage in direct
numerical simulation (DNS) over the classical Navier-Stokes equations. For the
supersonic turbulence study in Physical Review Fluids [12], the grid spacing
near the wall in the MCT study is Ay™ = 1.34 with 10 grid points for y* < 30,
while for a similar DNS simulation [87], the required spacing normal to the wall
is Ay = 0.2 with more than 20 grid points in y* < 20. Also, for the transonic
turbulence study in AIAA Journal [84], the total number of grid points is about
6 million while the comparative NS study requires 54 M grid points [L1]. Unlike
the classical DNS replying on fine meshes to resolve subscale motions, MCT
formulates subscale motions into the governing equations. therefore, the mesh
requirements for MCT are less restrictive than DNS, resulting in MCT being a
more computationally-friendly theory.

The MCT governing equations for a compressible flow can be found:
Conservation of Mass:

D
F? + pUm,m =0 (101)
Conservation of Linear Momentum:
Dv
== m A n,nm m,nn
+ Kl(emnkwk,n)
Conservation of Angular Momentum:
Dw,,
— = @+ 0)Wnnm + YWm nn
+ H(emnkvk,n - 2w’rn)
Conservation of Enerqgy:
DE
P = —(Pvm),m + (AVm,mVk) & + [K(vi kv
Fepmiwmur) + p(vg ke + Uk,z)Uz},k (104)

+ (Wi, mwi + Bwiwy + 'lewl,k)’k
+ (KTJ@)J@

where E = e+ 1/2(vp U + jwmwnm) is the total energy density of the fluid , and
e is the internal energy. a7 disappears after substitution into the balance laws,
since my k and qx x will yield FegimT mr = 0 and FF eximwm, ik = 0 .To close
this system of equations the fluid is assumed to be an ideal gas, leading to the
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following relations:

p

= ’UT = Cy———~ 105

e=c c e — o) (105)
JoR . j 10

PE = o 1 + ip(vmvm + jWmWm) (106)

Coy

where ¢, is the specific heat at constant pressure and c, is the specific heat at
constant volume.

To better understand the contribution of the individual eddies, the MCT
governing equations be non-dimensionalized, where the dimensionless groups
are defined based on the physical parameters of interest. Starting with the dis-
tance and motion variables, the length scales x,,, and the translation velocity
vy, will be parameterised with the square-root of the subscale inertia L = /7,
and the freestream velocity Uy, respectively. The temporal term ¢ will be di-
mensionalized with the time it takes the freestream velocity to cover the distance
L,ie. L/Us. The gyration, w,,, meanwhile, will be dimensionalized with the
inverse of temporal term. In summary the dimesionless variables are:

. T, . Un

Ty = 17 Oy, = U

R " W, (107)
t= 0

LjU. ™7 UL

The thermodynamic variables of the density, p, and pressure, p, will be di-
mensionalized according to the freestream density p., and dynamic pressure
pUZ2 . Substituting the nondimensionalized variables into the governing equa-
tions yields a set of dimensionless groups that captures the physical behavior
of each parameter. One parameter is the Reynolds number, which is defined as
the ratio of the convection to the diffusion of linear momentum,

_ pocUscL
 utk

Re (108)
As for the energy equation two dimensionless numbers appear; the Prandtl
number, which defines the ratio of momentum diffusivity to thermal diffusivity,
and the Eckert number, which defines the relationship between a flow’s kinetic
energy and the boundary layer enthalpy difference,
cp(p+ k) U2
Pr=2"_ " FEe=—2>=- 109
K T (109)
The previously defined parameters are typical dimensionless groups found in
the classical fluid theory. The next dimensionless term that is specific to MCT,
will be called Er in honor of Eringen and is defined as the ratio of the inertial
forces to the viscous forces arising from the gyration,

_ pocUscL
N K

Er (110)

The other parameters found in MCT will also be non-dimensionlised with re-
spect to the convection term
U L? U L? U L3

CQZL C[;:L C’y:L

- 5 > (111)
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In this regard the governing equations in dimensionless form become:
Conservation of Mass:

—+V (pv) =0 (112)

(113)

Conservation of Angular Momentum:
I(pw) =~ < 1 1
— + AY
o P

(114)

o x v — [V¥T9| + —V((Vo)w) (115)
1

A
— VT
+ ReEcPrv

The solver developed to implement the MCT compressible governing equa-
tions is be constructed in the framework of the finite volume discretization.
One reason for choosing finite volume is due to its easy implementation, and
its convergence to a stable solution for complex flows. The spatial domain im-
plemented is divided into contiguous control volumes or cells, with the physical
variables of velocity, gyration, pressure, density and temperature collocated (i.e.
located at the cell center).

The transport equation for any conserved property can be written in following
form,
¢
= + V(ve) = V({IsVe) + S, (116)
\3}/ —— —_—— —~

. convective term diffusive term  source term
transient term

Here, ¢ refers to a transport variable, I'y is the diffusivity or the diffusion
coefficient, and Sy is the source term. Letting ¢ = p yields the continuity
equation, ¢ = pv,, gives the linear momentum equation, ¢ = jpw,, yields the
angular momentum equation and ¢ = pE gives the energy equation. The finite
volume method requires that the governing equations in their integral form be
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satisfied over the control volume. Applying spatial integration on equation ,

0
6—¢dV + / V(vg)dV = / V(['yVe)dV SedV (117)
v, Ot V. V. Ve
For the present solver, a simple forward Euler was implemented for the unsteady
term,
8(25 ¢n+1 o n
—dV = ~—=< 11
/VC o A (118)

where V. represents the cell volume, the subscript ¢ refers to the cell center,
and superscript n refers to the current time step. Implementing forward FEuler
on the conservation of mass, linear momentum, angular momentum, and energy
equations yields:

A n+1l _ sn
/ 9 gy n P —Pey, (119)
v, Ot At
X7 gl 'ﬂ+1 _ Axr 7T
/ 9% iy o PV = (PV)E (120)
v, Ot At
P Ao+l (AN
/ @) gy o (PO — (p0)e (121)
v, Ot At
AT A n+l _ (Af\n
/ OWE) 1, PERT — (PR)E |, (122)
v, Ot At

This scheme is first order in time, but can be modified to a higher-order Runge-
Kutta time integration scheme.

Critical care is considered for the numerical scheme implemented on the con-
vection terms in MCT, which are V (p¥),V (pv¥), V (pv&@), and V(pEV). The
numerical scheme adopted for the convection terms should be able to capture
the shock wave and discontinuities, while avoiding oscillations. Replacing the
volume integral by a surface integral through the use of the divergence theorem,
the convection terms can be approximated as,

/VC V(ve)dV = %S(wﬁ)ds ~ zf:vf¢fsf (123)

where }° , denotes the summation over the faces of the control volume, vS¢
is the volumetric flux, Sy is the face normal vector, and ¢ represents the
face value of the transport variable. Notable methods found in the litera-
ture are able to effectively produce accurate non-oscillatory solutions for ¢y.
These methods are: piecewise parabolic method (PPM) [21]; essentially non-
oscillatory (ENO) [66, B7]; weighted ENO (WENO) [50]; and the Runge-Kutta
discontinuous Galerkin (RKDG) method [20]. All of these methods involve
Riemann solvers, characteristic decomposition and Jacobian evaluation, mak-
ing them troublesome to implement. The scheme implemented in this study is
a second-order semi-discrete, non-staggered scheme, introduced by Kurganov,
Noelle and Petrova (KNP) [49] as a second-order generalized Lax-Friedrichs
scheme. The interpolation procedure of the transport variable ¢ from the cell
center, ¢., to the face center, ¢, implemented in this scheme is split into two
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directions corresponding to the outward or inward direction of the face normal,

D vidsSy=) [aSpivirdrs +
f

7 (124)
(1 =)Syvidp +ws(ds—+d51)]
where Sy is the same as Sy and Sy_ = —S;. The subscript f+ is denoted

for the directions coinciding with S¢y, and f— for the opposite direction. The
two terms Sy vy dpy and Sy vy_¢s_ in equation @prepresent the fluxes
evaluated at the Sy; and Sy_ directions respectively. The last part of equation
M represents an additional diffusive term based on the maximum speed of
propagation of any discontinuity that may exist at the face. The weighted
coefficient « is,

Vit
o= — 125
Ui+ 12
where 174 is the local speed of propagation, shown to be:
Yy =max (cyi[Syl+ dpy,cr-|Ss| + @5, 0) (126)
Yp— =maz (cp+[S¢| — dpr,cr—[Sy| — ¢p—.0) (127)

and cpr = /vRTr+ is the local speed of sound at the face. The diffusive
volumetric flux wy, has the form,

wr=a(l—a)(Yry +¢5-) (128)

The scheme implemented to interpolate the values at the center of the face in
the directions of Sy, and Sy_ is based on the limiting standard first and second
order upwind [31]. The interpolation at f+ for example is,

G+ = (1= gr)00 + gr+ON (129)

where the subscripts O and N represent the nodes at the center of the owner
cells and neighbor cells respectively, and the KNP geometric weighting factor
g5+ = Bf(1 — wy) with B¢ being the van-Leer limiter function.

All of the gradient terms in the MCT governing equations are computed
using the Green-Gauss theorem [b8, b5,

/ (Vo)edV =Y ¢Sy (130)
Ve f

where the face value is calculated using the compact stencil method [b5], which
is simply the geometric average of the two cell-centered values of the face,

¢ = gedo + (1 = ge)on (131)

where g. is the geometric weighting factor. The only exception is the pressure
gradient, Vp, in the linear momentum equation which was discretized according
to the Kurganov, Noelle and Petrova (KNP) [49] flux splitting scheme,

Equsfsf = zfj [oSsidpy +(1—)Ss-0y-] (132)

where « is the weighted cofficient defined previously.
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H

Table 1: Algorithm for Solving the MCT governing equations

while t < End Time:
Interpolate all the fields from the cell center to face center
Calculate the convective, diffusive, and gradient terms
Solve the continuity equation for p
Solve the linear momentum equation for u;
Solve the angular momentum equation for w;
Solve the energy equation for E
Update the temperature T from F
Update the pressure using the ideal gas law
Update the boundary conditions
Update time ("1 =" + At)

Finally, the diffusion terms are approximated by,
/ V([4V¢)dV = /S(F¢v¢)ds ~ > (TyVe)s.Sy (133)
\%
f

The (T'yV¢)s term can be obtained as the weighted average of the gradients at
the face centroids multiplied by the diffusivity at the centroid,

ToVo)s = gc(TsVP)o + (1 = gc)(Ts V)N (134)

In most cases, the diffusivity is interpolated linearly from the cell center values
to the faces. The curls of the transport variables are represented by the off
diagonal components in the antisymmetric part of the corresponding Green-
Gauss gradients. Therefore, the curls of these variables can be computed in a
similar fashion to the gradient terms.

Now that the specifics of the finite volume solver have been described, the
final step is to give an overview of the algorithm employed. The solver developed
is a fully explicit solver: all terms in the MCT governing equations are evaluated
at the previous time step. This approach enables fewer computations per time
step, but does put a constraint on the size of the time step. The full algorithm
of the MCT solver is shown in table [ll. With this algorithm in place, numerical
simulation of the compressible flow can be done through the perspective of
MCT.

Verification of the compressible MCT solver was done by comparing the nu-
merical results of the compressible isothermal Couette flow with the analytical
solution. The assumptions for the Couette flow are that the flow is fully de-
veloped, steady state, isothermal, incompressible, and two-dimensional [[17], i.e.
zero velocity in the y and z direction and zero gyration in the x and y direction.

Under these assumptions the governing equations for MCT are reduced to:

0%v, Ow,
= 1
(n+r) 52 + kK By 0 (135)
2w, vy
vy a7 /@a—y —2kw, =0 (136)

As for the boundary conditions, the moving plate is placed at a height h above
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Figure 5: Boundary conditions for a 2D Couette Flow

the fixed plate, and moves in the x-direction at the a velocity Uy, while the
gyration at both plates is fixed at zero due to the no-slip condition. Figure B
illustrates the boundary conditions of the system. The analytical solutions of
gyration and velocity for the Couette flow are,

ovslors (1o L) ey e 137
w=Gi8 -1+ (1-5 ) e+ 5| (137)
GS 1\
= _— — 1—— Y
e S ((1-).
iy (138)
S
+5 -
where:
M: H(2ILL+K})’ D:1+€Juh; S: "i—’_:u’
Yk + k) K+ 24
B Ko _ (-2+D)e"MsG
G— ,‘Q—f—'[L’ C4— Ja UOa
DeM pp
C'1=7}7 Uo;

F=(-1+¢"™)°GS+D[-GS
+e"(hM + GS — GhM S)]

The details of the numerical order_calculation and verification for the velocity
and gyration are shown in Table P and Table . The results clearly indicate
that the solver exhibits the desired optimal second order of accuracy.

3.2 Validationl : Supersonic Compression Ramp

Kuntz et. al’s experiment [47, 48] of a supersonic flow over an 8° compres-
sion ramp is replicated. In his paper Kuntz et. al. considered a series of
five compression ramps ranging from 8° to 24°. Using this set of ramp an-
gles Kuntz was able to capture a full range of possible flow fields, including
flow with no separation, flow with incipient separation, and flow with a sig-
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Table 2: Velocity error analysis

Vel L4 Order Vel Lo Order Az,
5x5  0.026486 1.613 0.019180 1.681 0.2
10x10 0.008657 1.569 0.005981 1.717 0.1
20x20 0.002918 1.334 0.001818 1.632  0.05
40x40 0.001157 - 0.000586 - 0.025

Table 3: Gyration error analysis

Gyr Ly  Order Gyr Ly Order Az,
5x5  0.076868 1.408 0.026486 1.579 0.2
10x10 0.028963 1.672 0.008657 1.769 0.1
20x20 0.009088 1.456 0.002918 1.693  0.05
40x40 0.003312 - 0.001157 - 0.025

nificant amount of separation. Kuntz et. al’s experimental data has been
referenced to derive shock-wave/boundary-layer interaction (SWBLI) models
based on mass conservation [68]. In addition, this data was used to validate the
accuracy of different RANS models [56, f], to analyze the significance of the
spanwise geometry variation and to relate it to a canonical compression flow for
a three-dimensional bump flowfield [[79]. For the 8° compression ramp, Kuntz’s
experimental results showed no separation of the flow near the corner ramp,
making it an ideal simple case to demonstrate the capabilities of MCT. Another
reason why the 8° compression ramp is chosen is the two-dimensional behavior
of the shock near the ramp corner, giving credence to the assumption of a two-
dimensional flow, as well as the adiabatic condition at the wall, resulting in no
heat dissipation. Figure [f shows a schematic for the present ramp configuration.

The working fluid is assumed to be an
ideal gas, where the equation of state is p =
pRT. The gas constant is taken as R =
287.06 m2?s 2K !, the specific heat coeffi-
cient for constant pressure is ¢, = 1004.06
J/(kgK) and the Prandtl number is Pr =
0.7. The summation of all the viscous coef-
ficients were computed by Sutherland’s law,

Z6yp3/2
0.069 69 — (1.458x10° )17/~
) ’ K+ H= T+110.4

The temperature at the wall was set to

Figure 6: Size of the compres- ,qiahatic conditions, in reference to the ex-
SiOI.l ramp computational do-  periments by Kuntz et. al. [47]. The bound-
main ary layer thickness, §, and the momentum
layer thickness, 6, for the incoming flow, re-

ported by Kuntz et. al. [47], at the location of the ramp edge were measured to
be 8.27 mm and 0.57 mm. As for the MCT variables, Wonnell and Chen [36]
showed that the viscous forces arising from the gyration should be around 99
times the dynamic viscosity (i.e. kK = 99u) to obtain a turbulent incompressible

Top

1[I0

—r— '
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flow. This study follows the work of Wonnell and Chen by making s equal to
99u [86]. The two other dimensionless parameters (C, and Cjg) are set to zero,
since currently there is no physical meaning to them.

The subject of spatially evolving turbulent flows poses a particular challenge
for numerical simulation, due to the need for time-dependent inlet conditions at
the upstream boundary. In many cases, the downstream flow is highly dependent
on the conditions of the inlet. Therefore it is necessary to specify a realistic
time series of turbulent fluctuations that are in equilibrium with the mean flow,
while still satisfying the governing equations. For this reason, creating accurate
inflow turbulent conditions may require costly independent simulations [52],
forced transition [61], a long leading edge [b6], or cost-saving but crude inflow
generation methods [8§].

Oliver tested turbulent RANS models for a flow past an 8° compression
ramp [56]. In this study, the length of the flat plate upstream of the ramp
corner exceeded 60d. The reason for this addition was to allow the inflow to
develop from a uniform to a turbulent flow, with a boundary layer that matched
the experimental boundary layer thickness.

Here, MCT has the ability to control the eddy structure of the flow by the
gyration term, enabling it to model turbulence without the need for complex
boundary conditions. Wonnell and Chen [86] showed through utilizing the sub-
scale eddies near the wall that MCT can control the regime of the flow and
change it from laminar to transitional or turbulent. They later showed that
in addition to controlling the eddies near the wall, one can control the eddies’
rotational speed at the inlet, and thus control the incoming turbulent kinetic
energy 1/2pjwrwy, [85)].

The inflow variables implemented in the current case to achieve a turbulent
flow are decomposed into two parts, the mean and fluctuating components. For
the mean flow, a prescribed turbulent mean velocity profile was defined at the
inlet, through the implementation of Martin’s procedure [52].

The fluctuations are generated by controlling the rotational speed of the
upstream eddies.  This happens because
the instantaneous inlet gyration wy is de-

20 composed into mean and fluctuating parts,
wilt,y) = (i) + wh(ty) where (wy) is
the mean value of the gyration, and wj,(¢) is
the fluctuating rotation speed of the eddy.
The perturbations are produced through a
random number generator with the range of

= Experimental Results [47] s
e values constrained by the root-mean squared
L0 T RANS SSTkw Solution [50] (rms) gyration, and turbulent intensity from
L - R the experiments at the specified point. The

x/6

rms value of the perturbed gyration becomes

Figure 7: Mean wall pressure (., .=/ % Z;le wiw] and the turbulent in-

istribution from MCT -
dlst.rlbutlon rom MCT and ex tensity of the MCT flow becomes I = Wrmed/2
perimental results U

It can be seen that the larger the range of the
perturbation in the gyration field the larger
the rms value and thus the larger the turbu-
lent intensity. In order to focus on the effects of the fluctuations, the mean
gyration was set to zero, while the amplitude of the perturbed gyration was
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defined so that the turbulent intensity of the incoming flow matches the exper-
imental turbulent intensity results of Kuntz et. al.

The boundary conditions of pressure and temperature at the inlet are set to
the freestream conditions. At the outlet and top boundaries, supersonic outflow
boundary conditions are implemented, and for the ramp wall the no-slip and
adiabatic boundary conditions are implemented.

A structured grid is generated, with the distance between the corner and the
outlet equal to 69, and the length upstream of the corner equal to 0.066. The
number of cells used in the current simulation is 505 in the streamwise and 1000
in the wall-normal directions. In the wall-normal direction, the grid spacing
near the wall is Ay™ = 1.34 with 10 grid points within y* < 30.

Validation of the proposed MCT scheme was conducted through comparing
the pressure at the wall as well as the velocity profile between the experiments
and the simulation. Figure [ plots the normalized wall pressure of the experi-
mental results versus the RANS results of Oliver [66] and Asmelash [5], and the
proposed MCT numerical solver results.

The figure shows that the MCT solution comes closer to predicting the ex-
perimental wall pressure than the turbulent RANS models, especially near the
ramp edge where MCT captured the first four points of the experimental data
while RANS only captured the first point. The difference between the RANS
and MCT wall pressure results can be attributed to the convective scheme imple-
mented in each case. In the RANS simulations of the compression ramp, Oliver
[b6] implemented a first order upwind scheme, and Asmelash [5] implemented
a a second order upwind scheme. Here, the MCT scheme is a second-order
generalization of the Lax-Friedrichs scheme. It is also worthwhile to mention
that the mesh requirement for the MCT case is less demanding compared with
a similar DNS study for a compression ramp [87].

The grid spacing near the wall for the MCT case is Ay™ = 1.34 with 10 grid
points for y* < 30, while for a similar DNS simulation [87], the required spacing
normal to the wall is Ayt = 0.2 with more than 20 grid points in y*+ < 20.
Unlike the classical DNS relying on fine meshes to resolve subscale motions,
MCT formulates subscale motions into the governing equations. Therefore,
the mesh requirements for MCT are less restrictive than DNS, resulting MCT
as a more computation-friendly theory for turbulent flows. Figure § shows the
normalized flow velocities at three locations 39, 4.29, and 5.40 downstream from
the ramp corner, and the MCT numerical solver results. The figure shows that
MCT is capable of capturing the boundary layer profile inside the shock.

= Dxperimental Results [47] = Cxperimental Results [47] = Dxperimental Results [47]
—— MCT Solution 1,75} — MCT Solution 1,751 — MCT Solution

(a) 36 (b) 4.26 (c) 5.46

Figure 8: Velocity profiles at various locations in the downstream of the ramp
edge from the MCT solution and the experiments
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As stated previously, the aim of this paper is to investigate the energy
transfer between the subscale eddies and the bulk flow inside the shock. Chen
stated that the total energy density of each subscale eddy can be expressed as,
E = % (usu; + jw;w;) + e; where %uzuz contributes to the translational kinetic
energy, % jw;w; contributes to the rotational kinetic, and e = ¢, T represents the
internal energy density of the flow. Analysis of the energy cascade is acheived
by the use of the conventional Reynolds averaging (also known as time averag-
ing) method and the mass-weighted averaging method or better known as Favre
averaging. The main advantage of these methods is in their ability to resolve
the relevant physical processes at different scales [B3]. The following notations
are used for the mean values: () for the Reynolds average and { } for the Favre
average

The scale decomposition employed in the total energy density equation is
carried out using Favre filtering in order to account for the density fluctu-
ations of the flow. The Favre decomposition of the total energy density is,
B = s{uiH{ui} + {uiuf + quful + J{wiHwi} + j{wide] + fwlw] + {e} +¢”
The first term on the right hand side ${u;}{u;} represents the Favre-averaged
mean flow translational kinetic energy, and represents the mean translational
speed of the flow. The second term satisfies the relation (p{w;}u;) = 0 and
may be called the Favre-fluctuating mean flow translational kinetic energy.
Huang [40] gives a physical interpretation to the second term by examining
the turbulent diffusion in the total energy equation. The final term correspond-
ing to the translational motion is u/u}, and refers to the Favre-fluctuating
translational kinetic energy. Similarly, one may define the rotational compo-
nents of the kinetic energy, the Favre-averaged mean flow rotational kinetic
energy as %{wi}{wi}, the Favre-fluctuating mean flow rotational kinetic energy
as j{w;}w!, and the Favre-fluctuating rotational kinetic energy as %wg’ w!. Fi-
nally, {e} is the Favre-averaged internal energy, and e” is the Favre-fluctuating
internal energy.

Applying Reynolds averaging over the Favre-decomposed total energy den-

sity yields the mean component of the total energy density,
{uid | {wi}
(B) =t (w9 - B 4 s (o - 12

oty + Ll + (e} + ()

The first two terms on the right hand side represent the contribution of the
mean translational and mean rotational kinetic energies to the mean total en-
ergy density. The next two terms represent the contribution of the averaged
Favre-fluctuations to the mean total energy. The % (u}u/) term is found in most
classical papers discussing turbulence, and is used in the computation of the tur-

3/, 0,0

bulent Mach number. The other term Z(w;w;’) is strictly unique to an MCT
flow, and represents the fluctuations in the subscale eddies’ rotational speed.
Therefore, an MCT flow adds to the classical turbulent Mach number a com-

V3w )+ 3 (W) W)
@

C

(139)

ponent from the eddies’ rotation, M; =
the Reynolds average speed of sound.
The last two terms in Eq. E represent the contribution of the mean Favre
internal energy, and the average Favre-fluctuating internal energy to the mean
total energy density. Note that {e} + (¢") = (e). The reason the mean Reynolds

where (c) represents
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Figure 9: Rotational kinetic energy component of the mean total energy density,
mean and fluctuations at (a) 1.84, (b) 34, (c) 4.29, and (d) 5.49 along the ramp
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Figure 10: Translation kinetic energy component of the mean total energy den-
sity, mean and fluctuations at (a) 1.89, (b) 34, (c) 4.2, and (d) 5.4 along the
ramp

internal energy is not represented is to see the contribution of the Favre fluctu-
ations to the flow.

In order to understand the energy cascade at the level of the subscale ed-
dies, the rotational component of the mean total energy density is investigated.

Figure B compares the mean rotational component j{w;} ((wl> - %) with

the averaged Favre-fluctuating rotational component %(wg’ w!"y at different loca-
tions along the ramp. The variables were normalized with respect to the the
freestream total energy density Eo, = %Ugo + ¢yTs. The figure clearly shows
that the averaged component of the rotational kinetic energy density is zero out-
side the boundary layer indicating an irrotational bulk flow, as was specified at
the inlet boundary ({w;)iniet = 0). Near the wall (y/d < 0.1), an increase in the
magnitude of the averaged component of the rotational kinetic energy density
is clearly observed, which can be attributed to the shear forces arising from the

wall as well as the diffusion of the near-wall eddies as is clear in the contour plot
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Figure 11: Internal energy component of the mean total energy, mean and
fluctuations at (a) 1.84, (b) 39, (c) 4.29, and (d) 5.46 along the ramp

of Figure B Inside the boundary layer but away from the wall (0.1 < y/d < 1),
the figure shows areas with large values of mean rotational kinetic energy, in-
dicating the presence of eddies. It can be seen from the figure that the eddies
near the boundary layer are more are tightly packed then the eddies near the
walls which are more stretched and elongated. The fluctuating component of
the rotational kinetic energy starts out with a large magnitude and decays as it
moves along the ramp to less than a half. The reason for having large values of
the fluctuation near the ramp edge is due to their proximity to the inlet, which
has a boundary condition to generate turbulence by adding fluctuations to the
rotational speed of the flow ((wiw!)inier = w2,,5). Moreover, the profile of the
fluctuations at x/§ = 1.8 is consistent with the inlet condition, since the tur-
bulent rotational speed is defined inside the boundary layer and diminishes at
the edge of the boundary layer. Finally, when comparing the fluctuations along
the ramp, the plot shows a large number of local minima and maxima near the
ramp edge, with rapid variation between each extremum. This trend implies
that there are a lot of small subscale eddies, each separate from the other, as

is clear in the contour plot of %(wg’ w!"y. Further along the ramp, the plot for

2{(wj'wi’) shows fewer local minima and maxima with a slower rate of change
for each extremum. The results imply that a lot of the previous small subscale
eddies merge together or diffuse into the mean flow. This behavior is evident
from the contour of % (w/w!). The impact of rotational kinetic energy on the
translational kinetic energy and internal energy will be shown in the following
discussions.

Starting with the translational kinetic energy, figure @ plots the normalized

mean components of the translational kinetic energy {u;} ((ul> — {“2"}) as well

as the normalized averaged Favre-fluctuating components 1 (u/u!) at different
locations along the ramp. It can be seen from the figure that the biggest con-
tributor to the total energy is the mean translational kinetic energy component
of the flow, with the averaged Favre-fluctuations component being smaller than
the freestream total energy by four orders of magnitude. The behavior of the
averaged Favre-fluctuations translational kinetic energy is decomposed into the
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near-wall section (y/d < 0.1), and the boundary layer section (0.1 < y/d < 1).
For the near-wall part, an increase in the magnitude is observed along the
streamwise direction. This increase is highly associated with the shear forces
arising from the wall, as well as the increase in the rotational speed of the sub-
scale eddies near the wall. The boundary layer section shows an increase in
the average Favre-fluctuating translational kinetic energy along the ramp, coin-
ciding with the decrease of the average Favre-fluctuating rotational component
of the flow. In summary, the eddies’ rotational energy is dissipated into the
translational fluctuating energy.

The other aspect of this energy transfer involves the transmission of rota-
tional kinetic energy to internal energy. Figure [L1] compares the Favre-averaged
internal energy {e} with the averaged Favre-fluctuating internal energy (e”) at
different locations along the ramp. From the figure, it is evident that the mean
component of the internal energy is constant except near the wall where it is
increasing in magnitude along the streamwise direction. The averaged Favre-
fluctuating internal energy, away from the wall starts with a maximum value
of 0.4 and decreases along the streamwise direction. The large value near the
ramp edge, and the large oscillations in the averaged Favre-fluctuating internal
energy is directly related to the rotational speed of the subscale eddies, and
in particular the averged Favre-fluctuating rotational component of the total
energy density. When the averged Favre-fluctuating rotational kinetic energy
component of the total energy is high, this increase in turn leads to high fluc-
tutations in the averaged Favre-fluctuating internal energy (e}, as the averged
Favre-fluctuating rotational kinetic energy decays along the ramp so does the
averaged Favre-fluctuating internal energy. One can conclude that the fluctua-
tions in the internal energy are created from the fluctuations in rotational kinetic
energy. Still as the eddies move along the streamwise direction, they diffuse and
merge with the mean component of the energy, resulting in a decay in the av-
erage fluctuating component of the internal energy. Figure @ clearly confirms
that along the streamwise direction a decay in the fluctuating component of the
internal energy occurs.

3.3 Validation 2: Transonic Turbulence over an Asysmet-
ric Hill

An inlet boundary layer profile with a thickness of 6 = 0.039m was specified with
an otherwise uniform flow of M., = 0.6 at the inlet of a 20H x 3.205H x 10H
domain with H = 0.078m as per Castagna et. al. [[L1]. The inflow velocity pro-
file was specified by using the mean velocity of the precursor simulation done
by Castagna et. al. [11] and comparing the profile with the inflow profile mea-
sured experimentally by Simpson [67]. Figure @ shows that the inflow profiles
match very well near the wall and overpredict the velocity in the log layer where
y+t > 60. The profiles share a boundary layer thickness of § = % = 0.039m.
This discrepancy was kept to see if MCT could still capture experimental flow
phenomena in the bulk flow. Turbulent fluctuations were specified by equating
the root-mean-square (rms) of the new variable of gyration with the root-mean-
square (rms) velocities specified by Castagna et. al. and compared with Spalart
[11, 69]. Figure [14 compares the normalized root-mean-square data from MCT
and Castagna et. al. with the experimental data obtained by Spalart [69]. The
discrepancies are the same for both MCT and Castagna et. al. , since the
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data by Castagna et. al. was directly transferred to the gyration variable, via
the expression \fjwi,rms = Ujrms. Lherefore, the kinetic energy generated by
fluctuations in the velocity profile by Castagna et. al. matches the rotational
kinetic energy produced by the gyration. Discrepancies between the DNS and
experimental data were most notable in the log-layer. These discrepancies were
preserved in the gyration, again to see if MCT could still produce better agree-
ment with experiment given the same initial flow data. Inflow density, total

Figure 12: Wireframe of the meshes for the rectangular domain and hill. Ax-
isymmetric hill was set at 8.4H away from the interior.

viscosity p+ k, and freestream velocity U, were all set to ensure the Reynolds
number, Rey, based on the height H matched the value of 6500 by Castagna
et. al. The time-step for the MCT simulations was 5 x 1078 s, shorter than
the value of 3.04 x 107° s by Castagna et. al.. The smaller mesh cells near
the wall required these small time step values, but the resulting data benefited
from increased temporal accuracy. The wall-normal mesh distribution was set
to have a simple grading whereby the last cell away from the wall would be
200 times the length of the smaller cell near the wall. Non-reflective boundary
conditions were set at the top and outlet of the domain to prevent unphysical
pressure effects from affecting the dynamics at the hill and to follow the setup
by Castagna et. al. [11]. Periodic boundary conditions were set in the span-
wise direction, also in line with the conditions by Castagna et. al. [11]. Zero
gradient, and no-slip boundaries for the velocity, were set at the floor and hill.
The mesh near the hill was tailored to the shape of the hill, determined by
the mathematical functions set in Castagna et. al. [11]. Table W lists the key
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Figure 13: Comparison of DNS inlet profile obtained by Castagna et. al. [L1]
from a precursour simulation with the experimental profile used by Simpson [67]
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Figure 14: Comparison of MCT/DNS velocity perturbations the DNS profile
obtained by Spalart [@]

statistics associated with this custom mesh. A key note is the number of cells
for this mesh, totaling around 6.7M elements. With the unstructured mesh,
however, the viscous sublayer, defined by the limit 2™ < 10, contained 30 cells
as opposed to the 10 cells needed in the mesh by Castagna et. al. [Il_ll] Still, the
argument that MCT can provide results comparable to DNS data without the
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Parameter Value
Maximum Aspect Ratio 8.62886

Time Step 5x 1078 s
Maximum Skewness 5.124
Azt 0.148
Number of cells: zT < 10 30

Total Number of Cells 6.72 x 106

Table 4: Parameters for mesh quality and time resolution used in MCT simu-
lations

associated computational costs is supported by the dramatic decrease in mesh
cell number.

Three non-dimensonal parameters to gauge the onset of turbulence are in-
troduced by Peddieson [b9] and are later explained by Wonnell and Chen [85]

These parameters can be extracted from the governing equations through
dimensionless analysis [59]. For incompressible flow over a flat plate, these
parameters produced turbulent velocity profiles within a boundary layer that
matched experimental data produced by the European Research Community
on Flow, Turbulence and Combustion (ERCOFTAC) [19]. The parameters are
defined as follows:

K g

oy e P T as pr (140)
In the flat plate study, a; proved to be the pivotal parameter in matching an
experimental turbulent profile [[19]. This parameter serves as a ratio between
the particles’ contribution to the Cauchy stress, reg;mwm, and the classical
viscous diffusion term, pwvy;, in the linear momentum equation. Local variation
in the gyration of the particles leads to a tension in the fluid that disrupts
the otherwise smooth laminar flow. The classical viscous diffusion attempts to
smooth disruptions created by differences in gyration, and so the balance of
these forces is critical for determining whether a flow has reached a turbulent
state. This result indicates that the tension created by differences in rotational
motion of particles needs to exceed viscous diffusion by a considerable amount
in order to maintain turbulence within an incompressible boundary layer.

Table B gives the values of the three dimensionless parameters for «,, that
successfully generated turbulence in the incompressible case. The problem of
capturing sub-grid length scales becomes more important when the turbulence
becomes more compressible, as the smallest eddies could be impacted by density
fluctuations. The balance of compressibility with viscous fluctuations occurs at
all scales of motion. This balance is reflected in the new total viscosity, u + k&,
of the fluid found in the Reynolds number, Rey. The contribution of individual
structures to the total viscous resistance of the fluid is captured through k.
This simulation incorporates no sub-grid models and will allow for the effects of
compressible turbulence to be taken into account. Results were obtained after
the freestream flow made 1.2 trips through the domain to follow the example of
Castagna et. al., or around ¢ = 0.009s [L1].

Figure [L§ highlights the formation of the separation bubble on the windward
side of the hill using streamlines of the flow along the centerline y = 0. The lee-
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Parameter Value
(5] 99
Qg 0.0014
Qs 0.235
My = %»o 0.6
o0 OOH

Table 5: Dimensionless parameters c.,, Mach Number M, and the Reynolds number
matching DNS [E, @, ﬁ] Speed of sound determined for air at T, = 293K

/;=-3.076H o X=-1.85H
Figure 15: Streamline compared with separation bubble boundaries obtained
by Castagna et. al. [Il_ll] MCT data demonstrate a larger windward side

separation bubble, but no significant separation on the leeward side. MCT
bubble delineated by red dotted line.

1
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Figure 16: Comparison of C, = W between experimental data from
Simpson, simulation data from Castagna et. al., and numerical data along the

centerline z = 0 [67, 11].

ward side does not show any apparent separtion bubble. Meanwhile the outline
of the MCT windward side bubble falls slightly below some of the recirculation
in the MCT data. The reattachment point for the MCT data, at © = —1.66H,
is slightly downstream than the prediction by Castagna et. al. at © = —1.7H,
but the size of the windward bubble in MCT clearly exceeds the predictions by
Castagna et. al. Inflow turbulence generated near the wall from the gyration
and velocity fluctuations may have lead to a much earlier separation point for
the MCT flow.

Figure [1G shows that experimental data for the pressure coefficient obtained
from Simpson [67] line up more closely with MCT than the numerical results
from Castagna et. al. [Ell] These successful comparisons add confidence to
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Figure 17: Comparison of turbulence intensities, averaged in the spanwise di-
remﬁ’ at © = 4.14H and =z = 11.6 H with DNS data obtained by Castagna et.
al. [IL1].

the statement that numerical simulations of MCT produce realistic, physical
flow data without the need for excessively dense grids or high computational
costs. The pressure peak downstream of the hill appears at © = 2.311H. The
DNS study failed to capture this peak, but MCT clearly demonsrates a local
peak in this region. After this peak, MCT captures the further evolution of
the wall pressure while the data by Castagna et. al. overpredicts the surface
pressure. The rapid differences in the vorticity found near the secondary local
peak are likely the cause of the local variance in pressure. Simpson noted that
the pressure coefficient could be directly related to the vorticity flux [67], and
the resolution of this vorticity near the wall likely helps the resolution of the
surface pressure.

Near the wall, turbulent fluctuations in MCT data behave in recognizable
patterns, but contain noticeable differences from Navier-Stokes simulations.
Figure E compares the turbulence intensities from Castagna et. al. [11] and
MCT data at the same Reynolds number. The MCT turbulence intensities are
calculated from gyration. The gyration variable is considered as a stochastic
variable and used to perturb the velocity field. The MCT turbulence intensities
(I) are obtained by finding the root-mean-square value of gyration

(141)
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Figure 18: Topology of hairpin vortices as visualized by the Q-criterion at 5x 10,
colored by the values of the gyration. Low gyration values for hairpin vortex
indicate less variation in small-scale rotation.

Qualitatively similar results are found near the edge of the boundary layer
downstream of the hill, and near the wall upstream of the hill. MCT results
demonstrate the characteristic peak and decline in turbulence intensity, with
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some noticeable differences in the wall-normal data. Downstream of the bump
at © = 11.6 H, the boundary layer in the MCT data shrinks considerably, leading
to a wider spread of the turbulence intensity. The downstream behavior is likely
affected by the formation of structures such as hairpin vortices.

More in-depth information of the structure of the flow is found using the
MCT Q-criterion [15]. Figure @ shows the isosurface of the Q-criterion colored
by the gyration. Figure @ reveals structures within the turbulence, and partic-
ularly hairpin vortices downstream of the hill. Periodic regular hairpin vortices
emerge for the Q-value of 5 x 105, with the arches of these vortices character-
ized by a low value of gyration. Since these structures are all described by the
same value for the Q-criterion, these lower regions of gyration must correspond
to higher values of velocity gradients. Here, the macroscale component of the
flow is dominant. Near the floor, however, gyration plays a more critical role
in determining local evolution of structure near the wall. Overall, the new Q-
criterion provides the tool to visualize the evolution of large-scale structures
that form within the flow and see how small and large scale rotations affect the
dynamics and topology of the bulk flow.

3.4 Application: Translational and Rotational Nonequi-
librium

The current section employs the first order approximation to the Boltzmann-
Curtiss equation to investigate the shock structure in monatomic and diatomic
gases. The problem of shock wave structure is selected as it represents a flow
regime which is far from thermodynamic equilibrium. Moreover, this problem
deals with a one-dimensional flow, in which the impact of the mean gyration
of the flow is null, and the gyration equation behaves as transport equation
carrying a flow property that doesn’t contribute to the physics of the flow.
Also, the complexity of the boundary condition selection and its interference
with the solution is eliminated by considering this problem. Therefore, this
problem focuses on the effect of the bulk viscosity model for the shock wave
profiles.

By employing the previous assumptions, and recovering the definition of 7,
the stress tensor becomes symmetric, i.e.

tpi = —pOps — %Um%ﬁkl + pu (Uyzy, + Upay) (142)

With the new interpretation of the material parameter 7, the MCT heat flux
vector becomes

k
qr = 74#*T$k (143)
m

This heat flux exhibits a linear relation with temperature gradient, similar
to Fourier’s law of thermal conduction, with a thermal conductivity dependent
on the product of the temperate and the relaxation time. However, the new
expression for the thermal conductivity shows that the specific heat is approxi-
mately four times the gas constant if a unity Prandtl number is considered. This
ratio agrees with the estimated range reported in the NASA technical report
[78] for the calculation of the viscosity and thermal conductivity of gases based
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on Lennard-Jones potential, which shows that the ratio for diatomic nitrogen is
varying between 3.501 to 4.545 at ranges of temperature from 100 — 5000K.

With new expressions for the stress tensor and heat flux vector, they can
be plugged back into the balance laws described earlier for validation with the
DSMC results and experimental measurements and direct comparison with the
nonequilibrium solution from NS equations. A power law model of the relaxation
time as a function of the temperature is employed. Note that this approximation
does not physically contradict with the derivation of the material parameter p,
which is a function of the product of the temperature and the relaxation time. It,
instead, ensures a consistent intermolecular interaction model while comparing
with DSMC and NS solutions (e.g. [65, 9]).

The specific heats and the internal energy of the molecules are obtained in
accordance with the principle of equipartition of energy. Since a single tempera-
ture is used in the proposed formulation to describe thermodynamic equilibrium
(i.e. both rotational and translational equilibrium), the Landau-Teller-Jeans
equation [42] is included in diatomic gas simulations to extract rotational and
translational temperatures. The approximate expression for the rotational col-
lision number obtained by Parker [57] is considered for the calculation of the
rotational relaxation time constant.

The finite volume solver used in this study employs a forward Euler temporal
discretization for the unsteady term. In order to have a nonoscillating solution
in a hypersonic flow regime, a second order flux splitting scheme introduced
by Kurganov, Noelle and Petrova (KNP) [49] is used in the calculation of the
convective term at the interfaces. All diffusion terms are computed using central
differencing. The spatial accuracy has proven to be second order by following a
rigorous verification and validation procedure proposed by Roy et. al. [62, 63].
The full description of the code, as well as the verification and validation results,
were presented and published in the 2019 ATAA SciTech Forum.

3.4.1 Shock Structure for Monatomic Gases: Argon

Numerical simulations of shock wave structure in argon gas are performed at
different Mach numbers up to Mach 9 on 3000 uniform cells, which span ap-
proximately 40 upstream mean free paths. Any computed flow property @ is
normalized in the familiar way

Q-
Qnormahzed - QQ — Ql (144)

where subscripts 1 and 2 refer to the upstream and downstream of the shock
respectively. The axial distance x is normalized by the upstream mean free path
A

In order to show an overall comparison between the solution obtained from
the current study and the experimental measurements as well as other numer-
ical simulations of the shock structure, the reciprocal shock thickness, % at
Pnormalized = 0.9, is calculated and compiled into one graph for the Mach num-
ber range from Mach 1.2 to Mach 9. DSMC and NS data are re-printed from
the existing literature [65]. As shown in figure @7 NS simulations predict far
too thin shock wave, while the DSMC solution perfectly agrees with the experi-
mental data. The current solution shows significantly improved shock thickness
than NS solution. Also, the current solution and Burnett results, obtained by
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Figure 19: Comparison of argon’s reciprocal shock thickness

Fiscko and Chapman [}2&], are almost identical, and both predict a slightly thin-
ner shock wave than DSMC and experimental results of Alsmeyer [H] It should
be noted that at transonic Mach numbers, i.e. the Mach range from 1 to 1.3,
all simulations predict the same shock thickness as the experimental data, since
the flow is still at thermal equilibrium. However, as the Mach number increases
to supersonic and hypersonic speeds, the shock thickness predicted by NS sim-
ulations significantly deviates from DMSC and experimental data. The current
study agrees well with the experimental measurements with only less than 10
% difference while the NS simulation results show as much as 60% differences.
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Figure 20: Shock structure of argon at Mach 3.38. (a) Density profile; (b)

Reciprocal shock thickness

A more detailed representation of the density profile at Mach 3.38 is shown
in figure The reciprocal shock thickness, %, confirms that the first or-
der solution to the Boltzmann-Curtiss equation predicts a more realistic thicker
shock wave and closer to experimental and DSMC predictions than the nonequi-
librium NS solution. This improvement can be explained as following: equilib-
rium in Boltzmann distribution function is restricted to transnational motion
only. However, equilibrium in Boltzmann-Curtiss theory requires not only ve-

48

DISTRIBUTION A: Distribution approved for public release.



locity, but both gyration and velocity of molecules dependently to obey the
velocity-gyration based Boltzmann-Curtiss distribution. When the gyration is
zero, i.e. for moantomic gases, the velocity distribution function recovers to the
classical Boltzmann velocity distribution function. The nonequilibrium distri-
bution function, which lead to NS equations, assumes a first order deviation
from translational equilibrium only (i.e. equilibrium velocity distribution not
velocity-gyration distribution). However, the nonequilibrium distribution func-
tion obtained from the first order solution to Boltzmann-Curtiss equation ex-
tends nonequilibrium to rotational motion. Since only few collisions are required
for translational equilibrium, the time required to recover rotational equilibrium
is greater than that for translational equilibrium. Hence, the relaxation time
employed in the first order approximation to Boltzmann-Curtiss equation in the
current study is larger when compared to the relaxation time in the first order
approximation to Boltzmann equation that lead to NS equations. Therefore, the
nonequilibrium distribution function obtained in the current study represents
further departure from translational equilibrium than the classical Maxwellian
nonequilibrium distribution function for monatomic gases. In other words, the
bulk viscosity of the stress tensor derived from the Boltzmann-Curtiss distribu-
tion is accounting for this deviation.

0.02

=
,'E 0.01 LL
= <
S =
= 5
& -001] &
3 ~
N >
S -0.024 =
g 3
= £
S 5
= 4 .
-0.03 Current Study = N Current Study
o o oDSMC (Josyula) -10 4 - o o 0DSMC (Bird)
x x  x NS (Josyula) === NS
-0.04 T T T T
-30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 2 3 4 5 &6
/A
0 = T
—~ 2 Gl
) X M(j s ﬁr_
=) (c) x d O, .
3 0 » g £- /e
3 : S
= -0.02 x x =
S x h
< B =
% -0.034 ° x £
3 x S
= &
= 004 * &
k] x 3
3 x < -
T .0.051 N x =
~ =
< x < .50 4 o o
2 0,061 - 2 o
g g
£ 0074 Current Study = -60 4 Current Study
ﬁ h 0 o ©0DSMC (Josyula) ;VQ o o oDSMC (Bird)
x X NS (Josyula) = -== NS
0.08 -70 T T T T T T T T T T T g T
-30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 -8 -7 6 -5 -4 -3 -2 -1 01 2 3 4 5 6
z/A z/A

Figure 21: Argon normal stresses and heat flux, at Mach 1.2 (a & ¢) and Mach
8 (b & d). Figures (a) and (b) show the normal stresses with color black for .,
blue: t,,, and figures (c) and (d) show the heat flux Normal stresses of argon,;

Figure @(a—b) shows the normal stress distribution obtained from the cur-
rents solution, NS solution and DSMC results for Mach 1.2 and 8. In order
to obtain a comparison with DSMC results at a wide Mach number range, the
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DSMC data are printed from different sources [44, §]. The stresses in = and y
directions are normalized in a similar way as described in [44, 8], where 1, p;
and (' are the upstream pressure, density and most probable molecular velocity
respectively. The corresponding heat flux is shown in figure Rl(c-d).

At Mach 1.2, NS solution predicts slightly higher peak stresses and much
higher heat flux than DSMC solution, while the current solution exactly matches
DSMS results. At Mach 8, NS solution significantly deviates further from DSMC
results in both stress and heat flux, while the current solution still shows an
overall improvement in the prediction of the normal stresses and heat flux as
anticipated.

3.4.2 Shock Structure for Diatomic Gases: Nitrogen

The next set of simulations is carried out for nitrogen, a diatomic gas. Solutions
are generated at Mach numbers of 1.2, 5 and 10 for upstream conditions of
p1 = 1.225 kg/m3 and 77 = 300 K. The overall reciprocal shock thicknesses
is compared to experimental data of Alsmeyer [3], Camac [[10], NS and DSMC
results [9] as shown in figure P2. Similar to the argon case, the current solution
successfully predicts a wider shock and a more accurate density profiles than
NS solution at hypersonic conditions where both translational and rotational
nonequilibrium exist. Also, the current study is shown to agree well with the
DSMC solution.
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Figure 22: Comparison of nitrogen’s reciprocal shock thickness

More detailed comparisons of the density and temperature profiles are shown
in figure @(a—f) for Mach numbers 1.2, 5 and 10. At Mach 1.2, the density and
temperature profiles of the three solutions are almost identical with a slight
difference between the translational (black) and rotational (blue) temperatures.
As the Mach number increases, NS density and temperature profiles deviate
further from DSMC results. Note that DSMC results are taken as a reference
as it best matches experimental measurements of density profiles. Also, it is
useful for comparing temperature profiles as no experimental data exist in the
literature on the temperature profiles inside the shock-wave. Overall, the density
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profiles obtained from the current solution matches the DSMC predicted profile
with noticeable discrepancy for the temperature profile. However, since there
is a lack of experimental measurements of temperature inside the shock wave,
this discrepancy in the temperature profiles requires further investigations. It
should also be noted that DSMC is a solution to Boltzmann equation not to
Boltzmann-Curtiss equation.
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Figure 23: Nitrogen density and temperature profile (black: translation, blue:
rotation) at Mach 1.2 (a & b), Mach 5 (¢ & d), and Mach 10 (e & f).

4 Personnel & Recognition

This project has been supporting the PI and four gradate students. Up to date,
the PI has graduated two doctoral student and one master students expected
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to graduate this summer under the support of this award. The team has been
recognized in numerous occasions.

1. James Chen (PI)

e Promoted to Associate Professor with tenure, 2020

¢ Exceptional Scholar — Young Investigator Award, University at Buf-
falo - State University of New York, 2019

¢ Outstanding Young Engineer Award, Wichita Council of Engineering
Societies (nominated by ATAA), 2018

o Steve Hsu Keystone Research Scholar (Endowed Scholarship), 2017-
2018

e Elected as an Honorary Fellow at The Australian Institute of High
Energetic Materials, 2017

2. Louis B. Wonnell (PhD) — 2015-2018

o graduated in Spring 2018 from Kansas State University
e currently a Postdoctoral Researcher at Oak Ridge National Lab

3. Mohamad Ibrahim Cheikh (PhD) — 2016-2020

o graduated in Fall 2019 from University at Buffalo
e« APS DFD Travel Award, 2017
¢ Graduate Teaching Assistant of the Year, 2017

e currently a Postdoctoral Researcher at University of Houston
4. Mohamed M Ahmed (PhD student at K-State) — 2017-2018
5. Jiamiao Sun (MS student at UB) — 2019-2020

o expected to graduate in Spring 2020

5 Publications

Up to date, this project has resulted in two PhD dissertation, nine peer-reviewed
journal articles, five peer-reviewed proceeding articles, eleven conference presen-
tations and seven invited talks.

e PhD Dissertation

1. L. B. Wonnell, “A kinetic analysis of morphing continuum theory for
fluid flows,” PhD Dissertation, May 2018, Kansas State University

2. M. I. Cheikh, “A Morphing Continuum Theory for Fluid Flow,” PhD
Dissertation, Feb 2020, University at Buffalo

o Journal Articles

1. M. M. Ahmed, M. I. Cheikh and J. Chen, “Boltzmann-Curtiss De-
scription for Flows under Translational and Rotational Nonequilib-
rium,” Journal of Fludis Engineering, 142, 051302, 2020
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2. M. I. Cheikh, J. Chen and M. Wei, “Small-scale Energy Cascade
in Homogeneous Isotropic Turbulence,” Physical Review Fluids, 4,
104610, 2019

3. T. Yang, M. Wei and J. Chen, “A Monolithic Immersed Boundary
Approach to Study Fluid-Solid Interaction of Flexible Wings,” In-
ternational Journal of Micro Air Vehicle, 11, 1-13, 2019

4. L. B. Wonnell and J. Chen, “First-order approximation to the Boltzmann-
Curtiss Equation for Flows with Local Spins,” Journal of Engineering
Mathematics, 114, 4364, 2019

5. L. B. Wonnell, M. 1. Cheikh and J. Chen, “A Morphing Continuum
Simulation of Transonic Flow over an Asymmetric Hill,” ATAA Jour-
nal, 56, 4321-4330, 2018

6. M. I. Cheikh, L. B. Wonnell and J. Chen, “A Morphing Continuum
Analysis in Compressible Turbulence,” Physical Review Fluids, 3,
024604, 2018

7. J. Chen, “Morphing Continuum Theory for Turbulence: Theory,
Computation and Visualization,” Physical Review E, 96, 043108,
2017

8. J. Chen, “An Advanced Kinetic Theory for Morphing Continuum
with Inner Structures,” Reports on Mathematical Physics, 80, 317-
332, 2017

9. L. B. Wonnell and J. Chen, “Morphing Continuum Description for
Boundary Layer Transition and Turbulence,” Journal of Fluids En-
gineering, 139, 011205, 2017

e Proceeding Articles

1. M. I. Cheikh and J. Chen, “Particle-Turbulence Interaction in Ho-
mogeneous Isotropic Turbulence,” ATAA-2019-3715

2. M. M. Ahmed and J. Chen, “Verification and Validation of a Morph-
ing Continuum Approach to Hypersonic Flow Simulations,” ATAA-
2019-0891

3. M. I. Cheikh, E. A. Schinstock, G. P. Ferland and J. Chen,“A Molec-
ular Dynamics-Based Model for Knudsen Number and Slip Velocity,”
Proceeding of the ASME 2017 Fluids Engineering Division Summer
Meeting, FEDSM2017-69136

4. L. Wonnell and J. Chen, “Extension of Morphing Continuum Theory
to Numerical Simulations of Transonic Flow Over a Bump,” ATAA-
2017-3461

5. M. I. Cheikh and J. Chen, “A Morphing Continuum Approach to
Supersonic Flow over a Compression Ramp,” ATAA-2017-3460

¢ Conference Presentation

1. M. L. Cheikh and J. Chen, “Particle-Turbulence Interaction in Homo-
geneous Isotropic Turbulence,” ATAA Aviation 2019 Forum, Dallas,
TX, June 17-21, 2019
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2. M. I. Cheikh and J. Chen, “Multiscale Energy Transfer Within Tur-
bulence,” Modeling and Simulation of Turbulent Mixing and Reac-
tion: For Power, Energy and Flight, Amherst, NY, April 12-13, 2019

3. M. M. Ahmed and J. Chen, “Verification and Validation of a Morph-
ing Continuum Approach to Hypersonic Flow Simulations,” ATAA
Scitech 2019 Forum, San Diego, CA, January 7-11, 2019

4. J. Chen and M. M. Ahmed,“An Advanced Kinetic Description for
Shock Structure under Hypersonic Conditions,” 71st APS DFD Meet-
ing, Atlanta, GA, November 18-20, 2018

5. M. I. Cheikh and J. Chen,“Energy Flows of Homogeneous Isotropic
Turbulence at Sub-scale Eddies,” 71st APS DFD Meeting, Atlanta,
GA, November 18-20, 2018

6. A. Hajesfandiari, H. Zhang and J. Chen,“Boundary Effects in Mi-
crochannel Flows,” 71st APS DFD Meeting, Atlanta, GA, November
18-20, 2018

7. L. B. Wonnell, M. I. Cheikh, and J. Chen, “Morphing Continuum
Theory: A First Order Approximation to the Balance Laws,” 70th
APS DFD Meeting, Denver, CO, November 19-21, 2017

8. M. I. Cheikh, L. B. Wonnell, and J. Chen, “Energy Cascade Analy-
sis: From Subscale Eddies tp Mean Flow,” 70th APS DFD Meeting,
Denver, CO, November 19-21, 2017

9. M. I. Cheikh, E. A. Schinstock, G. P. Ferland and J. Chen, “A Molec-
ular Dynamics-Based Model for Knudsen Number and Slip Veloc-
ity,” the ASME 2017 Fluids Engineering Division Summer Meeting,
Waikoloa, HI, July 30 - August 3, 2017

10. L. B. Wonnell and James Chen, “Extension of Morphing Continuum

Theory to Numerical Simulations of Transonic Flow over a Bump,”
47th ATAA Fluid Dynamics Conference, Denver, CO, June 5-9, 2017

11. M. I. Cheikh and J. Chen, “A Morphing Continuum Approach to
Supersonic Flow over a Compression Ramp,” 47th ATAA Fluid Dy-
namics Conference, Denver, CO, June 5-9, 2017

o Invited Talk

1. “Multiscale Energy Transfer within Turbulence,” The Burgers Pro-
gram for Fluid Dynamics (Fluid Dynamics Review Seminar Series)
at University of Maryland, September 13, 2019

2. “Multiscale Energy Transfer within Turbulence,” Department of Me-
chanical, Aerospace and Nuclear Engineering at Rensselaer Polytech-
nic Institute, March 20, 2019

3. “A Kinetic Description for Morphing Continuum,” Department of
Mathematics at University at Buffalo, October 16, 2018

4. “A Kinetic Description of Morphing Continuum: the zero-th and first
order approximation,” The Institute for Computational Engineering
and Sciences at The University of Texas at Austin, March 29, 2018
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5.

“A Kinetic Description of Morphing Continuum and Its Applications
in Fluid Mechanics,” Department of Mechanical and Aerospace En-
gineering at University of Buffalo, February 19, 2018

“A Kinetic Description of Morphing Continuum and Its Applications
in Fluid Mechanics,” Department of Mechanical and Aerospace En-
gineering at Case Western Reserve University, January 29, 2018

“Research at Multiscale Computational Physics Lab - Advanced Ki-
netic Theory and Atomistic Electrodynamics,” Department of Math-
ematics at Kansas State University, April 17, 2017

e Media Coverage

1.

e B A o

e e T T
oD Ul W N RO

Aerospace Testing International, Link Here & In Print (July 2019
Issue)

Design News, Link Here, April 16, 2019

Design Engineering, Link Here, March 20, 2019

Futurity, Link Here, March 18, 2019

EPeak World News, Link Here, March 15, 2019

Space Daily, Link Here, March 14, 2019

Electronic Component News, Link Here, March 14, 2019
Science Daily, Link Here, March 12, 2019

Before It’s News, Link Here, March 12, 2019
Environmental News Network, Link Here, March 12, 2019

. Bioengineering.Org, Link Here, March 12, 2019

. Super Computing Online, Link Here, March 12, 2019
. Scienmag, Link Here, March 12, 2019

. NewsWise, Link Here, March 12, 2019

. TechXplore, Link Here, March 12, 2019

. EurekAlert, Link Here, March 12, 2019
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