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1 FINAL REPORT

This report documents the major project findings during the duration of the AFOSR Award titled Optimal 
Sensor Tasking for Enhanced Space Situational Awareness. The main accomplishments of our work during 
the duration of the project are summarized as follows:

• Uncertainty Quantification: Continuing on our work on Gaussian mixture model (GMM), we have
developed an adaptive mechanism to automatically select the architecture of the Gaussian mixture
model. Unlike other methods in literature, we used the Kolmogorov equation error as a feedback to
automatically select the Gaussian kernels in the mixture model. Furthermore, we have exploited our
prior work in how nonlinear is it? to develop a mechanism to find the direction in which uncertainty
growth is maximum. The developed method is the only method in the literature which constrained the
GMM approximation to satisfy the Fokker-Planck-Kolmogorov equation.

In a parallel effort, we have developed computationally efficient semi-analytical approaches for un-
certainty propagation while making use of tools from convex optimization. In particular, non-product
cubature method known as Conjugate Unscented Transformation (CUT) is developed to compute de-
sired order statistical moments in a computationally efficient manner. CUT method is also exploited to
develop sparse collocation methods to compute higher order state transition matrices and state density
function with guaranteed convergence. It should be noted that the CUT method provide the minimum
number of simulation points in the literature to accurately compute the desired order moments. The
CUT method was successfully used to compute the probability of collision between two space ob-
jects objects with only 1490 simulations while 10 million Monte Carlo simulations were required to
achieve the same accuracy.

Following is the list of publications in this effect:

1. M. Mercurio, “Sparse Collocation Methods for Solving High Dimension PDEs in Estimation and
Control of Dynamical Systems,” Ph.D. Dissertation, Department of Mechanical & Aerospace
Engineering, University at Buffalo, January, 2017.

2. K. Vishwajeet and P. Singla, “Adaptive Split-Merge based Gaussian Mixture Model Approach
for Uncertainty Propagation,” AIAA Journal of Guidance, Control and Dynamics, Vol. 41, No.
3, 2018.

3. N. Adurthi, P. Singla, and T. Singh, “Conjugate Unscented Transformation: Applications to
Estimation and Control,” ASME Journal of Dynamic Systems, Measurement, and Control, Vol.
140, No. 3, 2018.

4. M. Mercurio, and P. Singla, “A Tree-Based Approach for Efficient and Accurate Conjunction
Analysis,” Computer Modeling in Engineering & Sciences, Special Issue on Computational
Methods in Celestial Mechanics, Vol. 111, Issue 3, pp. 229?256, Jan. 2016.

5. N. Adhurthi and P. Singla, “A Conjugate Unscented Transformation Based Approach for Accu-
rate Conjunction Analysis,” AIAA Journal of Guidance, Control and Dynamics, Vol. 38, Issue
9, pp. 1642?1658, Sep. 2015 .

6. M. Mercurio, M. Majji and P. Singla, “How Non-Gaussian Is it?: Applications to Astrodynam-
ics,” Special Issue of Journal of Astronautical Sciences, In Review.

7. D. Ciliberto, M. Majji and P. Singla, “Extended Kalman Filtering in Regularized Co- ordinates:
Applications to Astrodynamics ,” Special Issue of Journal of Astronautical Sciences, To be Sub-
mitted.

8. N. Adurthi, and M. Majji, “Uncertain Lambert Problem,” Special Issue of Journal of Astronau-
tical Sciences, To be Submitted.
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9. Z. Hall, T. Lee and P. Singla, “Higher Order Polynomial Series Expansion for Uncertain Lambert
Problem,” 2018 AIAA/AAS Astrodynamics Specialist Conference, Snowbird, UT, 19-23 August
2018.

10. D. Gueho, P. Singla and R. Melton, “Learning Capabilities of Neural Networks and Keplerian
Dynamics,” 2018 AIAA/AAS Astrodynamics Specialist Conference, Snowbird, UT, 19-23 Au-
gust 2018.

11. T. Lee, M. Majji and P. Singla, “A High Order Filter For Estimation of Nonlinear Dy- namic Sys-
tems,” 2018 AIAA/AAS Astrodynamics Specialist Conference, Snowbird, UT, 19- 23 August
2018.

12. M. Mercurio, M. Majji and P. Singla, “How Non-Gaussian Is it?: Applications to Astrodynam-
ics,” John L. Junkins Dynamic Systems Symposium, College Station, TX, 20-21 May 2018.

13. N.Adurthi,and M.Majji, “Method of Characteristics based Nonlinear Filter: Applications to
Space Object Tracking,” 2018 AIAA/AASAstrodynamicsSpecialist Conference, Snowbird, UT,
19-23 August 2018

14. Lee, T.W., Singla, P., Majji, M., “Conjugate Unscented Transform Approach to Compute High
Order State Transition Matrices: Applications to Uncertainty Propagation” presented at AAS/AIAA
Astrodynamics Specialist Conference, Stevenson, WA, 2017.

15. M. Mercurio and P. Singla, “A Tree-Based Approach for Efficient and Accurate Conjunction
Analysis,” 2015 International Conference on Computational & Experimental Engineering &
Sciences (ICCES), Reno, NV, July 20?24, 2015.

16. P. Singla, and Manoranjan Majji, “How Non-Gaussian Is It?,” 2015 International Conference on
Computational & Experimental Engineering & Sciences (ICCES), Reno, NV, July 20?24, 2015.

17. N. Adurthi and P. Singla, “Conjugate Unscented Transform Based Approach for Accurate Con-
junction Analysis,” 2015 International Conference on Computational & Experimental Engineer-
ing & Sciences (ICCES), Reno, NV, July 20?24, 2015, Keynote Paper.

It should be mentioned that that our prior work in this area has garnered a lot of attention and is among
the highest cited paper in this area.

– G. Terejanu, P. Singla, T. Singh, and P. D. Scott, “Uncertainty Propagation for Nonlinear Dy-
namic Systems Using Gaussian Mixture Models,” Journal of Guidance, Control, and Dynamics,
Vol. 31, No. 6 (2008), pp. 1623-1633. (citations: 128) (paper from earlier YIP grant)

– G. Terejanu, P. Singla, T. Singh, and P. D. Scott, “Adaptive Gaussian sum filter for nonlinear
Bayesian estimation,” IEEE Transactions on Automatic Control 56.9 (2011): 2151-2156. (cita-
tions: 96) (paper from earlier YIP grant)

• Sensor Tasking: The CUT algorithm has been used to derive information theoretic sensor tasking
framework. Our work clearly shows the benefit of using mutual information as a taskign metric as
opposed to Fisher information generally used in the literature. As optimization of sensor modalities
leads to a mixed-integer programming problem which is combinatorial in nature, greedy algorithms
are developed to recursively optimize sub problems. Particularly, methods that are greedy in time,
greedy in sensors and greedy in objects are developed in a moving horizon approach for sensor task-
ing problem. Coupled with the Conjugate Unscented Transform for uncertainty propagation, these
approaches provide a computationally efficient framework to simultaneously task sensors and track
multiple targets.

Following is the list of publications in this respect:
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1. N. Adurthi, “Conjugate Unscented Transformation based Framework for Uncertainty Quantifi-
cation, Nonlinear Filtering, Optimal Control and Dynamic Sensing,” Ph.D. Dissertation, Depart-
ment of Mechanical & Aerospace Engineering, University at Buffalo, January, 2016.

2. N. Adurthi, P. Singla, and M. Majji, “Sparse Approximation Based Collocation Scheme for Non-
linear Optimal Feedback Control Design,” AIAA Journal of Guidance, Control, and Dynamics,
vol. 40, no. 2, pp. 248–264, Feb. 2017.

3. M. Mercurio, M. Majji and P. Singla, “A Conjugate Unscented Transform-Based Scheme for
Optimal Control with Terminal State Constraints,” 2018 American Control Conference, Mil-
waukee, WI, June 27?29, 2018.

4. N. Adurthi, P. Singla and M. Majji, “Conjugate Unscented Transform Based Approach for Dy-
namic Sensor Tasking and Space Situational Awareness,” 2015 American Control Conference,
Chicago, IL, July 1–3, 2015.

5. N. Adurthi, P. Singla and M. Majji, “Conjugate unscented transformation based orbital state
estimation and sensor tasking for efficient space surveillance.” In AIAA/AAS Astrodynamics
Specialist Conference, p. 4168. 2014.

6. M. Mercurio, N. Adurthi, P. Singla, and M. Majji, “A Collocation-Based Approach to Solve
the Finite Horizon Hamilton-Jacobi-Bellman Equation,” 2016 American Control Conference,
Boston, MA, July 6–8, 2016.

In addition to aforementioned papers, two more journal papers are in the editing stage and are expected
to be submitted by end of this year.

• Data Association: PIs have incorporated the CUT algorithms with well-known Joint Probability Data
Association (JPDA) and Multiple Hypothesis Tracking (MHT) framework to develop computation-
ally efficient framework for accurate data association. These new frameworks are based upon the
premises that accurate uncertainty quantification leads to accurate data association. Furthermore, the
solution of uncertain Lambert problem is being incorporated in the data association framework to
consider only the physically viable hypotheses for data association. Our preliminary studies shows
that the incorporation of uncertain Lambert problem in DA framework leads to significant reduction
of hypotheses to be consider.

Following is the list of publications in this effect:

1. N. Adurthi, M. Majji, Utkarsh R. Mishra and and P. Singla, “Multiple Hypothesis Tracking
and Joint Probabilistic Data Association Filters for Multiple Space Object Tracking,” 2018
AIAA/AAS Astrodynamics Specialist Conference, Snowbird, UT, 19-23 August 2018.

2. N. Adurthi, M. Majji, U. R. Mishra, and P. Singla, “Conjugate Unscented Transform Based
Joint Probability Data Association,” presented at the 2017 AIAA/AAS Astrodynamics Specialist
Conference, Stevenson, WA, 2017.

In addition to aforementioned papers, two more journal papers are in the editing stage and are expected
to be submitted by end of this year.

• Transition Activities: PIs have established active technical interchanges with researchers from AFRL-
Kirtland (Dr. Ryan Weisman) and AFRL-Rome (Dr. Joseph Raquepas). In this respect, PIs have
conducted two days summer workshop at AFRL, Kirtland, NM to transition developed algorithms
to AFRL researchers. PIs have also established contacts with industry partners (Applied Defense
Services (ADS), Inc. & ExoAnalytic Inc.) to transition their research work to industry. PI’s former
student, Michael Mercurio (supported through this grant) is currently working full time at ADS. One
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of the student, Zachary Hall, supported through this effort has received the 2018 SMART fellowship.
PIs have also exploited many existing mechanisms such as AFRL Space Scholar Program and summer
internships at industry to help with transition activities.
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High Fidelity Uncertainty Quantification and its 
Applications in SSA.

PI: Puneet Singla
Co-PI: Manoranjan Majji

Department of Aerospace Engineering
The Pennsylvania State University

Texas A&M University

AFOSR Grant No.: AFOSR FA9550-15-1-0313
Start Date: 15 July, 2015.
PM: Dr. Stacie Williams

2018 Remote Sensing and Imaging Physics Program Review
Albuquerque, New Mexico, 4th – 6th September, 2018.
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Space Object Tracking
Where are we going?

Research Philosophy: A unique combination of data association, tracking
and resource management algorithms for effective and efficient SSA may
not exist.

6
DISTRIBUTION A: Distribution approved for public release



Semi Analytical Means for Uncertainty Propagation

ü We have developed: Sparse Collocation, Adaptive Gaussian Mixture

Models (AGMM), Method of Characteristics Methods for uncertainty

propagation by solving the Fokker Planck Kolmogorov (FPK) and

Liouville equations for large scale systems.

ü Our tools employ convex optimization tools for guaranteed

convergence.

ü Non-product cubature method known as Conjugate Unscented

Transformation (CUT) has been developed to compute desired order

statistical moments in a computationally efficient manner.

ü Higher-order State Transition Tensors (STTs) are evaluated with the
help of CUT.

• G. Terejanu, P. Singla, T. Singh, and P. D. Scott. "Uncertainty Propagation for Nonlinear Dynamic

Systems Using Gaussian Mixture Models", Journal of Guidance, Control, and Dynamics, Vol. 31,

No. 6 (2008), pp. 1623-1633. (128) (paper from earlier YIP grant)

• G. Terejanu, P. Singla, T. Singh, and P. D. Scott, "Adaptive Gaussian sum filter for nonlinear Bayesian 

estimation." IEEE Transactions on Automatic Control 56.9 (2011): 2151-2156. (96) (paper from earlier

YIP grant)
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Conjugate Unscented Transformation
“Optimal” Quadrature Approach
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20 million MC Runs 
vs. 1490 CUT Runs

• CUT: An efficient quadrature scheme for the determination of high
dimension expectation integrals involving symmetric pdfs.
–non-product cubature rule.
–extends unscented transformation rules to compute higher order moments.
–20 millions MC Runs vs. 1490 CUT Runs.

• CUT provides a computationally efficient tool for accurate uncertainty
propagation.

– allows one to trade-off between accuracy and computational resources!!

Adurthi, Singla, 2015 
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Semi Analytical Machine Learning Tools for Uncertainty Propagation 

Method of Characteristics for 
Domain Tracking

1. Collocation points generated using
Conjugate Unscented Transformation
(CUT)

2. Sparsity enhancing l1 optimization
tools to ensure parsimonious basis
functions

3. No assumptions made on structure of
log-PDF

Sparse Collocation Methods 
State PDF Approximation
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Moment Propagation (Vector-Matrix models)

• JMEKF Moment Propagation

with initial conditions

where,
STTs Differential Equations

ODEs up to 4th order

Higher Order Filter
Accurate Uncertainty Propagation

Even for someone who enjoys 

taking partials, this is way too 

much!!! 

Majji, Junkins & Turner 2008
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Out with the old …
in with the new !!!!

Can we supplant the high 
order partial generation 
process ???
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briefly discussed in the first section. Section II presents the CUT based approach to compute higher
order state transition matrices with more details about the CUT methods. Section III presents an
analytical description to compute state probability density function. Finally, numerical results are
shown to validate the efficiency and accuracy of the proposed ideas.

STATE TRANSITION MATRIX

This section presents the conventional approach to compute state transition matrix. Let us con-
sider the case of following dynamical systems:

ẋ(t) = f(t,x(t)) (1)

where x(t) is a n-dimensional vector of system states. Integration of this differential equation
yields:

x(t) = x0 +

Z t

0
f(⌧,x(⌧))d⌧ =  (t,x0) (2)

where  (t,x0) is known as the flow of the system. Now, differentiating Eq. (2) with respect to
initial state vector x0 yields the expression for state transition matrix �(t, t0):

�(t, t0) =
@x(t)

@x0
= In⇥n +

Z t

0

@f()

@x(⌧)

@x(⌧)

@x0
d⌧ (3)

where In⇥n is (n ⇥ n) identity matrix. Let us introduce the following notations:

A(⌧) =
@f()

@x(⌧)
|x(⌧) (4)

Using the expressions given by Eq. (4), we can rewrite Eq. (3) as:

�(t, t0) = In⇥n +

Z t

0
A(⌧)

@x(⌧)

@x0
d⌧ (5)

Differentiating expression in Eq. (5) with respect to time t yields:

�̇(t, t0) =
@�(t, t0)

@t
= A(t)�(t, t0), �(t0, t0) = In⇥n (6)

Eq. (6) expresses the conventional approach to compute the state transition matrix. The state transi-
tion matrix is generally computed along a states trajectory and is used to compute the perturbation
from a nominal trajectory as follows:

�x(t) =  (t,x0 + �x0) �  (t,x0) ⇡ �(t, t0)�x0 (7)

Notice that the aforementioned equation for the departure motion is valid only up to first order
Taylor series expansion. In general, one has to take the higher order terms into consideration. In the
next section, we discuss the concept of higher order state transition matrices and a computational
approach to compute them.
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HIGHER-ORDER STATE TRANSITION MATRIX

Let us consider the Taylor series expansion of the departure motion from the nominal trajectory:

�x(t) ⇡
1X

N1=0

1X

N2=0

· · ·
1X

Nn=0

�xN1
01
�xN2

02
· · · �xNn

0n

N1! N2! · · · Nn!

@N1+N2+···+Nn

@xN1
01
@xN2

02
· · · @xNn

0n

 (t,x0), N1 = N2 = · · · Nn 6= 0

(8)

In other words, one can expand �x(t) in terms of polynomial basis functions:

�x(t) ⇡
mX

i=1

ci(t)pi(�x0) = c(t)p(�x0) (9)

where pi(�x0) is the polynomial function of total degree i. Note that the coefficients of the linear
terms corresponds to the conventional state transition matrix, which is valid only in the neighbor-
hood of the nominal trajectory denoted by x(t). Higher order terms can be considered as higher
order state transition matrices [1–3]. If initial condition, x0 is a random variable with prescribed
density function ⇢(x0), then it would make sense to compute the first order and higher order state
transition matrix valid over the domain of initial condition uncertainty. In this respect, one can pose
the following problem (also known as statistical linearization) to compute state transition matrix
equivalent coefficients, ci(t):

min
ci(t)

J =
1

2

Z
(�x(t) � c(t)p(�x0))

T (�x(t) � c(t)p(�x0)) ⇢(x0)d�x0 (10)

=
1

2
h(�x(t) � c(t)p(�x0)), (�x(t) � c(t)p(�x0))i (11)

where the angle brackets are generalization of inner products. Taking the first derivative of J with
respect to coefficient vector c leads to the following normal equations to solve for c:

mX

j=1

hpi(�x0), pj(�x0)icj = h�x(t), pi(�x0)i, i = 1, 2, · · · , m (12)

This can be written in a compact form as:

M(t)c(t) = b(t), Mij(t) = hpi(�x0), pj(�x0)i, bi(t) = h�x(t), pi(�x0)i (13)

To this end, �x0 is assumed to be a function of a standardized random vector, ⇠ defined by a stan-
dardized density function, ⇢(⇠). If �x0 is assumed to be Gaussian random vector with a prescribed
mean vector, µ and a covariance matrix, ⌃, then ⇠ can be a vector of Gaussian random variables
with zero mean and identity covariance. Hence, �x0 can be written as:

�x0 = a0 + a1⇠ (14)

where, a0 = µ and a1 =
p
⌃. Hence, basis function, pi can be defined as a function of ⇠ rather

than �x0. Furthermore, if one chooses polynomial basis functions to be orthogonal polynomials
associated with the assumed probability distribution for the input variables, ⇠, then M will be a
diagonal matrix and Eq. (13) can be re-written as:

M(t)c(t) = b(t), Mii(t) = hpi(⇠), pi(⇠)i, bi(t) = h�x(t, ⇠), pi(⇠)i (15)
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briefly discussed in the first section. Section II presents the CUT based approach to compute higher
order state transition matrices with more details about the CUT methods. Section III presents an
analytical description to compute state probability density function. Finally, numerical results are
shown to validate the efficiency and accuracy of the proposed ideas.

STATE TRANSITION MATRIX

This section presents the conventional approach to compute state transition matrix. Let us con-
sider the case of following dynamical systems:

ẋ(t) = f(t,x(t)) (1)

where x(t) is a n-dimensional vector of system states. Integration of this differential equation
yields:

x(t) = x0 +

Z t

0
f(⌧,x(⌧))d⌧ =  (t,x0) (2)

where  (t,x0) is known as the flow of the system. Now, differentiating Eq. (2) with respect to
initial state vector x0 yields the expression for state transition matrix �(t, t0):
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where In⇥n is (n ⇥ n) identity matrix. Let us introduce the following notations:

A(⌧) =
@f()

@x(⌧)
|x(⌧) (4)

Using the expressions given by Eq. (4), we can rewrite Eq. (3) as:

�(t, t0) = In⇥n +

Z t
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A(⌧)

@x(⌧)

@x0
d⌧ (5)

Differentiating expression in Eq. (5) with respect to time t yields:

�̇(t, t0) =
@�(t, t0)

@t
= A(t)�(t, t0), �(t0, t0) = In⇥n (6)

Eq. (6) expresses the conventional approach to compute the state transition matrix. The state transi-
tion matrix is generally computed along a states trajectory and is used to compute the perturbation
from a nominal trajectory as follows:

�x(t) =  (t,x0 + �x0) �  (t,x0) ⇡ �(t, t0)�x0 (7)

Notice that the aforementioned equation for the departure motion is valid only up to first order
Taylor series expansion. In general, one has to take the higher order terms into consideration. In the
next section, we discuss the concept of higher order state transition matrices and a computational
approach to compute them.
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Departure motion dynamics

Polynomial representations of the flow:

• State transition tensors are equivalent to the coefficients of this expansion, i.e., 
• Derivative free approach to evaluate sensitivities over a domain of interest. 

• Domain of interest is represented by the state PDF. 
• Tensors are evaluated using minimal number of model evaluations. 

(a) CUT Points in 2D
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(b) CUT Points in 3D

Figure 1. A Schematic of CUT Axes

These orthogonal polynomials can be computed through the application of the Gram-Schmidt or-
thogonalization process. The major challenge lies in computing the multi-dimensional expectation
integrals, which appear in the expression for bi(t). Generally, these integrals are evaluated numeri-
cally, i.e.,

bi(t) = h�x(t), pi(⇠)i =

NX

i=1

wipi(⇠i)�x(t, ⇠i) (16)

Conventionally, Monte Carlo (MC) methods are used for this purpose. While MC methods generally
suffer from slow convergence rates, the importance sampling strategies to alleviate this problem
(e.g., Markov Chain MC) cannot be parallelized effectively. An alternative to the random sampling
is the quadrature scheme, such as the popular Gaussian Quadrature, which involves deterministic
points carefully chosen to reproduce exactly the integrals for polynomials, i.e., moments of the
density function. The Gaussian quadrature schemes exactly reproduce the integral of a polynomial
of degree 2M �1 with Mm points in a m-dimension space. Even for a moderate-dimension system
involving, say, 6 random variables, the number of points required to evaluate the expectation integral
with only 5 points along each direction is 56 = 15, 625. The sparse grid quadratures, and in
particular Smolyak quadrature, take the sparse product of one dimensional quadrature rules and
thus have fewer points than the equivalent Gaussian quadrature rules, but at the cost of introducing
negative weights [9]. Fortunately, the Gaussian quadrature rule is not minimal for m � 2, and there
exists quadrature rules requiring fewer points in high dimensions [10]. For example, the Unscented
Transformation (UT) [11] is exact to degree 2 but with linear growth of points with dimension.
However, the UT cannot be used to reproduce higher order moments.

In our prior work, a non-product quadrature rule known as the Conjugate Unscented Transfor-
mation (CUT) [5–8] has been developed. The CUT approach can be considered an extension of
the conventional UT method that satisfies additional higher order moment constraints. Rather than
using tensor products as in Gauss quadrature, the CUT approach judiciously selects special struc-
tures to extract symmetric quadrature points constrained to lie on specially defined axes as shown
in Figure 1. For each cubature point, two unknown variables, a weight wi and a scaling parameter
ri are assigned. The moment constraints equations for the desired order are derived in terms of
unknown variables ri and wi. Because of the symmetries of cubature points, the odd-order moment
constraints equations are automatically satisfied, so the wi and ri are found by solving just the even
order equations. The order of these moment constraint equations dictates the set of cubature points.

5

use quadratures for inner product evaluation

this motivates

ci(t)
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• Step 3. Propagate the cut points through the system dynamics 

• Step 4. Compute high order STM

• Step 5. Compute prior statistical moments

<=>

STTs

• Step 8. Compute the high order moments

• Step 9. Compute cut points for the next propagation step

<=>
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Figure 8. 5th Orbit Period in X-Y Plane
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STM Approximation
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Figure 2. Comparison of Points - 9th Order Accuracy.

These new sets of so-called sigma points are guaranteed to exactly evaluate expectation integrals
involving polynomial functions with significantly fewer points. Figure 2 shows a comparison of the
number of points required for CUT and Gauss-Legendre quadratures for similar accuracy, clearly
illustrating the reduced growth exhibited by the CUT method. More details about the CUT method-
ology and its comparison with conventional quadrature rules can be found in Ref. [5–8, 12]. With
the application of the CUT approach, we can generate higher order statistical equivalent transition
matrices in a computationally efficient manner.

COMPUTATION OF PROBABILITY DENSITY FUNCTION

This section presents an analytical solution to compute the state probability density function (pdf).
Given a pdf in an initial domain, it is important to know the pdf in a desired domain over time for
the accurate characterization of uncertainty propagation. The transformation of variables (TOV)
technique allows for exact mapping of pdf between different domains. Given an initial pdf, ⇢(x0),
the state pdf p(x(t)) can be computed as:

p(x(t)) = ⇢

0
B@ �1(x(t))| {z }

 0(xt)

1
CA

����
@x(t)

@x0

����
�1

x0= �1(x(t))

(17)

 0(x(t)) denotes the inverse map corresponding to Eq. (2). Also notice that @x(t)
@x0

= �(t, t0) is
a first order state transition matrix whose time evolution is governed by Eq. (6). Hence, we can
rewrite Eq. (17) as:

⇢(x(t)) = ⇢ ( 0(x(t))) k�(t0, t)k , �(t0, t) = ��1(t, t0) (18)

To get further insight, let us consider the time derivative of k�(t, t0)k.

d k�(t, t0)k
dt

= k�(t, t0)kTr

0
BB@��1(t, t0)

d�(t, t0)

dt| {z }
A(t)�(t,t0)

1
CCA = k�(t, t0)kTr (A(t)) (19)

6

Higher Order State Transition Matrices
Non-Intrusive Approach

3rd orbit period2nd orbit period

Method of Characteristics:

15
DISTRIBUTION A: Distribution approved for public release



Figure 1: Uncertain Lambert Problem Diagram

Notice that expanding the function out in this manner allows us to express the approximation for y as a
polynomial in powers of �x with constant coefficients corresponding to partial derivatives of y evaluated
at the mean of x. The first partial derivative term is analogous to the first order sensitivity matrix, also
sometimes referred to as the state transition matrix used in linear analyses. This first order approximation is
only valid in a limited region around the nominal solution y⇤ and quickly breaks down due to non-linearities
inherent in the problem dynamics. In general, one must account for the higher order terms for the solution
to be valid outside of the vicinity of the nominal solution [10,11]. Grouping the partial derivative terms into
constant matrices Ai, and grouping all possible combinations of �x of each order into (bi⇥1) vectors �x(i),
Eq. (4) can be re-written as:

y ⇡ Ao + A1�x
(1) + A2�x

(2) + A3�x
(3) + . . .Al�x

(l) (5)

The coefficient Matrices Ai will be of varying sizes (N ⇥ bi) depending on the number of additional basis
functions for each polynomial approximation order. From Ref. [12], the total number of basis functions M ,
for an n dimensional problem and an lth order polynomial approximation is known to follow the formula:

M = (n+l)Cl =
(n + l)!

l! n!
(6)

It naturally follows that the number of additional basis functions bi for each added polynomial order i is:

bi = (n+i)Ci � (n+i�1)C(i�1) =
(n + i)!�i(n + i � 1)!

i! n!
(7)

Consider for example the first order sensitivity matrix A1, also known as the state transition matrix.

b1 =
(n + 1)!�n!

n!
=

n! [(n + 1) � 1]

n!
b1 = n

(8)

3

• Higher order STTs are computed through 745 CUT points.
• resulting distribution is validated against 100,000MC runs.

Uncertain Lambert Problem
Higher Order Sensitivities

Hall, Singla, 2018
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Mahalanobis Distance Representation

Uncertain Lambert Problem
Higher Order Sensitivities

Test Case : GTO
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Data Association:

ü Handshake of CUT with Joint Probability Data 
Association (JPDA) & Multiple Hypothesis Tracking 
(MHT).

ü Accurate bearing only data association.
ü Gating based upon uncertain Lambert problem.

18
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M11 M12

T1 T2

T2 T1

T3 T1

T3 T2

M21 M22 M23
T1 T2 T3
T2 T1 T3
T3 T1 T2
T3 T2 -

M31 M32
T1 T2
T2 T1
T3 T1
T3 T2

!"
!#

!$

Ø Select a hypothesis branch with >2 time steps 

Ø Select the track of measurements associated with 

target T1

Ø Measurement Track à M11 , M22, M32 

Ø IOD methods to check for feasibility à prune branch

Ø For example : Solve Lambert Problem between pairs of 

measurements à consistent orbital elements

Data Association
CUT + Uncertain Lambert Problem
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Ø Single sensor with limited Field 
of View

Satellite 1 Satellite 2

Data Association
Covariance Realism

Better UQ è Better Data Association è Better 
State estimation

Use high order moments
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Data Association Results

General observations
Ø High order CUT filters lead to improved 

association 
Ø Improved association leads to improved state 

estimation
Ø Estimation errors decrease …

Ø Covariance realism is also improved by 
increasing quadrature order. 

Ø Gating based upon uncertain Lambert problem 
decreases the number of hypotheses.
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Sensor Tasking:

ü CUT + Information Theory + Mixed Integer 
Programming (MIP).

ü Appropriate Simplifications for tractable numerical 
solution for MI optimization.
Ø Greedy in Time AND/OR Targets AND/OR Sensors 

approximations to the cost function

22
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Ø Greedy in target.
Ø It took around 107 seconds on 

laptop computer to do tasking over 
next 24 hrs. !!!

Optimal Information Collection
3D Satellite Tracking scenarioè 100 satellites and 3 sensors

(a) Greedy in Time: Covariance

(b) Greedy in Time: Tasking

Figure 15. Example 3: Heatmap of Covariance and Tasking

Figure 16. Example 4: 450 space objects at initial time
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(b) Position error: Greedy in Time

Figure 14. Example 3: Tracking Performance

(a) Greedy in Time: Covariance

(b) Greedy in Time: Tasking

Figure 15. Example 3: Heatmap of Covariance and Tasking

Figure 16. Example 4: 450 space objects at initial time
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Future Research:

• Data Association: 
• Exploiting the solution of uncertain Lambert problem.
• Exploit machine learning tools to learn feasible hypothesis based upon numerical 

simulations.

• Reachability Set Calculations:
• Exploit CUT algorithm  to compute reachability sets for continuous as well as impulsive 

maneuver.
• Exploit reachability calculations for maneuver detection & reconstruction.
• Develop search strategies for optical sensors based upon reachability set calculations to 

find lost targets.

• Uncertainty Propagation
• How to exploit dynamic system properties to reduce the effective dimension of sampling 

space.
• Exploit regularized variables for uncertainty propagation.

• Current Students: 
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• Damien Gueho

• David Ciliberto

• David Schwab

• Utkarsh Ranjan Mishra 

• Roshan Suresh Kumar.
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