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Abstract

The Comprehensive Nuclear-Test-Ban Treaty dictates a de-facto moratorium on

the testing of nuclear weapons. To enforce this treaty, a strict verification regime

was established consisting primarily of a global geophysical sensor network and a

sophisticated data processing center. Because the majority of covert nuclear tests

are conducted underground, preliminary verification often involves the processing of

seismic signals. This dissertation begins with a brief consideration of the current

seismic signal processing pipeline for treaty monitoring, and then proceeds to detail

three research studies, utilizing deep neural network architectures to address four

prominent tasks in the pipeline: signal detection, event association, event localization

and source discrimination.

Study 1 focuses on the signal detection task. The detection of seismic events at

regional and teleseismic distances is critical to nuclear treaty monitoring. Tradition-

ally, detecting regional and teleseismic events has required the use of an expensive

multi-instrument seismic array; however in this study, we present DeepPick, a novel

seismic detection algorithm capable of array-like detection performance from a single-

trace. We achieve this performance by training a deep temporal convolutional neural

network detector against the arrival times in an array-beam catalog and the single-

trace waveforms taken from the vertical channel of the center element of the array.

The training data consists of all arrivals in the International Seismological Centre

Database for seven seismic arrays over a five year window from 1 Jan 2010 to 1 Jan

2015, yielding a total training set of 608,362 detections. The test set consists of the

same seven arrays over a one year window from 1 Jan 2015 to 1 Jan 2016. We report

our results by training the algorithm on six of the arrays and testing it on the seventh,
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so as to demonstrate the generalization of the technique to new stations. Detection

performance against this test set is outstanding. Fixing a type-I error (false positive)

rate of 0.1%, the algorithm achieves an overall recall (true positive rate) of 57.8%

on the 141,095 array beam picks in the test set, yielding 81,524 correct detections.

This represents a 40% increase in performance over state-of-the-art kurtosis-based

detectors, and is more than twice the 37,572 detections made by a state-of-the-art

frequency-band detector over the same period. Furthermore, DeepPick provides a

4 dB improvement in detector sensitivity over all other current methods tested, with

a run-time that is an order of magnitude faster. These results demonstrate the po-

tential of our algorithm to significantly enhance the effectiveness of the global treaty

monitoring network.

Study 2 focuses jointly on both event association and source discrimination, uti-

lizing a learned similarity measure to extract source-specific features from three-

component seismograms. Similarity search is a popular technique for seismic signal

processing, with template matching, matched filters and subspace detectors being uti-

lized for a wide variety of tasks, including both signal detection and source discrimina-

tion. Traditionally, these techniques rely on the cross-correlation function as the basis

for measuring similarity. Unfortunately, seismogram correlation is dominated by path

effects, essentially requiring a distinct waveform template along each path of interest.

To address this limitation, we propose a novel measure of seismogram similarity that

is explicitly invariant to path. Using Earthscope’s USArray experiment, a path-rich

dataset of 207,291 regional seismograms across 8,452 unique events is constructed,

and then employed via the batch-hard triplet loss function, to train a deep convolu-

tional neural network which maps raw seismograms to a low dimensional embedding

space, where nearness on the space corresponds to nearness of source function, re-

gardless of path or recording instrumentation. This path-agnostic embedding space
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forms a new representation for seismograms, characterized by robust, source-specific

features, which we show to be useful for performing both pairwise event association

as well as template-based source discrimination with a single template.

Study 3 focuses on event localization and backazimuth prediction. Single-station

location estimates are traditionally limited to array stations, where beamforming

provides high-confidence backazimuth prediction. Three-component stations, on the

other hand, rely on polarization analysis for backazimuth prediction, which suffers

from both high error and low confidence. In this study, we present BAZNet, a deep

neural-network-based backazimuth predictor for three-component stations. For ex-

isting stations with ample historical training data, the technique achieves an overall

median absolute error of around 14◦, a modest improvement over polarization. More

importantly, each estimate is accompanied by a robust certainty measure, allowing

the selection of only high-confidence predictions to be passed on to the associator.

Using this certainty measure, roughly 60% of all predictions can be selected, with

an accuracy on par with beamforming. This represents a seven-fold improvement

over the 8% of signals similarly selectable via polarization. To demonstrate BAZNet,

we use 10 years of waveform data from 561,154 cataloged arrivals across 9 stations

selected from the global IMS Network.

Seismic signal processing is critical to the verification of the Comprehensive Nu-

clear Test Ban Treaty, facilitating the detection and identification of covert nuclear

tests in near-real time. The three studies in this dissertation provide substantial

enhancements to this processing pipeline. Study 1 details a new methodology for

the detection and arrival time estimation of regional and teleseismic signals, effecting

a 4 dB increase in detector sensitivity over the latest operational methods. Study

2 details a novel representation space for seismograms, with applications both as a

complimentary validation measure for event association and as a one-shot classifier
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for template-based source discrimination. Finally, Study 3 details a new method for

predicting backazimuth angle, providing a seven-fold increase in usable picks over

traditional polarization analysis.
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NEURAL NETWORK MODELS FOR NUCLEAR TREATY MONITORING:

ENHANCING THE SEISMIC SIGNAL PIPELINE WITH DEEP TEMPORAL

CONVOLUTION

I. Introduction

1.1 Nuclear Treaty Monitoring

In 1945, the US unleashed the most potent explosive attack in the history of

mankind, dropping two 20-kiloton nuclear bombs on Japan, resulting in the instant

annihilation of sixty thousand people, and a final death toll of nearly 150,000 [12].

Fortunately, the cost of developing such weapons is commensurate with their power,

requiring billions of dollars in research and extensive testing in order to obtain. Un-

fortunately, many countries have been willing to pay this price, and in the years from

1945 through 1996, more that 2000 nuclear tests were conducted, primarily by the US,

Russia, France, the UK and China, resulting in the establishment of five recognized

nuclear powers, and a near half-century long cold war between the US and Russia

[30].

The Comprehensive Nuclear Test Ban Treaty.

Throughout the cold war, many attempts were made to halt the seemingly rapid

proliferation of nuclear weapons, most notably by the negotiation of a comprehensive

ban on the testing of such weapons. Finally, in 1996, the Comprehensive Nuclear-Test-

Ban Treaty (CTBT) was opened for signature and the Preparatory Commission for

the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) was established,
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creating a de-facto moratorium on the testing of nuclear weapons. Of course, enforcing

such a treaty requires a strict verification regime: a system for promptly detecting

any and all nuclear tests. The verification regime established by the CTBTO consists

primarily of a global geophysical sensor network, the International Monitoring System

(IMS), and a sophisticated data processing center, the International Data Centre

(IDC). Since its inception, the CTBTO has used this verification regime to detect

and identify 8 illicit nuclear tests by 3 countries: India (1998), Pakistan (1998) and

North Korea (2006, 2009, 2013, 2016, 2016 and 2017) [73].

The International Monitoring System Network.

Because the majority of illicit nuclear tests are conducted underground, one of

the primary verification technologies employed by the IMS is a global network of seis-

mometers which monitor shockwaves in the earth. The network includes 50 primary

and 120 auxiliary seismic stations, some of which are lone three-channel instruments,

and others which are regional arrays of seismometers. The locations of the primary

sensors are presented in Fig. 1. Additionally, the IMS Network also includes 11 hy-

droacoustic stations, 60 infrasound stations and 80 radionuclide stations [27].
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Figure 1. Global Map detailing the IMS Primary Seismic Sensor Network [8].

The International Data Centre.

In total, the IMS consists of more than 300 sensor stations around the globe, many

of which report continuous data streams back to the CTBTO’s Vienna headquarters

in near real-time. Processing and storing this data is accomplished by the IDC, which

stores the incoming data, processes it and ultimately reports any verified nuclear tests

within 2 hours of occurrence. A basic outline of the IDC is shown in Fig. 2 [27].
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Figure 2. Diagram detailing the operation of the IDC [8].

1.2 Treaty Monitoring Pipeline for Seismic Signals

The IDC receives continuous waveforms from more than 170 seismic stations

world-wide, and this data is used to build global seismic events in near-real time.

To do so efficiently, the waveforms are broken up into windows (usually 10 minutes

in length), and each window is then processed in two steps: Station Processing and

Network Processing, where the Station Processing step considers each station indi-

vidually and the Network Processing step looks at all stations in aggregate [8].

A block diagram of the Station Processing step is detailed in Fig. 3, and can be

described briefly as follows: first, a signal detection algorithm identifies any arriving

seismic waves; next, each arrival is processed, and features like arrival time, amplitude,

period, azimuth and slowness are extracted; finally, these features are used to identify

the phase type for each arrival, and the arrivals are grouped together into single-

station events with location and magnitude estimates [8].
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Figure 3. Diagram detailing the operation of the IDC with regards to automated

seismic signal processing at the individual station [8].

For Network Processing, the single-station events are associated collectively and

global seismic events are built, using a maximum likelihood estimator across a global

search grid. This is an iterative process with multiple levels of conflict resolution, as

seen in Fig. 4 [8].

Figure 4. Diagram detailing the operation of the IDC with regards to automated

seismic signal processing for the global seismic network [8].
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In general, the automatic seismic signal processing pipeline at the IDC can be

reduced to the following seven tasks:

1. Signal Detection

2. Arrival Time Estimation

3. Amplitude and Period Estimation

4. Azimuth and Slowness Estimation

5. Phase Classification and Grouping

6. Location and Magnitude Estimation

7. Source Discrimination 1

The next section briefly considers the current implementation of each of these

tasks at the IDC.

Signal Detection.

The first step in processing seismic signals is to detect the arriving seismic waves at

each individual station. This step is complicated slightly at the IDC, by the fact that

there are two different types of stations: individual stations and array stations. The

individual stations usually include a single three-component (3C) seismometer, while

the array stations usually include both a 3C seismometer and an array of single-

component seismometers. To enhance the signal to noise ratio (SNR), individual

stations employ bandpass filters that are manually tuned for each station [6]. To

enhance the SNR at array stations, an additional spatial filter is applied, using beam-

forming [83]. After SNR enhancements are complete, detections are made using the

1Technically, source discrimination is not a part of the signal processing pipeline at the IDC, as
this task is designated solely to the individual state parties. However, because it is such a critical
task in treaty monitoring, it is considered in this dissertation for completion.
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ratio of the short-term average energy to the long-term average energy (STA/LTA),

as shown in Fig. 5. A detection is declared when the STA/LTA for a channel or beam

exceeds the detection threshold set for that channel [34].

Figure 5. Top: Example seismic waveform, annotated to show the STA and LTA

windows. Bottom: Diagram detailing the operation of the STA\LTA algorithm.

Arrival Time Estimation.

The first signal characteristic computed at the IDC is the precise onset time of the

arriving seismic wave. This is often referred to as the arrival time. At the IDC, the

arrival time is automatically estimated via the Akaike Information Criterion (AIC),

a technique which is described in detail in [97] and illustrated in Fig. 6.

7



Figure 6. Example seismic waveform, annotated to show the value of the Akaike Infor-

mation Criterion.

Amplitude and Period Estimation.

The amplitude is measured as half the maximum peak-to-trough amplitude dif-

ference in a small window of time taken from the vertical channel or beam used to

make the detection. The window starts 0.5 seconds prior to the picked arrival time

and ends 5.5 seconds after the arrival time. The period is measured as twice the time

between the peak and trough used to calculate the amplitude. The calculations for

amplitude and period are shown in Fig. 7.
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Figure 7. Example waveform detailing the process used at the IDC to measure the

amplitude and period of a detected seismic arrival [8].

Backazimuth and Slowness Estimation.

The azimuth and slowness are calculated differently depending on whether the

station consists of a single instrument or an array. For single-instrument stations,

the traditional method of backazimuth prediction is to analyze the polarization of

the three orthogonal components of motion: North-South, East-West and Vertical.

This technique is often referred to as polarization analysis, and the algorithm is

based on Principle Component Analysis of the filtered and windowed seismograms

[57], [69]. In brief, the technique uses an eigendecomposition of the three-component

covariance matrix across a window of data to identify the principle directions of both

rectilinear and elliptical polarization [39]. Several advancements of this technique

have been proposed, most notably the inclusion of variable time windows, which

provides a small improvement in performance [77]. For array stations, the azimuth

and slowness are calculated using frequency-wavenumber analysis in conjunction with

the array beamforming [47]. An example array layout is detailed in Fig. 8, along with

a demonstration of the beamforming technique.
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Figure 8. Top: Layout of the 20 element Alice Springs Seismic Array, ASAR, located

in central Australia, with an aperture of just under 10 km. The arrow illustrates an

incoming seismic wave with a backazimuth of 212◦. Bottom: Seismic waveforms from

the corresponding seismic event, stacked in order of distance to epicenter. Beamforming

uses the geometry of the array, along with the time-delay of arriving signals, to estimate

the backazimuth angle with great precision.
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Phase Classification and Grouping.

Each seismic event can produce several seismic wave phases, including primary

(P) waves, which travel deep through the earth’s core, and secondary (S) waves,

which travel along the earth’s crust. Often, two or more phases can be detected at a

single seismic station, and the process of classifying the phase type of each arrival is

accomplished at the IDC via a neural network [109], [95]. Once the phases have been

classified, the next step is to group the phases that share a common event, and this

is accomplished by a process of Bayesian inference [60].

Event Location and Magnitude Estimation.

Event location is a fundamental task in seismology, and it is a crucial step in Nu-

clear Treaty Monitoring. Traditionally, the location of a seismic event is estimated by

performing a time delay of arrival calculation (TDOA), based on the arrival of various

wave phases across a network of seismic sensors [102]. These computations are com-

plicated by the fact that the seismic waves are travelling through a non-homogeneous

medium and the equations must be modified to account for earth velocity models, as

well as the the backazimuth and slowness estimates at each sensor [17].

Source Discrimination.

Once a seismic event has been detected and located, the final task in the seismic

pipeline is to identify the source type of the event. Of particular interest to the

Nuclear Treaty Monitoring community is the discrimination between explosions and

earthquakes. Traditional discriminants for this task rely on physics-based expert

features, such as P to S wave ratios and polarity of first motion [100]. These techniques

are reliable and well-understood, but they also require significant tuning, and perform

poorly under noisy conditions. Because nuclear tests are often performed at known
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test sites, template matching techniques, such as correlation and subspace detectors,

are frequently utilized to identify subsequent tests [14]. Finally, recent research has

shown some promise in using machine learning to directly learn valid discriminants

for nuclear explosions themselves [5].

1.3 Research Overview

The acquisition and processing of raw time-series seismic signals at the IDC has a

significant impact on the global security of our world, detecting and identifying covert

nuclear tests in near-real time. Most of the underlying algorithms have been in place

for more than 20 years, and are time-tested. Unfortunately, many require frequent

manual tuning and time-intensive analyst review [80], and others are insufficient for

detecting the weakest events [92]. This work proposes several enhancements to the

traditional seismic signal pipeline, both in terms of reducing analyst burden and

improving detector sensitivity, and these enhancements are unified by a common

reliance on the Temporal Convolutional Network, or TCN, a state-of-the-art neural

network architecture ideally suited to extracting the long-period features predominant

in the regional and teleseismic signals used for Nuclear Treaty Monitoring.

The work is composed of three separate research studies. Study 1 focuses on sig-

nal detection, employing a TCN architecture directly against the raw real-time data

streams and effecting a 4 dB increase in detector sensitivity over the latest opera-

tional methods. Study 2 focuses on both event association and source discrimination,

utilizing a TCN-based triplet network to extract source-specific features from three-

component seismograms, and providing both a complementary validation measure

for event association and a one-shot classifier for template-based source discrimina-

tion. Finally, Study 3 focuses on event localization, and employs a TCN architecture

against three-component seismograms in order to confidently predict backazimuth
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angle and provide a three-fold increase in usable picks over traditional polarization

analysis.

Temporal Convolutional Networks.

Deep Convolutional Neural Networks (CNN) are rapidly revolutionizing the sci-

ence of signal processing, from computer vision to speech recognition, and they are

poised to do the same for seismic signal processing as well. CNNs have already been

employed in almost every branch of seismological research, from earthquake detection

to earthquake early warning systems, ground-motion prediction, seismic tomography,

and even earthquake geodesy [62].

CNNs employ many layers of learned digital filters, which are combined with non-

linear activations. This structure allows CNNs to accomplish a wide range of signal

processing tasks in a way that is actually quite similar to the traditional analyst-

driven methods, except for the fact that the empirical search for the optimal filters

is performed by a computer in much less time and at a much larger scale. The key

to learning an optimal transformation is simply obtaining a sufficient quality and

quantity of labeled training data. Due to the vast quantity of labeled seismic data

available, seismology is poised to take advantage of the power of CNNs.

While much work has already been done to integrate CNNs into seismic signal

processing, these efforts have largely been limited to processing the signals from local

seismicity, and little effort has yet been made to extend these techniques to the

regional and teleseismic signals commonly encountered in Treaty Monitoring. This

is because traditional CNNs are not well-suited to process the long-period features

found in regional and teleseismic signals [28]. Fortunately, this limitation can be

overcome by the TCN.

TCNs are deep convolutional architectures characterized by three primary fea-
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tures:

• Causal convolutions

• Dilated convolutions

• Residual connections

These features combine to allow the neural network to quickly learn long-period

features that are critical for teleseismic signal processing and that would be impossible

to learn with a traditional CNN architecture. In short, causal convolutions allow the

model to make predictions on continuous streaming time-series waveforms, dilated

convolutions enable a wide receptive field for long-period feature extraction, and

residual connections allow the model to have high-capacity and stable training [7].

Additionally, there are synergies that come from utilizing these three architectural

features in concert. Particularly, as you increase the dilation rate on successive layers,

this is roughly equivalent to increasingly decimating the input to each layer, but

because of the skip connections, each layer’s input also includes the inputs to all

previous layers. This is an elegant way of capturing long-period features in the data

while stabilizing backprop. Compared to RNNs, you get both improved performance

[7] and a more meaningful analogue to traditional seismology [28].

The following three studies employ TCN architectures for use in Treaty Monitoring

Seismology.

Study 1 - Signal Detection.

The detection of weak seismic events at regional (>200 km) and teleseismic dis-

tances (>2000 km) is critical to Nuclear Treaty Monitoring. Traditionally, detecting

these weak regional and teleseismic events has required the use of an expensive multi-

instrument seismic array, which uses a tuned network of interconnected seismometers

14



to accomplish an efficient spatial filtering technique called beamforming. This tech-

nique is extremely effective, however it is quite expensive to implement due to the

additional sensors and processing required.

This study proposes a novel seismic detection algorithm capable of array-like de-

tection performance from a single-trace, demonstrating a 4 dB increase in single-trace

detector sensitivity over state-of-the-art techniques including the kurtosis [79] and

frequency-band [70] pickers recently implemented for operational use by the Okla-

homa Geological Survey. Building on several recent efforts which apply the power

of convolutional neural networks to the detection of local events [81], [86], [68], this

study applies similar techniques to the detection of regional and teleseismic events,

events previously only detectable using a seismic array. Specifically, this study tackles

the following research objective: using the analyst reviewed catalog of events from

an array-beam as the data source, and fixing a type-I error rate of 0.1%, create

a transportable single-trace detection algorithm with improved recall over existing

detectors.

To tackle this objective, we present DeepPick, a single-trace automatic detection

algorithm capable of detecting up to 80% of the events in an array-beam catalog. The

algorithm is based on a deep Temporal Convolutional Neural Network (TCN), and

it is trained against more than five billion raw seismic samples containing 608,362

labeled seismic arrivals from seven array-beam catalogs in the International Mon-

itoring System (IMS) network: TXAR, PDAR, ILAR, BURAR, ABKAR, MKAR

and ASAR located in Lajitas Texas, Pinedale Wyoming, Eielson Alaska, Bucovina

Romania, Akbulak Kazakhstan, Makanchi Kazakhstan and Alice Springs Australia,

respectively. Performance is reported by training the algorithm against five years

of data from six of the arrays, and testing it against a full year of data from the

seventh, remaining array. All seven arrays are tested in this manner, resulting in
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recall rates ranging between 50% and 80% against the individual array beam cata-

logs, and an overall average of 56% against the combined catalog. This represents a

marked improvement over the performance of existing algorithms for the same task.

For example, deploying both a state-of-the-art adaptation of the STA/LTA detector

(FBPicker) [70] and a kurtosis-based detector (KTPicker) [79] against the same test

set, yields only 27% and 42% detection rates respectively. Additionally, the DeepPick

algorithm is highly computationally efficient, demonstrating an order of magnitude

reduction in computation time over both of the other algorithms.

While there have been several recent efforts to employ convolutional neural net-

works for seismic detection, our effort here differs in three significant ways. First,

our detector was trained and tested using a higher-fidelity reference catalog with an

8 dB improvement in sensitivity over traditional catalogs, which is accomplished by

utilizing an array-beam catalog as a reference. Second, whereas previous efforts treat

detection as a binary classification problem (thus requiring a secondary algorithm for

arrival time picking), our algorithm follows the traditional seismic detection approach

of first creating a characteristic function. This effort follows very much in-line with

traditional methodologies, but with significant quantitative improvements. Third,

our detector is the first to focus on teleseismic detection, a task which depends upon

recognizing long-period features, and which is accomplished using a Temporal Con-

volutional Neural Network (TCN) with a wide receptive field. As such, we present

three major contributions to the literature:

• A unique training technique for single-trace detection algorithms, which utilizes

array-beam catalogs as a high-fidelity reference

• A novel training objective, exponential sequence tagging, which trains the TCN

to transform single-trace waveforms into an ideal characteristic function with

weighted exponential peaks at predicted arrival times
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• DeepPick: a single-trace detection algorithm capable of achieving array-level

detection performance

Study 2 - Event Association.

Event Association is a critical step in Nuclear Treaty Monitoring. Traditionally,

association is accomplished via a move-out curve predicated on the arriving waveforms

in time and space. This work presents a viable complementary validation tool for

existing associators using a novel pairwise seismic source similarity measure.

Traditionally, seismic similarity measures have been based on waveform corre-

lation. Case-based discrimination [32], template matching [36], waveform correla-

tion [43], subspace detection [44] and similarity search [113] are all similarity-based

algorithms which have been proposed over the last several decades, and deployed

against a wide range of seismic signal processing tasks, such as discriminating mining

blasts, screening swarm events, identifying aftershock sequences, and even detecting

general seismic signals. While these algorithms have different tasks ranging from

discrimination to detection, they all share a common measure of similarity: cross-

correlation. Unfortunately, these techniques cannot be used for waveform associa-

tion, as the correlation coefficient between two seismograms is dominated by path

effects [94].

This work presents a new measure for seismogram similarity that bypasses cor-

relation entirely, and that is designed to be both path-invariant and source-specific.

To be precise, the design goal is to create a measure of seismogram similarity that

enables the identification of seismograms sharing a common source event, regard-

less of the path of travel. While such a measure was previously computationally

intractable, it is possible with the careful application of deep convolutional neural

networks (CNNs). In 2019, researchers at the Los Alamos National Laboratory pub-
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lished a method using a CNN to predict the pairwise association of seismic phase

arrivals, for 6 second windows, across a local group of 6 stations in northern Chile,

reporting an accuracy of over 80% [72]. Building on these results, we construct a

source-dominant, path-invariant measure for seismogram similarity which operates

on 180 second windows and is generalized across more than 1,000 sensors across

North America. This is accomplished by utilizing a state-of-the-art machine learning

technique from the field of facial recognition, called a Triplet Network, which not

only indicates pairwise association between seismograms, but actually maps the seis-

mograms to low-dimensional vectors, called embeddings, such that the embedding

space distance between seismograms sharing a common source event are minimized,

regardless of path, while remaining distinct from any other events. In this way, the

embedding function becomes a rich feature extraction technique for source-specific

and path-invariant features.

The triplet network architecture accepts three observations - two which are sim-

ilar and one which is different from the others. Training a triplet network to learn

seismic source similarity requires source-similar seismogram triples: two of the three

waveforms are associated with a common source event and the third waveform is not.

For this task, it is preferable to have a training set containing seismograms recorded

from a densely-spaced sensor network, so that the neural network can experience seis-

mogram recordings across numerous paths for the same event. The 400 three-channel

broadband sensors of the USArray experiment provided an ideal dataset of seismo-

grams; data from this array is used for training and testing. The triplet network is

trained against 7 years of data (2007 - 2013), validated against a single year of data

(2014), and tested against the final two years of data (2015-2016). Additionally, a

subset of 51 recording stations and a small region of event locations were held out

from the algorithm during training, to allow a proper evaluation of the generalizability
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of the technique.

The value of this path-invariant measure is demonstrated as a complementary

validation tool for pairwise event association. The pairwise event association task of

determining whether or not two waveforms depict the same event achieves a binary

accuracy of 80%. This accuracy is achieved using only the waveform characteristics,

without information on times or recording locations, and the technique has strong

potential to augment existing methods of event association [72].

Study 3 - Backazimuth Prediction.

Backazimuth prediction is a critical step in the seismic signal processing pipeline,

feeding the downstream processes that associate events and build location estimates.

Typically, there are two methods of predicting backazimuth, depending on the type

of station. If the station consists of an array of instruments, the backazimuth can be

predicted by examination of the time-delay of arrival across the array. This process

is called beamforming, and produces angle estimates that can be quite accurate. If

the station consists of a single three-component (3C) instrument with North-South,

East-West and Vertical components, the backazimuth is traditionally predicted by

calculating the polarization of the arriving wavefront. This process produces much

less accurate results.

This study proposes BAZNet, a machine-learning-based alternative to polariza-

tion analysis that not only produces more accurate backazimuth estimates, but also

produces actionable certainty measures for each estimate, allowing downstream algo-

rithms to only use the best estimates available. The BAZNet model directly predicts

the backazimuth from raw 3C waveform data, utilizing a deep temporal convolutional

neural network architecture [7] to extract meaningful features from the seismograms.

It is important to note that the model is trained on a per-station basis against 10
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years of historical data; the technique does not generalize across stations, and must

be retrained for each station where it will be employed. However, because of the

large number of available 3C stations with with extensive analyst-reviewed catalogs,

and because of the outstanding certainty measure produced in conjunction with each

estimate, BAZNet is able to produce backazimuth estimates for 3C stations with

accuracy rivaling a beamformed array.

BAZNet presents three major contributions:

• A novel neural network architecture for the efficient prediction of backazimuth,

directly from the raw waveforms with no feature engineering required

• An improvement in accuracy over the traditional polarization analysis

• A robust certainty measure coupled with each backazimuth estimate, allowing

a means of preventing bad estimates from corrupting downstream algorithms

for event association and location.
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II. Study 1 - Improving Regional and Teleseismic Detection
for single-trace waveforms using a Deep Temporal

Convolutional Neural Network trained with an Array-Beam
catalog [28]

2.1 Abstract

The detection of seismic events at regional and teleseismic distances is critical to

Nuclear Treaty Monitoring. Traditionally, detecting regional and teleseismic events

has required the use of an expensive multi-instrument seismic array; however in this

work, we present DeepPick, a novel seismic detection algorithm capable of array-like

detection performance from a single-trace. We achieve this performance by training

a deep temporal convolutional neural network detector against the arrival times in an

array-beam catalog and the single-trace waveforms taken from the vertical channel

of the center element of the array. The training data consists of all arrivals in the

International Seismological Centre Database for seven seismic arrays over a five year

window from 1 Jan 2010 to 1 Jan 2015, yielding a total training set of 608,362

detections. The test set consists of the same seven arrays over a one year window from

1 Jan 2015 to 1 Jan 2016. We report our results by training the algorithm on six of

the arrays and testing it on the seventh, so as to demonstrate the generalization of the

technique to new stations. Detection performance against this test set is outstanding.

Fixing a type-I error (false positive) rate of 0.1%, the algorithm achieves an overall

recall (true positive rate) of 57.8% on the 141,095 array beam picks in the test set,

yielding 81,524 correct detections. This represents a 40% increase in performance over

state-of-the-art kurtosis-based detectors, and is more than twice the 37,572 detections

made by a state-of-the-art STA/LTA detector over the same period. Furthermore,

DeepPick provides a 4 dB improvement in detector sensitivity over all other current

methods tested, with a run-time that is an order of magnitude faster. These results
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demonstrate the potential of our algorithm to significantly enhance the effectiveness

of the global treaty monitoring network.

2.2 Introduction

Adherence to the Comprehensive Nuclear Test-Ban-Treaty is currently verified

by the detection, location and identification of seismic events, often at regional

(>200 km) and teleseismic distances (>2000 km). Automated seismic detection is

the critical first step in this process, and it is imperative that the events be detected

by multiple stations, as this increases the overall accuracy of the final location esti-

mate. As such, maintaining a large network of highly-sensitive seismic detectors is

key to the treaty monitoring community [83, 4].

Traditionally, sensitive teleseismic detection has required the use of a multi-

instrument seismic array, a strategy which dates back to the Geneva Conference of

Experts in 1958 [99]. The sensitivity is achieved through beamforming [105], a spa-

tial filtering technique that relies on a tuned network of interconnected seismometers

which form a single station. This technique is extremely effective, however it is quite

expensive to implement due to the additional sensors and processing required, and

unfortunately, beamforming is inapplicable to single-instrument stations. As such,

the vast majority of seismic stations around the globe are simply unable to detect

weak regional and teleseismic events.

In this work, we create an automatic detector with array-like performance from

a single trace, capable of detecting these signals which were previously too weak to

detect with a single sensor. Building on several recent efforts which apply the power

of convolutional neural networks to the detection of local events [81], [86], [68], we

apply similar techniques to the detection of regional and teleseismic events, events

previously only detectable using a seismic array. Specifically, we tackle the following
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research objective: Using the analyst reviewed catalog of events from an array-beam

as the reference, and fixing a type-I error rate of 0.1%, create a transportable single-

trace detection algorithm with improved recall over existing detectors.

To tackle this objective, we present DeepPick, a single-trace automatic detection

algorithm capable of detecting up to 80% of the events in an array-beam catalog. The

algorithm is based on a deep Temporal Convolutional Neural Network (TCN), and

it is trained against more than five billion raw seismic samples containing 608,362

labeled seismic arrivals from seven array-beam catalogs in the International Mon-

itoring System (IMS) network: TXAR, PDAR, ILAR, BURAR, ABKAR, MKAR

and ASAR located in Lajitas Texas, Pinedale Wyoming, Eielson Alaska, Bucovina

Romania, Akbulak Kazakhstan, Makanchi Kazakhstan and Alice Springs Australia,

respectively. Performance is reported by training the algorithm against five years of

data from six of the arrays, and testing it against a full year of data from the sev-

enth, remaining array. All seven arrays are tested in this manner, resulting in recall

rates ranging between 50% and 80% against the individual array beam catalogs, and

an overall average of 56% against the combined catalog. This represents a marked

improvement over the performance of existing algorithms for the same task. For ex-

ample, we deploy both a modern adaptation of the STA/LTA detector (FBPicker)

[70] and a kurtosis-based detector (KTPicker) [79] against the same test set, achiev-

ing only 27% and 42% detection rates respectively. Additionally, our algorithm is

highly computationally efficient, demonstrating an order of magnitude reduction in

computation time over both of the other algorithms.

While there have been several recent efforts to employ convolutional neural net-

works for seismic detection, our effort here differs in three significant ways. First,

our detector was trained and tested using a higher-fidelity reference catalog with an

8 dB improvement in sensitivity over traditional catalogs, which we accomplished by

23



utilizing an array-beam catalog as a reference. Second, whereas previous efforts treat

detection as a binary classification problem (thus requiring a secondary algorithm for

arrival time picking), our algorithm follows the traditional seismic detection approach

of first creating a characteristic function. As such, we show that our effort follows

very much in-line with traditional methodologies, but with significant quantitative

improvements. Third, our detector is the first to focus on teleseismic detection, a

task which depends upon recognizing long-period features, and which we accomplish

using a Temporal Convolutional Neural Network (TCN) with a wide receptive field.

As such, we present three major contributions to the literature:

• A unique training technique for single-trace detection algorithms, which utilizes

array-beam catalogs as a high-fidelity reference

• A novel training objective, exponential sequence tagging, which trains the TCN

to transform single-trace waveforms into an ideal characteristic function with

weighted exponential peaks at predicted arrival times

• DeepPick: a single-trace detection algorithm capable of achieving array-level

detection performance

In the remainder of this work, we provide context for and explain these contribu-

tions by first reviewing the related literature, then outlining our methodology, and

finally detailing and discussing our results.

2.3 Related Work

Automatic seismic detection algorithms are a key component of any modern seis-

mic network, and here we review the literature pertaining to this important field.

Our review begins with a discussion of the traditional detection algorithms, then in-

vestigates teleseismic detection in particular. Finally, this section provides a detailed
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examination of the nascent field of convolutional neural network-based detectors,

while emphasizing the gaps in the research we intend to address in our own work.

Traditional Seismic Detection.

Traditional algorithms for seismic signal detection usually share a simple, common

framework: A comparison is made between the current value of the seismic signal (or

some function of it) and a predicted value, and a detection is declared whenever this

comparison exceeds some factor. From this simple concept has arisen a vast number of

algorithms, which vary primarily based upon their choice of the function to which the

detection is applied. This function is often referred to as the characteristic function

(CF) of the algorithm [6].

By far the most common traditional technique for seismic signal detection is

the short-term average, long-term average (STA/LTA) detector, first described by

Freiberger [34]. In its simplest form, this technique employs a bandpass filter to

compute the characteristic function, with the predicted value equal to the long-term

average and the current value equal to the short-term average. The current and pre-

dicted values are then compared via a ratio which is then subjected to some static

threshold, as detailed in Fig. 9. Numerous adaptations and enhancements to this

STA/LTA detector have been proposed, most notably by Allen [2] and Baer [6], who

increased detection efficiency by employing novel characteristic functions based on a

combination of the signal and its time derivatives. More recently, modern iterations

of the STA/LTA algorithm have employed multiple characteristic functions across

multiple frequency bands with great success [70].
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Figure 9. Top: Example seismic waveform, annotated to show the STA and LTA

windows. Bottom: Diagram detailing the operation of the STA\LTA algorithm.

Higher-ordered statistics.

Unfortunately, the STA/LTA family of algorithms have an inherent difficulty iden-

tifying events that emerge from a noisy pass-band [90]. Fortunately, unlike random

noise, seismic signals have higher-order statistics (such as skewness) which are non-

zero [35]. This means that the signal and noise energies can be well-separated using

characteristic functions based on these higher-order statistics (HOS), which serve as

the basis for another common subset of seismic signal detectors, the HOS-based detec-

tors described in [65, 90, 115]. These algorithms can provide excellent performance,

but tend to be more computationally expensive.

Other more exotic characteristic functions that have enjoyed success include vari-

ations of the Walsh transform [38] and the wavelet transform [3]. Furthermore, there

are families of algorithms used to determine the precise arrival time after a detection

has been made. These are commonly referred to as autoregressive methods, which

employ various techniques, the most common of which was proposed by Sleeman [97]

and utilizes the Akaike Information Criterion.
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Teleseismic Detection.

Having examined seismic signal detection in general, we now turn our attention

specifically to the literature concerning the detection of regional and teleseismic sig-

nals. Such signals can be particularly challenging to detect, as their signal strength

is often significantly attenuated by the longer path of travel. To address this, one of

the most successful techniques for regional and teleseismic signal detection is Beam-

forming [83], [88], introduced in [21]. Beamforming gains its effectiveness by linearly

combining signals from multiple sensors according to the estimated arrival direction,

also known as the backazimuth, allowing it to pick out signals beneath the noise floor

of a single sensor [105]. Unfortunately, beamforming requires an interconnected array

of seismometers, spread out across a large geographical area measuring tens or even

hundreds of kilometers. An example array layout, along with a demonstration of the

beamforming technique is detailed in Fig. 10.
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Figure 10. Top: Layout of the 10-element Makanchi Seismic Array, MKAR, in eastern

Kazakhstan. The dashed lines illustrate an incoming teleseismic wave with calculated

backazimuth, θ. Bottom: Seismic waveforms from an arriving teleseismic event. Beam-

forming aligns these waveforms via the backazimuth and wavefront velocity, and then

linearly combines them to yield a higher SNR, improving the detection threshold sig-

nificantly.

Another outstanding technique for the detection of weak teleseismic events is the

phase-matched filter [104] popularized by [50] and [106] in the early 1990s. These

pattern matching techniques are a type of Empirical Signal Detector, that work by

comparing incoming seismic waveforms to canonical examples in the extant seismic
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record [55, 56]. They are particularly effective for the detection of highly correlated

repeating events, even for very weak magnitudes [37]. Unfortunately, to date, this

technique is not generally applicable, as only 18% of all global events possess sufficient

similarity to be detected with this technique [31].

In [89], the authors demonstrate the power of a richly-featured machine learning

based detector. Training a Support Vector Machine against a series of 30 features

in the time-frequency plane, they achieved a recall of 97.7% at a type-I error rate of

less than 1.3%, for an overall accuracy of 98.2%. These results compare favorably

with STA/LTA. Their work is quite promising, with excellent results, however, the

signals investigated were once again limited to strong, local signals; the furthest

signals detected had epicenters no more than 5 degrees (∼550 km) from the recording

sensor.

Seismic Detection with Convolutional Neural Networks.

Convolutional Neural Networks (CNN) are revolutionizing the science of signal

processing from computer vision to speech recognition, and they are poised to do the

same for seismic signal processing as well. This begs the question: why are CNNs

so effective at signal processing tasks? To answer this, we note that at their core,

CNNs are comprised of a set of digital filters which are convolved with the signal,

where the optimal filter weights are learned by applying stochastic gradient descent

across some objective function. In effect, the CNN can quickly explore a wide range

of filters and empirically converge on ones that work well. The real power of CNNs

comes from the ability of the network to learn many filters simultaneously, combine

their outputs with non-linear activations, and then feed these activations into further

layers of learned filters, ultimately allowing the CNN to learn complex non-linear

transformations. This structure allows CNNs to accomplish a wide range of signal
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processing tasks in a way that is actually quite similar to the traditional analyst-

driven methods, except for the fact that the empirical search for the optimal filter

weights is performed by a computer in much less time and at a much larger scale. The

key to learning the optimal transformation is having sufficient quality and quantity

of labeled training data for the objective function. And due to the vast quantity of

labeled seismic data available, seismology is poised to take advantage of the power of

CNNs.

Several recent efforts have already been made to apply deep CNNs to seismic signal

detection. Although this research is still in its infancy, early results have shown great

promise.

In [81], the researchers utilize a convolutional neural network architecture to per-

form detection on local seismic signals, formulating the task as a binary classification

problem. Their dataset was obtained from two seismic stations in the Oklahoma

Geological Survey, consisting of 10-second windows with binary class labels: posi-

tive windows were centered around seismic arrival times obtained from an analyst-

reviewed arrival catalog, and negative windows were carefully selected to contain no

arrival. Against their hold-out test set, they report 100% recall with a high type-I

error rate of 1.4%. These results are outstanding, but the most interesting finding in

their research comes from their examination of the false positives detected by their

algorithm. By applying a correlation detector to their reported false positives, they

determined that a substantial portion of these were actually real detections of very

weak events. This means that the algorithm learned to detect events below the de-

tection threshold of the catalog on which it was trained. This work highlights the

danger of using conventional catalogs to train such a sensitive detector. Additionally,

two major limitations exist in this work. First, because of the extreme care taken

to produce ‘clean’ noise windows in the test set, their reported type-I error rate is
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not realistic for operational use. Second, their algorithm is applicable only to local

events; the short time windows used (10 seconds) limit the algorithm’s potential to

detect the longer-period (100 second) features characteristic of teleseismic signals.

In [87], the researchers also utilize a deep CNN to perform seismic signal detection

on local events. Their dataset consisted of 4.5 million 4-second windows of waveform

data recorded and classified by the Southern California Seismic Network. Their task

was formulated as a classification problem, assigning one of three classes to each

window, P-wave (primary phase arrival), S-wave (secondary phase arrival) and noise.

This resulted in 1.5 million windows containing a P-wave arrival, 1.5 million windows

containing an S-wave arrival and 1.5 million windows including no arrival. Their

validation set consisted of a randomly sampled 25% of the overall data, resulting in

1.1 million seismograms evenly split between the three classes. On the validation set,

they report a recall of 96% at a type-I error rate of less than 1%. These results are very

impressive, and show that the convolutional neural network is capable of achieving

state-of-the-art performance on the seismic signal detection task. A limitation of this

work is that it is applicable only to local signals; the researchers only report recall

for signals originating within 100 km of the recording station.

In [86], the same research team considers arrival time estimation. Here they

formulate the task as a regression problem, and consider only 4-second windows of

data, centered around an arrival, with up to half a second of deviation in the arrival

time from the center of the window. For this task, they report a mean average error

of less than 0.02 seconds from the analyst-recorded picks. Once again, these signals

are limited to local events.
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2.4 Materials and Methods

The research objective is to build a single-trace detection algorithm capable of

detecting weak regional and teleseismic signals with array-like performance. We know

that such detections are possible using a full seismic array and we have seen the

potential for achieving such detections using a deep neural network. Our approach

is to employ a deep TCN model, feed it a single-trace input sequence, and train

it to produce a characteristic function with distinct peaks centered on arrival times

obtained from an array beam catalog. In this section, we explore this approach in

detail, first defining our dataset, and then describing our modeling strategy.

Data Collection.

The success of any deep neural network algorithm lies largely in the careful collec-

tion and construction of the training data. This subsection presents a dataset suitable

for training a deep seismic detection algorithm. In particular, it details two of our ma-

jor contributions: First, a description of a novel method for obtaining a high-fidelity

dataset of single-trace waveforms with labeled arrival times below the noise floor.

Second, it presents exponential sequence tagging, the unique sequence-to-sequence

modeling schema used to create an ideal characteristic function for picking arrival

times. This subsection concludes with the details of training, test and validation

datasets.
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Figure 11. Normalized histograms showing the SNR distributions of detected signals

from two seismic arrival catalogs. Both catalogs contain detections for the exact same

location, MK31, which is the reference element of the MKAR seismic array. The MK31

catalog is based on a single-trace detection algorithm applied to the MK31 instrument

alone, while the MKAR catalog is based on beam-formed picks from the entire 10-

instrument array. The mean SNR detected by the array beam is 8 dB lower than

that of the single-trace. This lower detection threshold results in nearly an order of

magnitude more detections in the MKAR catalog compared to the MK31 catalog.

High Fidelity Arrival Catalog.

At first glance, obtaining a dataset for training a seismic detector would appear

to be trivial, as analyst-reviewed arrival catalogs are freely available for millions of

seismic events at thousands of seismic sensor elements. Unfortunately, despite the

rigorous review process and the extensive cross-referencing, each single-trace arrival

catalog only contains picks for signals with sufficient strength to be conventionally

detectable from within that trace. This is a significant limitation when the goal is to

train a detector more sensitive than the conventional one. Fortunately, there are cer-

tain sensor elements with accurate cataloged arrival times for regional and teleseismic

signals below the noise floor; namely, any sensor element located at the reference point

of a seismic array (usually a broadband 3-channel instrument). Using conventional
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methods, this ‘reference-element’ alone is unable to make accurate detections for sub-

noise floor events, however the array beam as a whole can make these detections very

accurately [88], and the beam arrivals are conveniently aligned to indicate arrivals at

this reference element. Thus, by obtaining singe-trace input data from the reference

element, and by obtaining labeled arrivals times from the array beam, we can create

a labeled single-trace dataset with signals below the noise floor. As an example, Fig.

11 demonstrates the significant 8 dB improvement in detector threshold provided by

the Makanchi Array beam in eastern Kazakstan.

For future researchers interested in establishing a similar high-fidelity dataset, we

provide here a four step process:

1. Step 1: Obtain the Array-Beam Catalog Arrival-time catalogs can be

downloaded through a web query of the International Seismological Centre Bul-

letin (http://www.isc.ac.uk/iscbulletin/search/arrivals/), by specify-

ing the desired array station name (i.e. MKAR)

2. Step 2: Identify the Array-Beam Reference Point The array-beam ref-

erence point coordinates can be found through a web query of the ISC station

registry (http://www.isc.ac.uk/registries/search/), by again specifying the de-

sired array station name.

3. Step 3: Identify the Array-Beam Reference Elements Available refer-

ence elements can then be found by a second web query of the ISC station

registry, using the reference point coordinates as the search criteria. For the

MKAR array, there are two sensor elements located at the reference point:

MK31 and MK32.

4. Step 4: Obtain Reference Element Waveforms Raw waveforms can be

downloaded from the Incorporated Research Institutions for Seismology (IRIS)
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Database using ObsPy.

Idealized Characteristic Function: Exponential Sequence Tagging.

With established high-fidelity sources for both waveforms and arrival times, the

next step is to generate input/output pairs for training a seismic detector. Most

previous efforts to build an ML-based seismic detector have been formulated as a

binary classification task; the input data is partitioned into fixed length windows,

each paired with a single Boolean class label: positive class labels are assigned to

windows where a signal is present and negative class labels are assigned to windows

where signal is absent. This traditional formulation is convenient, as the classes can

easily be balanced at training time and it is the common method employed in most

recent works in the literature [87, 81, 89]. However, this methodology has three major

limitations: First, it is not ideally suited for real-time processing, as the algorithm

needs access to a signal window several seconds beyond the signal arrival. Next,

it requires a secondary algorithm applied within the detection window, to estimate

the precise arrival time [86]. Finally, this methodology is not well suited for the

detection of regional and teleseismic signals. Teleseismic signals are characterized

by long-period features with frequency components as low as 0.01 Hz [84], and the

detection of these features necessitates windows that are several minutes in length.

Unfortunately, this resolution is far too coarse for classification, and often covers

multiple arrivals in a single window. As such, there are two conflicting requirements

for creating binary classification windows in a teleseismic detection dataset:

• Input windows must contain many samples to capture long-period teleseismic

features

• Output labels must cover few samples to allow meaningful temporal resolution

for the detection windows
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To resolve this conflict, we reformulate the task. Instead of performing binary

classification on each window, we perform regression on each sample, which is known

as sequence-to-sequence modeling [101]. Each training window is labeled with an out-

put sequence of real-valued numbers; each sample in the input sequence is assigned

a corresponding value in the output sequence. Coincidentally, this process is nearly

identical to the generation of the characteristic function in traditional seismic detector

algorithms. The difference is that whereas traditional algorithms specify the trans-

formation in order to produce a characteristic function that has defined arrivals, our

algorithm can specify the characteristic function explicitly and let the neural network

learn the transformation. As such, we can assign labels corresponding to any ideal-

ized characteristic function we desire. But what labels should we assign? A naive

formulation is to simply assign a ‘one’ at each cataloged arrival time and assign a

‘zero’ everywhere else. This characteristic function would essentially look like a delta

function at each cataloged arrival. This formulation is called sequence tagging [82],

and it works well for relatively balanced classes [112]. Unfortunately, binary sequence

tagging does not work well for teleseismic detection, as it results in an extreme class

imbalance of several orders of magnitude, which hinders learning.
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Figure 12. (a): Input Sequence containing an arrival marked in red (b): Labeled

output sequence using the exponential function. (c): Predicted output sequence from

the model. (d): Cross-correlation between the predicted output sequence and the

exponential function. The predicted arrival is marked in red

For this work, we present a novel formulation which we call exponential se-

quence tagging. This formulation produces a characteristic function that consists

of a mirrored-exponential function applied at each cataloged arrival time, as shown

in Fig. 12 (b). To be precise, the labels in the output sequence are nominally zero un-

til a cataloged arrival time, at which point they increase and decrease exponentially,

according to the mirrored exponential decay function given in Eq. (1), where λ is

the decay rate, which is optimized for maximum detection accuracy. This character-

istic function is quite similar to that used in the ‘suspension bridge’ seismic detection

algorithm, proposed in [74] and referenced in [114].

y(t) = e−λ|t|

(1)

Because each leg of the mirrored exponential decay function is both monotonic and

deterministic, the value at each non-zero label can be used to directly infer the precise
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arrival time. Because the algorithm learns to match these labels with its output,

every non-zero sample in the output is effectively an arrival time estimation. With

this in mind, we assign one additional computation to our algorithm at run-time: a

cross-correlation of the predicted output sequence with the original exponential decay

function. This filters the output and effectively aggregates the arrival time estimates

for an even more precise arrival time pick. Because the height of the resulting peak

is the correlation between the network model’s output and the original exponential,

it represents the certainty that the peak is a true arrival and can be used to set the

threshold of the detector. Fig. 12 (c) and (d) shows an example of the predicted

output, both before and after this cross-correlation is applied, where (d) depicts the

final characteristic function.

Training, Validation and Test Sets.

Using this approach to build our training dataset, we obtained a catalog of all local,

regional and near-teleseismic arrivals for the seven array beams during a five year

period from 1 Jan 2010 to 1 Jan 2015. We generated this catalog through a web query

of the ISC Bulletin for seismic arrivals which can be accessed here: http://www.isc.

ac.uk/iscbulletin/search/arrivals/. The corresponding waveforms were then

windowed around each arrival (the windows were 6 minutes in total length, sampled

at 40 Hz for a total of 14400 samples per window), and the raw traces were pulled

from the IRIS Database, for the vertical channel of the nominal seismometer for each

array (PD31 BHZ, TX31 BHZ, IL31 BHZ, MK31 BHZ, ABK31 BHZ, BUR31 BHZ

and AS31 BHZ). This was accomplished via a custom Python script based on ObsPy-

1.1.0 [13], and yielded a dataset of 608,362 picks out of a total training size of more

than five billion samples. The only pre-processing applied to the raw data was a

normalization, detrending and bandpass filtering between 0.02 Hz and 10 Hz.
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From this training dataset, we selected one month of data from each array (1 Jan

2010 to 1 Feb 2010), as a validation set. This validation set was used to tune the

models, with final model selection based on validation set performance.

To build our testing dataset, we also obtained a catalog of all local, regional and

near-teleseismic arrivals for the seven array beams, in this case during a one year

period from 1 Jan 2015 to 1 Jan 2016. This test includes 141,095 arrivals in the

seven array beam catalogs. This test set data was not used to train or tune the

models, only to report performance against each array. Additionally, to ensure that

our reported performance figures are indicative of the expected performance against

novel stations, we actually trained seven separate models, each on a different partition

of six arrays and tested against the seventh, such that performance for all seven arrays

is reported using a model that did not have access to any training data from that

array, demonstrating the generalizability and transportability of our detector.

Modeling.

Now that we have defined our dataset, we present a description of our modeling

methodology, detailing the model architecture, hyper-parameter search vectors, and

evaluation metrics.

Model Architecture.

Our model architecture is based on the Temporal Convolutional Network (TCN).

TCNs are deep convolutional architectures characterized by layered stacks of dilated

causal convolutional filters with residual connections [7]. These characteristics of-

fer several distinct advantages for a seismic detection algorithm, which we briefly

summarize:

• Residual connections allow the model to have high-capacity and stable training
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• Causal convolutions allow the model to make predictions on continuous stream-

ing trace data

• Dilated convolutions allow precise control over the receptive field

The receptive field is of primary importance for time-series modeling, as it explic-

itly limits the learnable feature periodicity at a given layer. As such, one of our key

design parameters was to ensure adequate receptive field for our algorithm. The equa-

tion for calculating the receptive field for a given convolutional layer, l, and dilation

rate, d is given in Eq. (2):

rF ield(l) = rF ield(l − 1) + [kernelSize− 1] ∗ d(l) (2)

Table 1. Layer Parameters for a single stack of our TCN architecture. Descriptions of

the columns are as follows: l represents the layer number within the stack, k represents

the kernel size (also known as the filter length or number of weights in each learned

digital filter), d represents the dilation rate, and Receptive Field represents the number

of samples in the input sequence ‘seen’ by the filters at that layer.

l k d Receptive Field

1 16 2 31

2 16 4 91

3 16 16 331

4 16 256 4171

Using Eq. (2), the network is designed to have a receptive field of roughly 100

seconds (or 4,000 samples), allowing it to learn long-period features down to 0.01

Hz. This is accomplished in just 4 layers, as shown in Table 1. Another key design

parameter was to ensure that the dilation rate in each layer remained less than the
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receptive field in the previous layer to prevent gaps in receptive field coverage. Notice

that this constraint is maintained even for the final layer with a dilation rate of 256,

as the previous layer had a receptive field of 331. The model architecture is shown in

Fig. 13.

Figure 13. One stack of our chosen TCN architecture. As shown, the stack consists of

four separate layers of convolutional filters, which are progressively dilated to provide

a wide receptive field. The number of filters in each layer and the overall number of

stacks are two hyper-parameters that determine the overall model capacity. As shown,

each layer utilizes a Rectified Linear Unit (ReLU) activation function, and employs two

forms of regularization: weighted normalization and Dropout.

Hyper-parameter Search Vectors.

Fixing this basic architecture, we engage in a limited hyper-parameter search over

two general vectors: the optimal shape for the exponential function, and the optimal
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capacity for the neural network.

Optimization over the decay rate of the exponential, λ, was varied across 3 choices,

{0.015 Hz, 0.02 Hz, 0.04 Hz}, selected based on visual inspection. Optimization over

model capacity was conducted across two parameters, number of stacks and number

of filters. Each parameter was varied across 4 choices, {2, 5, 9, 12} and {5, 10, 15, 20}

respectively, ranging from a minimal capacity network (2 stacks with 5 filters and only

3,517 parameters) to a high capacity network (12 stacks with 20 filters and 328,681

parameters). Because these two parameters are highly interrelated, the search was

conducted exhaustively, for a total of 16 models. The final hyper-parameter selections

were based on validation loss curves.

Evaluation Criteria.

The research objective is to determine the maximum achievable recall of our single-

trace detection algorithm against the array beam catalogs. Because recall is a clas-

sification metric, and because the task is a regression problem, the next step is to

define the method for calculating recall.

Each detection window is 4 seconds, identical to the window length used in [86].

The number of Total Positives is the number of labeled arrivals in the dataset, and the

number of Total Negatives is the number of windows (length of the dataset in seconds

divided by 4) minus the number of Total Positives, which is a conservative estimate.

A predicted arrival is any peak in the output sequence with a value above a threshold.

A True Positive is any predicted arrival within 2 seconds before or 2 seconds after

a labeled arrival, and a False Positive is any predicted arrival not within 2 seconds

before or after a labeled arrival. A False Negative is a labeled arrival not within 2

seconds of any predicted arrival, and thus the count of True Negatives is the Total

Negatives minus False Negatives. From these definitions, standard equations (3) are
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used to calculate recall (true positive rate) and Type-I error (false positive rate):

Total Windows =
Dataset Length

Window Length

Total Positives = # of Cataloged Arrivals

Total Negatives = Total Windows - Total Positives

Recall =
True Positives

True Positives + False Negatives

alpha =
False Positives

Total Negatives

(3)

Using these definitions, and treating the analyst-reviewed array beam catalogs as

ground truth, performance is reported in terms of both receiver operating character-

istic (ROC) curves and recall. When reporting recall, a type-I error rate of 0.1% is

used. It should be noted that this is an order of magnitude lower than the error rate

reported in [81], [87] and [89], as it is more appropriate for operational use. Because

the primary goal is weak-signal detections, recall is also reported as a function of sig-

nal to noise ratio (SNR). SNR is defined as the log ratio between the short-term and

long-term average power, as given in Eq. (4), with a short-term window consisting

of 5 seconds after the arrival, a long-term window consisting of 40 seconds before the

arrival, and a bandpass filter applied from 1.8 to 4.2 Hz.

SNR = 10 ∗ log10

(
PWRSTA

PWRLTA

)
(4)

Additionally, in order to assess the value of our algorithm over existing single-
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trace methods, performance is compared against two common automatic detectors,

FBPicker [70] and KTPicker [79]. These detectors are implemented in the PhasePApy

[22] package for python, which was developed by the Oklahoma Geological Survey,

and has been in operational use there since 2015. The three algorithms are then

compared by detector efficiency, arrival time estimation, and overall computation

time.

2.5 Results

Two hyper-parameter search vectors were optimized in the model: exponential

decay and model capacity. As shown in Table 2, decay rates between 0.015 Hz and

0.040 Hz were explored, and a decay rate of 0.020 Hz yields the highest recall on the

validation set.

Table 2. Decay Rate Optimization.

λ (Hz) Recall (α = 0.1%) MAE (s)

0.015 62.2% 0.640

0.020 72.1% 0.560

0.040 71.3% 0.476

Fixing the decay rate at 0.020, the overall capacity of the model is varied by

increasing both the number of residual stacks, s, and the number of 1D convolutional

filters, f . Total training time for each model was approximately 200 hrs on an Nvidia

GTX 1080 Ti, and the results of this search indicated that model capacity is optimized

with 12 stacks and 15 filters, as increasing capacity beyond this point appears to have

marginal value. This yields a final model with 12 residual stacks as shown in Fig.

13, with 15 filters on each 1D convolution, for a total of 185,311 fully convolutional

parameters.
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Table 3 shows the results of evaluating the final model against the hold out test set.

Across the seven arrays, the detector is able to correctly classify 56% of the 141,095

array beam picks, yielding 78,802 correct detections. This is a 35% improvement

over the 58,515 detections found by the KTPicker, and more than double the 37,572

detections found by the FBPicker for the same period.

The ROC curves shown in Fig. 14 further illustrate the performance of the algo-

rithm. It should be noted that the type-I error rate of approximately 0.1% represents

performance to the left of the elbows of the ROC curves and sub-optimal detector

efficiency. For pure academic exercise, a much better choice would be to relaxing the

type-I error rate to 1%, as observed in other recent works [87, 81]. This increases

the overall recall of DeepPick to 77%. Unfortunately, such a large type-I error rate is

not acceptable for operational use, as it represents far too many false positives for a

human analyst to deal with. Appendix B presents the performance of the algorithm

on several example waveforms, comparing it to FBPicker and KTPicker.
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Table 3. Algorithm Efficiency by Station. The efficiency of each algorithm (DeepPick,

FBPicker and KTPicker) is shown for each of the seven stations for a full year. The

first column contains the total number of events found in the corresponding array

beam catalog. The subsequent columns contain the detections (true positives), and

recall (true positive rate) and false positive rate for each of the algorithms. The last

row of the table gives the overall results of each algorithm against the combined catalog

across all seven arrays.

Catalog DP Picks FB Picks KT Picks

STA Events TP TPR FPR TP TPR FPR TP TPR FPR

TXAR 16451 9265 57% 0.1% 2933 18% 0.2% 6040 37% 0.2%

PDAR 12980 6966 54% 0.1% 2118 17% 0.3% 3691 29% 0.1%

ILAR 20769 10269 50% 0.2% 3677 18% 0.5% 6371 31% 0.2%

BURAR 4645 3685 80% 0.1% 1565 34% 0.4% 2679 58% 0.1%

ABKAR 8072 5940 74% 0.2% 4015 50% 0.4% 5951 74% 0.2%

MKAR 40583 24473 61% 0.1% 14118 35% 0.2% 20031 50% 0.1%

ASAR 37595 18204 49% 0.2% 9146 25% 0.5% 13752 37% 0.3%

TOTAL 141095 78802 56% 0.1% 37572 27% 0.3% 58515 42% 0.2%

Figure 14. Receiver Operating Characteristic Curves for each of the seven arrays in

the hold-out test set. A dashed line is shown in grey, indicating an alpha of 1%.
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The objective is to detect weak, distant events. This requires a detector with

enough sensitivity to pick out signals near the noise floor. In order to explore the

algorithm’s performance at this task, its ability to detect signals with very low signal

to noise ratio is evaluated. Using the array beam catalog as a baseline, Fig. 15 depicts

recall as a function of SNR. This demonstrates that DeepPick maintains a more than

90% recall for signals with an SNR of at least 10 dB for each of the seven arrays

in the test set. Signals with an SNR of 10 dB or below are quite difficult to detect

from a single trace, as evidenced by the dashed lines in the plot, which represent the

detections two other detection algorithms, FBPicker and KTPicker. These graphs

indicate that DeepPick maintains at least a 4 dB advantage in sensitivity over both

of the other detection algorithms across all seven arrays.

Figure 15. Test-set Recall, reported as a function of SNR, at a fixed type-I error rate

of approximately 0.001. Results are compared directly between the three algorithms,

DeepPick (DP), FBPicker (FB), and KTPicker (KT). Note that several of the reference

catalogs contain fewer arrivals below -8 dB SNR, resulting in some irregularities to the

far left of the plots.

Finally, we report the algorithm’s performance for the arrival time estimation task
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as detailed in Table 41. Here, the algorithm achieves a mean average error of 0.45

seconds from the analyst picked arrival times, with a distribution detailed in Fig.

16. This plot shows that while the most common histogram bin corresponds to an

absolute error of less than 0.025 seconds, the weakest signals are frequently missed

by more than a second. This error is on par with other automatic detectors as shown

in Table 4.

Table 4. Algorithm Precision by Station. Showing the mean average error (in seconds)

for the arrival time estimates of each algorithm. The final row shows the average error

across all seven arrays.

STA DP FB KT

TXAR 0.447 0.531 0.747

PDAR 0.468 0.487 0.768

ILAR 0.450 0.488 0.690

BURAR 0.477 0.481 0.643

ABKAR 0.384 0.420 0.592

MKAR 0.407 0.443 0.657

ASAR 0.484 0.538 0.692

TOTAL 0.445 0.484 0.684

1Arrival time error, ∆t, is only reported for true positives (∆t < 2s).
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Figure 16. Residual analysis on the errors for the arrival time estimation task. Left:

histogram showing the distribution of arrival time errors made by the algorithm against

the test set, with a bin width of 0.025 seconds. Right: scatter-plot showing the distri-

bution of errors with respect to SNR.

2.6 Discussion

The results in Table 3 demonstrate that the DeepPick algorithm is capable of

achieving a recall of between 50 and 80% against the analyst-reviewed picks from

seven array-beam catalogs with a type-I error rate of approximately 0.1%. The low

end of this range, 49% recall at ASAR, represents a significant improvement over

the performance of existing single trace algorithms (25% and 37% for FB and KT

respectively). However, the spread in results is quite large, and suggests the need to

examine the underlying cause of this performance variance.

The two stations with the worst performance are ILAR and ASAR. Interestingly,

these two stations also utilize a different sensor, the Guralp CMG-3TB, from the

other five stations, which all use the Geotech KS54000. This shows the importance

of training the algorithm on stations with the same instrument type as the stations

for which the algorithm is intended to be deployed against operationally. The two

stations with the best results are ABKAR and BURAR. Interestingly, due to higher

noise levels at these sites, the array catalogs for these two stations contain relatively

fewer events with relatively larger magnitudes. This makes the detection of these
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events easier, and the recall rates of 74% and 80% reflect this fact. PDAR, TXAR,

and MKAR utilize a common instrumentation, share similar geology and have similar

noise levels; as expected, they also share similar recall rates of 54%, 57% and 61%

respectively.

The computational efficiency of our algorithm is measured in run-time (seconds)

required to build an automatic catalog across a full year of data. Table 5 shows that

DeepPick has an order of magnitude increase in computational efficiency over the

FBPicker and more than two orders of magnitude increase over the KTPicker. It

should be noted that the implementations of FBPicker and KTPicker used here are

actual operational implementations used by the Oklahoma Geological Survey. This

illustrates the extreme efficiency of the DeepPick algorithm.

Table 5. Algorithm Computational Efficiency by Station. Here we detail the runtime,

in seconds, required for each algorithm to process the full year of data at each array.

STA DP FB KT

TXAR 763 22,800 257,800

PDAR 781 18,961 259,243

ILAR 735 19,372 251,210

BURAR 767 22,983 262,368

ABKAR 791 22,913 254,185

MKAR 754 22,838 271,536

ASAR 725 19,059 255,829

AVG 759 21,275 258,881

These results show that the primary determinant of algorithm success lies in the

degree of similarity between the training stations and the testing station. As such,

when deploying this algorithm for operational use it is important to find suitable
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arrays to train on in order to maximize performance. In any case, the algorithm

shows decent performance even when trained across different geographical areas and

sensor types.

2.7 Conclusion

Weak teleseismic event detection is normally only possible using an array of seis-

mic instruments and sophisticated processing techniques. Even recent works in the

literature make little attempt to extend single-trace detection algorithms beyond lo-

cal events. This is primarily due to the lack of available training data, an issue which

we address by mining the seismic catalogs in a unique way, building our catalog for

an array beam while taking our event waveforms from a single array element. Using

this training data, temporal convolutions and a unique exponential sequence tagging

function, we develop a powerful tool for weak signal teleseismic detection. The Deep-

Pick algorithm is able to accurately detect twice the number of events detected by

the STA/LTA algorithm commonly used, and does it significantly faster.

The findings in this work represent an important step forward in the field of tele-

seismic detection, demonstrating that accurate teleseismic event detection is possible

from a single seismic instrument. The DeepPick algorithm has the potential to open

up thousands of additional automatic detections to single-instrument seismic stations

each year, without the need for additional sensors and equipment.

There is still potential for much improvement. In this work, we develop a single-

trace detector, applied only to a single channel of data from a three channel instru-

ment; future work could extend our results to include data from all three channels of

the instrument. Furthermore, an application of the same technique to an entire array

of channels could also prove interesting, and the potential exists to improve our results

significantly by incorporating more channels of data. Additionally, the focus of this
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work has been primarily centered on producing a detector with increased sensitivity

and recall, whereas future work could focus on using similar techniques to produce a

detector with an even lower false positive rate.
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III. Study 2 - Beyond Correlation: A Path-Invariant
Measure for Seismogram Similarity [29]

3.1 Abstract

Similarity search is a popular technique for seismic signal processing, with tem-

plate matching, matched filters and subspace detectors being utilized for a wide vari-

ety of tasks, including both signal detection and source discrimination. Traditionally,

these techniques rely on the cross-correlation function as the basis for measuring simi-

larity. Unfortunately, seismogram correlation is dominated by path effects, essentially

requiring a distinct waveform template along each path of interest. To address this

limitation, we propose a novel measure of seismogram similarity that is explicitly

invariant to path. Using Earthscope’s USArray experiment, a path-rich dataset of

207,291 regional seismograms across 8,452 unique events is constructed, and then

employed via the batch-hard triplet loss function, to train a deep convolutional neu-

ral network which maps raw seismograms to a low dimensional embedding space,

where nearness on the space corresponds to nearness of source function, regardless

of path or recording instrumentation. This path-agnostic embedding space forms a

new representation for seismograms, characterized by robust, source-specific features,

which we show to be useful for performing both pairwise event association as well as

template-based source discrimination with a single template.

3.2 Introduction

Seismograms are time-series records of the earth’s motion at a fixed station. This

motion results from seismic waves that have often traveled a considerable distance

from the source event, and seismograms reflect the combined influence of both the

source itself and the propagation path between source location and recording sta-
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tion [16]. As illustrated in Fig. 17, two seismograms depicting different events yet

sharing a common path can appear similar. This fact has long been recognized by the

seismic community [98, 58]. In the earliest days of manual processing and helicorders,

analysts were often able to identify mining events from a particular mine, recorded

at a particular station, by simply comparing the visual similarity of new seismograms

to previously recorded examples [50]. In fact, a common practice was to take two

translucent paper seismograms and compare them, by passing the waveforms across

one another while holding them up to a light source [94]. Thus began the science of

seismogram similarity. Of course, the advent of computer processing ushered in the

development of a multitude of techniques to exploit these similarities algorithmically.

Case-based discrimination [32], template matching [36], waveform correlation [43],

subspace detection [44] and similarity search [113] are all similarity-based algorithms

which have been proposed over the last several decades, and deployed against a wide

range of seismic signal processing tasks, such as discriminating mining blasts, screen-

ing swarm events, identifying aftershock sequences, and even detecting general seismic

signals.

While these algorithms have different tasks ranging from discrimination to detec-

tion, fundamentally they are all examples of similarity-based classifiers [23], which

estimate the class label of a new seismogram based on its similarity to one or more

previously labeled templates. Furthermore, these similarity-based classifiers all share

a common measure of similarity: cross-correlation. Such methods are generally re-

ferred to as correlation detectors [44].

This common reliance on correlation is concerning, because the correlation co-

efficient of two seismograms is dominated by path effects [94], as demonstrated in

Fig. 17. While path-dominant similarity can be desirable, such as when detecting

aftershock sequences from a particular fault, or mining blasts from within a small

54



Figure 17. Three seismograms depicting explosions at a coal mine near Thunder Basin,
WY. Seismograms a) and b) depict a common source event (600221452), recorded at
two separate seismic stations, ISCO and K22A respectively. Seismogram c) depicts
a nearby event (600221802), also recorded at K22A. Seismograms a) and b) depict
the same event recorded at different stations, while seismograms b) and c) depict
different events which share a common path. The correlation between the same-source
waveforms a) and b) is only 0.03, and the waveforms visually appear quite different.
On the other hand, the visual similarity between the path-similar waveforms b) and
c) is obvious, and they are correlated with a coefficient of 0.18. This illustrates the
path-dominant similarity inherent to seismogram correlation.

quarry, in general, path-dominant similarity is problematic, as source-similar signals

de-correlate with even slight deviations in path [44]. This includes deviations in ori-

gin location, such as two explosions occurring at different points in a mining quarry,

and deviations in recording location, such as two recordings of the same explosion by

separate seismic stations in a regional seismic array. In either case, path differences

of even just a quarter wavelength can significantly degrade the correlation of two

seismograms [20, 75].

This work presents a new measure for seismogram similarity that bypasses corre-

lation entirely, and is designed to be both path-invariant and source-specific. To be

precise, the design goal is to create a measure of seismogram similarity that enables

the identification of seismograms sharing a common source event, regardless of the

path of travel. While such a measure was previously computationally intractable, it is
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Figure 18. Path-Invariant Embedding Function for Seismograms. The embedding
function, f(·), is a non-linear transformation that maps time-series seismograms to low-
dimensional embeddings. The mappings should be path-invariant and source-specific,
such that regardless of the recording station, all seismograms associated with a partic-
ular event are mapped closely in the embedding space, and seismograms not associated
with that event have more distant embeddings, as demonstrated in this notional dia-
gram. This embedding function can be learned using a convolutional neural network
architecture, trained with seismogram triplets.

possible with the careful application of deep convolutional neural networks (CNNs).

In 2019, researchers at the Los Alamos National Laboratory published a method us-

ing a CNN to predict the pairwise association of seismic phase arrivals, for 6 second

windows, across a local group of 6 stations in northern Chile, reporting an accuracy

of over 80% [72]. Building on these results, we construct a source-dominant, path-

invariant measure for seismogram similarity which operates on 180 second windows

and is generalized across more than 1,000 sensors across North America. We do this by

utilizing a state-of-the-art machine learning technique from the field of facial recogni-

tion, called a Triplet Network, which not only indicates pairwise association between

seismograms, but actually maps the seismograms to low-dimensional vectors, called

embeddings, such that the embedding space distance between seismograms sharing a

common source event are minimized, regardless of path, while remaining distinct from

any other events. This embedding strategy is displayed in Fig. 18. In this way, the

embedding function becomes a rich feature extraction technique for source-specific

and path-invariant features.

The triplet network architecture accepts three observations - two similar and one
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different from the others. Training a triplet network to learn seismic source similarity

requires source-similar seismogram triples: two of the three waveforms are associated

with a common source event and the third waveform is not. For this task, it is prefer-

able to have a training set containing seismograms recorded from a densely-spaced

sensor network, so that the neural network can experience seismograms recordings

across numerous paths for the same event. The 400 three-channel broadband sen-

sors of the USArray experiment provided an ideal dataset of seismograms; data from

this array is used for training and testing. The triplet network is trained against 13

years of data (2007 - 2013), validated against a single year of data (2014), and tested

against the final two years of data (2015-2016). Additionally, a subset of 51 recording

stations and a small region of event locations was held out from the algorithm during

training, to allow a proper evaluation of the generalizability of the technique. A map

detailing the dataset is shown in Fig. 19.

Figure 19. Map showing the geographical location of each recording station and event
in the training and testing datasets. The majority of the stations were installed as
part of the Earthscope’s Transportable USArray, and were in operation from 18 to 24
months before being moved. Additionally, 51 novel stations and a small region of novel
event locations are unique to the test set.

The value of this path-invariant measure is demonstrated through performance

evaluation on two common seismic tasks: event association and source discrimina-

tion. The event association task of determining whether or not two waveforms depict

the same event achieves a binary accuracy of 80%. This accuracy is achieved using
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only the waveform characteristics, without information on times or recording loca-

tions, and the technique has strong potential to augment existing methods of event

association [72].

The real promise of the technique, however is for source discrimination. The

embedding space is a rich basis for source-specific seismic feature extraction [41].

Our similarity-based explosion discriminator achieves 95.8% accuracy with no explicit

training for the source discrimination task; the discriminator simply compares the

similarity of unknown waveforms to a single randomly-selected explosion template.

This technique is often referred to as one-shot learning [61], and shows promise for

discrimination of novel sources when only a few extant templates are available.

In the remainder of this work, these contributions and conclusions are explored in

detail, by reviewing the related literature, outlining methodology, and detailing and

discussing the results.

3.3 Background

This work merges two relatively disparate fields of science. On the one hand,

the application is seismogram similarity, a field with a rich history and considerable

previous research. On the other hand, the methodology employs learned similarity,

a relatively nascent field that has principally been associated with machine learning

image processing applications. This background section is divided into three distinct

subsections: seismogram similarity; learned similarity; and learned seismogram sim-

ilarity. Each subsection contains a brief background and literature review, as well

as a discussion of the limitations and gaps in the current research, which this work

attempts to fill.

58



Seismogram Similarity.

A seismogram represents the composition of several effects, including the seismic

source itself, the propagation path from the source to the seismometer, the frequency

response of the seismometer as well as any ambient noise at the seismometer’s loca-

tion [16]. Because of this diverse composition, estimating and even defining seismo-

gram similarity can be quite challenging.

The traditional measure for seismogram similarity is the cross-correlation function.

This measure has been used for detecting and discriminating seismic signals since the

late 1980s [32], and such techniques are commonly referred to as correlation detec-

tors [44]. Correlation detectors are exquisitely sensitive, allowing detections near the

noise floor for known repeating events in highly confined geographical regions [37].

Unfortunately, this confinement is also a limitation, as seismogram correlation has

been shown to decay exponentially with even minor differences in path distance [50].

In fact, early research suggested that correlation-based similarity was limited to sig-

nals with hypo-centres separated by no more than a quarter wavelength [33, 75],

although later efforts have since shown improvements, allowing the correlation length

to be up to two wavelengths [43]. Additionally, researchers have also shown that

seismograms quickly decorrelate across small variations in mechanism and source

function [49]. These facts limit the applicability of the correlation detector to only

the most repetitive sources that are confined to localized geographical regions [44].

To increase the applicability of the correlation detector, there have been numer-

ous adaptations proposed. To address variations in ambient noise, narrow bandpass

filters were applied [50]. To address minor variations in mechanism, composite tem-

plates were employed, derived from linear combinations of several master templates

representing a range of mechanisms [43]. To address path effects, dynamic waveform

matching was developed, introducing a non-linearity to the correlation, allowing rel-
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ative stretching or squeezing of the template [94]. Subspace detectors attempt to ad-

dress all of these variations at once, with even more robust composite templates [44].

Recently, efforts focused on a multiplicity of templates and a computationally effi-

cient search across them [113, 116, 9, 11]. These efforts have significantly increased

the effectiveness of correlation-based detectors. In fact, for regions with a high sensor

density, such as Northern California, it is estimated that more than 90% of events

have sufficient similarity to be detected via correlation [107]. However, this figure is

highly dependent on both the density of the sensor network and the completeness of

the template library [103]. As such, Dodge and Walter estimate that still only 18%

of all global events possess sufficient similarity to be detected by these methods [31].

In summary, cross-correlation is a powerful measure for seismogram similarity,

especially as a tool for detecting highly-repeating path-specific events. However, cross-

correlation is fundamentally limited as a general measure of seismogram similarity,

due to its inherent path-dependence. In this study, we address this limitation directly,

and propose an alternative measure of seismogram similarity that is invariant to path,

instrumentation and ambient noise.

Learned Similarity.

Each of the traditional seismogram similarity measures discussed so far has been

fundamentally built around the cross-correlation function. However, it is interesting

to note that almost none of those measures performed cross-correlation directly on

the raw waveforms. Instead, each measure first applied some pre-processing function

to the raw waveforms, either linear (time shifts, bandpass filters, linear combinations)

or non-linear (dynamic time warping) prior to performing cross-correlation. We can

generally understand these pre-processing functions to be mappings, from raw wave-

form space to a new embedding space. In each case, the mapping function is chosen
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such that the cross-correlation of two objects in the embedding space meets some

desired similarity objective.

As it turns out, this embedding process used in traditional correlation-based sim-

ilarity closely mirrors the process accomplished in machine learning-based similarity.

For learned similarity, a parameterized embedding function architecture is estab-

lished, and the parameters are optimized such that the distance between two objects

in the space achieves the desired similarity objective. Over the last several years,

such learned similarity measures have revolutionized the field of facial recognition

in particular and the field of image processing in general, fueling advances in im-

age recognition [108], object tracking [66] and even vision navigation [64]. In the

remainder of this section, we review some of the state of the art techniques avail-

able for constructing deep learned similarity measures, focusing particularly on the

embedding function architecture and similarity objective, in turn.

Embedding Function Architecture.

Many early efforts to create learned similarity spaces utilized a linear architecture,

such as the Mahalanobis distance [111, 51, 52]. However, in recent years, much success

has been gained by employing non-linear architectures [10], particularly in the form

of deep convolutional neural networks (CNNs) [41]. These CNNs were originally

developed with 2-dimensional kernels, or filters, which allowed them to closely model

the hand-crafted kernels traditionally used in image processing [67]. To adapt these

powerful CNN architectures to process time-series waveforms, 1-dimensional CNNs

were developed [18], enabling learned similarity spaces for audio waveforms [54].

A more recent advancement to the traditional CNN architecture is the Temporal

Convolutional Network (TCN), which is characterized by layered stacks of dilated

causal convolutions and residual connections [7], as illustrated in Fig. 20. Such an
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architecture is particularly applicable to time-series waveforms with long-period de-

pendencies, and offers several distinct advantages for seismic feature extraction [28],

including:

• Residual connections allow the model to have high-capacity and stable training.

• Dilated convolutions allow precise control over the receptive field.

Figure 20. A single stack of 4 dilated residual blocks commonly found in a Deep
Temporal Convolutional Neural Network Architecture. In this case, the residual blocks
have exponentially increasing dilation rates, increasing from 2 to 256 across the 4
blocks. This rapid dilation provides the network a wide receptive field which is critical
for learning long-period features frequently found in time-series waveform data.

The receptive field is of primary importance for time-series modeling, as it ex-

plicitly limits the learnable feature periodicity at a given layer. The equation for

calculating the receptive field, r, for a given convolutional layer, l, kernel size, k, and

dilation rate, d is given in (5):
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rl = rl−1 + dl(k − 1)

where r0 = 0

(5)

In summary, the TCN is ideally suited for the efficient embedding of seismograms.

This architecture presents a rich search space for learning an optimal embedding

function. However, optimizing this function requires defining a suitable similarity

objective, detailed next.

Similarity Objective.

Defining a quantitative similarity objective begins with a qualitative understand-

ing of what similarity means for the given task, which is often referred to as a semantic

definition of similarity. Once the semantic definition is established, the next step is

to approximate it with an embedding function, such that nearness in the embedding

space implies the semantic similarity [26]. This embedding function is learned via

back-propagation of loss, J , that reinforces the semantic definition.

One of the simplest semantic definitions of similarity is the concept of a match,

where a matched pair of objects share a common identity, and an unmatched pair of

objects have different identities. For example, in the facial recognition task, a matched

pair is defined as two images of the same person and an unmatched pair is defined as

two images of distinct persons. The similarity objective is to optimize the parameters

of the embedding function such that the embedding space distance between matched

pairs is small, while the distance between unmatched pairs is large. This embedding

function can be learned directly by a Siamese Neural Network, which takes in a batch

of m object pairs, of which half are matched, and half are unmatched. The two

objects, X
(i)
A and X

(i)
B , are then embedded via twin copies of the embedding function,

f(·), with tied parameter weights w. The parameters of the embedding function
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are updated via the contrastive loss function, which penalizes two contrasting cases:

matched pairs are penalized for being embedded too far apart and non-matched pairs

are penalized for being embedded too close together with respect to some margin,

α, as given in Eq. (6) and Eq. (7), respectively [26], where [ ]+ indicates the ramp

function1.

J =

m/2∑
i=1

[〈
f(X

(i)
A ), f(X

(i)
B )
〉]

+
(6)

J =

m/2∑
i=1

[
α−

〈
f(X

(i)
A ), f(X

(i)
B )
〉]

+ (7)

This technique works well, however, one drawback is the relatively inefficient use

of the embedding space. Matches are too greedy, as the Siamese Network attempts to

map all matches to a single point in the space. Meanwhile, non-matches are inefficient,

being pushed apart by only a fixed distance [48]. As a result, the Siamese Network

is used less frequently in favor of the Triplet Network.

The Triplet Network is similar to the Siamese Network [48], however it is trained

on batches of m triples, where each triple is comprised of an anchor object, X
(i)
A , a

positive object, X
(i)
P , and a negative object, X

(i)
N . From within each triple, both a

matched and non-matched pair can be constructed, however, the triplet loss function

computes the relative embedding distance between the matched pair and non-matched

pair, and no loss is accrued as long as the matched pair is closer by some margin, α,

as given in Eq. (8).

1The ramp function simply zeros out all negative values while passing positive values unchanged.
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J =
m∑
i=1

[〈
f(X

(i)
A ), f(X

(i)
P )
〉
−
〈
f(X

(i)
A ), f(X

(i)
N )
〉

+ α
]

+

where [ ]+ indicates the ramp function.

(8)

The Triplet network avoids the greediness of the Siamese network, and makes more

efficient use of the embedding space, however it has its own drawbacks. Particularly,

it can converge quickly at first, but learning slows rapidly, as the majority of the

negative pairs are pushed beyond the margin, failing to train the weights appreciably.

This can be solved by sampling hard pairs, semi-hard pairs and several other sam-

pling strategies, all of which rely on iterative processing via forward propagation to

determine embedding space distances, selectively sampling based on those distances,

and then applying back propagation on the sample [46]. The algorithm used to sam-

ple hard pairs is commonly referred to as the batch hard loss function, and it requires

that each batch be composed by randomly sampling L distinct identities and then

randomly sampling K examples of each identity. In this way, the total number of

objects in a batch is L ∗ K, and each object is double indexed so that object X
(v)
u

represents the uth example of the vth identity. The triplet loss is calculated using Eq.

(8), except that in this case, every object in the batch is treated as an anchor X
(i)
A ,

and used to form a new triplet by selecting the hardest positive and hardest negative

samples, X
(i)
P and X

(j)
N respectively, for that anchor within that batch, as detailed in

Eq. (9).

J =

all anchors︷ ︸︸ ︷
L∑
i=1

K∑
A=1

[ hardest positive︷ ︸︸ ︷
max
P=1...K
P 6=A

〈
f(X

(i)
A ), f(X

(i)
P )
〉
−

hardest negative︷ ︸︸ ︷
min

j=1...L
N=1...K
j 6=i

〈
f(X

(i)
A ), f(X

(j)
N )
〉

+α

]
+

where [ ]+ indicates the ramp function.

(9)
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Deep Seismogram Similarity.

Deep Neural Networks are now being used across many areas of seismological

research, from earthquake detection to earthquake early warning systems, ground-

motion prediction, seismic tomography, and even earthquake geodesy [62]. However,

no effort has yet been made to use deep neural networks to build a seismogram sim-

ilarity metric. The closest related work was in early 2019, where researchers at Los

Alamos National Labs published a paper describing a convolutional neural network

for the pairwise association of seismograms depicting a common event, regardless of

path [72]. This work shows that path-invariant features do exist within the seis-

mogram record. The seismograms considered in their work had a signal length of

6 seconds, and were restricted to recordings from 6 seismic stations. To process the

signals, they used a shallow CNN with 4 layers, the input accepting two seismograms,

the output producing a single Boolean. This results in a similar output to a Siamese

network, but without tied weights. The lack of tied weights means there is no embed-

ding layer, which prevents their technique from being used for feature extraction. And

the small number of stations limits the generalizability and transportability of their

algorithm. Finally, the short signal length (6 s) limits each individual seismogram

to containing a single phase arrival, thereby limiting the ability of the model to ex-

tract long-period features, such as P and S wave energy ratios, which are particularly

pertinent to general source discrimination tasks.

3.4 Methodology

We present a novel seismogram similarity measure, based on a learned embedding

function, which is both source-dominant and path-invariant. We show that the re-

sultant embedding space is a rich representation space for seismic signals, useful for

performing similarity-based classification against two common class dichotomies for
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seismograms: common event vs. different events (event association) and earthquake

vs. explosion (source discrimination). The remainder of this section describes the

embedding function architecture, the similarity objective, the USArray dataset and

the evaluation criteria for the two classification tasks.

Embedding Function Architecture.

The goal is to learn a path-invariant embedding function for seismograms, useful

for source discrimination at up to regional distances. This is accomplished using a

hybrid architecture with two distinct parts: first, a TCN is employed with a receptive

field wide enough to capture both P and S wave phases; second, a densely connected

output layer, with 32 nodes, is employed to facilitate a rich low-dimensional embed-

ding space.

Using Eq. (5), the TCN is designed to have an overall receptive field of 4171

samples, equivalent to 104 seconds at the given 40 Hz sample rate of the data, allowing

it to learn long-period features down to 0.01 Hz, with just four dilated convolutional

layers, as shown in Table 6. The TCN architecture consists of two residual stacks,

shown in Fig. 20, each with 50 filters and a kernel size (filter length) of 16 samples.

Finally, the TCN output is encoded by a densely connected output layer with 32

nodes, and the final output vector is normalized to have unit length. This results in

553,835 trainable parameters, and a network which reduces the three-channel 21,600

dimensional input into just 32 dimensions, for a 99.9% reduction in dimensionality.

Table 6. TCN Layer Parameters

l k d Receptive Field
1 16 2 31
2 16 4 91
3 16 16 331
4 16 256 4171
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Similarity Objective.

This embedding function is learned via a Triplet Network with batch-hard loss.

Specifically, the batch size was set at 100, with L (the number of distinct source

events in a batch) and K (the number of seismogram recordings for each event in a

batch) both set equal to 10. In this way, each batch consists of 100 randomly selected

seismograms, evenly represented across 10 different source events. These values were

selected primarily on the basis of availability, since increasing K beyond 10 would

have limited the dataset (∼95% of the events in the USArray dataset were recorded

by at least 10 stations), and increasing L beyond 10 would require more memory than

the 12 GB available in the Nvidia 1080Ti GPU used for training.

Embedding space distances are computed using the L2 norm. Because the out-

put of the embedding function is normalized, the embedding space vectors are all

constrained to a hypersphere with radius = 1. This ensures a bounded distance be-

tween any two embeddings, as chord lengths are always bounded by [0,2] for any unit

hypersphere. Because these pairwise distances are bounded, a fixed margin can be

used throughout training [96]. In this work, the margin is fixed at α = 0.2, which is

common [93].

Data Collection.

Learning a path-invariant measure for seismogram similarity requires a training

dataset with many recordings of a single seismic event across many disparate paths.

This is best accomplished by a dense network of seismometers across a wide region.

EarthScope’s USArray dataset is ideally suited for this endeavor. In particular, this

work utilizes two EarthScope observatories, the Transportable Array and the Refer-

ence Array, as the basis for the Training and Test Sets, respectively.

The USArray Transportable Array (TA) consists of 400 temporary seismic in-
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struments that were deployed at more than 2,000 temporary station locations across

the Continental US between 2007 and 2015 [19]. Each station utilized a broadband

3-channel (North-South, East-West and Vertical) instrument, installed in a post-hole

configuration and digitized at 40 Hz. The instruments were generally one of three

types, Guralp CMG3T, Quantera STS, or Nanometrics Trillium; the digitizers were

primarily Kinemetrics Q330, Q680 or RefTek. In this work, the training and vali-

dation datasets are taken from the full array of TA seismograms, minus a random

subset of 51 stations and a region of events located near the Rosebud mine in Mon-

tana, which were held out for testing. The training and validation sets were distinct

in time, covering the periods from 2007-2013 and 2014, respectively. Associated ar-

rival times were obtained by querying the ISC reviewed catalogs for any Continental

US (CONUS) events over this period, resulting in 149,036 seismogram recordings of

4,825 distinct seismic events for the training set, and 22,561 seismogram recordings

of 1,175 distinct seismic events for the validation set. A map detailing the layout of

the training stations is shown in the left plot of Fig. 19.

The USArray Reference Array consists of 120 permanent seismic instruments de-

ployed across the Continental US, utilizing similar equipment to the Transportable

Array. In this work, the test set is taken from the full array of TA and REF stations

available from 2015 and 2016. Associated arrival times were obtained by querying

the ISC reviewed catalog for CONUS events, resulting in a test set with 35,694 seis-

mogram recordings of 2,452 distinct seismic events. All of the events in the test set

are mutually exclusive with the training and validation data. Additionally, because

of the stations and locations held out during testing, 6,934 of these seismograms were

recorded by the 51 novel stations, and 87 seismograms represent events from the novel

location near the Rosebud mine in Montana. Performance is evaluated explicitly on

these novel data to explore the power and generalization of the technique.
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All three datasets, training, validation and test, were limited to events with near

CONUS epicenters, as defined by the following limits on latitude and longitude: 25 <

LAT < 50, and -125 < LON < -75. This accomplishes two purposes. First, this pro-

duces a catalog with more balanced samples of explosions and earthquakes, 207,291

and 26,568 respectively. Second, this restricts the study to regional signals. Re-

gional signals are preferred due to the more manageable window length requirements

vs. teleseismic signals. Furthermore, the regional association task is much more in-

teresting than the teleseismic association task, due to the fact that the teleseismic

signals recorded by such a dense regional network look much more similar even using

traditional seismic similarity. We leave the exploration of this technique against tele-

seismic signals to future work. For completeness, we also have included histograms of

seismogram station-to-event distances as well as event magnitudes for both the test

and training sets, shown in Figs. 21 and 22, respectively.

Figure 21. Histogram showing the distributions of station-event distances for all seis-
mograms in the test and training sets. The distributions show that the test and training
sets are similar, and that the majority of the seismograms in the combined dataset were
recorded within 15 degrees of the epicenter.

For each of the 207,291 seismograms in the combined datasets, a 180-second win-

dow is selected which includes the 30 seconds prior to the cataloged arrival time and

the 150 seconds subsequent to the arrival. The only pre-processing applied to the

raw data was a normalization and de-trending. This window size was chosen so as

70



Figure 22. Histogram showing the distributions of event magnitudes for all seismograms
in the test and training sets. The distributions show that the test and training sets are
similar, and that the majority of the events in the combined dataset have a magnitude
between 2 and 5 Mb.

to ensure the presence of both P and S waves within the window. While this long

window does present the opportunity for multiple arrivals within a single window,

investigation shows that this occurs in only 0.15% of the seismograms in the dataset,

and its effects are negligible on the results.

To create the training and validation triples, a generator function randomly selects

an anchor, as well as positive (same event, different station) and negative (different)

events. Due to multiple site recordings of many of the individual events (on average,

each event was recorded by 30 different stations), there are upwards of 300 million

possible triples, which makes this a robust training set for learning seismogram simi-

larity.

Evaluation Criteria.

To demonstrate the performance of the similarity measure, it is applied to two

tasks: pairwise event association and source discrimination. Evaluation criteria for

each of these tasks is shown below.

Event association is the process of correctly associating the arriving seismic phases

of a single event across a network, and is a critical step in seismic analysis. The
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traditional algorithms used for this task have always been based on travel times

and earth velocity models, however our method is similarity-based: we associate the

seismograms entirely based on their pairwise similarity in the embedding space, with

no external information about arrival times or recording locations. This is a binary

classification task: given a pair of seismograms, XA and XB, the algorithm must

classify the pair as matched or unmatched, where a matched pair is defined as two

seismogram recordings of the same event. Classification is accomplished by comparing

the similarity-based test statistic, S, against a user defined threshold, τ , as seen in

Eq. (10).

H0: UNMATCHED (XA and XB depict distinct events)

HA: MATCHED (XA and XB depict a common event)

S =
1〈

f(XA), f(XB)
〉

reject H0 if S ≥ τ

(10)

To report performance, a receiver operating characteristic (ROC) curve is built by

varying τ across the full range of S, and plotting the rate of false positives against the

rate of false negatives for each τ . Additionally, for the threshold τ which maximizes

accuracy, area under the ROC curve (AUC), binary classification accuracy, precision

and recall are shown. The evaluation is performed across 50,000 random pairs of

seismograms drawn from the test set, and compared directly against the results found

in [72]. The results are also explored with respect to a subset of novel stations and

events that were withheld during training, in order to better understand the abilities

and limitations of the technique.

The source discrimination task is also formulated as binary classification, where

unlabeled seismograms X are classified as either explosion or earthquake, based on
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their embedding space similarities to both the centroid of a set of explosion templates,

XEXP and the centroid of a set of earthquake templates, XEQK . This is shown in Eq.

(11), where ε is machine precision.

H0: EARTHQUAKE (X depicts an earthquake)

HA: EXPLOSION (X depicts an explosion)

S =

〈
f(X), f(XEQK)

〉
〈
f(X), f(XEXP )

〉
+ ε

reject H0 if S ≥ τ

(11)

The source discrimination test is performed against the full 35,694 seismograms

in the test set. The ROC curve, AUC, accuracy, precision, and recall are presented.

Additionally, the performance of this similarity-based discriminator is directly

compared to that of two state-of-the-art methods: the SVM-based discriminator pro-

posed in [63] and the SRSpec-CNN discriminator adapted from the work of [76]. In

particular, the SVM and CNN implementations both utilize the full 149,036 training

waveforms from the training set. The SVM uses 36 features, composed of nine fre-

quency bins ([1-3 Hz], [2-5 Hz], [4-7 Hz], [6-9 Hz], [8-11 Hz], [10-13 Hz], [12-15 Hz],

[14-17 Hz], [16-19 Hz]) and four time divisions (P, P coda, S and S coda), with the S-P

time differences based on the iasp91 velocity model. SRSpec-CNN uses 64x64 spec-

trogram images extracted from 180s normalized seismogram windows, with frequency

bins between 2-10 Hz.

3.5 Results

Pairwise Event Association.

To demonstrate that event association using this technique is possible, a special

test set is created by sampling 50,000 pairs of seismograms from the test set, in-
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cluding 25,000 pairs of seismograms that originate from common events, and 25,000

pairs of seismograms that originate from different events. Plotting histograms of the

embedding space distances for each pair, as shown in Fig. 23, demonstrates that the

distribution for matched-pair distances are considerably lower than the unmatched-

pair distances.

Figure 23. Histograms of matched and unmatched pair distances for the test set.
The matched-pair distribution includes embedding space distances for 25,000 pairs of
seismograms, where the two embeddings come from the same event. The unmatched-
pair distribution includes embedding space distances for 25,000 pairs of seismograms,
where the two embeddings come from different events. A cutoff threshold of 0.24 was
used to obtain maximum classification accuracy, and is annotated by the dashed line.
For this threshold, the area of overlap between the two density plots represents the
total classification error, which is ∼20%.

We then apply the similarity-based association classifier defined in Eq. (10). The

ROC curve for the task has an AUC of 86.8% as shown in Fig. 24. The overall

accuracy is 80.0% with a precision and recall of 80.2% and 79.6%, respectively, and

these results are nearly identical to the 80% accuracy reported in [72], extended across

a much larger network of stations. Performance is also investigated with respect

to the distance between recording stations. As noted previously, correlation-based

seismogram similarity is known to decay exponentially with an increase in the distance

between recording stations [50]. Our path-invariant measure is also negatively affected

by increasing this distance, but the decay is only linear. This is clearly demonstrated
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in Table 7.

Figure 24. Receiver Operating Characteristic Curve for the Event Association task.
The overall area under the curve is 86.8%.

Table 7. Waveform Association Performance vs. Inter-station Distance

Distance (km) Precision Recall Accuracy
0000-0250 km 0.864 0.783 0.830
0250-0500 km 0.852 0.791 0.827
0500-0750 km 0.802 0.766 0.789
0750-1000 km 0.805 0.789 0.799
1000-1250 km 0.778 0.840 0.800
1250-1500 km 0.785 0.811 0.794
1500-1750 km 0.744 0.866 0.784
1750-2000 km 0.731 0.863 0.773
2000-2250 km 0.732 0.794 0.751
2250-2500 km 0.741 0.826 0.769

To further investigate the ability of the embedding space to facilitate event associa-

tion, Fig. 25 displays 120 seismogram embeddings in 2-dimensions using t-Distributed

Stochastic Neighbor Embedding (t-SNE) [71]. The figure clearly demonstrates a clus-

tering of embeddings of common events. However, there are obviously other clusters

present as well, shown by the dashed lines in the plot. As it turns out, these other

clusters can be quite useful, and are explored further in the discussion of the source

discrimination task.
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Figure 25. t-SNE Embeddings for Waveform Association. Six unique seismic events
were randomly selected from the dataset, along with 20 seismograms for each event,
recorded at various stations. These 120 seismograms were then mapped to the
32-dimensional embedding space via the trained neural network. Finally, the 32-
dimensional embedding space was visualized here in two dimensions using t-SNE, with
each unique event assigned a unique marker. The clustering of same-event embeddings
is the result of shared feature commonalities between seismograms of that event. It is
interesting to note that there appears to be some aggregate clustering as well, indicated
by the dashed lines. This aggregate clustering is the result of feature commonalities
shared across seismograms of multiple events. These inter-event commonalities are
explored further in the analysis of results for the source discrimination task.

The ability of the embedding space to associate regional events across hundreds of

stations with 80% accuracy based entirely on waveform similarity is surprising, and

begs the question: is the neural network really extracting generalized path-invariant

features, or is it merely ‘memorizing’ all the training paths exactly, in a way that

appears to support conclusions that are unwarranted. To answer this question, we

investigate the ability of the embedding space to associate waveforms from novel sta-

tions and locations as detailed in Tables 8, 9 and 10. Here, we find that although

the performance does drop for such events, the drop is relatively minor. For in-

stance, accuracy only drops from 80% to 79% when considering novel stations, which

demonstrates that the neural network has indeed learned to extract features that are

invariant to recording location, even novel ones. The accuracy drop is slightly more

significant when considering novel event locations, decreasing from 80% to 76% for

pairs where at least one event originated near the held-out Rosebud mine. This is un-

derstandable, as withholding training events from a certain source location obviously
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impairs the ability of the neural network to extract features unique to such events at

test time.

Table 8. Association Performance for Novel Stations

Novel STA? COUNT ERROR ACCURACY
No 32221 6358 0.80
Yes 17779 3712 0.79

Table 9. Association Performance for Novel Source Location

Novel LOC? COUNT ERROR ACCURACY
No 49792 10020 0.80
Yes 208 50 0.76

Table 10. Association Performance for Novel Station and Location

Novel STA&LOC? COUNT ERROR ACCURACY
No 49908 10038 0.80
Yes 92 32 0.65

Source Discrimination.

To further demonstrate the power of our embedding space, we consider its utility

to facilitate template-based source discrimination. The results here are particularly

interesting, as the neural network was not explicitly trained in this task: although the

neural network was exposed to many examples of earthquakes and explosions during

training (207,291 and 26,568 respectively), the network had no access to these source

labels. However, the network did have access to event labels, and was thus trained

to extract features with source-specificity and path-invariance. Unsurprisingly, these

source-specific features are well-suited for source discrimination. In Fig. 26, the em-

bedding space is visualized using t-SNE, and labeled by source type, demonstrating

a significant separation between the two source classes in the embedding space, with

no pre-processing or training.
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Figure 26. Two hundred embeddings are shown, visualized in 2D using t-SNE, and
labeled according to source function. The light-colored dots represent explosions and
the darker dots represent earthquakes; the cluster centroids are annotated by 1 and 0,
respectively. The 2D clustering of embeddings demonstrates the inherent association
between embeddings with a common source function.

Template-based discrimination performance is demonstrated with three different

quantities of randomly-selected exemplar templates: 1, 3 and 10, as shown in Fig. 27.

The discriminator achieves a mean AUC of 82.8% for just a single template. This

is known as one-shot learning, and enables the creation of a viable classification al-

gorithm with only a single training example. The variance on this AUC is a bit

high; however with three templates, this method achieves an AUC of 86.7% with

low variance. Choosing the threshold so as to maximize accuracy, the algorithm is

then evaluated for accuracy, precision and recall, which are recorded at 95.8%, 73.4%

and 73.6% respectively, which exceeds the performance of the SVM discriminator,

but falls just short of the 96.4%, 78.1% and 77.2% performance achieved by the

SRSpec-CNN classifier applied to the same dataset, as detailed in Fig. 28. This min-

imal performance gap between SRSpec-CNN and our template-based discriminator

is surprising, given that SRSpec-CNN is a state-of-the-art fully-supervised method

with well-engineered features while our template-based discriminator utilizes semi-

supervised learning, with access to just a single template.
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Figure 27. Receiver Operating Characteristic Curves for the Source Discrimination
task identifying all explosions. Three plots are shown, demonstrating performance
across various numbers of templates (1, 3 and 10). Because the templates are chosen
randomly, we have performed 1,000 trials for each plot, with the results of each trial
plotted as a separate curve. Performance converges nicely for only 3 templates. The
dashed and dotted black lines show the performance of two alternative discriminators
applied to the same dataset.

Figure 28. Source Discrimination Confusion Matrix. Three matrices are shown, demon-
strating performance of three source discrimination techniques against the test set. Our
proposed Similarity-based discriminator utilizes a signal explosion template, whereas
the SVM and CNN-based discriminators utilize a large training set with 10,000 labeled
earthquakes and 10,000 labeled explosions.
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Computation Time.

Optimizing the Neural Network during training requires considerable computa-

tion time: approximately 30 hours on the aforementioned Nvidia 1080Ti. However

the model only needs to be trained once; after training, deployment is quite fast at

runtime, requiring only 1.8 milliseconds to transform a single 180 second window of

3-channel waveform data onto the embedding space. This represents a four-fold im-

provement over the 7.6 milliseconds required to take the same waveform and extract

the spectrogram features used in traditional source discrimination. Runtimes for the

Validation and Test sets are shown in Table 11.

Table 11. Comparison of Runtimes against the Validation and Test Sets

Val Set Test Set Runtime
(22,561 samps) (35,694 samps) per samp

NN Embeddings 41 s 66 s 1.8 ms
Spectral Features 171 s 271 s 7.6 ms

3.6 Conclusion

To date, almost all seismogram similarity measures have been based on the cross-

correlation function, constraining them to relatively path-dominant similarity, and

limiting their use to repetitive and geographically localized signals. In this work, we

have presented a path-invariant measure for seismogram similarity, based on a deep

triplet network architecture. We have demonstrated the effectiveness of this measure

for both pairwise event association and template-based source discrimination.

For the pairwise association task, our similarity measure is able to achieve an

accuracy of 80%, without any knowledge of recording time or phase type, across a

large and diverse regional network. This is a significant advancement on the work done

by McBrearty [72], both in terms of providing increased generalization and extended

path distances. While pairwise-similarity is certainly a weaker evidence for association
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than a standard moveout curve, it does present a viable complementary validation

tool, which could be used to augment existing methods of automatic association. For

instance, given an event list from an automatic associator, each event can be scored

based on its embedding-space distance from the cluster centroid, and dissimilar events

can simply be rejected or flagged for further analyst review based on the desired type-

I error rate. Future work could involve constructing a more robust framework for this

task, using additional layers of machine learning.

The results for template-based source discrimination are also quite promising. The

95.8% classification accuracy achieved for explosion discrimination is impressive in its

own right. However it is astounding considering that the discrimination is based on a

single template waveform. This result is not only useful for identifying explosions, but

also holds considerable promise for other discrimination tasks. In fact, as with most

semi-supervised techniques, the real potential of this similarity-based classifier lies

in its application to less well-studied and less robustly labeled classes. For instance,

while the United States Geological Survey (USGS) CONUS catalog used in this work

includes painstakingly labeled explosions, such labels are simply not available for

many other regions. Similarly, there are numerous other source types of interest

(volcanoes, ice quakes, rock bursts, tremors, ripple-fire blasts, etc.) for which labels

may be scarce or unavailable. As such, our method holds considerable potential for

training future discriminators on less well-studied source functions, especially when

training examples are limited and fully-supervised methods are unavailable.

In conclusion, we believe that the findings in this work represent an important

step forward in the field of seismogram similarity, demonstrating that such similar-

ity measures do not need to be constrained to the path-dominant correlation-based

detectors traditionally implemented. However, there is still much work to be done,

especially in the application of this method across more diverse datasets, including
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global networks and teleseismic signals.

3.7 Data and Resources

The raw seismograms used in this study were collected as part of Earth Scope’s

USArray experiment [19], and can be accessed via the Incorporated Research Insti-

tutions for Seismology (IRIS) Database using ObsPy [13].

Arrival-time catalogs for each station were downloaded through a web query of

the International Seismological Centre (ISC) Bulletin for seismic arrivals:

http://www.isc.ac.uk/iscbulletin/search/arrivals/ (last accessed Febru-

ary 2019).

The Neural Network Architecture was implemented in Keras [25], using the keras-

tcn python package written by Philippe Rémy:

https://github.com/philipperemy/keras-tcn (last accessed February 2019).

The batch-hard algorithm was implemented in Tensorflow [1], and adapted from

the work of Olivier Moindrot, which can be found at:

https://omoindrot.github.io/triplet-loss (last accessed February 2019).

A repository containing the code and trained models described in this manuscript

has been made available on github, and can be found at:

https://github.com/joshuadickey/seis-sim (last accessed September 2019).
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IV. Study 3 - BazNet: A Deep Neural Network for
Confident Three-component Backazimuth Prediction

This research was submitted to the Journal Pure and Applied Geophysics on 13

November 2019, as an invited paper for the upcoming special issue entitled “Nuclear

Explosion Monitoring and Verification: Scientific and Technological Advances.” It is

currently under review.

4.1 Abstract

As the Treaty Monitoring Community seeks to lower detection thresholds across

its sparse sensor network, single-station location estimates and accurate backazimuth

predictions become increasingly important. Accurate backazimuth predictions are

traditionally limited to array stations, where beamforming provides high-confidence

backazimuth prediction that can be reliably passed on to the associator. Three-

component stations, on the other hand, rely on polarization analysis for backazimuth

prediction, which suffers from both high error and low confidence. As such, very few

three-component backazimuth predictions are passed on to the association algorithm.

This study presents BazNet, a deep neural-network that takes in a three-component

seismogram and produces both a backazimuth prediction and corresponding certainty

measure. For existing stations with ample historical training data, the technique

achieves an overall median absolute deviation of around 14◦, a modest improvement

over the 15◦ achieved by polarization. More importantly, each estimate is accompa-

nied by a robust certainty measure, allowing the selection of high-confidence predic-

tions to be passed on to the associator. Using the BazNet certainty measure, roughly

60% of all three-component predictions can be selected with a median absolute devi-

ation of just 6◦, which is on par with the predictions from a full beamformed seismic

array. This represents a 7-fold improvement over the 8% of signals similarly selectable
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via polarization analysis. BazNet performance is demonstrated against 10 years of

waveform data from 561,154 cataloged arrivals across nine stations selected from the

global IMS Network: STKA, CPUP, VNDA, LPAZ, AAK, BOSA, ULM, BATI, INK.

4.2 Introduction

Backazimuth prediction is a critical step in the seismic signal processing pipeline,

feeding the downstream processes that associate events and build location estimates.

Typically, there are two methods of predicting backazimuth, depending on the type

of station. If the station consists of an array of instruments, the backazimuth can

be predicted by examination of the time-delay of arrival across the array. This pro-

cess is called beamforming, and produces backazimuth predictions that can be quite

accurate. If the station consists of a single three-component (3C) instrument with

North-South, East-West and Vertical components, the backazimuth is traditionally

predicted by calculating the polarization of the arriving wavefront. This process pro-

duces much less accurate results. Fig. 29 demonstrates the performance advantage

achieved by beamforming.

As an alternative to polarization analysis, this work presents BazNet, a deep

convolutional neural network architecture that operates directly on 3C seismograms

and not only produces more accurate backazimuth predictions, but also produces a

robust certainty measure, allowing downstream association algorithms to only use

the best estimates available. The model is trained on a per-station basis, utilizing

10 years of analyst-reviewed event locations to calculate the true backazimuths for

training. The technique does not generalize across stations, and must be retrained

for each station where it will be employed. However, because of the large number

of available 3C stations with extensive analyst-reviewed catalogs, and because of the

outstanding certainty measure produced in conjunction with each estimate, BazNet
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Figure 29. This diagram demonstrates the median absolute deviation for backazimuth
prediction using two distinct methodologies: beamforming and polarization analysis.
The blue distribution is drawn from 1,116,452 backazimuth predictions made using
beamforming at four IMS array stations: CMAR, MKAR, ILAR and ASAR. The
orange distribution is drawn from 561,154 predictions made using polarization analysis
at nine IMS 3C stations: STKA, CPUP, VNDA, LPAZ, AAK, BOSA, ULM, BATI
and INK. The median absolute deviation for both beamforming and polarization are
annotated with dashes lines, 6◦ and 15◦ respectively. The y-axis of the plot has been
normalized for each distribution to allow comparison. This figure clearly illustrates the
significant performance advantage enjoyed by beamforming.

is able to produce backazimuth estimates for 3C stations with accuracy rivaling a

beamformed array.

BazNet presents three major contributions:

• A novel NN architecture for the efficient prediction of backazimuth, directly

from the raw waveforms with no feature engineering required.

• An improvement in accuracy over the traditional polarization analysis.

• A robust certainty measure coupled with each backazimuth estimate, allowing a

means of selecting only the best estimates to pass on to downstream algorithms

for event association and location.

4.3 Background

This background section is presented in four parts. The first section surveys back-

azimuth prediction; the second examines backazimuth certainty; the third provides
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an overview of convolutional neural network design for time-series signals; and the

final section explores the challenges of angle prediction in a machine learning context.

Backazimuth Prediction.

The backazimuth angle is defined as the great circle bearing from the recording

station to the event epicenter, measured clockwise from north [15]. Fig. 30 illustrates

the backazimuth for an event epicenter located in the south Pacific and a recording

station in London, England.

Figure 30. This diagram demonstrates the azimuth (Az) and backazimuth (Baz) angles
for the given Event-Station pair. The latitude and longitude coordinates for the station,
in radians, are given by (φs, λs), while the event coordinates are given by (φs, λs).

Assuming a spherical earth, simple trigonometry can be used to calculate the

backazimuth, as demonstrated in Eq. (12). This algorithm generally works well

enough in practice and is useful for illustration here, although it should be noted

that newer seismic processing packages utilize a more complex algorithm with better

handling of the ellipsoidal shape of the earth [59].
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y = sin(λe − λs) cos(φe)

x = sin(φe) cos(φs)− sin(φs) cos(φe) cos(λe − λs)

Baz =atan2(y, x)

(12)

Currently, the most accurate algorithm for backazimuth prediction is beamforming

[83], [105], [88]. Beamforming gains its effectiveness by linearly combining signals from

the multiple sensors of a seismic array; unfortunately such arrays are quite expensive,

requiring multiple instruments spread out across a large geographical area measuring

tens or even hundreds of kilometers. An example array layout is detailed in Fig. 31,

along with a demonstration of the beamforming technique.

Figure 31. Top: Layout of the 20 element Alice Springs Seismic Array, ASAR, located
in central Australia, with an aperture of just under 10 km. The arrow illustrates an
incoming seismic wave with a backazimuth of 212◦. Bottom: Seismic waveforms from
the corresponding seismic event, stacked in order of distance to epicenter. Beamforming
uses the geometry of the array, along with the time-delay of arriving signals, to estimate
the backazimuth angle with great precision.

While beamforming is an incredibly accurate backazimuth prediction technique for
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seismic arrays, the vast majority of seismic stations consist of only a single 3C sensor,

making beamforming an impossibility. For these stations, the traditional method of

backazimuth prediction is to analyze the polarization of the three orthogonal com-

ponents of motion: North-South, East-West and Vertical. This technique is often

referred to as polarization analysis, and the algorithm is based on an eigen-analysis

of the filtered and windowed seismograms [57], [69]. In brief, the technique uses an

eigen-decomposition of the three-component covariance matrix across a window of

data to identify the principle directions of both rectilinear and elliptical polarization

[39]. Several advancements of this technique have been proposed, most notably the

inclusion of variable time windows, which provides a small improvement in perfor-

mance [77]. Despite these advancements, the backazimuth predictions produced by

polarization analysis are quite inaccurate, especially when compared to the predic-

tions produced by beamforming [45] as shown in Fig. 29.

Recently, several attempts have been made to apply machine learning techniques

to backazimuth prediction. In [78], researchers applied Support Vector Machines to

estimate backazimuth for large earthquakes in Columbia. These efforts utilized feature

vectors derived directly from the polarization algorithm, and showed good success.

In this work, we build off of these efforts by bypassing the polarization features and

learning directly from the raw waveforms using a convolutional neural network.

Backazimuth Certainty.

Backazimuth prediction is an intermediary step on the way to event association,

with potentially dozens of backazimuth predictions available from various stations to

feed the downstream associator. Because of the high number of 3C stations available,

and because of the relatively high error rate for the 3C backazimuth predictions, it

is critical that there be some statistical measure of certainty for each prediction, al-
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lowing the good predictions to be utilized, while preventing the bad predictions from

corrupting the associator. The simplest measure for thresholding 3C backazimuth

predictions is the signal to noise ratio (SNR). In particular, an SNR threshold of

10 dB has proven useful for thresholding predictions based on polarization, as de-

scribed in [45]. Unfortunately, for most stations, this discards more than 80% of the

potential predictions, greatly negating the potential for using 3C stations to boost

the performance of the downstream event association algorithms.

To address this, an angular measure of uncertainty was developed specifically for

backazimuth predictions, called delaz, described in [8] and detailed in Eq. (13).

delaz = 2 arcsin

(
delslo

2slow

)
180

π (13)

The delaz measure of uncertainty, in turn, relies heavily on the uncertainty of the

slowness estimate, delslo, which is calculated differently for array and 3C stations, as

shown in Eq. (14). For array stations, delslo varies primarily based on fstat, which is

a measure of the beam’s spectral coherence, and fc which is the center frequency of the

processing band. For 3C stations, delslo varies primarily based on rect, which is the

measured linearity of particle motion. Finally, for both array and 3C stations, delslo

also depends on the estimated measurement error, dk, and the estimated modeling

error, ds, which are both stored in site-specific lookup tables based on historical data.

When certain values of delslo are exceeded, the delaz measure is given a null value,

which in our dataset is set to be 180◦.

delslo(AR) =

√
ds2 + dk2

f 2
c

fstat

delslo(3C) =

√
ds2 + dk2

(1− rect)
2

(14)
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For array stations, the delaz statistic is highly correlated with actual prediction

error. Unfortunately, for 3C stations, not only are the predictions less accurate, but

the delaz statistic is also much more loosely correlated with actual error. This is

shown clearly in Fig. 32, where boxplots of backazimuth error are plotted for each

decile of delaz. In particular, it should be noted that the 90% confidence interval

for non-null beamformed predictions never extends beyond 45◦, even for the least-

certain decile. The boxplots for polarization certainty are much wider than those for

beamforming, with 90% confidence intervals extending beyond 45◦ for all but the first

decile. Additionally, many more null-values are assigned to the delaz for polarization

predictions than for beamformed predictions, with null-values filling the last four

deciles vs. the last decile, respectively.

Figure 32. A demonstration of delaz and SNR as certainty measures for backazimuth
prediction. The top row of plots are scatter-plots of certainty vs. error. The bottom
row of plots are box-plots of certainty vs. error, quantized into ten evenly-sized deciles,
such that Q9 shows the error distribution of predictions in the most certain decile (top
10%), while Q0 shows the error distribution of predictions in the least certain decile
(bottom 10%). Predictions with invalid delaz are assigned a null-value of 180◦. Similarly,
signals where SNR is unavailable are assigned a null-value of 0 dB. This accounts for
the large number of predictions assigned to either delaz = 180◦ or SNR = 0dB. Finally,
each boxplot is annotated with a vertical dashed line at 45◦, aligned with the 90%
confidence interval of the least-certain non-null decile for beamforming. Using this as
a performance threshold, it can be seen that only 10% of polarization predictions meet
this criteria.

Obviously, the backazimuth predictions from a 3C station will never reach the

same level of performance as the predictions from a multi-instrument beamformed
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array, due to the rich additional information available to the beamformed predictor.

However, due to the high number of 3C stations available, great potential does exist

for utilizing the backazimuth predictions from 3C stations in the downstream associ-

ator, provided that the predictions are accompanied by a reliable certainty measure.

Unfortunately this criteria is currently not met by either the delaz statistic, or the

signal to noise ratio. As a result, defining a robust certainty measure for 3C backaz-

imuth predictions is an important and open task in seismology, particularly for the

Treaty Monitoring community. This is an issue which we attempt to address directly

in this work.

Convolutional Neural Networks.

Convolutional Neural Networks (CNNs) are revolutionizing the science of signal

processing, from computer vision to speech recognition, and they are poised to do

the same for seismic signal processing as well [85]. CNNs have already been em-

ployed in almost every branch of seismological research, from earthquake detection

to earthquake early warning systems, ground-motion prediction, seismic tomography,

and even earthquake geodesy [62]. Fundamentally, a CNN is composed of a set of

digital filters, called kernels, which are identical in form to the digital filters com-

monly employed in traditional seismology, with filter coefficients that are convolved

across the signal, per usual. There are two differences, however, which enhance the

power of CNNs over traditional digital filters. First, the CNN filter coefficients are

actually trainable parameters, which are empirically optimized against a large-scale

training dataset. Second, the kernels are applied in layers, with the output of each

layer undergoing an activation prior to entering the next layer. Critically, these ac-

tivation functions are non-linear (such as the hyperbolic tangent function), allowing

the CNN model to learn a wide range of complex non-linear processes directly from
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the data [67].

In addition to using the data to learn the kernel parameters, developing a CNN

also requires specifying several architectural parameters for the model, often referred

to as hyper-parameters. Some typical hyper-parameters include the number of layers,

the number of digital filters in each layer (kernel depth, f), and the number of coeffi-

cients in each digital filter (kernel size, k). These hyper-parameters are fixed during

training, but can be varied between training runs, and optimized by comparing model

performance against the validation set.

When designing a CNN architecture for time-series data, like seismograms, an

important consideration is the receptive field of the model, which describes the num-

ber of input samples that can be ‘seen’ by each sample in the output. This is of

critical importance, as it limits the feature periodicity learnable by the model. For

instance, for a single-layer CNN architecture processing a 40 Hz signal, if the kernel

size is 10, then the receptive field is also 10, and the model can only extract features

with a periodicity of 0.25 seconds or less. In practice, designing CNNs to process

long-period signals can be quite complex, requiring either many layers, or very long

kernels to obtain the desired receptive field. As such, it is common to use a specialized

CNN architecture known as the Temporal Convolutional Neural Network, or TCN,

to process long-period signals [7]. The TCN provides a large receptive field primarily

by using dilated convolution, which simply spreads out the kernel coefficients across

the signal, allowing a smaller kernel to see a longer window in time. The dilated

convolution equation is given in Eq. (15), where F is the time series signal, G is the

kernel, and d is the dilation rate. It should be noted that this equation represents a

generalized form of convolution, equivalent to standard convolution when the dilation

rate is equal to 1.
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(F ∗
d
G)[n] =

∞∑
m=−∞

F [n− d ·m]G[m]

(15)

The TCN makes aggressive use of dilated convolution, by increasing the dilation

rate at each successive layer of the network, providing a rapid expansion of the recep-

tive field through the network. The recurrence equation for calculating the receptive

field, rfl, for a given convolutional layer, l, is given in Eq. (16), where k is the kernel

size, and dl is the dilation rate for that layer. In addition to dilated convolution, the

TCN also makes use of residual connections, which simply add the output of each

layer to the output of all subsequent layers, allowing the network to easily learn the

identity function for any given layer, which stabilizes training [7].

rfl = rfl−1 + dl(k − 1)

where r0 = 0

(16)

In summary, the TCN is ideally suited for processing seismograms [28], particu-

larly for the regional and teleseismic signals used for backazimuth angle prediction.

This is exactly the research objective this work seeks to address. To this end, the

next section briefly explores the general task of angle prediction in machine learning.

Angle Prediction & Circular Statistics.

Any attempt at angle prediction requires that some consideration be given to

circular statistics [53]. For example, subtraction is an invalid distance measure for

angles, as the linear difference between 345◦ and 15◦ is 330◦, whereas the circular

difference is 30◦. Two valid circular distance measures are given in Eq. (17) and Eq.

(18).
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d1(θ1, θ2) = min
(
θ1 − θ2, 360◦ − (θ1 − θ2)

)
= 180◦ −

∣∣180◦ − |θ1 − θ2|
∣∣ (17)

d2(θ1, θ2) = 1− cos(θ1 − θ2) (18)

Similarly, mean squared error is inappropriate as an angular loss function. Instead,

it is common to either implement a custom circular loss function based on Eq. (17)

or Eq. (18), or to instead pre-transform the angles to and from the unit circle, using

Eq. (19) and Eq. (20), so that mean squared error can be used effectively.

x
y

 =

cos θ

sin θ

 (19)

θ = atan2(x, y) (20)

Another solution is to discretize the angle-space into N classes, transforming the

usual regression-based angle prediction into a classification task [24]. For neural net-

works, this is accomplished by adding a final fully-connected layer with N nodes,

applying the softmax activation function, replacing the typical mean-squared error

loss with categorical cross-entropy, and replacing the typical real-valued training an-

gles with N-dimensional one-hot1 encoded training vectors, t. This approach has a

significant advantage, in that the model outputs are no longer just scalar estimates

of the angle, but are instead vector estimates of the class probabilities, providing a

built-in certainty measure for each prediction [40]. The softmax function and categor-

ical cross-entropy function are given in Eq. (21) and Eq. (22), respectively, where s is

1A one-hot encoding is an N-dimensional binary vector representation of an integer value between
zero and N-1. The vector has a single non-zero entry, located in the column corresponding to the
integer value being encoded.
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the N-dimensional vector output of the final fully-connected layer prior to activation,

and t is the N-dimensional one-hot encoded training vector.

f(s)n =
esn∑N
n′ e

sn′
(21)

CE = −
N∑
n

tnlog
(
f(s)n

)
(22)

Unfortunately, this approach has a significant drawback, in that it introduces

discontinuities to the unit circle at each class boundary. Because these discontinuities

do not occur naturally in the data, examples from the dataset that happen to lie

arbitrarily close to either side of a class boundary are basically indistinguishable from

each other, and this artificially increases the miss-classification rate of the model near

each boundary. Furthermore, the overall number of these boundary-induced miss-

classifications will increase with the number of boundaries, thereby limiting both the

number of classes and the angular resolution attainable by any model utilizing this

standard discretization scheme [110].

To mitigate these effects, researchers in [42] adopt an M-N discretization scheme

for classifying angles, using M separate classifiers, with N classes each. By keeping

N small, each classifier has relatively few class boundaries, reducing the number of

boundary-induced miss-classifications. However, by employing M of these classifiers,

uniformly shifted around the unit circle, a high resolution, r, can be achieved, as

given in Eq. (23). In effect, M-N discretization avoids the problems associated with

arbitrary class boundaries, by reducing their number and then shifting them around

the unit circle, such that all examples lie sufficiently far from any of the N class

boundaries on the majority of the M classifiers.
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r =
360◦

N ×M
(23)

M-N discretization encodes an angle, θ, by the MxN matrix, B, with rows indexed

by m ∈ [0, 1, . . . ,M − 1] and columns indexed by n ∈ [0, 1, . . . , N − 1]. Each row

represents the class probabilities of a distinct N -class classifier with an initial class

boundary shifted from the origin by m · r◦. When encoding deterministic angles,

the matrix rows are one-hot encodings, with non-zero entries corresponding to the

class assignment for each row. When encoding angle predictions, the matrix contains

real-valued class probabilities, such that each row sums to one. Mathematically, the

encoding is defined in Eq. (24), where the class assignment for each classifier is

made by taking the difference between the angle, θ, and the initial class boundary,

m · r, normalized by the class width, 360◦/N , and rectified by the floor and modulo

operators.

Bm,n =


1, if n =

⌊
θ−m·r
360◦/N

⌋
mod N

0, otherwise

(24)

An estimate of the original angle, θ̂, can then be recovered by decoding the matrix.

For deterministic encodings, there are exactly M · N possible permutations of B,

each encoding an angle-space of r◦. It is helpful to parameterize these permutations

sequentially around the unit circle, using the indices v ∈ [0, 1, . . . , N − 1] and u ∈

[0, 1, . . . ,M − 1], representing class and shift respectively, such that the central angle

of each permutation is given by the product of the class and class width (v · 360◦/N)

plus the product of the shift and shift width (u · r) plus half again the shift width

(r/2). Decoding is then accomplished according to Eq. (25), where the indicated

class and shift indices for a given matrix B are found by taking the argmax of the
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sum of the one-hot class probabilities corresponding to each permutation.

θ̂ = (v · 360◦/N) + (u · r) + r/2, where

u, v = argmax
u∈[0,1,...,M−1]
v∈[0,1,...,N−1]

M−1∑
m=0

Bm,(v−(m>u)) mod N

(25)

For clarity, a detailed example is explored for the case where M = 3 and N = 4.

To illustrate the encoding scheme, Fig. 33 shows the class boundaries for each of

the 3 classifiers, shifted around the unit circle, as well as the encoding matrix B

for each 3-4 discretization. To illustrate the decoding scheme, Table 12 shows the

central (predicted) angle and corresponding one-hot elements for each permutation

of B, indexed by u and v.

Figure 33. An example M-N discretization where M = 3 and N = 4. This discretization
employs three distinct classifiers, annotated in the figure by three distinct colors: blue,
orange and green. Each classifier is composed of four classes, labeled in the figure
as 0, 1, 2 and 3. Because these classifiers are shifted evenly around the unit circle,
this effectively creates 4*3=12 discrete regions, each encoded by a distinct one-hot
permutation of the MxN matrix B.

To implement this M-N classification scheme in a neural network, a final layer
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Table 12. Decoding Scheme for M-N Discretization where M = 3 and N = 4

v u central angle one-hot elements
0 0 15◦ B(0,0), B(1,3), B(2,3)

0 1 45◦ B(0,0), B(1,0), B(2,3)

0 2 75◦ B(0,0), B(1,0), B(2,0)

1 0 105◦ B(0,1), B(1,0), B(2,0)

1 1 135◦ B(0,1), B(1,1), B(2,0)

1 2 165◦ B(0,1), B(1,1), B(2,1)

2 0 195◦ B(0,2), B(1,1), B(2,1)

2 1 225◦ B(0,2), B(1,2), B(2,1)

2 2 255◦ B(0,2), B(1,2), B(2,2)

3 0 285◦ B(0,3), B(1,2), B(2,2)

3 1 315◦ B(0,3), B(1,3), B(2,2)

3 2 345◦ B(0,3), B(1,3), B(2,3)

must be added to the network consisting of M fully-connected N -node outputs in

parallel. Each of these outputs must be activated with a softmax function, and each

must be trained with a separate catagorical cross-entropy loss function against a

separate training vector, corresponding to one row of the matrix B.

4.4 Methodology

Our stated task is to build an accurate 3C backazimuth predictor, along with a

robust certainty measure, allowing for the selection of high-confidence predictions to

be passed on to downstream event association algorithms. This section details the

dataset, neural network architecture, and evaluation metric used to accomplish this

task.

Data Description.

The BazNet model takes in 3C waveforms, sampled at 40 Hz, and windowed to

include 3 seconds prior and 17 seconds after the cataloged arrival time. The model is

trained on a per-station basis, across ten years of cataloged waveform data from the
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International Data Center (IDC), spanning from 2009 to 2018. The stations consist

of nine three-component seismic stations from the International Monitoring System

(IMS) Network. The nine stations include diversity in both geographic location and

seismic region, and the station locations and event origins are displayed in Fig. 34.

This dataset includes training, validation and testing sets according to three distinct

time windows, 2009-2015, 2016-2017 and 2018, respectively. The overall catalog in-

cludes 561,154 arrivals and a detailed per-site breakdown of these arrivals can be

found in Table 13, along with the true backazimuth angle distributions in Fig. 35.

Figure 34. Map showing the geographical location of each recording station and event
in the combined training, validation and testing datasets.

Model Architecture.

The BazNet architecture consists of three structural components: model input,

feature extraction and model output; each structure is discussed in turn below.

The BazNet model input consists of windowed three-component seismic wave-

forms. Based on a survey of the time windows typically used for polarization analysis

[45], [77], [39], [57], [69], as well as empirical testing against the validation set, 20
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Figure 35. Histogram showing the distribution of backazimuth angles for each of the
nine stations in the dataset.

Table 13. Cataloged Arrivals Across the Nine Stations.

STATION TRAINING VALIDATION TESTING
STKA 94,530 24,953 12,599
LPAZ 61,247 14,904 6,444
VNDA 41,225 12,345 4,418
BOSA 34,478 9,758 5,321
ULM 36,046 8,664 5,572
AAK 31,830 11,113 5,229
INK 35,751 10,141 4,274
CPUP 35,548 10,423 5,414
BATI 26,663 9,237 3,027
TOTAL 397,318 111,538 52,298
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second windows were selected. For the 40 Hz data used, this results in input windows

that are 800 samples long and three samples deep.

BazNet feature extraction utilizes convolutional layers and ReLU2 activations,

which is standard for processing structured data like waveforms or images. In partic-

ular the BazNet architecture is designed to have a receptive field matching the full

window length of at least 800 samples. This is accomplished by employing the TCN

architecture described in [7], with a a dilation scheme of d = [2, 4, 8, 16, 32] and a ker-

nel size of k = 15. This results in a receptive field of 869 samples, as calculated by Eq.

(16) and detailed in Table 14. The filter depth, or number of filters in each layer, was

varied from as low as 4 to as high as 100, and an optimal value of f = 45 was selected.

Following the standard TCN architecture, causal padding is used during convolution,

meaning each sample in the output time-series depends only on prior samples from

the input time-series. This allows the output time-series to be truncated just after

the final convolutional layer, discarding all but the last sample from each of the 45

filters, as described in [7].

Table 14. TCN Layer Parameters

l d k Receptive Field Receptive Field
1 2 15 29 samples 0.7 seconds
2 4 15 85 samples 2.1 seconds
3 8 15 197 samples 4.9 seconds
4 16 15 421 samples 10.5 seconds
5 32 15 869 samples 21.7 seconds

The BazNet model output is formulated as a set of class probabilities, in order to

obtain the built-in certainty measure described in [40]. Initial efforts focused on stan-

dard discretization to classify the backazimuth angles, however the results were largely

unsuccessful, due to the limitations described in [110], and the model was unable to

2The rectified linear unit (ReLu) is a standard activation function used with convolutional neural
networks. Also know as the ramp function, it simply zeros out all negative values while passing
positive values unchanged. ReLu activations are commonly employed in CNN design due to the
computational advantages of differentiating this function, as the derivative is always one or zero.
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achieve accuracy on par with polarization, much less beamforming. To remedy this,

the M-N discretization scheme described in [42] was employed. In particular, a grid

search was conducted over 28 M-N tuples, with the number of classes and classifiers

ranging over N ∈ [3, 4, 5, 6] and M ∈ [4, 6, 8, 10, 12, 14, 16], respectively. Comparing

model performance for each discretization against the validation set, best empirical

values of M = 8 and N = 4 were selected, as shown in the model performance vs.

discretization heatmap in Fig. 36. This 8-4 discretization provides a resolution of

11.3◦, a maximum resolution error of 5.6◦, and for uniformly distributed angles, an

expected mean resolution error of just 2.8◦, which is well within the median absolute

deviation for beamforming of 6◦, which is our goal. To implement this 8-4 classifier

in BazNet, a final fully-connected layer was added to the network consisting of eight

parallel four-node outputs, each activated by the softmax function. Training was then

accomplished using the categorical cross-entropy loss function. A diagram detailing

the final model architecture can be seen in Fig. 37.

Figure 36. Heatmap showing model performance for various M-N discretization
schemes. Model performance is reported by the median absolute deviation of back-
azimuths against the validation set, and varies from an optimal performance of 14◦

for the 8-4 discretization to a dismal performance of 33◦ for the 10-6 discretization.
This large spread in performance illustrates the importance of selecting an optimal
discretization scheme.

102



Figure 37. A detailed representation of the BazNet architecture. The model accepts as
inputs three-component seismic waveforms. Features are extracted from these wave-
forms via five dilated convolutional layers, each with 45 filters, progressive dilation
rates of 2, 4, 8, 16 and 32, and ReLU activations, α. The final layer consists of eight
fully connected dense layers, each with four nodes. All eight dense layers are connected
in parallel with softmax activations, producing eight classification outputs, M1 to M8,
with four classes each.

Evaluation Criteria.

The objective of the BazNet model is to produce accurate backazimuth predic-

tions, along with a robust certainty measure, allowing the retention of a subset of

estimates with an error distribution on par with beamforming. To this end, the

beamforming error distribution is benchmarked by two statistics: the median abso-

lute deviation and the 90% confidence interval, which capture the central tendency

and spread, respectively. To evaluate the BazNet model, it’s predictions are thresh-

olded by certainty in order to achieve these statistical distribution benchmarks, and

performance is reported as the percentage of predictions retained.

In particular, as shown in Fig. 29, beamforming typically achieves a median

absolute deviation of 6◦. Enforcing this benchmark, all predictions will be thresholded

to achieve a median absolute deviation of no more than 6◦, and model performance

will be evaluated based on the number of predictions retained. Applying this analysis

to the polarization predictions across all nine stations in the test set, using the delaz

certainty measure to threshold the predictions, a retention-rate of just 8% is achieved.

As such, any retention-rate for the BazNet model above the polarization baseline of
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8% will be considered a success.

Likewise, as shown in Fig. 32, beamforming typically achieves a 90% confidence

interval of less than 45◦ for all non-null predictions. Enforcing this benchmark, all

predictions will be thresholded to achieve a 90% confidence interval of no more than

45◦, and model performance will be evaluated based on the number of predictions

retained. Applying this analysis to the polarization predictions across all nine stations

in the test set, and using the delaz certainty measure to threshold the predictions,

results in a retention-rate of just 10%. As such, any retention-rate for the BazNet

model above the polarization baseline of 10% will be considered a success.

4.5 Results and Discussion

Training and computation time.

Training for each model was accomplished using a single Titan X GPU hardware

platform. Early stopping was employed based on validation loss, and the patience was

set to seven epochs. The batch size was set at 50 examples, which was approximately

the maximum size permitted due to the 12 GB RAM capacity of the Titan X GPUs.

Training times varied somewhat due to the stochastic nature of the learning and the

variations in length of the training datasets, but the average training time was 128

minutes per station. Finally, computation time is quite fast, taking less than 30

seconds total to process the 53,298 arrivals in the combined test set across the nine

stations.

Performance Comparison.

The overall prediction accuracy for BazNet is not much better than that of a finely-

tuned polarization algorithm, with the two predictors reporting an overall median

absolute deviation of 14◦ and 15◦, respectively, across the combined nine station test
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set. On the other hand, the softmax certainty measure provided along with the

BazNet predictions is quite successful, correlating strongly with prediction accuracy,

as shown in Fig. 38.

Figure 38. A demonstration of the softmax certainty measure proposed in conjunction
with the BazNet backazimuth predictions. The top plot is a scatter-plot of certainty
vs. error. The bottom plot is a box-plot of certainty vs. error, quantized into ten
evenly-sized deciles, such that Q9 shows the error distribution of predictions in the
most certain decile (top 10%), while Q0 shows the error distribution of predictions in
the least certain decile (bottom 10%). The prediction errors are tightly aligned with
the certainty error, as shown by the quatized boxplots, which widen smoothly as a
function of decreasing certainty across all 10 deciles. Finally, the boxplot is annotated
with a vertical dashed line at 45◦, corresponding to the 90% confidence interval for the
least-certain non-null decile for beamforming. Using this as a performance threshold,
it can be seen that 40% of polarization predictions meet this criteria.

Comparing Fig. 38 to Fig. 32 allows us to evaluate the BazNet model by the

spread of the distribution. For BazNet, there are four deciles (40% of predictions) with

90% confidence intervals extending to less than 45◦, equating to a four-fold improve-

ment over the 10% of polarization predictions meeting this same criteria. To evaluate

the BazNet model by central tendency, the BazNet predictions are thresholded to

achieve a median absolute deviation of 6◦, which results in a retained-prediction rate

of 59%, as shown in Fig. 39. This is a seven-fold improvement over the baseline of

8% achieved by polarization analysis.

The results are not uniformly distributed across the nine stations, as can be seen
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Figure 39. BazNet and Polarization Performance Comparison by Station. The left
column displays the overall distribution of errors for each predictor, with the median
absolute deviation of each distribution annotated by a vertical dashed line. The left-
middle column displays a scatter-plot of error vs. certainty for BazNet, and the right-
middle column displays error vs. certainty for polarization. For each scatter-plot, a
certainty threshold is selected, such that the retained distribution has a median absolute
deviation of 6◦. This threshold is annotated by a horizontal dashed line, along with the
percentage of retained predictions. The far right column displays the distribution of
errors for the retained predictions. The top row displays the aggregate statistics across
all nine stations, while the single-station statistics are broken out in the rows below.
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in Fig. 39. For instance, the performance of the predictions for INK are quite poor,

and deserve further investigation. Of particular interest is the high percentage of

predictions with a deviation of around 60◦, seemingly uncorrelated with certainty.

Investigating these, it is found that the predictor has converged to a local minimum,

with the network always predicting angles of around 287◦. To better understand this

convergence, the true backazimuth distributions are plotted for each station in Fig. 35.

Here, the reason for the convergence to 287◦ is apparent, as this angle coincides with

a large spike in the true backazimuth distributions at INK. In fact, 287◦ is the central

angle encoding the discretization from 281◦ to 293◦, which corresponds to nearly half

of the cataloged events. This also explains the concentration of errors around 60◦,

as the second largest spike in true backazimuths for INK occurs near 343◦, resulting

in the corresponding spike in errors of 343◦ - 287◦ = 56◦. This extended analysis is

included here to illustrate one of the many dangers of machine learning in general,

and of softmax certainty in particular: namely, models that are empirically driven,

must be expertly investigated. Perhaps one day, ML models will be able to recognize

the signs of convergence to a local minimum, however in the present day, this is left to

expert analysis. In this present case, for the backazimuth model at INK, the problem

was easily identified by human review, because of the peculiar concentration of errors

around 60◦. However, the potential exists for this to be a more subtle problem, and

this illustrates the value in using a separate validation set and conducting a thorough

expert evaluation of the error residuals as shown in this work.

4.6 Conclusion

BazNet shows some promise for outperforming traditional polarization analysis as

a viable backazimuth predictor for 3C stations. It does suffer from several limitations,

most notably that it requires a large historical catalog of training data and must be
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trained separately for each station. As such, it simply cannot be applied to new

stations, where polarization is still the best option. However, the certainty measure

provided with each prediction is highly correlated with the actual error, and this

can be incredibly valuable. As demonstrated, this gives BazNet the potential to

provide 7 times the number of backazimuth predictions to downstream algorithms over

polarization. More importantly, notice the relationship between BazNet’s softmax

certainty measure and the confidence intervals, as show in Fig. 38. The relationship

is linear for the first 6 deciles. This allows BazNet to report real confidence intervals

along with these predictions. This could have a significant impact on event association

for global monitoring networks like the IMS.

There is much future work left to be done. In particular, due to the lack of gener-

alization across stations, it is clear that BazNet is not making use of the traditional

polarization-type features used by other methods. As such, it would be interesting to

combine the results of polarization and BazNet with some type of ensemble predictor.

Similarly, it could be possible to build such features directly into BazNet, perhaps by

feeding them into the final fully connected layer of the network.

Finally, it would also be interesting to try to learn a new polarization-type feature-

space directly. This could be accomplished by employing a semi-supervised learning

approach to create polarization-specific embeddings, learning a similarity metric as in

[29], but altering the embedding objective to focus on like-angled arrivals. This metric

could be trained in general, utilizing all available stations, and then the resulting

embedding-space could be used in specific, as a basis for training each station-specific

back-azimuth predictor. This technique is akin to transfer learning [91], and could

both reduce the required training data and increase the overall performance of the

predictor.
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Data and Resources

The raw waveforms and analyst-reviewed catalogs described in this manuscript

were provided by the Comprehensive Test Ban Treaty Organization through the US

National Data Center. This data was made available exclusively to the authors, as

employees of the United States Air Force.

The Neural Network Architecture was implemented in Keras [25], using the keras-

tcn python package written by Philippe Rémy: https://github.com/philipperemy/keras-tcn

(last accessed February 2019).

A repository containing the code and trained models described in this manuscript

has been made available on github, and can be found at: https://github.com/joshuadickey/baz-net

(last accessed November 2019).

109



V. Conclusions and Future Work

Seismic signal processing at the IDC is critical to global security, facilitating the

detection and identification of covert nuclear tests in near-real time. This dissertation

details three research studies providing substantial enhancements to this pipeline.

Study 1 focuses on signal detection, employing a TCN architecture directly against

the raw real-time data streams and effecting a 4 dB increase in detector sensitivity

over the latest operational methods. Study 2 focuses on both event association and

source discrimination, utilizing a TCN-based triplet network to extract source-specific

features from three-component seismograms, and providing both a complementary

validation measure for event association and a one-shot classifier for template-based

source discrimination. Finally, Study 3 focuses on event localization, and employs

a TCN architecture against three-component seismograms in order to confidently

predict backazimuth angle and provide a seven-fold increase in usable picks over

traditional polarization analysis.

5.1 Study 1 - Signal Detection

Study 1 tackles the joint task of signal detection and arrival time estimation,

using a deep neural network architecture called DeepPick. The power of DeepPick

lies in the training data, which utilizes the arrival catalogs for several regional arrays

as labels while using trace waveforms from a single vertical component at the array

center. By taking advantage of this training data, temporal convolutions and a unique

exponential sequence tagging function, the DeepPick algorithm forms a powerful tool

for weak signal teleseismic detection. The DeepPick algorithm is able to accurately

detect twice the number of events detected by the STA/LTA algorithm commonly

used, and does it significantly faster [Section 2.6].
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The findings in this work represent an important step forward in the field of tele-

seismic detection, demonstrating that accurate teleseismic event detection is possible

from a single seismic instrument. The DeepPick algorithm has the potential to open

up thousands of additional automatic detections to single-instrument seismic stations

each year, without the need for additional sensors and equipment.

There is still potential for much improvement. In this work, develops a single-trace

detector, applied only to a single channel of data from a three channel instrument;

future work could extend our results to include data from all three channels of the

instrument. Furthermore, an application of the same technique to an entire array of

channels could also prove interesting, and the potential exists to improve the results

significantly by incorporating more channels of data. Additionally, the focus of this

work has been primarily centered on producing a detector with increased sensitivity

and recall, whereas future work could focus on using similar techniques to produce a

detector with an even lower false positive rate.

5.2 Study 2 - Event Association

Study 2 tackles the task of pairwise event association from raw data, utilizing a

deep seismic similarity measure. To date, almost all seismogram similarity measures

have been based on the cross-correlation function, constraining them to relatively

path-dominant similarity, and limiting their use to repetitive and geographically local-

ized signals. In contrast, this study presents a path-invariant measure for seismogram

similarity, based on a deep triplet network architecture. The utility of this similar-

ity measure is demonstrated for both pairwise event association and template-based

source discrimination.

For the pairwise association task, the similarity measure is able to achieve an

accuracy of 80%, without any knowledge of recording time or phase type, across a
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large and diverse regional network [Section 3.5]. This is a significant advancement on

the work done by McBrearty [72], both in terms of providing increased generalization

and extended path distances. And while pairwise-similarity is certainly a weaker

evidence for association than a standard moveout curve, it does present a viable

complementary validation tool, which could be used to augment existing methods of

automatic association. For instance, given an event list from an automatic associator,

each event can be scored based on its embedding-space distance from the cluster

centroid, and dissimilar events can simply be rejected or flagged for further analyst

review based on the desired type-I error rate. Future work could involve constructing

a more robust framework for this task, using additional layers of machine learning.

The results for template-based source discrimination are also quite promising. The

95.8% classification accuracy achieved for explosion discrimination is impressive in its

own right [Section 3.5]. However it is astounding considering that the discrimination

is based on a single template waveform. This result is not only useful for identifying

explosions, but also holds considerable promise for other discrimination tasks. In

fact, as with most semi-supervised techniques, the real potential of our similarity-

based classifier lies in its application to less well-studied and less robustly labeled

classes. For instance, while the USGS CONUS catalog used in this work includes

painstakingly labeled explosions, such labels are simply not available for many other

regions. Similarly, there are numerous other source types of interest (volcanoes, ice

quakes, rock bursts, tremors, ripple-fire blasts, etc.) for which labels may be scarce

or unavailable. As such, our method holds considerable potential for training future

discriminators on less well-studied source functions, especially when training examples

are limited and fully-supervised methods are unavailable.

The findings in this work represent an important step forward in the field of

seismogram similarity, demonstrating that such similarity measures do not need to
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be constrained to the path-dominant correlation-based detectors traditionally imple-

mented. However, there is still much work to be done, especially in the application of

this method across more diverse datasets, including global networks and teleseismic

signals.

5.3 Study 3 - Backazimuth Prediction

Study 3 tackles the initial task in the process of single-station event location, back-

azimuth prediction, using a deep neural network architecture called BazNet. BazNet

shows promise for overtaking traditional polarization analysis as a viable backazimuth

predictor for 3C stations. It does suffer from several limitations, most notably that it

requires a large historical catalog of training data and must be trained separately for

each station. As such, it simply cannot be applied to new stations, where polarization

is still the best option. However, the certainty measure provided with each prediction

is highly correlated with the actual error, and this can be incredibly valuable. In fact,

it gives a BazNet predictor the potential to provide nearly 3 times the number of back-

azimuth predictions to downstream algorithms over polarization [Section 4.5]. This

could have a significant impact on event association for global monitoring networks

like the IMS.

There is much future work left to be done. In particular, due to the lack of gener-

alization across stations, it is clear that BazNet is not making use of the traditional

polarization-type features used by other methods. As such, it would be interesting to

combine the results of polarization and BazNet with some type of ensemble predictor.

Similarly, it could be possible to build such features directly into BazNet, perhaps by

feeding them into the final fully connected layer of the network.

Finally, it would also be interesting to try to learn a new polarization-type feature-

space directly. This could be accomplished by employing a semi-supervised learning
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approach to create polarization-specific embeddings, learning a similarity metric as in

[29], but altering the embedding objective to focus on like-angled arrivals. This metric

could be trained in general, utilizing all available stations, and then the resulting

embedding-space could be used in specific, as a basis for training each station-specific

back-azimuth predictor. This technique is akin to transfer learning [91], and could

both reduce the required training data and increase the overall performance of the

predictor.
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Appendix A. DeepPick Comparative Algorithm Settings

In this work, we have utilized the FBPicker algorithm from the PhasePApy python

package written by Chen Chen and Austin Holland of the Oklahoma Geological Sur-

vey. The FBPicker algorithm is designed to be robust to parameter selection, and

the majority of the parameters were left at their default values, however, some tuning

was performed. Specifically, t long and t ma were set to 5 and 30 respectively, based

on established windows for teleseismic signals, and n sigma was selected empirically

to give a type-I error rate of approximately 0.001. Our final parameter selections for

the FBPicker are listed in Table 15.
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Table 15. FBPicker Parameter Values Used in this Work.

Parameter Val Description

t long 5 the time in seconds of moving window to calculate CFn

of each bandpass filtered data

freq min 1 the center frequency of first octave filtering band

cnr 1 corner order of bandpass filtering

t ma 30 the time in seconds of the moving average window for

dynamic threshold

n sigma 6 controls the level of threshold to trigger potential picks

t up 2 the time in seconds not allowed consecutive pick in

this duration

mode 5 two options: standard deviation (std) or root mean

square (rms)

nr len 2 noise ratio filter window length before and after po-

tential picks used to calculate standard deviation

nr coeff 0.05 control threshold level to determine if remove the pick

by comparing std or rms on both sides of each poten-

tial pick

pol len 10 window length in samples to calculate the standard

deviation of waveform before the picks

pol coeff 10 determine if declare first motion as ‘Compression’ or

‘Dilation’ by comparing the first local extreme value

after pick and standard deviation in previous window

uncert len 30 window length in time to calculate the rms of the CF

before the picks, we make it as long as t ma

uncert coeff 3 control the floating level based on the noise of CF

We have also utilized the KTPicker algorithm from the PhasePApy python pack-

age, with the final parameter selections listed in Table 16. The majority of the

parameters were left at their default values, however t win and t ma were set to 5

and 30 respectively, and n sigma was selected empirically to give a type-I error rate

of approximately 0.001.
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Table 16. KTPicker Parameter Values Used in this Work.

Parameter Val Description

t win 5 the time in seconds of moving window to calculate

kurtosis

t ma 30 the time in seconds of the moving average window for

dynamic threshold

n sigma 7 controls the level of threshold to trigger potential picks

t up 2 the time in seconds not allowed consecutive pick in

this duration

nr len 2 noise ratio filter window length before and after po-

tential picks used to calculate standard deviation

nr coeff .05 control threshold level to determine if remove the pick

by comparing std or rms on both sides of each poten-

tial pick

pol len 10 window length in samples to calculate the standard

deviation of waveform before the picks

pol coeff 10 determine if declare first motion as ‘Compression’ or

‘Dilation’ by comparing the first local extreme value

after pick and standard deviation in previous window

uncert len 30 window length in time to calculate the rms of the CF

before the picks, we make it as long as t ma

uncert coeff 3 control the floating level based on the noise of CF
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Appendix B. DeepPick Waveform Examples

In order to more fully represent the capabilities of DeepPick, we now proceed

to detail its performance directly against several waveform examples. Specifically,

we examine 64 total waveforms from two of our test set arrays, BURAR and ASAR.

These two arrays were chosen to represent both the best and worst performing models

generated in our work, with recall rates of 80% and 49% respectively. Each waveform

is centered around a cataloged arrival time, and labeled with its ISC eventid, phase,

magnitude estimate, depth and distance in degrees. Next to each waveform we also

present the characteristic functions for each of the three algorithms tested, DeepPick,

FBPicker and KTPicker. Finally, each characteristic function is annotated with any

predicted arrivals to allows a direct comparison of algorithm performance. We hope

that the inclusion of this waveform Appendix will help the reader to better understand

the potential limitations of the DeepPick algorithm, as well as its considerable ability

to detect very faint signals from a single trace.
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Figure 40. BURAR Waveform Analysis: Presented here are 32 randomly-selected

events from the BURAR Array test set. For each event, the time-series waveform

is shown at left (bandpass filtered between 1 and 4 Hz), annotated with the array-

beam cataloged arrivals in red. The next three columns demonstrate the characteristic

function for DeepPick, FBPicker and KTPicker respectively, annotated with any pre-

dicted arrivals in red. The signals are sorted in descending SNR levels to demonstrate

increasingly difficult detection problems.
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Figure 41. ASAR Waveform Analysis: Presented here are 32 randomly-selected events

from the ASAR Array test set. For each event, the time-series waveform is shown at

left (bandpass filtered between 1 and 4 Hz), annotated with the array-beam cataloged

arrivals in red. The next three columns demonstrate the characteristic function for

DeepPick, FBPicker and KTPicker respectively, annotated with any predicted arrivals

in red. The signals are sorted in descending SNR levels to demonstrate increasingly

difficult detection problems.
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and effecting a 4 dB increase in detector sensitivity over the latest operational methods. Study 2 focuses on both event
association and source discrimination, utilizing a TCN-based triplet network to extract source-specific features from
three-component seismograms, and providing both a complimentary validation measure for event association and a
one-shot classifier for template-based source discrimination. Finally, Study 3 focuses on event localization, and employs a
TCN architecture against three-component seismograms in order to confidently predict backazimuth angle and provide a
three-fold increase in usable picks over traditional polarization analysis.
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