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FOREWORD 

Through the process of normal evolution, it is expected that expansion, deletion, or 
modification of this document may occur.  This Report is therefore subject to CCSDS 
document management and change control procedures, which are defined in Organization 
and Processes for the Consultative Committee for Space Data Systems (CCSDS A02.1-Y-4).  
Current versions of CCSDS documents are maintained at the CCSDS Web site: 

http://www.ccsds.org/ 

Questions relating to the contents or status of this document should be sent to the CCSDS 
Secretariat at the e-mail address indicated on page i. 
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1 INTRODUCTION 

1.1 PURPOSE 

This report presents a summary of the key operational concepts and rationale that underlie 
the requirements for the CCSDS Recommended Standard, Lossless Multispectral & 
Hyperspectral Image Compression ([1]). Supporting performance information, along with 
illustrations, is also included. This report provides a broad tutorial overview of the CCSDS 
Lossless Multispectral & Hyperspectral Image Compression algorithm and is aimed at 
helping first-time readers to understand the Recommended Standard. 

1.2 SCOPE 

This document provides supporting and descriptive material only: it is not part of the 
Recommended Standard. In the event of any conflict between the Lossless Multispectral & 
Hyperspectral Image Compression Recommended Standard and the material presented 
herein, the Recommended Standard shall prevail. 

1.3 DOCUMENT STRUCTURE 

This document is organized as follows. 

– Section 2 provides an overview of input images, output compressed images, and 
gives notation used to refer to input image data. 

– Section 3 describes the underlying compression algorithm formalized in the 
Recommended Standard. 

– Section 4 examines the impact of different compression settings on compression 
performance. 

– Section 5 discusses practical issues relevant to implementation of the standard. 

– Section 6 presents compression performance results for the Recommended Standard 
and other lossless compression methods. 

– Section 7 documents some of the considerations and motivations that influenced the 
selection of the Recommended Standard and its features, and describes some of the 
differences between the Recommended Standard and other image compression 
standards. 

– Annex A summarizes the corpus of hyperspectral and multispectral images used for 
compression testing and evaluation in the course of developing the Recommended 
Standard. 

– Annex B provides links to available software implementations of the Recommended 
Standard and test data. 
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– Annex C presents the default compression settings used to derive experimental 
results. 

– Annex D discusses the compressor selection criteria. 

– Annex E provides detailed compression results. 

– Annex F provides a list of abbreviations and acronyms used in the text of this 
document. 

1.4 CONVENTION 

The following convention applies throughout this document: 

– The capitalized phrase ‘Recommended Standard’ by itself refers to Lossless 
Multispectral & Hyperspectral Image Compression (reference [1]). 

1.5 TEST IMAGES AND SOFTWARE IMPLEMENTATIONS 

Results and examples in this document make use of the set of test images described in 
annex A.  Available software implementations of the Recommended Standard and a synthetic 
test pattern image are described in annex B. 

1.6 REFERENCES 

The following documents are referenced in this Report.  At the time of publication, the 
editions indicated were valid.  All documents are subject to revision, and users of this Report 
are encouraged to investigate the possibility of applying the most recent editions of the 
documents indicated below.  The CCSDS Secretariat maintains a register of currently valid 
CCSDS documents. 

[1] Lossless Multispectral & Hyperspectral Image Compression. Issue 1. Recommendation 
for Space Data System Standards (Blue Book), CCSDS 123.0-B-1. Washington, D.C.: 
CCSDS, May 2012. 

[2] M. Klimesh. “Low-Complexity Lossless Compression of Hyperspectral Imagery via 
Adaptive Filtering.” The Interplanetary Network Progress Report 42, no. 163 
(November 15, 2005): 1–10. 

[3] M. Klimesh. “Low-Complexity Adaptive Lossless Compression Of Hyperspectral 
Imagery.” In Satellite Data Compression, Communications, and Archiving II (August 
13–14, 2006, San Diego, California), 63000N-1–63000N-9. Edited by R. Heymann, C. 
Wang, and T. Schmit. SPIE Proceedings vol. 6300. Bellingham, Washington: SPIE, 
September 2006. 
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[4] Space Packet Protocol. Issue 1. Recommendation for Space Data System Standards 
(Blue Book), CCSDS 133.0-B-1. Washington, D.C.: CCSDS, September 2003. 

[5] Encapsulation Service. Issue 2. Recommendation for Space Data System Standards 
(Blue Book), CCSDS 133.1-B-2. Washington, D.C.: CCSDS, October 2009. 

[6] CCSDS File Delivery Protocol (CFDP). Issue 4. Recommendation for Space Data 
System Standards (Blue Book), CCSDS 727.0-B-4. Washington, D.C.: CCSDS, 
January 2007. 

[7] AOS Space Data Link Protocol. Issue 3. Recommendation for Space Data System 
Standards (Blue Book), CCSDS 732.0-B-3. Washington, D.C.: CCSDS, September 
2015. 

[8] A. Gersho. “Adaptive Filtering with Binary Reinforcement.” IEEE Transactions on 
Information Theory 30, no. 2 (1984): 191–199. 

[9] B. Widrow and M. E. Hoff, Jr. “Adaptive Switching Circuits.” IRE WESCON 
Convention Record 4 (August 1960): 96-104. 

[10] B. Widrow, et al. “Adaptive Noise Cancelling: Principles and Applications.” 
Proceedings of the IEEE 63, no. 12 (1975): 1692–1716. 

[11] S. Golomb. “Run-Length Encodings (Corresp.).” IEEE Transactions on Information 
Theory 12, no. 3 (July 1966): 399–401. 

[12] M.J. Weinberger, G. Seroussi, and G. Sapiro. “The LOCO-I Lossless Image 
Compression Algorithm: Principles and Standardization into JPEG-LS.” IEEE 
Transactions on Image Processing 9, no. 8 (August 2000): 1309–1324. 

[13] Lossless Data Compression. Issue 2. Recommendation for Space Data System 
Standards (Blue Book), CCSDS 121.0-B-2. Washington, D.C.: CCSDS, May 2012. 

[14] R.G. Gallager and David C. Van Voorhis. “Optimal Source Codes for Geometrically 
Distributed Integer Alphabets (Corresp.).” IEEE Transactions on Information Theory 
21, no. 2 (1975): 228–230. 

[15] A. Kiely. “Selecting the Golomb Parameter in Rice Coding.” The Interplanetary 
Network Progress Report 42, no. 159 (November 15, 2004). 

[16] Lossless Data Compression. Issue 3. Report Concerning Space Data System Standards 
(Green Book), CCSDS 120.0-G-3. Washington, D.C.: CCSDS, April 2013. 

[17] E. Augé, et al. “Performance Impact of Parameter Tuning on the CCSDS-123 Lossless 
Multi- and Hyperspectral Image Compression Standard.” SPIE Journal of Applied 
Remote Sensing 7, no. 1 (August 26, 2013). 
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2 OVERVIEW 

2.1 INTRODUCTION 

The CCSDS Lossless Multispectral & Hyperspectral Image Compression Recommended 
Standard (reference [1]) defines for standardization a particular lossless data compressor that 
is applicable to three-dimensional images produced by multispectral and hyperspectral 
imagers and sounders.  The Recommended Standard formalizes a version of the ‘Fast 
Lossless’ (FL) compressor (see references [2] and [3]) that uses only integer arithmetic. 

The compressor is intended to be suitable for use onboard spacecraft; in particular, the 
algorithm complexity and memory use are designed to be sufficiently low to make high-
speed hardware implementation feasible. 

In this document it is assumed that the reader is familiar with the contents of reference [1] 
including terminology defined there. 

2.2 INPUT IMAGE 

The input to the compressor is an image, which is a three-dimensional array of integer 
sample values, sz,y,x, where x and y are indices in the spatial dimensions and the index z 
indicates the spectral band. Image sample values may be signed or unsigned.  The 
Recommended Standard supports images with dynamic range (bit depth) between 2 and 16 
bits and sizes up to 216 in all three dimensions NX, NY, NZ. 

Image samples produced by multispectral and hyperspectral imagers are typically interleaved in 
one of three common orderings.  In terms of the nesting of the scanning loops, listed from 
innermost to outermost, the three common orderings are x,y,z (Band-SeQuential [BSQ]), x,y,z 
(Band-Interleaved Pixels [BIP]), and x,y,z (Band-Interleaved Lines [BIL]). The Recommended 
Standard is defined in a way that supports all three of these orderings (see 3.3.3). 

Certain compression settings tend to be more suitable for certain image types, but the 
Recommended Standard otherwise makes no distinction between multispectral and 
hyperspectral images, nor does the compressor make use of the value of the wavelength 
corresponding to each spectral band in the input image. 

While there is not a sharp distinction between multispectral and hyperspectral imagers, 
generally speaking, hyperspectral imagers typically include hundreds of spectral bands 
covering a contiguous range of the spectrum, with each band having fairly narrow spectral 
resolution. A multispectral imager might have tens of bands (or as few as two), the bands 
might not be contiguous, and each band would generally cover a wider portion of the 
spectrum.  Thus hyperspectral imagery generally exhibits a higher degree of inter-band 
dependency which can be exploited for compression purposes. 
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For notational simplicity, both here and in reference [1], data samples and associated 
quantities may be identified either by reference to the three indices x, y, z, (e.g., sz,y,x, δz,y,x, 
etc.), or by the pair of indices t, z, (e.g., sz(t), δz(t), etc.).  That is, 

sz(t) ≡ sz,y,x 

δz(t) ≡ δz,y,x 

etc., where 
t = y · NX + x. 

The value of t corresponds to the index of a sample within its spectral band when samples in 
the band are arranged in raster-scan order starting with index t=0.  Given t, the values of x 
and y can be computed as 

x = t mod NX 

y = t / NX⎢⎣ ⎥⎦ . 

2.3 COMPRESSED IMAGE 

The output from the compressor is a compressed image, which is an encoded bitstream from 
which the input image can be recovered exactly.  That is, the Recommended Standard 
provides lossless compression. 

Because of variations in image content, the length of compressed images will vary from 
image to image.  That is, the compressed image is of variable length.  Compressed image size 
also depends on compression settings; section 4 provides further details on these tradeoffs. 

A compressed image begins with a variable-length header that encodes image and 
compression parameters followed by a body that losslessly encodes the image samples.  A 
compressed image does not include synchronization markers or any other scheme intended to 
facilitate the automatic identification of the start of a compressed image; it is assumed that 
the transport mechanism used for the delivery of the compressed image will provide the 
ability to locate the header of the next image in the event of a bit error or data loss. 

In case the encoded bitstream is to be transmitted over a CCSDS space link, several protocols 
can be used to transfer a compressed image, including: 

– Space Packet Protocol (reference [4]); 

– CCSDS File Delivery Protocol (CFDP) (reference [6]); 

– packet service or bitstream service as provided by the AOS Space Data Link Protocol 
(reference [7]) or TM Space Data Link Protocol (reference [19]). 

(1)

(2)

(3)

(4)

(5)
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Packet Service can carry many types of packets (e.g., Space Packets and Encapsulation 
Packets) as long as they use a Packet Version Number (PVN) authorized by CCSDS 
(reference [45]). 

Limits on the maximum size data unit that can be transmitted may be imposed by the 
protocol used or by other practical implementation considerations.  The user is expected to 
take such limits into account when using the Recommended Standard. 

Uncorrupted compressed image data are necessary for complete and accurate reconstruction 
of a compressed image; the effects of a single bit error or loss of compressed image data can 
propagate to corrupt reconstructed data to the end of a compressed image (see 5.3.1). 
Therefore measures should be taken to maximize the reliability of the data transmission link. 
Reference [21] provides information error rates provided by different channel coding 
options. 

In addition, a user may choose to partition the output of an imaging instrument into smaller 
images that can be independently decompressed, to limit the impact of data loss or corruption 
on the communications channel and/or to limit the maximum possible size of a compressed 
image.  Under such partitioning, image size can be selected to trade the degree of data 
protection for compression effectiveness; smaller images provide increased protection 
against data loss, but tend to reduce overall compression effectiveness.  Subsection 5.3.2 
provides some examples of this tradeoff. 
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3 ALGORITHM OVERVIEW 

3.1 GENERAL 

The Recommended Standard is a formalization of the FL compressor presented in references 
[2] and [3]; it is an adaptive predictive technique for lossless compression of multispectral 
and hyperspectral imagery.  The FL compressor achieves a combination of low complexity 
and compression effectiveness that is competitive with the best results from the 
literature (references [2] and [3]). 

The compressor estimates sample values by linear prediction, which is a natural strategy for 
lossless compression of multispectral and hyperspectral images.  The differences between the 
estimates and the actual sample values are losslessly encoded in the compressed image.  Only 
previously encoded samples are used to predict a given sample so that the prediction 
operation can be duplicated by the decoder.  This is a form of predictive compression, or, 
more specifically, a form of Differential Pulse Code Modulation (DPCM). 

Figure 3-1 depicts the two functional parts of the compressor: a predictor and an encoder. 

input
image

Predictor

mapped
prediction
residuals compressed

image
Encoder

 

Figure 3-1:  Compressor Schematic 

The Recommended Standard supports different scan orders, including the common BIL, BIP, 
and BSQ orderings, for prediction and encoding of samples (see 3.3.3).  In all supported scan 
orders, within any given spectral band sample prediction and encoding are performed in 
raster scan order.  In practice, for a given application a particular scan order choice may be 
more natural and admit a simpler compressor implementation. 

The predictor uses a low-complexity adaptive linear prediction method to predict the value of 
each image sample based on the values of nearby samples in a small three-dimensional 
neighborhood. The prediction residual, i.e., the difference between the predicted and actual 
sample values, is then mapped to an unsigned integer that can be represented using the same 
number of bits as the input data sample.  These mapped prediction residuals make up the 
predictor output.  Subsection 3.2 describes the predictor in more detail. 

The compressed image consists of a header that encodes image and compression parameters 
followed by a body, produced by an entropy coder which losslessly encodes the mapped 
prediction residuals. Entropy coder parameters are adaptively adjusted during this process to 
adapt to changes in the statistics of the mapped prediction residuals.  Subsection 3.3 
describes the entropy coding procedure in more detail. 
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3.2 PREDICTOR 

3.2.1 GENERAL 

The underlying FL prediction algorithm on which the Recommended Standard is based is 
described first.  This description uses real-valued quantities and arithmetic.  Then described 
is how this algorithm can be converted to a version that uses only integer arithmetic but is 
capable of producing essentially equivalent predictions.  The Recommended Standard uses 
this integer-only algorithm. 

Prediction can be performed causally in a single pass through the image.  The predictor 
adapts separately for each spectral band, so all scan orders produce the same sample value 
predictions. 

Prediction at sample sz,y,x, that is, the calculation of the predicted sample value ŝz,y,x  and 
mapped prediction residual δz,y,x, defined in equation (35) of reference [1], depends on the 
values of nearby samples in the current spectral band and P preceding (i.e., lower-indexed) 
spectral bands, where P is a user-specified parameter.  Figure 3-2 illustrates the typical 
neighborhood of samples used for prediction; this neighborhood is suitably truncated when 
y = 0, x = 0, x = NX − 1, or z < P. 

sz−P,y−1,x−1 sz−P,y−1,x sz−P,y−1,x+1

sz−P,y,x−1 sz−P,y,x

sz−1,y−1,x−1 sz−1,y−1,x sz−1,y−1,x+1

sz−1,y,x−1 sz−1,y,x

sz,y−1,x−1 sz,y−1,x sz,y−1,x+1

sz,y,x−1 sz,y,x

x

y

z

current 
band

P previous 
bands

current 
sample

 

Figure 3-2:  Typical Prediction Neighborhood 
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3.2.2 THE FL PREDICTION ALGORITHM 

Within each spectral band z, the FL predictor computes the local mean value, μz,y,x, from 
previously scanned nearby samples in the spectral band.  Figure 3-3 illustrates the samples 
used to calculate the local mean.  A user may choose to use the neighbor-oriented local 
mean, in which case μz,y,x is the average of four previously encoded neighboring sample 
values in the spectral band: 

μz,y,x = 1
4

sz,y,x−1 + sz,y−1,x−1 + sz,y−1,x + sz,y−1,x+1( ). 

If y = 0, x = 0, or x = NX − 1 then not all of these neighbors exist and μz,y,x is suitably 
modified.  It is not necessary to define μz,0,0.  Alternatively, a user may choose to use the 
column-oriented local mean, in which case μz,y,x is simply equal to the most recent sample 
value in the same column: 

μz,y,x = sz,y−1,x, 

except when y = 0, in which case μz,0,x = sz,0,x−1 (again, μz,0,0 is not defined). 

sz,y−1,x−1 sz,y−1,x sz,y−1,x+1

sz,y,x−1 sz,y,x

sz,y−1,x−1 sz,y−1,x sz,y−1,x+1

sz,y,x−1 sz,y,x

neighbor-oriented column-oriented
 

Figure 3-3:  Calculating the Local Mean 

NOTE – In these diagrams, the local mean μz,y,x is equal to the average of the shaded 
samples. 

One can think of the local mean μz,y,x as a preliminary estimate of the value of sz,y,x.  In a 
sense, the FL algorithm adaptively adjusts prediction weights to predict the amount by which 
the sample value sz,y,x differs from the preliminary estimate. 

(6)

(7)
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Differences between local mean values and previous sample values are arranged in a local 
difference vector, Ψz,y,x.  Under full prediction mode, the local difference vector is defined as 

Ψ z,y,x =

sz,y−1,x − μz,y,x

sz,y,x−1 − μz,y,x

sz,y−1,x−1 − μz,y,x

sz−1,y,x − μz−1,y,x

sz−2,y,x − μz−2,y,x

s
z−Pz

*,y,x
− μ

z−Pz
*,y,x

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

. 

Here Pz
* = min{P, z} is the number of preceding (i.e., lower-indexed) spectral bands being 

used for prediction at band z.  Under reduced prediction mode, the definition of Ψz,y,x omits 
the first three components but is otherwise the same. 

The reason for defining two different prediction modes (full and reduced) as well as two 
different local mean types (column- and neighbor-oriented) is so that the same prediction 
framework can be used to provide effective prediction for image data from different types of 
imagers (see 4.2.1). 

The first three components of Ψz,y,x under full prediction mode are called directional local 
differences. Each is equal to the difference between the local mean μz,y,x and a previous 
sample in the same spectral band z.  The directional local differences have labels ‘N’, ‘W’, 
and ‘NW’, suggesting compass directions (see figure 3-4).  ‘NE’, i.e., sz,y−1,x+1−μz,y,x is not 
used.  The remaining components of Ψz,y,x are called central local differences.  Each is equal 
to the difference between the sample at the same x and y position in a previous spectral band 
z−i and the local mean μz−i,y,x in that previous spectral band. 

sz,y−1,x−1 sz,y−1,x sz,y−1,x+1

sz,y,x−1 sz,y,x

NW N

W central

directional

 

Figure 3-4: Minuends for Computing Directional and Central Local Differences in a 
Spectral Band 

(8)
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The predicted sample value1 *
, ,ˆz y xs  is equal to the local mean in the current spectral band 

plus a weighted sum of local difference values from the current and previous spectral bands: 

ŝz,y,x
* = μz,y,x + Vz

T (t)Ψ z,y,x  

where Vz(t) is a weight vector having the same dimensions as Ψz,y,x. A separate weight vector 
is maintained for each band. 

Thus the predicted sample value is computed by adjusting the preliminary estimate μz,y,x by 
an increment Vz

T (t)Ψ z,y,x . 

Following the calculation of each predicted sample value, the weights used in prediction are 
adaptively updated using the sign algorithm.  The sign algorithm (reference [8]) is a relative 
of the Least Mean Square (LMS) algorithm (references [9] and [10]), a well-known low-
complexity adaptive filtering algorithm.  The sign algorithm is also known as the sign-error 
algorithm and the binary reinforcement algorithm. 

Specifically, the prediction error 

εz,y,x = sz,y,x − ŝz,y,x
*  

is used to update the weight vector as follows: 

Vz
T (t +1) = Vz

T (t)+ sgn(εz,y,x ) ⋅ 2−α (t ) ⋅ Ψ z,y,x . 

Thus if the predicted value was larger than the true sample value, sgn(εz,y,x) will be negative 
and the weight vector decreases by 2−α(t)·Ψz,y,x.  Conversely, when the predicted value is less 
than the true sample value, the weight vector increases by 2−α(t)·Ψz,y,x.  Here the value of α(t) 
controls the trade-off between convergence speed and average steady-state error; α(t) begins 
at some user-specified initial value; then at regular intervals α(t) is increased by one until it 
reaches some final value. A large value of α(t) (i.e., a small value of the scaling factor 2−α(t)) 
results in better steady-state performance but slower convergence. 

3.2.3 PREDICTION USING INTEGER ARITHMETIC 

The following steps summarize the conversion from the real-valued FL prediction algorithm 
described above to the integer version used in the Recommended Standard: 

– Since the local mean is in general an average of up to four neighboring samples, 
rather than computing a rational-valued local mean μz,y,x, the integer predictor 
computes an integer local sum (reference [1]) σz,y,x = 4μz,y,x. 

                                                 
1 *

, ,ˆz y xs  is a real-valued quantity defined for explanation purposes. 

(9)

(10)

(11)
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– Similarly, real-valued local differences Ψz,y,x are scaled by a factor of 4 to produce 
corresponding integer local differences (reference [1]): Uz,y,x = 4Ψz,y,x. 

– To produce an integer weight vector Wz(t) (reference [1]), real-valued weights Vz(t) 
are scaled by a factor of 2Ω, rounded to the nearest integer, and clipped so that each 
weight component can be represented using Ω+3 bits.  Thus Wz(t) ≈ 2ΩVz(t).  The 
corresponding integer round-off and clipping operations are included in the weight 
update equation (reference [1]).  The clipping would be roughly equivalent to 
constraining real-valued weights to the range [-4, 4].  A larger value of Ω amounts to 
representing weight components with higher resolution, but these components require 
more bits to represent; subsection 4.2.4 discusses this tradeoff. 

– In updating the weight vector (reference [1]), the integer weight update scaling 
exponent ρ(t) serves the same purpose as (but is not identical to) α(t) in the real-
valued weight update equation. 

– The Recommended Standard computes the integer scaled predicted sample value ( )zs t , 
which is effectively twice the predicted sample value.  An equivalently scaled value 
from the real-valued predictor is 

2ŝz
*(t) = 2 μz (t)+ Vz

T (t)Ψ z (t)( ) ≈ 2 1
4

σ z (t)+ 1
2Ω Wz

T (t) 1
4

Uz (t)
⎛
⎝
⎜

⎞
⎠
⎟ =

2Ωσ z (t)+ Wz
T (t)Uz (t)

2Ω+1 . 

The main prediction calculation (reference [1]) rounds this quantity to the nearest 
integer, takes into account possible register overflow during the calculation (via the 
modR

*  operation), and clips the result to account for the range of possible sample 
values. 

– The integer predictor computes the scaled prediction error ez(t), which is effectively 
twice the prediction error: 2εz (t) = 2 sz (t)− ŝz

*(t)( ) ≈ 2sz (t)− sz (t) ≡ ez (t) . 

The predicted sample value ŝz (t) is computed from the scaled predicted sample value sz (t) 
as (see reference [1]) 

ŝz (t) =
sz (t)

2
⎢
⎣⎢

⎥
⎦⎥
. 

The predicted sample value ŝz (t) is naturally a D-bit quantity, while the integer scaled 
predicted sample value sz (t), which is effectively twice the predicted sample value, is a 
(D+1)-bit quantity.  Thus sz (t) retains an extra bit of resolution compared to ŝz (t).  The 
value of the least significant bit of ( )zs t  is discarded in the calculation of ŝz (t), but the 
Recommended Standard takes advantage of this extra bit of resolution in the weight update 
procedure and in the calculation of mapped prediction residuals (reference [1]). 

(12)

(13)
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Scaled predicted sample values sz (t) = 2ŝz (t) and sz (t) = 2ŝz (t)+1 both yield the same 
predicted sample value ŝz (t).  But the smaller value, sz (t) = 2ŝz (t), (i.e., an even value of 
sz (t)) indicates a prediction that sz(t) < ŝz (t) is more likely than sz(t) > ŝz (t). 

As an example, figure 3-5 illustrates the relationship between sz (t) and ŝz (t) for an image 
with unsigned 3-bit samples.  If the true sample value is sz(t) = 5, then the shaded region in 
the figure corresponds to the range of scaled predicted sample sz (t) values that are too small, 
and thus in this region the prediction weights should be increased, while prediction weights 
should be decreased in the unshaded region.  This shaded region corresponds to ez(t) ≥ 0, and 
thus the weight update equation in the Recommended Standard (subsection 4.8.3 of 
reference [1]) includes a factor of sgn+[ez(t)] rather than sgn[ez(t)]. 

0 1

0

2 3

1

4 5

2

6 7

3

8 9

4

10 11

5

12 13

6

14 15

7

value of sz (t)

value of ŝz (t)

sz(t)  

Figure 3-5: Relationship between sz (t)  and ŝz (t)  for an Image with 3-Bit Unsigned 
Samples 

3.2.4 MAPPED PREDICTION RESIDUAL 

The prediction residual Δz(t) is the difference between the predicted and actual sample values 
(reference [1]), 

Δz (t) = sz (t)− ŝz (t) . 

The prediction residual may be positive or negative, but the variable-length codes used by 
the entropy coder are defined only on nonnegative integer inputs.  Thus each prediction 
residual Δz(t) is mapped to a nonnegative integer δz(t), called the mapped prediction residual.  
This mapping is invertible, so that the decompressor can reconstruct the original sample sz(t) 
given δz(t) and sz (t), and has the property that δz(t) can be represented as a D-bit unsigned 
integer. 

The coding methods available to the entropy coder generally assign longer codewords to 
larger input values.  So for effective compression, the mapping assigns smaller magnitude 
prediction residuals to smaller mapped values, so that more accurate predictions are more 
effectively encoded. 

The mapping used in the Recommended Standard (reference [1]) is 

(14)
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δz (t) =

Δz (t) +θz (t), Δz (t) >θz (t)

2 Δz (t) , 0 ≤ (−1)sz (t ) Δz (t) ≤θz (t)

2 Δz (t) −1, otherwise

⎧

⎨
⎪⎪

⎩
⎪
⎪

 

where θz (t) = min ŝz(t)− smin, smax − ŝz(t){ }.  This mapping takes advantage of the extra bit of 
prediction resolution available from the scaled predicted sample value sz (t) to produce, on 
average, smaller mapped prediction residual values. 

As an example, figure 3-6 shows the values of the mapped prediction residuals when the 
predicted sample value is ŝz (t) = 5 for an image with unsigned 3-bit samples.  The predicted 
sample value ŝz (t) = 5 could have been produced by either sz (t) =10  (shown in blue) or 
sz (t) =11 (in green).  The former case indicates a prediction that Δz(t)<0 is more likely than 
Δz(t)>0, and mapped prediction residuals are assigned accordingly. 

value of sz (t)

10 11

0 1 2 3 4 5 6 7

-5 -4 -3 -2 -1 0 1 2

7 6 5 3 1 0 2 4

7 6 5 4 2 0 1 3

value of sz (t)

value of z (t) (if sz (t) =11)

value of z (t) (if sz (t) =10 )

ŝz (t) = 5}
value of z (t

δ
δ

)

 

Figure 3-6: Example of Mapped Prediction Residual Values for an Image with 3-Bit 
Unsigned Samples 

Since prediction is causal, the decompressor can use previously decoded sample values to 
compute ( )zs t , which can then be used to compute ŝz (t) and θz(t).  After decoding the value 
of δz(t) from the compressed bitstream, the prediction residual can be computed by inverting 
equation (15), which yields 

Δz (t) =
θz (t)−δz (t)( )sgn+ ŝz (t)− smid( ), δz (t) > 2θz (t)

δz (t)+1
2

⎢
⎣⎢

⎥
⎦⎥
(−1)sz (t )+δz (t ), δz (t) ≤ 2θz (t).

⎧

⎨
⎪⎪

⎩
⎪
⎪

 

Finally, from equation (14), the sample value sz(t) can be computed as 

sz (t) = Δz (t)+ ŝz (t) . 

(15)

(16)
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3.2.5 WORD SIZES 

Table 3-1 lists bounds on the range of possible values, and the corresponding sizes of binary 
words that could be used to store these quantities, for several key quantities used in 
prediction.  Intermediate calculations necessary to compute some of these quantities may 
require higher bit depths. 

Table 3-1:  Bounds and Word Sizes for Predictor Quantities 

Symbol Meaning Bounds Bits to Represent 
sz(t) image data sample [smin,smax] D 
σz(t) local sum [4smin,4smax] D + 2 
dz(t) central local 

difference 
±4(2D −1) D + 3 

dz
N (t), dz

W (t) , 
dz

NW (t)  

directional local 
differences 

±3(2D −1) D + 3 

ωz
N (t) , ωz

W (t), 
ωz

NW (t), 
ωz

(i) (t)  

weight values [−2Ω+2,2Ω+2 −1] Ω + 3 

sz (t) scaled predicted 
sample value 

[2smin,2smax+ 1] D + 1 

d̂z (t)  
predicted central 
local difference 

full mode: 

±(4P + 9)2Ω+2 (2D −1) 
reduced mode: 

±(4P · 2Ω+2 (2D −1) 

full mode: 

Ω+ 3+ log2 (4P + 9) 2D −1( )⎡
⎣

⎤
⎦

⎡
⎢

⎤
⎥

reduced mode: 

Ω+ 5+ log2 P 2D −1( )⎡
⎣

⎤
⎦

⎡
⎢

⎤
⎥  

ŝz (t)  predicted sample 
value 

[smin,smax] D 

ez(t) scaled prediction 
error −2D+1 +1, 2D+1 − 2⎡⎣ ⎤⎦ D + 2 

Δz(t) 
prediction residual ± 2D −1( )  D + 1 

δz(t) mapped prediction 
residual 0, 2D −1⎡⎣ ⎤⎦  D 

Subsection 4.2.5 discusses the register size parameter R. 
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3.3 ENCODER 

3.3.1 GENERAL 

The encoder losslessly encodes the mapped prediction residuals produced by the predictor, 
creating a compressed image which consists of a header followed by a body.  The variable-
length header encodes image and compression parameters.  The body consists of losslessly 
encoded mapped prediction residuals {δz,y,x} from the predictor. 

The original FL algorithm uses an adaptive coding approach using Golomb-Power-Of-2 
(GPO2) codes (reference [11]), similar to the approach used in the JPEG-LS image 
compression standard (reference [12]).  The sample-adaptive entropy coder specified in the 
Recommended Standard formalizes a version of this encoder. The Recommended Standard 
alternatively allows the use of a block-adaptive entropy coder.  The block-adaptive coder, 
which also makes use of GPO2 codes, is the Rice coding algorithm as specified in the 
CCSDS 121.0-B-2 Recommended Standard (reference [13]). 

Under the sample-adaptive entropy coding approach, each mapped prediction residual is 
encoded using a variable-length binary codeword.  The variable-length codes used are 
adaptively selected based on statistics that are updated after each sample is encoded.  
Separate statistics are maintained for each spectral band, and consequently, the sample-
adaptive entropy coder produces the same compressed image size regardless of the order in 
which samples are encoded.  It also tends to provide slightly more effective compression than 
the block-adaptive coder. 

The block-adaptive encoding approach was included as an option in the Recommended 
Standard so that implementers could take advantage of existing space-qualified hardware 
implementations of this encoder.  Under the block-adaptive entropy coding approach, the 
sequence of mapped prediction residuals is partitioned into short blocks, and the encoding 
method used is independently and adaptively selected for each block.  Depending on the 
encoding order, the mapped prediction residuals in a block may be from the same or different 
spectral bands, and thus the compressed image size depends on the encoding order when this 
method is used. 

Given the knowledge of image and compression parameters, and assuming no corruption of 
data, the decoder can determine when it has finished decompressing an image.  
Consequently, the Recommended Standard does not explicitly indicate the compressed image 
size in the header or use a terminating sequence to mark the end of the compressed image. 



LOSSLESS MULTISPECTRAL AND HYPERSPECTRAL IMAGE COMPRESSION 

CCSDS 120.2-G-1 Page 3-11 December 2015 

3.3.2 HEADER 

The header includes fields for all compression settings needed to reconstruct the compressed 
image. There are only two optional header fields that may be omitted, and thus there are only 
two scenarios in which information not included in the header might be needed by the 
decompressor: 

a) A user-defined custom weight initialization table might be used by the predictor, and 
thus needed for decompression, but not encoded in the header. 

b) When the sample-adaptive entropy coder is used, a user-defined accumulator 
initialization table might be used by the encoder, and thus needed for decompression, 
but not encoded in the header. 

Omitting such information might be a logical choice, e.g., if a mission used the same fixed 
custom weight initialization and/or accumulator initialization throughout a mission. In this 
case, the mission might choose to reduce compressed image size by omitting this repetitive 
information from the image header. 

3.3.3 ENCODING ORDER 

The mapped prediction residuals are sequentially encoded in the compressed image body in 
the order selected by the user and indicated in the header (see subsection 5.4.2 of 
reference [1]).  The Recommended Standard specifies the allowed orders in which encoded 
sample values may appear in a compressed image, but this encoding order need not 
correspond to the order in which samples are output from the imaging instrument or 
processed by the predictor. 

In addition to BSQ encoding order, the Recommended Standard also allows Band-
Interleaved (BI) encoding order, which includes BIL and BIP as special cases.  Under BI 
encoding order, a frame, defined as the set of all sample values with the same y coordinate 
(see subsection 5.4.2.2.1 of reference [1]), is partitioned into separate sub-frames, consisting 
of M spectral bands each, except possibly the last sub-frame in a frame.  Within each sub-
frame, encoding proceeds in BIP order.  Figure 3-7 illustrates the BI encoding order for 
samples in a frame when M = 3. 

BIL and BIP encoding orders correspond to M = 1 and M = NZ, respectively.  Other values of 
M may simplify hardware pipelining and thus facilitate faster compressor implementations.  
Specifically, prediction for the current sample cannot be performed until the weight vector 
has been updated using the prediction for the previous sample in the same band.  This 
constraint makes it more difficult to perform pipelining or parallelization under BIL 
ordering.  This is not an issue for BIP processing, because each spectral band has its own 
weight vector.  Under BI ordering, arranging samples into sub-frames permits processing to 
be performed in BIP order within a sub-frame, thus allowing pipelining. 



LOSSLESS MULTISPECTRAL AND HYPERSPECTRAL IMAGE COMPRESSION 

CCSDS 120.2-G-1 Page 3-12 December 2015 

sub-frame fy,0

sub-frame fy,1

sub-frame fy,2

sNZ 1,y,NX 1

z

x
s0,y,0

}

}
}

 

Figure 3-7: Illustration of Sample Encoding Order within a Frame under Band 
Interleaved Encoding Order for Sub-Frame Interleaving Depth M=3 

Because the predictor adapts separately for each spectral band, all scan orders produce the 
same sample value predictions.  Under the sample-adaptive entropy coding option, separate 
entropy coding statistics are maintained for each spectral band, and thus compressed image 
size does not depend on the order in which samples are encoded.  However, as discussed in 
4.3.3.2, under the block-adaptive entropy coding option, compressed image size will vary 
somewhat depending on the sample encoding order, and for some imagers BIL or BSQ 
encoding order provides a noticeable improvement in compression effectiveness over BIP. 

3.3.4 SAMPLE-ADAPTIVE ENTROPY CODER 

The variable length codes used by the sample-adaptive entropy coder are based on GPO2 
codes (i.e., Golomb codes, references [11] and [14], with parameters that are powers of 2, 
also known as Golomb-Rice codes).  The overall encoding procedure, including Golomb 
code parameter selection, is very similar to that used by LOCO-I/JPEG-LS, described in 
reference [12]. 

The sample-adaptive coder uses length-limited GPO2 codes, constraining the codes so that 
the maximum codeword length is Umax +D bits. This length limit makes hardware 
implementation simpler and reduces the cost of encoding occasional outlier samples. 

For a given value of the unary length limit Umax, a family of codes are available, 
parameterized by the nonnegative integer kz(t) ≤ D − 2.  Each code is a mapping from 
nonnegative integers to variable-length prefix-free binary codewords. 
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To encode nonnegative integer δ using the kth length-limited GPO2 code, δ can be written as 

δ = u · 2k + r 

where u and r are the quotient and remainder when δ is divided by 2k, that is, u = δ / 2k⎢⎣ ⎥⎦ , and 
r = δ mod 2k. 

The codeword for δ depends on whether u is less than Umax.  If u < Umax then the codeword 
for δ consists of the unary encoding of u (that is, u zeros followed by a 1) followed by the 
k-bit binary representation of r, which is simply the k least significant bits of the binary 
representation of δ.  Otherwise u ≥ Umax and the codeword for δ consists of Umax zeros 
followed by the D-bit binary representation of δ.  Hence, Umax is called the unary length 
limit, because it constrains the length of the unary part of the codeword. 

To determine which code to use (i.e., the value of k) to encode a mapped prediction residual, 
the sample-adaptive encoder maintains a running sum Σz(t) of mapped prediction residuals in 
the spectral band, called the accumulator, and a counter Γ(t).  The ratio Σz(t) / Γ(t) is an 
estimate of the mean mapped prediction residual value, and this estimate is used to select the 
code parameter k.  Specifically, k is the largest nonnegative integer k ≤ D − 2 satisfying 

2k ≤
Σz (t)
Γ(t)

+ 49
128

, 

and k = D − 2 when this relation is not satisfied by any k < D − 2 (see reference [15] for an 
analysis). 

The counter and accumulator are each periodically halved (see subsection 5.4.3.2.2.4 of 
reference [1]) so that more recent sample values have more impact on the estimated mean value. 

The counter and accumulator values used to calculate the coding parameter k are calculated 
in a causal manner based on previously encoded samples, so the decompressor can determine 
the value of the coding parameter k for each sample. Given the value of k, to decode the 
value of δ from the compressed bitstream: 

– If the next Umax bits are all zeros, then δ is read from the D bits following the string of 
Umax zeros. 

– Otherwise, the number of consecutive zeros encodes the value of u, and the next k bits 
encodes the value of r. Then equation (17) can be used to reconstruct the value of δ. 

(17)

(18)
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3.3.5 BLOCK-ADAPTIVE ENTROPY CODER 

Reference [16] presents a thorough discussion of the CCSDS 121.0-B-2 Recommended 
Standard (reference [13]) used as the block-adaptive entropy coding option. 

3.3.6 WORD SIZES 

Table 3-2 lists bounds on the range of possible values, and the corresponding sizes of binary 
words that could be used to store these quantities, for several key quantities used in sample-
adaptive entropy coding. 

Table 3-2:  Bounds and Word Sizes for Sample-Adaptive Entropy Coder Quantities 

Symbol Meaning Bounds 
Bits to 

Represent 

Σz(t) accumulator [0,2D+γ* −1] D + γ* 

Γ(t) counter [0,2 γ* −1] γ* 
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4 COMPRESSION SETTINGS 

4.1 INTRODUCTION 

This section examines the influence of different compression settings on performance.  
Experimental results, some of which were originally presented in reference [17], are included 
to illustrate some of the tradeoffs involved.  These experiments use the corpus of 
multispectral and hyperspectral images described in annex A.  To avoid a combinatorial 
explosion in the number of experiments to be performed, in each experiment, one or more 
interrelated settings are varied while the remaining settings are fixed; in each case the fixed 
settings are set to the values indicated in the tables of annex C. 

For a given source image and choice of compression settings, compression performance is 
determined by the compressed data rate achieved, measured in bits/sample, which is defined 
as the number of bits used in the compressed representation of the image divided by the 
number of samples in the image, NX · NY · NZ.  Lower values of compressed data rate indicate 
better compression performance. 

4.2 PREDICTOR 

4.2.1 PREDICTION MODE AND LOCAL SUM TYPE 

The Recommended Standard defines two different prediction modes (full and reduced) and 
two different local sum types (column- and neighbor-oriented) so that the same prediction 
framework can be used to provide effective prediction for image data from different types of 
imagers. 

Specifically, the use of column-oriented local sums and reduced mode is intended to provide 
more effective compression for images that exhibit significant streaking artifacts parallel to 
the y direction2 (reference [18]).  Such streaking-artifacts are often evident in raw images 
from pushbroom imagers. 

Pushbroom imagers use a two-dimensional detector array to acquire data in spatial-spectral 
slices.  Thus each detector element corresponds to a specific spectral band and cross-track 
position.  Because the characteristics of detector elements generally vary somewhat from 
element to element, cross-track adjacent samples in a given spectral band will not be as 
similar as they would be in an instrument that uses the same detector for all samples in a 
given spectral band (e.g., in a whiskbroom instrument).  On the other hand, along-track 
adjacent samples in the same band will tend to be very similar.  As an example, figure 4-1 
shows the mean Digital Number (DN) value of each detector element of the Moon 
Mineralogy Mapper (M3) hyperspectral imager, averaged over several imaging frames.  

                                                 
2 The corpus includes images from the MODIS instrument, which is in fact a ‘whisk-push’ imager that exhibits 
streaking artifacts parallel to the cross-track direction.  Thus, following the recommendation in NOTE 1 of 
subsection 3.2.1 of reference [1], in experiments each band of MODIS images is transposed prior to 
compression, so that the predominant streaks appear in the y direction. 
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Some detector elements tend to produce noticeably larger DN values than their neighbors, 
which produces streaking artifacts parallel to the along-track direction, as evident in the 
false-color image shown in figure 4-2. 

cross-track position

spectral channel

color scale
0

4095

 

Figure 4-1: Mean DN Value of M3 Detector Array, Using Color Scale at Left, 
Averaged over 7000 Imaging Frames 

cross-track

along-track

 

Figure 4-2: False-Color Image Derived from Spectral Channels 200, 201, 202 from a 
Portion of an M3 Image 

For images without such artifacts, such as calibrated images or imagery from whiskbroom 
instruments, compression effectiveness is generally improved by using neighbor-oriented 
local sums.  Similarly, the use of a pre-processing stage to reduce the severity of streaking 
artifacts, in combination with neighbor-oriented local sums, may provide more effective 
compression than obtained on the original image under either choice of local sum (see 5.5). 
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Figure 4-3 shows compressed data rate as a function of the number of prediction bands, P, 
for six different imagers under all four combinations of prediction mode and local sum type. 
The relative performance of these four choices generally follows what one would expect 
based on the presence or absence of streaking artifacts in the input image. On the CRISM 
FRT, Hyperion raw, and MODIS night images, which exhibit streaking artifacts ranging 
from moderate to severe, column-oriented local sums give the best performance, and in the 
case of CRISM FRT images, the use of reduced mode provides a noticeable improvement 
over full mode. On the AIRS, AVIRIS, and LANDSAT images, which do not exhibit 
streaking artifacts, neighbor-oriented local sums outperform column-oriented local sums and 
the choice of full or reduced mode has a relatively small impact on performance. 

 
neighbor+full

column+full

neighbor+reduced

column+reduced  

Figure 4-3: Compressed Bit Rate for Different Choices of Prediction Mode and Local 
Sum Type 

NOTE – Results show averages over all sample images of a given type. 

For a given value of P, the use of full prediction mode requires three additional components 
in the weight vector compared to reduced mode.  Thus slower adaptation of this longer 
weight vector would be expected, and so for a given image it could be the case that full 
prediction mode provides a benefit over reduced mode, but only after processing a sufficient 
number of samples.  However, for the images and compression settings used in these 
experiments, it appears that this effect is typically not significant. 
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4.2.2 NUMBER OF BANDS FOR PREDICTION 

Figure 4-4 shows the compressed data rate for different imagers as a function of the number of 
previous bands used in prediction, P.  As might be expected, setting P=0 (i.e., not using any 
previous bands for prediction) yields the worst results, often by a dramatic amount. However, 
diminishing marginal returns are generally observed as P increases; the bit rate curve tends to 
flatten, or in the case of AVIRIS and IASI, visibly increases.  For the images in the corpus, 
evidently there is not much motivation to use values of P near the maximum allowed, 15. 
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Figure 4-4:  Average Compressed Bit Rate Performance as a Function of P 

4.2.3 WEIGHT ADAPTATION PARAMETERS 

Compression parameters νmin, νmax, and tinc affect the rate at which the predictor adapts to the 
image.  Figure 4-5 shows compressed data rate as a function of νmax when νmin=−6 and 
tinc = 27 and figure 4-6 shows the rate for several different combinations of tinc and νmin.    It is 
observed that compression effectiveness can suffer significantly when νmax is too small.  As 
νmax increases, compression performance improves up to a point, then worsens, but to a much 
smaller degree. 
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Figure 4-5: Average Compressed Data Rate as a Function of νmax When νmin=-6 and 
tinc=27 
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Figure 4-6: Average Compressed Data Rate for Different Choices of Parameters 
That Affect the Adaptation of the Predictor to the Image 

For the images shown here, νmax is the most important weight adaptation parameter, and the 
values of tinc and νmin have little impact except for the AIRS image.   Given the small spatial 
size of this image (90×135), the combination of a large value of tinc and a large difference 
νmax − νmin ensures that the weight update scaling exponent does not reach its final value until 
near the end of the image. 
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4.2.4 WEIGHT RESOLUTION 

The weight resolution parameter Ω determines the resolution with which weight values are 
represented.  Thus increasing the value of Ω can provide more accurate prediction resulting 
in more effective compression in return for higher implementation complexity. 
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Figure 4-7:  Average Bit Rate as a Function of Weight Resolution Ω Using νmax=3 

Figure 4-7 shows the average compressed data rate as a function of weight resolution for 
several of the imaging instruments in the corpus.  Using values of Ω near the minimum 
allowed can significantly hurt compression effectiveness.  Beyond a certain point, however, 
increasing Ω may have little or no impact on compressed bit rate.  In particular, in the weight 
update procedure, equation (34) of reference [1], the amount by which a weight value is 
incremented is 

1
2

u ⋅sgn+ e z (t)[ ] ⋅ 2−ρ (t ) +1( )⎢
⎣⎢

⎥
⎦⎥

= u ⋅sgn+ e z (t)[ ] ⋅ 2−ρ (t )−1 + 1
2

⎢
⎣⎢

⎥
⎦⎥
 

where u is some integer local difference value.  Since sgn+[ez(t)] = ±1, once the weight 
update scaling exponent ρ(t) reaches a final (maximum) value of νmax + D − Ω, each weight 
increment is of the form 

max 1 12
2

Du νΩ− − −⎢ ⎥± ⋅ +⎢ ⎥⎣ ⎦
. 

(19)

(20)
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If Ω ≥ νmax + D + 2 then this weight increment is always a multiple of 2, and thus, in effect, 
the least significant bit of the weight value does not change with each update; i.e., the 
available weight resolution is not being fully used.  Consequently, a reasonable rule-of-
thumb is that using a weight resolution value larger than 

Ω* = νmax + D + 1 

is unlikely to improve compression effectiveness. 

4.2.5 REGISTER SIZE 

The main prediction calculation, equation (29) of reference [1], is defined to take into account 
the size of the register used to perform this calculation via the register size parameter R.  If an 
implementation uses a sufficiently small register, then overflow may occur during prediction.  
When such an overflow occurs, the magnitude of the resulting prediction error is likely to be 
very large, and so compression effectiveness will suffer somewhat.  Thus using a larger 
register in an implementation (that is, increasing the value of R) increases compression 
effectiveness at the expense of increased implementation complexity. 

Even when an overflow occurs, compression will still be lossless because the decompressor 
performs the same prediction calculation, taking into account the register size R and thus 
duplicating any overflow that occurs in the compressor.  Furthermore, both entropy coding 
approaches mitigate to some degree the extent to which poor prediction can lead to high bit rates. 

One can bound the maximum value of register size R needed to ensure that overflow is 
mathematically impossible given the values of the weight resolution Ω, image bit depth D, 
number of bands for prediction P, and choice of full or reduced prediction mode. 

For a given value of register size R, an overflow occurs when the quantity 

d̂z (t)+ 2Ω σ z (t)− 4smid( )  

cannot be represented as a signed R-bit quantity.  Applying the bounds from table 3-1 in 3.2.5 to 
each term in the above expression, the range of possible values for this quantity is bounded by 

−2Ω+1 2D −1( )(8P +κ )+1( ), 2Ω+1 2D −1( )(8P +κ )−1( )⎡
⎣

⎤
⎦ 

where the constant κ is 

κ =
1, reduced mode

19, full mode

⎧
⎨
⎪

⎩⎪
. 

A word size, in bits, sufficient to represent all values in this range is 

R* = Ω+ 2 + log2 2D −1( )(8P +κ )+1( )⎡
⎢

⎤
⎥ . 

(21)

(22)

(23)

(24)

(25)
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Thus if the register size R satisfies R ≥ R*, then overflow cannot occur in the prediction 
calculation.  Table 4-1 tabulates the quantity R* at maximum weight resolution, Ω = 19.  The 
table indicates that a 45-bit register is sufficient to guarantee that overflow will not occur in 
prediction for all possible choices of compression settings.  The Recommended Standard 
requires R ≥ 32 (see reference [1]), and so for some combinations of D, P, and Ω, overflow is 
impossible for any compliant implementation. 

Table 4-1: Values of R*, the Register Size, in Bits, Sufficient to Ensure That Overflow 
Is Not Possible in the Prediction Calculation under Reduced Mode (Left) 
and Full Mode (Right) at the Maximum Value of Weight Resolution, Ω=19 

23 26 27 28 28 28 29 29 29 29 29 30 30 30 30 30

24 27 28 29 29 30 30 30 30 30 31 31 31 31 31 31

25 29 29 30 30 31 31 31 31 32 32 32 32 32 32 32

26 30 31 31 31 32 32 32 32 33 33 33 33 33 33 33

27 31 32 32 33 33 33 33 33 34 34 34 34 34 34 34

28 32 33 33 34 34 34 34 35 35 35 35 35 35 35 35

29 33 34 34 35 35 35 35 36 36 36 36 36 36 36 36

30 34 35 35 36 36 36 36 37 37 37 37 37 37 37 37

31 35 36 36 37 37 37 37 38 38 38 38 38 38 38 38

32 36 37 37 38 38 38 38 39 39 39 39 39 39 39 39

33 37 38 38 39 39 39 39 40 40 40 40 40 40 40 40

34 38 39 39 40 40 40 40 41 41 41 41 41 41 41 41

35 39 40 40 41 41 41 41 42 42 42 42 42 42 42 42

36 40 41 41 42 42 42 42 43 43 43 43 43 43 43 43

37 41 42 42 43 43 43 43 44 44 44 44 44 44 44 44
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Even when overflow is mathematically possible, it may be very rare for real images.  For the 
majority of the images in the corpus, the increase in compressed data rate due to register 
overflows is less than one percent (using P=3 and all other default settings) even when the 
register size parameter R is set to the minimum allowed value.  But for some images, the 
increased bit rate due to overflows can be significant when the register size is sufficiently 
small.  Figure 4-8 shows compressed bit rate as a function of register size when R varies 
from the minimum value allowed by the standard, max{32, D + Ω+ 2}, up to R*. 
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Figure 4-8: Compressed Bit Rate (Left) and Percentage Increase in Rate (Right) as a 
Function of Register Size R, Averaged over All Images of a Given Type 
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4.2.6 CUSTOM WEIGHT INITIALIZATION 

The custom weight initialization option allows a user to select initial weight vectors that 
might provide more effective compression than the default values for a given input image.  
When this option is used, the user selects the value of the weight initialization resolution, Q, 
and the user specifies the first Q bits of each initial weight value via the weight initialization 
table, { } z

1
N

z z=Λ .  The weight initialization table may be encoded in the header, or may be 
omitted when it is known in advance to the decompressor, which might arise, e.g., if the 
same initial weight vectors are used throughout a mission phase. 

Custom weight initialization may provide improved compression performance, for example, 
when training data are available that would allow the development of a set of initial weight 
vectors specifically tuned to the imaging instrument. Alternatively, custom weights might be 
selected based on a recently compressed image.  For example, for a pushbroom or 
whiskbroom hyperspectral imager one might naturally partition the imager output along the 
y-axis to split a large image into several smaller images that can be independently 
decompressed, thus providing some robustness to loss of compressed data on the 
communications channel.  In this case, one could set the set of initial weight vectors for an 
image to be equal to quantized versions of the final weight vectors for the preceding image. 

An experiment was performed to illustrate the improvement provided by employing a custom 
weight initialization. In the experiment there are two images: a training image and a test 
image. Both images are in fact continuous pieces of a larger image, with the training image 
immediately preceding the test image along the y-axis, and both entirely covering the larger 
image along the x- and z-axes (see figure 4-9). 
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Figure 4-9: Training and Test Images Employed to Assess the Effects of Custom 
Weight Initialization 

The experiment is as follows. First, the training image is compressed without using custom 
weights. The resulting compressed training image is discarded, but the values of the weight 
vectors at the end of the compression process are preserved. Then, the test image is 
compressed twice; once without using custom weights, and once using custom weights 
obtained from the aforementioned preserved weight vectors of the previous compression. 
This allows measurement of the effects of both weight initialization options. In the 
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experiment, to cover different values of the weight vectors, these two steps are repeated for 
multiple training and test images, which are extracted at multiple locations of a larger image. 
Averaged results are reported. 

This experiment is repeated multiple times for varying test image heights, to account for the 
diminishing impact of custom weight initialization as the height of the test image increases 
(in all cases the height of the training image is 16). Similarly, it is also repeated multiple 
times to assess the impact of the custom weight vectors resolution. 

In all cases νmax = 3 and tinc = 26 are used as initial settings, and the values of νmin and Ω are 
varied when custom weights are used, but kept fixed at νmin = −1 and Ω = min{νmax + D + 1,19} 
when default weights are used. The extra overhead needed to encode custom weights (via the 
weight initialization table) is included in bit rate calculations. 

Figure 4-10 shows the improvement obtained by using custom weight initialization as a 
function of image height in this experiment when νmin = 3 and the weight initialization 
resolution is fixed at Q = Ω / 2⎢⎣ ⎥⎦ . Multiple heights are simulated for the bottom image by 
compressing only as many frames of the image as needed to reach the required height, and 
ignoring the remaining ones (those on the bottom of the image). Figure 4-11 shows the 
average improvement due to custom weights as a function of Q when νmin = 3 at image 
heights of 16 and 32. Figure 4-12 shows the average improvement as a function of νmin when 
Q = Ω / 2⎢⎣ ⎥⎦  at image heights of 16 and 32. 
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Figure 4-10: Average Reduction in Compressed Data Rate Obtained by Using 
Custom Weight Initialization (with νmin = 3, Q = Ω / 2⎢⎣ ⎥⎦), Compared to 
Default Weight Initialization, as a Function of Image Height 

NOTE – Larger values are better. 
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Figure 4-11: Average Reduction in Compressed Data Rate Obtained by Using 
Custom Weight Initialization (with νmin = 3, for Image Heights 16 and 
32), Compared to Default Weight Initialization, as a Function of Weight 
Initialization Resolution, Q 

NOTE – Larger values are better. 
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Figure 4-12: Average Reduction in Compressed Data Rate Obtained by Using Custom 
Weight Initialization (with / 2Q = Ω⎢ ⎥⎣ ⎦ , for Image Heights 16 and 32), 
Compared to Default Weight Initialization, as a Function of νmin 

NOTE – Larger values are better. 

The results indicate that when initial weight vectors are well chosen, the use of custom 
weight initialization can provide a modest improvement in compression effectiveness, 
especially for small images. As would be expected, this benefit diminishes for larger images 
because the weights continue to adapt to the image data during compression.  For very small 
images (such those consisting of less than five frames), the cost of signaling a custom weight 
initialization may surpass the improved performance it provides, as the additional header 
information due to custom weights is averaged over a small number of pixels. The results of 
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this experiment are relatively insensitive to the choice of weight initialization resolution, Q, 
provided that the smallest allowed values are avoided.  Larger values of νmin may be 
necessary to realize the benefit of well-chosen custom weight vectors. 

The improved effectiveness for small images provided by the use of custom weight 
initialization does not imply that in general a higher compression performance is obtained for 
small images in relation to large images; in fact, the opposite should be expected. 

4.3 ENTROPY CODER 

4.3.1 INTRODUCTION 

Subsections 4.3.2 and 4.3.3 discuss some of the key parameters associated with the sample-
adaptive and block-adaptive encoding approaches respectively. Subsection 4.3.4 discusses 
some of the differences between these two encoders. 

4.3.2 SAMPLE-ADAPTIVE ENTROPY CODER SETTINGS 

4.3.2.1 Initialization and Adaptivity 

The sample-adaptive entropy coder state is initialized via the initial count exponent γ0, which 
controls the initial counter value, and the accumulator initialization table ′kz{ }z=0

NZ−1, which 
controls the initial value of the accumulator Σz in each band z.  For simplicity, the discussion 
here considers only the case where an accumulator initialization constant K is used, i.e., 

′kz = K  for all z. 

The rescaling counter size parameter, γ*, controls the interval with which the counter and 
accumulator are rescaled.  A smaller value of γ* yields faster adaptation to changing source 
statistics, but potentially worse steady-state performance.  Figure 4-13 shows the relative 
change in compressed bit rate as a function of γ* for several different combinations of 
accumulator initialization constant K and initial count exponent γ0.  The figure suggests that 
performance is generally improved by avoiding the largest allowed values of K.  Using a 
smaller value of K not only tends to improve compression effectiveness, but also seems 
generally to make compression performance fairly insensitive to the choice of γ0 and γ*. 
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4 5 6 7 8 9
0.0

0.2

0.4

0.6

0.8

1.0

rescaling counter size, γ*

co
m

pr
es

se
d

da
ta

ra
te

in
cr

ea
se

 (%
)

 

0 =1 , K = 0

0 =1, K = (D 2) / 2

0 =1 , K = D 2

0 = 4 , K = 0

0 = 4 , K = (D 2) / 2

0 = 4 , K = D 2

0 = 8 , K = 0

0 = 8 , K = (D 2) / 2

0 = 8 , K = D 2

γ

γ

γ

γ

γ

γ

γ

γ

γ

 

Figure 4-13: Change in Compressed Data Rate (I.e., Relative Increase Compared to 
the Data Rate Obtained by the Optimum Combination of γ0, γ

*, and K) 
as a Function of Rescaling Counter Size γ*, for Different Combinations 
of Accumulator Initialization Constant K and Initial Count Exponent γ0 

NOTE – Smaller is better. 

It is observed in figure 4-13 that the values of γ0, γ
*, and K have a more dramatic impact on 

compression effectiveness of IASI and AIRS images than the others.  Because the initial 
count exponent γ0 and the accumulator initialization constant K affect only the initialization 
of entropy coder state variables for each spectral band, their effect on compressed bit rate 
quickly diminishes for an input image whose spatial size (i.e., the product NXNY) is large; 
IASI and AIRS images have small spatial size and so the values used for γ0 and K have more 
of an impact on compression effectiveness than for other images in the corpus.  To 
demonstrate that this effect is due to spatial size, rather than some other characteristic of the 
image data, figure 4-14 shows the relative change in compressed bit rate from reducing the 
spatial size of AVIRIS 16-bit raw, M3 target, and Hyperion raw images by partitioning each 
image along the y axis into smaller images, each with height NY = 16, except possibly the last 
image.  For these smaller images, compression effectiveness becomes more sensitive to the 
choice of K, and to a lesser degree, the choice of γ0.  Also, on smaller images, the use of a 
smaller value of γ* causes the impact of the values of γ0 and K to diminish more rapidly and 
offer improved performance, particularly when a poor choice of K is used. 
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Figure 4-14: Change in Compressed Data Rate as a Function of Rescaling Counter 
Size γ*, for Different Combinations of Accumulator Initialization 
Constant K and Initial Count Exponent γ0, When an Image Is 
Partitioned into Smaller 16-Frame Images That Are Each 
Independently Compressed 

4.3.2.2 Unary Length Limit 

As described in 3.3.4, the sample-adaptive encoder uses an adaptively updated estimate of 
the mean value of the mapped prediction residual δ in the current spectral band to select from 
a family of variable-length binary codes to encode each sample.  The codes used are length-
limited GPO2 codes. 

The family of codes is indexed by integer parameter k (written as kz(t) in the Recommended 
Standard to indicate that the value of the parameter varies with the sample being encoded).  
The code used to encode a sample, i.e., the value of k, is selected based on an estimate of the 
mean value of the mapped prediction residual in the current spectral band, as described in 
3.3.4.  Smaller mapped prediction residual values (i.e., more accurate predictions) are 
encoded using shorter codewords. The value of k controls this tradeoff; smaller values of k 
correspond to increasing confidence in prediction accuracy, using fewer bits to encode 
smaller values of δ, in return for a higher cost to encode larger values of δ.  Figure 4-15 
illustrates the codeword lengths of the family of codes available when the input image has 
dynamic range D=12 bits and the unary length limit is Umax = 20. 
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Figure 4-15: Codeword Lengths for the Set of Length-Limited GPO2 Codes Used by 
the Sample-Adaptive Entropy Coder When Image Dynamic Range Is 
D=12 Bits and the Unary Length Limit Is Umax = 20 

The maximum codeword length is Umax + D bits.  Decreasing the value of the unary length 
limit reduces the cost to encode poorly predicted samples (i.e., larger values of mapped 
prediction residual), in return for less efficient coding of some smaller values of δ, as can be 
observed in figure 4-16, which illustrates the codeword length function for the k=3 code, at 
minimum and maximum values of Umax, when the input image has dynamic range D=12 bits. 
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Figure 4-16: Codeword Lengths for k=3 Length-Limited GPO2 Codes Used by the 
Sample-Adaptive Entropy Coder at Minimum and Maximum Allowed 
Values of the Unary Length Limit Umax When Image Dynamic Range Is 
D=12 Bits 
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Because the sample-adaptive encoder adaptively selects the code (i.e., the value of k) based 
on the prediction accuracy of recently encoded samples in the spectral band, for many images 
the codeword length limit is reached for only a small fraction of samples, and thus coding 
performance is not very sensitive to the value of Umax.  This is evidently true for images in 
the corpus; figure 4-17 shows that the increase in bit rate produced by using a suboptimal 
value of Umax is quite small even when the minimum allowed register size is used (which 
increases the likelihood of register overflows, and thus outlier samples). 
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Figure 4-17: Impact of Changing the Unary Length Limit on Compressed Data Rate 
Shown for Maximum and Minimum Allowed Register Size R (Left and 
Right Respectively) 

4.3.3 BLOCK-ADAPTIVE ENTROPY CODER SETTINGS 

4.3.3.1 Overview 

The block-adaptive encoding method partitions the mapped prediction residuals into blocks 
and selects the coding method for each block based on the block’s contents.  When this 
coding method is used, the sample encoding order and block size are the entropy coding 
settings that have the biggest impact on compressed data rate. 

4.3.3.2 Sample Encoding Order 

Under the block-adaptive encoding approach, the set of mapped residual values that make up 
a block depends on the sample encoding order.  For example, under BSQ encoding order, 
most blocks will be made up of samples from the same band, while under BIP order, samples 
in a block will generally come from several different bands.  Consequently, under the block-
adaptive entropy coding option, the method used to encode a given sample depends on the 
other samples in the block, which in turn depends on the encoding order.  Thus compressed 
data rate depends on the sample encoding order when the block-adaptive encoder is used, but 
not when the sample-adaptive encoder is used. 
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Figure 4-18 shows the compressed bit rates achieved for different types of images in the 
corpus when BSQ, BIL, and BIP encoding orders are used with block-adaptive coding, along 
with results for sample-adaptive coding. 
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Figure 4-18: Average Compressed Data Rate for Images in the Corpus When the 
Sample-Adaptive Entropy Coder Is Used, and When the Block-
Adaptive Encoder Is Used Under BSQ, BIL, and BIP Sample Orders 
for Block Size J=64 

A few trends are observed when block-adaptive coding is used: 

– BIP encoding order typically does not perform as well as BIL or BSQ.  In cases 
where BIP performs better, it is generally not by much.  (BIL and BSQ tend to 
produce blocks of samples that are all from the same band, whereas BIP mixes 
samples from different bands in each block, and so this result is to be expected.) 

– BIL and BSQ generally give nearly the same performance.  When there is a 
difference, BSQ is generally better, but only by a small amount. 

When a block of mapped prediction residuals is all zeros (which arises when there is no 
prediction error for any sample in the block), the block-adaptive encoder’s ‘zero block’ 
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coding method is used (see subsection 3.4.3 of reference [13]).  The data rate to encode such 
an all-zeros block depends on the number of consecutive all-zeros blocks, but is always less 
than one bit per sample.  By contrast, the sample-adaptive encoder always uses at least one 
bit to encode each sample. 

Sample-adaptive coding usually gives a small compression advantage over block-adaptive 
coding regardless of the sample encoding order.  But there are counterexamples where block-
adaptive coding (under BSQ or BIL order) outperforms sample-adaptive coding, and this is 
apparently due to the high compression effectiveness of the zero block coding. 

– In the SFSI rad image, 20 of the 240 bands are all zeros.  About 8 percent of the blocks 
of mapped predictions residuals are all zeros, and can thus take advantage of the zero-
block coding options available under the block-adaptive coding method.  The net result 
is about 4 percent lower compressed bit rate than sample-adaptive coding. 

– In the MODIS day images, in the first 11 (of 14 total) bands, nearly 60 percent of the 
samples are saturated, i.e., bands have large regions of constant-valued samples, 
leading to blocks of all-zeros mapped prediction residuals that are encoded at very 
low bit rate under the block-adaptive coding method. 

When the image width is a multiple of the block size J, both BIL and BSQ encoding orders 
produce the same set of blocks.  However, the order of these blocks is not the same, and so 
the compressed bit rate may still be different because all-zero blocks may be more likely to 
be adjacent under BSQ order than BIL order. 

4.3.3.3 Block Size 

Under the block-adaptive coding approach, mapped prediction residuals are partitioned into 
blocks of J samples, and a coding method is independently selected for each such block.  A 
few overhead bits are used to indicate the coding method selected for each block, and the bit 
rate cost of this overhead increases with smaller values of J.  Specifically, for the allowed 
block size values of 8, 16, 32, and 64, the bit rate due to overhead is 0.5, 0.25, 0.125, and 
0.0625 bits/sample, respectively, for blocks that are not all zeros when D ≥ 9. 

In practice, using a smaller block size generally results in higher compressed data rate; 
however, the increase is less than the bound obtained from the difference in bit rate due to 
overhead, because the use of a smaller value of J allows the entropy coder to adapt more 
rapidly to changing source statistics.  In fact, one can see from figure 4-19 that the largest 
value of block size is not always optimum.  In particular, for the MODIS day images, the use 
of the smallest block size provides the most effective compression, presumably because it 
increases the fraction of blocks that are all zeros and are thus economically encoded using 
the zero-block coding method. 
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Figure 4-19: Average Increase in Compressed Bit Rate, Compared to the Use of 
Block Size J=64, under Block-Adaptive Coding Using BSQ Sample 
Order 

NOTE – The gray region shows the upper bound on this increase derived from the cost of 
overhead bits for blocks that are not encoded using the zero-block option. 

4.3.4 DIFFERENCES BETWEEN ENTROPY CODING OPTIONS 

Comparing compression effectiveness of the two encoders, based on results above using 
images in the corpus, it is noted that: 

– Block-adaptive coding provides more effective compression of long sequences of 
perfectly predicted samples. In practice, this tends to arise for image bands having 
large contiguous regions of saturated or all-zeros samples, and when BIL or BSQ 
encoding order is used so that these samples tend to be adjacent in the encoding 
order. In this case, the benefit of block-adaptive coding can be substantial. 

– Under BIP encoding order, sample-adaptive encoding nearly always provides more 
effective compression, sometimes by a substantial amount. 

– Under BIL and BSQ encoding orders, sample-adaptive encoding typically provides 
slightly more effective compression than block-adaptive coding for hyperspectral 
images. For multispectral images, results are more mixed but generally favor block-
adaptive encoding. 

Differences in implementation between the two entropy coding options are discussed in 5.4.3.4. 
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5 IMPLEMENTATION ISSUES 

5.1 INTRODUCTION 

This section discusses some practical issues that may be of interest to implementers of the 
Recommended Standard.  Subsection 5.2 notes a useful property of the compressor that 
makes it easy for a compressor that handles unsigned input images to be used for signed 
input images, and vice versa.  Subsection 5.3 discusses the impact of bit errors and data loss 
on the reconstructed image and illustrates how partitioning an image into smaller 
independently decompressible images can help to limit the impact of these events.  
Subsection 5.4 discusses hardware implementation of the Recommended Standard.  
Subsection 5.5 briefly examines the impact on compression effectiveness of nonuniformities 
in the detector and considers the possibility of improving compression performance by pre-
processing the image to reduce artifacts arising from these nonuniformities. 

5.2 SIGNED AND UNSIGNED IMAGES 

The compressor has the following property: 

A denotes an unsigned input image with bit depth D.  A' denotes a signed image produced 
by subtracting smid = 2D−1 from every sample of A.  Given a fixed set of compression 
settings, the compressed bitstreams for A and A' are identical, except for the one-bit 
header field ‘Sample Type’ in the Image Metadata portion of the header, which indicates 
whether the image is signed or unsigned. 

This property can simplify implementation, because a compressor that supports only signed 
images can easily be extended to also support unsigned images, and vice-versa. 

5.3 DEALING WITH DATA LOSS ON SPACE COMMUNICATIONS CHANNELS 

5.3.1 THE IMPACT OF BIT ERRORS AND DATA LOSS 

Data transmitted over space communications channels are vulnerable to corruption in the 
form of data loss and/or bit errors.  While such events may occur with low probability, even a 
single bit error in a compressed image generally results in corruption of reconstructed 
samples extending to the end of the image, because reconstruction of future samples depends 
on accurate reconstruction of past samples.  As an example, figure 5-1 shows a false-color 
image derived from reconstructed bands of a hyperspectral image following a single bit error 
occurring near the midpoint of the compressed image data. 
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Figure 5-1:  Example of the Impact of a Bit Error in the Compressed Image 

NOTE – This false-color image was derived from three bands of a reconstructed image 
following a single bit error in the compressed image, which was encoded in BIP 
order. 

The fact that reconstructed image data are corrupted is obvious to a human observer of 
figure 5-1, and this is nearly always the case unless the bit error occurs very close to the end 
of the image.  Moreover, it is straightforward to produce a decompressor that will (with very 
high probability) automatically detect that a bit error has occurred.  The decompressor simply 
needs to check that it has reconstructed NX · NY · NZ image samples and exhausted the 
compressed image data at the same time.  In the example of figure 5-1, the decompressor 
exhausted the compressed image data before reconstructing enough samples to complete the 
image; the missing sample values are shown in gray at the bottom of the image. 

All of the intact compressed data preceding a data loss or error event can be used to recover 
some portion of the image; the sample encoding order affects what data are recovered.  In the 
example of figure 5-1, samples were encoded in BIP order and frames preceding the bit error 
(i.e., the upper spatial portion of the image) were recovered.  If BSQ encoding order had 
been used, then all samples in some number of initial spectral bands would have been 
recovered while later spectral bands would have been corrupted or missing. 

To protect against the dramatic impact that a bit error can have on reconstructed imagery, the 
systems engineer should set an appropriate error rate requirement for the communications 
link.  If a mission requires compressed images to be recovered with some given probability, a 
corresponding error rate requirement can be derived for the transmission of packets 
(reference [4]), encapsulation packets (reference [5]), files (reference [6]), or transfer frames 
(references [7] and [19]).  This may lead to the selection of appropriate channel codes 
(references [20], [21], [43], and [44]) capable of offering the required protection of these data 
structures.  (If uncoded transmission is desired, the image recovery probability requirement 
may be used to derive a bit error rate requirement for the channel.) 
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5.3.2 PARTITIONING AN IMAGE INTO SMALLER SEGMENTS 

To limit the effects of data corruption on reconstructed imagery, one can partition a large image 
into smaller images that can be independently decompressed, as illustrated in figure 5-2.  In this 
discussion, each of these smaller images is referred to as a segment of the larger image. It is 
assumed that communications protocols employed by the spacecraft incorporate mechanisms 
(e.g., a packetization structure) that allow the beginning of the next image segment to be 
identified following a data corruption event, and thus the impact of data corruption is limited to 
the affected image segment.  The Recommended Standard does not directly address such image 
segmentation; the term ‘segment’ is not part of the standard.  In the view of the Recommended 
Standard, each such image segment is simply a separate image. 

Original
Image

Segmented
Image

Independently
Decompressible

Segments

Recovered
Segmented

Image

Recovered
Original
Image  

Figure 5-2:  Overview of Image Segmentation 

In figure 5-2 and in the example below, image segments are produced by partitioning a larger 
image along the y-axis.  This is a natural approach for imagers that produce data in BIP or 
BIL order, but other partitioning approaches could also be used. 

Using smaller segments provides increased robustness to data corruption, but reduces 
compression effectiveness because 

a) each compressed segment includes the overhead cost of an image header; 

b) samples at segment boundaries have fewer neighbors for use in prediction; and 

c) the predictor and entropy coder take some time to adapt, and so samples near the 
beginning of a segment will, on average, not be compressed as effectively as later 
samples. 

To mitigate this compression performance reduction due to segmentation, the Recommended 
Standard allows information about the state of the encoder at the end of one segment to be 
optionally included in the header of the next segment to control the initialization of 
compressor state variables, specifically via custom weight initialization (see 4.2.6) and the 
accumulator initialization table.  Thus the impact of c) is reduced at the expense of a slight 
increase in a). 

As an example illustrating that compression effectiveness tends to increase by using larger 
segments and by using custom weight initialization, compressed data rate is measured for 
two of the test images after partitioning into smaller image segments of a given height, and 



LOSSLESS MULTISPECTRAL AND HYPERSPECTRAL IMAGE COMPRESSION 

CCSDS 120.2-G-1 Page 5-4 December 2015 

using weight resolution Ω = min{D+4,19}.  For the first segment, default weight 
initialization is used and νmin = −1.  For all subsequent segments custom weight initialization 
is used with νmin = 3, Q = Ω / 2⎢⎣ ⎥⎦, and with initial weights set to equal quantized versions of 
the final weights obtained from the preceding segment.  This approach is compared to the use 
of the default settings indicated in annex C applied to each segment.  Figure 5-3 shows the 
compressed data rate obtained for these two approaches.  It is observed from the figure that 
the impact of segment height on compression effectiveness varies depending on the image, 
and that the use of custom weight initialization tends to improve compression performance 
when small image segments are used. 
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Figure 5-3: Compressed Data Rate as a Function of Segment Height for Test Images 
‘crism_frt00013e49_07_sc166’ and ‘aviris_sc10_raw’ 

Users should be judicious in partitioning an image into smaller and smaller portions (leading 
to decreasing compression effectiveness), particularly when data loss or corruption events are 
very rare. 

5.4 HARDWARE IMPLEMENTATION 

5.4.1 INTRODUCTION 

The Recommended Standard describes the compression operations in a way that facilitates 
relatively low complexity hardware implementations on FPGAs or ASICs. The algorithm 
works with only integer arithmetic, and all mathematical operations can be implemented with 
fixed shifters, barrel shifters, multipliers, and adders. No divisions are necessary. 

5.4.2 BACKGROUND 

Aranki et al. have implemented the FL compressor on which the present Recommended 
Standard is based in Xilinx Virtex-4 (references [22] and [23]) and Virtex-5 FPGAs 
(reference [24]). The original FL algorithm uses an adaptive coding approach using GPO2 
codes, which has been formalized in the Recommended Standard as the sample-adaptive 
entropy coder option. The compression IP compresses samples in BIP order and runs at a 
clock speed of 40 MHz. One sample is compressed each clock cycle, resulting in a 
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throughput of 40 Msample/sec. The implementation has a rather low device utilization of the 
Xilinx Virtex-5 XC5VSX50T (38 percent of Slice LUTs). 

A low-complexity implementation of the Recommended Standard was implemented by 
Santos et al. (reference [25]) with the sample-adaptive encoding option only. Synthesis 
results were obtained on a space-qualified RTAX1000S and a Virtex-5 XC5VFX130. The 
compression IP has an occupancy of 34 percent of the RTAX1000S with a maximum 
frequency of 43 MHz, resulting in a throughput of 4 MSamples/sec. When synthesized in a 
Virtex-5 XC5VFX130, it results in very low device utilization (2 percent of Slice LUTs). 
The maximum frequency of this implementation is 134 MHz, which yields a throughput of 
11.30 MSamples/sec for a configuration with P = 3 and BSQ compression order. 

5.4.3 MAIN CONSIDERATIONS 

5.4.3.1 General 

When developing a hardware implementation of the Recommended Standard it is necessary 
to take account of the factors that contribute the most to its complexity. In general, the 
complexity of the mathematical operations in the Recommended Standard is low; therefore 
the following discussion focuses on identifying the main constraints in terms of storage 
requirements and throughput limitations caused by data dependencies. 

General notes are provided here about complexity of prospective hardware implementations 
of the Recommended Standard; the actual storage requirements and throughput limitations 
will depend on the user’s designed compression architecture and target technology. An 
example of a simplified schematic of a possible implementation using sample-adaptive 
coding is shown in figure 5-4, in which the blocks represent the main stages of the 
Recommended Standard. 

5.4.3.2 Local Sum and Local Differences Calculation 

The predictor in the Recommended Standard is causal; i.e., only previously processed 
neighboring samples are needed to compute the local sum and local differences. In order to 
avoid the impact on latency of having to read the necessary neighboring samples, it is 
possible to adequately arrange the previously processed samples temporarily in a storage 
component, such as a RAM memory or a FIFO, as shown in (references [22] and [25]). 
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Figure 5-4: Simplified Schematic of an Implementation of the Recommended 
Standard with Sample-Adaptive Entropy Coding 

5.4.3.3 Computation of the Predicted Central Local Difference 

One of the major design efforts for a hardware implementation of the compressor is the inner 
product calculation needed to compute the predicted central local difference used for 
prediction (equation (30) of reference [1]): 

d̂z (t) = Wz
T (t)Uz (t)  

The main concern related to this inner product is not the number of arithmetic operations 
(multiplications and additions) involved, but the volume of data that has to be available when 
it is calculated. In particular, these data are the local difference and weight vectors. The 
number of elements in each vector increases with P, the user-specified parameter that 
determines the number of preceding spectral bands used for prediction. 

In a hardware implementation, the amount of storage needed for the local difference and 
weight vectors, and the data dependencies that arise, are primarily affected by the order in 
which image samples are processed by the predictor. To illustrate this, requirements for 
storage and data dependencies are compared for the predictor when it processes samples in 
BSQ order and BIP order. 

(26)
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Under BSQ processing order, the following constraints are observed for a hardware 
implementation: 

– Storage: In BSQ order, it is necessary to store the local difference vectors for samples 
in a given band in such a way that they can be used for prediction in the next band. This 
means storing the following set of vectors: Uz(0),...,Uz(t),...,Uz(Ny × Nx −1), which 
makes a total of Ny × Nx × Cz local difference values. 

– Data dependencies: The prediction and weight update operations for a sample sz(t) 
have to be completed before prediction can be performed for the next sample in BSQ 
order, sz(t+1). This is because the updated weight vector Wz(t+1) has to be available 
to calculate ˆ ( 1)zd t + . As a consequence it is not possible to schedule the prediction of 
sample sz(t+1) in parallel with the weight update operations of sample sz(t), which 
may limit achievable throughput. 

Under BIP order the following constraints are observed: 

– Storage: Following prediction of a sample sz(t), only a single element of the local 
difference vector needs to be updated for prediction of the next sample in BIP order, 
sz+1(t). Consequently, it is only necessary to store a local difference vector, with Cz 
elements. However, it is necessary to ensure that, following prediction of sample sz(t), 
the updated weight vector Wz(t+1) is available for the prediction of the next sample in 
the same band sz(t+1). This might imply storing the updated weight vectors in all the 
bands: W0(t),...,Wz(t),...,WNz−1(t). 

– Data dependencies: It is not necessary to complete prediction of a sample sz(t) 
before starting prediction of the next sample in BIP order, sz+1(t). This makes it 
possible to schedule the prediction of sample sz+1(t) in parallel with the weight update 
operation of sample sz(t). 

Estimations of the amount of storage required by a specific hardware architecture is 
recommended to determine whether it is necessary to use additional memory external to the 
FPGA. Nevertheless, users can find solutions to cope with the aforementioned limitations. 
For instance, under BSQ order, it is possible to avoid storing the local differences if instead 
the compressor calculates all the elements of the local difference vector for the prediction of 
each sample. This approach requires the necessary neighbors to be available for the current 
sample to be compressed as well as those located in the P preceding bands, and it also 
involves computing P additional local sums and local differences. This particular solution 
has been adopted for software and hardware implementations described in reference [25]. 
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5.4.3.4 Entropy Coding 

The block-adaptive coding approach requires the evaluation of the different encoding options 
for a complete block of J samples. These evaluations require addition and comparison 
operations. The amount of required storage and hardware complexity does not depend on the 
compression order, but does depend on the number of samples in a block and the number of 
encoding options to be evaluated. 

When encoding a mapped prediction residual using the sample-adaptive coding approach, 
under BSQ order it is required to have one previously processed mapped prediction residual, 
one accumulator, and one counter available. Under BIL or BIP orders, the same elements are 
needed for each band in the hyperspectral cube; i.e., Nz mapped residuals, Nz accumulator, 
and Nz counter values are needed. 

Implementation considerations that might affect the choice between the two entropy coding 
approaches include: 

– When sample-adaptive coding is used, compression effectiveness does not depend on 
sample encoding order. An implementer using the sample-adaptive coder need not be 
concerned with compression effectiveness considerations in selecting the sample 
encoding order. 

– The block-adaptive coding approach leverages an existing standard, and so an 
implementer may be able to take advantage of an existing implementation of the 
block-adaptive coder. 

– The sample-adaptive coding approach does not require the evaluation of multiple 
coding options; this may or may not provide a complexity advantage. 

The operations in the sample-adaptive coding approach can be implemented with adders, 
shifters, and barrel shifters. The block-adaptive approach also performs a multiplication of 
integer variables (multiplication of two mapped prediction residuals is needed to evaluate the 
second-extension option). Depending on the implementation, it might be possible to avoid 
this multiplication, as shown by Yu et al. in reference [26]. 

5.5 DETECTOR NONUNIFORMITY CORRECTION 

As discussed in 4.2.1 (see figure 4-2), nonuniformities in detector arrays can cause streaking 
artifacts in multispectral and hyperspectral images. The use of column-oriented local sums 
and reduced mode can provide improved compression effectiveness for images exhibiting 
such artifacts, but the elimination or reduction of such artifacts prior to compression can 
sometimes yield more effective compression. 

Performing complete radiometric calibration onboard may be impractical, but a simpler 
reversible pre-processing step that reduces the severity of detector nonuniformities might be 
feasible. With such an approach, the pre-processing step may be applied prior to onboard 
compression and removed after on-the-ground decompression, obtaining exactly the same 
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images as if the pre-processing step was not employed. A thorough study of the possible 
approaches is beyond the scope of this discussion; one simple approach is illustrated as an 
example. 

For a pushbroom imager using a separate detector element for each cross-track position (x) 
and spectral band (z), for each such detector element an integer offset value bz,x is defined. 
For each sample sz,y,x in an image, the corresponding offset value is subtracted prior to 
compression; i.e., the image input to the compressor is ′sz,y,x{ }z,y,x

, where for each x, y, z, 

′sz,y,x = sz,y,x − bz,x . 

This method is motivated by the observation that the variations in detector element 
characteristics are an inherent property of the detector, and there may be little change in this 
variation over time. It is assumed that the array of integer offset values {bz,x}z,x

 is known to 
the decompressor so that this offset correction process can be reversed and thus the original 
image can be recovered exactly. 

In practice, calibration data could be used to generate the array of offset values. For 
illustration purposes, a crude alternative approach is to calculate each offset value as 

bz,x = Round mz,x − median mz,x{ }x=0

NX−1⎡
⎣

⎤
⎦

⎡
⎣⎢

⎤
⎦⎥ 

where 

mz,x = 1
NY

sz,y,x
y=0

NY−1

∑ . 

Figures 5-5 and 5-6 show false-color images derived from raw and offset-adjusted versions 
of CRISM and M3 images using the method of equation (28). Figure 5-7 shows a similar 
result for a Hyperion image, using an offset array provided by the mission.3 These 
visualizations are intended to provide some indication of the degree to which an offset 
adjustment can reduce the severity of streaking artifacts. Phenomena such as the artificially 
increased brightness on the right side of figure 5-6 (caused by the prominent dark feature in 
these columns of the image combined with the somewhat simplistic calculation of 
equation (28)) should not cause undue concern because the offset adjustment is reversible 
after decompression. 

                                                 
3 The offset-adjusted version of the Hyperion Cuprite image is the ‘Hyperion Cuprite flatfield’ image included 
in the image corpus described in annex A. 

(27)

(28)

(29)
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Figure 5-5: False Color Images Derived from Bands 200, 300, 400 of Raw (Left) and 
Offset-Adjusted (Right) Versions of CRISM FRT Image 
00009326_07_sc167 

  

Figure 5-6: False Color Images Derived from Bands 50, 150, 200 of Raw (Left) and 
Offset-Adjusted (Right) Versions of M3 Target Image A 

The offset adjustment dramatically decreases streaking artifacts in these three examples. But 
some remaining streaking artifacts are evident in the images of figures 5-5 and 5-6, including 
some that are clearly not well modeled as a constant additive term. 

Figure 5-8 shows the compressed data rates for the raw and offset-corrected images shown in 
figures 5-5–5-7 for all four combinations of prediction mode and local sum type, when all 
other compression settings are assigned to the values indicated in annex C. 
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Figure 5-7: False Color Images Derived from Bands 83, 138, 200 of Raw (Left), and 
Offset-Adjusted (Right) Versions of Hyperion Cuprite Image 
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Figure 5-8: Compressed Data Rates in Bits/Sample for Raw and Offset-Corrected 
Images CRISM FRT 00009326_07_sc167, M3 Target A, and Hyperion 
Cuprite 
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The offset adjustment has no impact on column-oriented local sums after the first frame of 
the image, and consequently it has virtually no impact on compression effectiveness when 
column-oriented local sums are used with reduced mode. This is why, for any given image, 
the pair of purple bars in figure 5-8 have nearly identical height. 

The compressed data rate results for the Hyperion image example demonstrate that, at least 
for some imagers, a noticeable improvement in compression effectiveness can be obtained by 
applying a pre-processing step to reduce streaking artifacts, even by a method as simple as 
the offset adjustment approach used here. 

But pre-processing steps that reduce streaking artifacts are not guaranteed to yield an 
appreciable compression improvement over the simpler alternative of applying column-
oriented local sums and reduced mode to the raw image, when changing values of the x index 
of an image correspond to changing detector elements. For example, on the CRISM image, the 
use of column-oriented local sums and reduced mode on the raw image yielded a compressed 
data rate within a half percent of the best-performing compression choice on the offset-
corrected image, despite the dramatic reduction in streaking artifacts evident in figure 5-5. 

Users considering image pre-processing steps to reduce detector-induced image artifacts for the 
sake of improving compression effectiveness should keep in mind some additional caveats: 

– Some methods of correcting detector nonuniformities are not reversible. Procedures 
that are reversible may require the transmission of side information (such as the offset 
array in the method described above), and the cost to transmit such information 
should be considered when assessing the potential benefits. 

– The offset-adjustment approach described above (as well as other approaches to 
nonuniformity correction) may increase the dynamic range of the image input to the 
compressor, and so the compressor implementation must accommodate this higher 
dynamic range. 

– A nonuniformity correction approach that multiplies sample values by a scaling factor 
larger than one (as is often the case for radiometric calibration procedures) effectively 
increases signal energy and may actually lead to worse compression performance, 
even when it is effective at removing detector-induced image artifacts. 

5.6 BAND RE-ORDERING 

Most multi- and hyperspectral image compression algorithms follow the ‘natural’ band 
ordering; i.e., the different bands are compressed in order of increasing wavelength. The idea 
of band re-ordering (reference [27]) is that this natural ordering is not necessarily optimum in 
terms of compression effectiveness. That is, compression performance might be improved 
simply by re-arranging the order of the spectral bands in an image. 

This raises the problem of finding the band ordering yielding the minimum bit-rate, which is 
intimately related to the compression method and can be rather complex, given the large 
number of possible band orderings. In most cases, the optimal adaptive on-line computation 



LOSSLESS MULTISPECTRAL AND HYPERSPECTRAL IMAGE COMPRESSION 

CCSDS 120.2-G-1 Page 5-13 December 2015 

may not be feasible onboard. Nevertheless, when the optimal ordering can be considered 
sensor-dependent and not image-dependent, a fixed reordering computed off-line can provide 
near-optimal performances (reference [27]). Depending on the compression method, the 
optimum ordering maximizes ‘similarity’ or ‘complementarity’ between pairs of adjacent 
bands according to a suitable metric. A complete overview of similarity measures and band 
reordering techniques is given in reference [28]. 

As far as this lossless compression Recommended Standard is concerned, the following 
remarks are in order. 

– Band re-ordering is not part of the Recommended Standard, in that the Recommended 
Standard does not specify an algorithm to compute an improved ordering of spectral 
bands, nor does it provide any syntax for communicating a reordering of bands for an 
image. However, the standard makes no requirement that bands be arranged in order 
of increasing or decreasing wavelength, and so a band reordering could be applied 
prior to compression.  From the perspective of the standard, an image with re-ordered 
bands is simply a different image to be compressed. 

– In general, the use of band reordering has been shown to provide benefits for this 
lossless compression Recommended Standard (reference [28]) as well as for other 
lossless multispectral and hyperspectral image compressors (reference [29]).  
However, the performance gain is small for some imagers, and the impact of band 
reordering might be small when using more bands for prediction (larger values of P). 

– Finding the optimum band order for a given image is a computationally intensive 
problem.  (See reference [28] for discussions of approaches for finding good band re-
orderings for different compression approaches.) However, a suboptimal ordering 
could still provide a worthwhile benefit over the natural order. Moreover, it is 
conceivable (references [27] and [28]) that one could compute a default re-ordering 
on the ground, and use this same default order throughout a mission phase, to provide 
a compression benefit with little impact on onboard computations. 
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6 PERFORMANCE 

6.1 INTRODUCTION 

This section presents compression performance results (compressed data rates in bits/sample) 
for the Recommended Standard as well as some other lossless compression approaches.  
Subsection 6.2 describes the compression methods used, and subsection 6.3 provides 
compression results for these compression approaches applied to the corpus of multispectral 
and hyperspectral images described in annex A. 

For discussion purposes, images in the corpus are separated into two categories.  The term 
‘hyperspectral’ is used to refer to images in the corpus having 72 spectral bands or more, and 
‘multispectral’ is used to refer to images in the corpus having 17 or fewer spectral bands.  
There are no images in the corpus having between 18 and 71 spectral bands. 

Adaptive compression approaches, such as the one specified by the Recommended Standard, 
generally provide more effective compression on larger images.  However, as described in 5.3, 
partitioning a larger image into independently decompressible smaller images may be 
desirable for the sake of limiting the impact of data loss or errors on the communications 
channel.  Limiting input image size in this manner may also reduce implementation memory 
requirements for some compression approaches. 

For these reasons, compression results for most compressors evaluated in this section are 
presented both for full images (i.e., a given image in the corpus is compressed as a single 
image) and segmented images (i.e., an image is first partitioned into separate smaller images 
that can be independently decompressed and then concatenated to form the complete larger 
image).  For segmented images, images are partitioned along the y-axis into image 
‘segments’ of height 32 (for hyperspectral images) or 256 (for multispectral images). 

For wavelet-based image compression approaches examined, independently compressing 
image segments formed in this straightforward manner may cause compression efficiency to 
suffer noticeably.  Instead, partitioning data in the transform domain may achieve a similar 
degree of segmentation and allow independent portions of transformed data to be efficiently 
compressed.  However, such a segmentation defined in the transform domain does not 
correspond to a simple partitioning of image samples in the original image domain; whenever 
one segment is lost (e.g., because of data loss on a communications channel), such a loss 
affects adjacent segments, corrupting a limited number of samples near segment boundaries.  
For the wavelet-based compressors examined, 6.2.4 and 6.2.5 describe compression settings 
that are intended to achieve a degree of segmentation, in the transform domain, comparable 
to that of the other compressors. 

Results included here are intended to provide some indication of the relative compression 
performance of different lossless compression algorithms.  However, the different 
compressors vary significantly in complexity and it is not straightforward to provide a 
meaningful complexity comparison between different compressors.  Some of the 
compression methods used here may be impractical, or at least very challenging, to 
implement onboard a spacecraft. 
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6.2 COMPRESSORS 

6.2.1 OVERVIEW 

This subsection lists the compressors used and describes some of the methodology used to 
obtain the compression results. 

6.2.2 CCSDS 123.0-B-1 

For the Recommended Standard, results are given for sample-adaptive coding as well as block-
adaptive coding under BIL and BIP encoding orders.  Results are not included for BSQ 
encoding order because, as discussed in 4.3.3.2, compressed data rate under BSQ encoding 
order is nearly identical to that obtained under BIL order.  It may be recalled that under the 
sample-adaptive encoder, compressed bit rate does not depend on sample encoding order. 

For segmented images, weight resolution Ω = min{D + 4,19} is used for all segments.  Default 
weight initialization and νmin = −1 are used for the first segment, and for all subsequent 
segments custom weight initialization is used with νmin = 3, Q = Ω / 2⎢⎣ ⎥⎦, and initial weights 
are set equal to quantized versions of the final weights obtained from the preceding segment. 

All other compression settings use the values indicated in annex C. 

6.2.3 JPEG-LS 

The JPEG-LS image compression standard (reference [30]) supports compression of three-
dimensional (‘multi-component’) images such as multispectral and hyperspectral images. 
However, as described in 7.3.2, JPEG-LS is primarily designed to exploit two-dimensional 
image structure and takes almost no advantage of similarities between adjacent spectral 
bands. For this reason, and because of a lack of readily available JPEG-LS software 
implementations that support multi-component images having more than a few spectral 
bands, some ad hoc methods of applying single-component (2D) JPEG-LS compression to 
multispectral and hyperspectral images were considered. 

The application of JPEG-LS (reference [12]) directly to the image (‘direct’) and also to 
differences between spectral bands after the first (‘differential’) were both evaluated. In 
either case, the multispectral or hyperspectral (three-dimensional) image to be compressed is 
converted into one or more 2D images. One could simply apply JPEG-LS independently to 
each spectral band (or band difference) or to each spatial-spectral slice of the 3D image.  
However, when each resulting 2D image is small, compression performance may be poor 
because small images do not allow much time for the compressor to adapt to the image, and 
because smaller images spend a larger fraction of compressed bits on overhead (e.g., image 
headers).  These effects can be reduced somewhat by concatenating these 2D slices to form a 
single larger 2D image to be compressed.  In effect, a 3D image is flattened to form a 2D 
image which is then compressed. 
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There are several different ways to flatten a 3D image into a 2D image—figure 6-1 illustrates 
some of them—and the method used can affect compression effectiveness, sometimes by a 
significant amount. Moreover, the flattening approach that yields the best performance can 
vary depending on the imaging instrument and can even change from image-to-image for the 
same imager. 

(a)3D Image (b) (c)

(d)

(e)

(f)

y

z

x

 

Figure 6-1: Examples of Different Methods of Forming a 2D Image by Flattening the 
Samples in a 3D Image 

In lossless compression experiments on a subset of images from the corpus, direct 
compression is often, but not always, less effective than differential compression.  In either 
case, flattening methods (a) and (f) of figure 6-1 tended to yield better performance than the 
others. It should be noted, however, that for an imager that produces samples in BIL or BIP 
order (such as a pushbroom imager), these flattening methods impose the most significant 
buffer constraints because JPEG-LS compresses an image in raster scan order, and these two 
arrangements require all samples from a band to be compressed before compressing any 
samples from the next spectral band.  By contrast, the present Recommended Standard 
allows a much smaller buffer. 

A thorough examination of the compression effectiveness and implementation complexity of 
all possible ways to using JPEG-LS to compress a 3D image is beyond the scope of this 
document. As an indication of compression performance that might be obtained via JPEG-
LS, 6.3 includes performance results for direct and differential JPEG-LS, in both cases using 
flattening method (a) of figure 6-1, which corresponds to vertically concatenating spectral 
bands of an image. 

These results were obtained using version 2.2 of the JPEG-LS implementation produced by 
Ismail R. Ismail and Faouzi Kossentini of the Department of Electrical and Computer 
Engineering, University of British Columbia (http://www.stat.columbia.edu/~jakulin/jpeg-ls/). 
A constant offset was added to band differences to make all of the values nonnegative prior to 
compression. To circumvent software limitations on the input image height supported, flattened 
images with height exceeding 216−1 were split along the vertical axis as needed. 
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6.2.4 JPEG2000 

The JPEG2000 image compression standard (reference [31]) defines a two-dimensional 
image coder based on wavelet transforms and bit plane encoding. The coder is designed so 
that progressive compression can be achieved by scanning wavelet-transformed image data 
multiple times, each successive scan encoding additional data that provides a more precise 
representation of the image, while increasing the size of the compressed image. This feature 
is well suited for lossy image compression, but if a sufficient number of scans are performed, 
it can also provide lossless compression at the expense of higher implementation complexity. 

Two different wavelet transforms are available, one irreversible—meaning that the original 
image data cannot be exactly recovered—and one reversible, which can be exactly inverted 
and thus suits the purposes of this comparison. Hence, lossless compression can be achieved 
when a sufficiently large compressed image is allowed and the reversible wavelet transform 
is selected. 

Three-dimensional image compression is supported in JPEG2000 by means of the so-called 
Multi-Component Transform (MCT) part 2 extension. This extension enables the coding of 
three-dimensional images as multiple two-dimensional images (one image for each spectral 
band), possibly after a one-dimensional spectral transform is employed to reduce the degree 
of correlation among them. Three cases of MCT operation are considered: when no spectral 
transform is employed (‘direct’), when the reference Integer Wavelet Transform (IWT) is 
employed (specifically a CDF 5/3 wavelet as defined in reference [31]), and when a Pairwise 
Orthogonal Transform (POT) is employed (reference [32]). 

To provide a relevant comparison with other compressors applied to segmented images, 
JPEG2000 settings are selected to provide lossless compression with a similar level of 
granularity when accessing data spatially. While the granularity may be obtained with the use 
of segments that split the image along the y-axis into multiple regions that can be decoded 
independently, the comparable feature in JPEG2000 is spatial scalability. To provide a 
comparable approach, JPEG2000 settings are adjusted so that a loss or corruption of 
compressed data confined to one region (segment) of the image affects only a region of 
similar height.  The vertical distance between two regions that can be independently decoded 
is selected so that loss or corruption of compressed data for one region should not affect the 
other (assuming the bit stream can be correctly resynchronized). 

Using default settings in JPEG2000 (usually 5 levels of transform, blocks of size 64×64, and 
appropriately defined precincts), a block in the lowest wavelet resolution defines a region of 
2048 rows, which would be much larger than the segments used to produce results for other 
compressors. Thus appropriate values for these settings are to be determined. An additional 
issue is the overlap of wavelet transform information from one block to another, which will 
further expand this region. 
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In the general case, given an image of width NX and using L levels of two-dimensional 
wavelet transform, the parameters that produce a comparable segment size of N are: 

– Block size = (min{N / 2L, 64}, 4096 / min{N / 2L, 64}); 
– Precinct size (level i=0,1...) = (N · 2−i, NX). 

These calculations are generic regardless of the number of components transformed or 
whether any spectral transform is used at all. Using the calculations above, the Kakadu 
software implementation4 of JPEG2000 was used to produce experimental results for 
equivalent segment sizes of 32 frames (for hyperspectral images) or 256 frames (for 
multispectral images) with 3 levels of wavelet transform. For example, for an image of 512 
columns and coded with a segment size of 256 rows and 3 levels of wavelet transform, for 
compression using the Kakadu software, the portion of the command line input that controls 
these settings is: 

Creversible=yes Cblk={32, 128} Cprecincts={256, 
512},{128,512},{64,512},{32,512} 

Regarding the wavelet overlap, for the CDF 5/3, the overlap would be 2L + 2L−1 −1 (in some 
cases a bit less), which in this example would be 11 frames. 

6.2.5 CCSDS 122.0-B-1 

The CCSDS 122.0-B-1 image compression standard (reference [33]) defines a two-
dimensional image coder specifically designed for spaceflight implementation. It shares 
many features with JPEG2000, including the use of two-dimensional wavelet transforms, 
lossy and lossless compression capabilities, and successive quality refinements of an image 
during the coding procedure. However, its design was focused on meeting the constraints of 
spaceflight hardware. An extensive feature comparison and performance assessment is 
included in reference [34]. 

Experimental results for CCSDS 122.0-B-1 were produced using an enhanced version of the 
software implementation by NASA’s Goddard Space Flight Center and modified by the 
Group on Interactive Coding of Images of the Universitat Autònoma de Barcelona that 
supports the use of spectral transforms. For the sake of generating comparable results, the 
compression performed is necessarily not strictly compliant with the CCSDS 122.0-B-1 
specification in two ways.  First, bit depths greater than 16 bits must be accommodated 
because of dynamic range expansion due to the spectral transforms. Second, segment sizes 
(S) less than 16 blocks are used in some cases to provide a comparable level of image 
segmentation. Three sets of experimental results are provided: one without any spectral 
transform, one with an IWT (a CDF 5/3 as defined in reference [31]), and one with a 
POT (reference [32]). 

                                                 
4 Kakadu Software was developed by D. Taubman, who provided an online demonstration version. 
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The coder was configured to produce lossless bit streams by setting compression parameters 
as follows: SegByteLimit=227, DCStop=0, BitPlaneStop=0, StageStop=Stage 4, and 
UseFill=0. Optimal variable-length code selections were employed (OptDCSelect=1, 
OptACSelect=1), and codeword length was set to 8 bits. No custom wavelet weights were 
employed. 

To provide results using the previously stated segment sizes, the following settings were 
employed. For segmented hyperspectral images, the number of blocks per segment, S, was 
assigned so that segments would cover a region of 8 frames of coefficients after a wavelet 
transform (i.e., S = Nx / 8⎡⎢ ⎤⎥). The Integer Wavelet employed by CCSDS 122.0-B-1 for two-
dimensional image coding is an Integer 9/7M wavelet, which has 21 frames of worst-case 
error propagation in both directions. The described approach has an equivalent segment size 
of 51 frames (see subsection 2.4.3.3 of reference [34]), which exceeds the 32-frame segment 
initially required. 

Similarly, to obtain a comparable configuration for segmented multispectral images, the 
number of blocks per segment was set to cover a region of 256 frames of coefficients after 
the wavelet transform (i.e., S = 32 NX / 8⎡⎢ ⎤⎥). However, this second configuration was not 
expected to deviate substantially from the former one, as the bit-rate increase produced by 
increasing the value of S is minimal at high rate (see subsection 3.5 of [34]). 

6.2.6 LUT PREDICTOR 

The LookUp-Table (LUT) compressor (reference [35]) is a single-pass sequential predictive 
lossless compression algorithm designed for hyperspectral images. The prediction module of 
the LUT compressor has very low complexity, but prediction residuals are encoded using an 
adaptive range coding approach that may have relatively high implementation complexity 
compared to the entropy coding methods included in the present Recommended Standard. 

For this reason, 6.3 includes compression results for the LUT predictor combined with 
mapping of prediction residuals to nonnegative integers (in a manner similar to that 
described in 3.2.4) followed by lossless encoding using the sample-adaptive entropy coder. 
Reference [35] does not describe how the LUT compressor performs prediction in the first 
band of an image. For the results included here, the predicted value of a sample in the first 
band is equal to the neighboring sample above, except in the first row, where it is equal to the 
left neighbor. 

6.2.7 ESA COMPRESSOR 

The compressor proposed by ESA (reference [29]) targets very low complexity. The 
algorithm design is based on the block-based predictor first proposed in reference [36]. This 
predictor is applied to nonoverlapping spatial blocks of 16×16 samples. Each block is 
predicted from the co-located block in the previous band using a least mean squares 
technique. An individual linear predictor is calculated for all samples of each block, and its 
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parameters (offset and gain) are encoded in the compressed image. The mapped prediction 
residuals are encoded by employing a sample-adaptive Golomb coder, where the code 
parameter may be restricted to be a power of two. Except for minor differences in the 
mapping and Golomb parameter adaptation procedure, the entropy coding stage is essentially 
equivalent to the sample-adaptive coding option included in the present Recommended 
Standard. The complete algorithm, as well as some extensions including near-lossless 
compression and band ordering, are described in reference [29]. 

Compression results here make use of the ESA predictor along with the sample-adaptive 
entropy coding method formalized in the standard. 

6.3 RESULTS 

6.3.1 FULL IMAGE VS. SEGMENTED IMAGE COMPRESSION 

As described previously in this section and also in 5.3, partitioning a larger image into 
independently decompressible smaller images may be desirable to limit the impact of data 
loss and to reduce implementation memory requirements for some compression approaches. 
However, this partitioning also reduces compression effectiveness in most cases (see 5.3.2) 
because of the additional overhead cost of image headers, as well as other considerations like 
boundary handling or poorer adaptive prediction for predictive methods. 

Figure 5-4 illustrates this reduction in compression effectiveness; as expected, higher 
efficiency is obtained for larger image segment sizes. The same effect can be observed in 
table 6-1. For hyperspectral images, full image compression always performs as well as or 
better than segmented compression. For multispectral images, where segment size is selected 
to be larger, this performance penalty is less apparent, and in some cases segmentation even 
provides a small benefit. 

For clarity, only one configuration is presented in table 6-1 for each algorithm; results for 
other configurations are consistent with those presented below. Tables with complete results 
can be found in annex E. 
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Table 6-1: Average Compressed Data Rates (in Bits/Sample) for Full Image and 
Segmented Compression 

Segmented Full Image Segmented Full Image Segmented Full Image Segmented Full Image Segmented Full Image Segmented Full Image

IASI 4.77 4.75 6.61 6.60 4.90 4.91 5.72 5.57 7.62 7.55 7.42 7.02

AIRS 4.32 4.30 6.35 6.35 4.66 4.68 6.13 5.66 6.91 6.86 7.01 6.62

CRISM-FRT 5.21 5.06 5.74 5.53 8.92 8.92 9.60 9.54 6.93 6.92 6.30 5.97

CRISM-HRL 4.73 4.56 5.75 5.55 8.38 8.38 9.15 9.06 6.82 6.80 6.32 5.95

CRISM-MSP 2.90 2.55 3.75 3.42 6.80 6.80 7.32 7.02 5.01 4.91 4.70 3.85

M3-Global 2.37 2.14 4.93 4.83 6.45 6.45 7.30 7.20 5.74 5.72 5.40 5.10

M3-Target 3.25 3.09 3.82 3.66 6.60 6.60 7.51 7.44 5.03 5.02 4.29 4.00

Hyperion 4.37 4.30 5.09 5.02 5.52 5.52 6.16 6.08 5.60 5.58 5.39 5.14

Hyperion flatfield 3.98 3.97 4.81 4.80 4.11 4.11 4.55 4.54 5.00 4.99 5.08 4.89

SFSI 4.69 4.67 4.77 4.75 4.91 4.91 5.43 5.43 5.30 5.30 4.79 4.65

SFSI_rmnoise 3.01 2.96 4.40 4.35 4.07 4.07 4.80 4.70 4.89 4.88 4.56 4.42

AVIRIS(16-bit raw) 5.99 5.98 8.64 8.61 6.16 6.16 7.42 6.87 8.79 8.78 8.98 8.88

AVIRIS(12-bit raw) 2.69 2.68 4.56 4.54 3.01 3.01 3.53 3.44 4.73 4.72 4.67 4.59

AVIRIS(16-bit cal) 3.76 3.74 6.41 6.39 4.32 4.32 4.75 4.54 6.58 6.57 6.65 6.56

CASI 5.03 5.02 6.79 6.77 5.10 5.10 5.96 5.65 7.04 7.02 7.09 6.97

MODIS-night 4.64 4.70 5.39 5.38 7.76 7.76 7.24 7.22 6.20 6.20 5.54 5.51

MODIS-day 5.63 5.72 4.69 4.69 5.75 5.75 6.54 6.44 5.59 5.59 5.43 5.37

MODIS-500m 7.19 7.20 7.63 7.62 8.36 8.36 8.88 8.88 8.21 8.22 7.80 7.77

MODIS-250m 6.43 6.48 6.96 6.96 7.15 7.15 7.73 7.73 7.14 7.14 7.11 7.08

MSG 3.40 3.39 3.50 3.50 4.11 4.11 5.07 5.06 3.70 3.70 3.53 3.50

LANDSAT 3.37 3.37 3.70 3.70 3.91 3.91 4.32 4.32 4.03 4.03 3.90 3.87

PLEIADES 7.32 7.32 7.85 7.84 7.95 7.95 8.74 8.65 8.05 8.05 8.25 8.15

VEGETATION_level1b 5.26 5.26 5.31 5.30 5.86 5.86 6.97 6.96 5.59 5.59 5.53 5.48

VEGETATION_level1c 5.04 5.04 5.27 5.26 5.55 5.55 6.77 6.77 5.46 5.46 5.46 5.42

SPOT5 4.53 4.53 4.71 4.71 5.17 5.17 5.66 5.66 4.96 4.96 4.94 4.92
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NOTE – Better performance is indicated in green. 

Figure 6-2 focuses on the comparison of both modes (full image vs. segmented) for the 
Recommended Standard with the default compression settings. A significant penalty can be 
observed for some hyperspectral images because the selected segment size is small. In 
contrast, when larger segments are used, as in the multispectral images, both compression 
modes perform similarly and even a slight improvement can occur in some cases for 
segmented compression. 
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Figure 6-2: Comparison of Average Compressed Data Rates (in Bits/Sample) for the 
Recommended Standard for Full Image And Segmented Cases 
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6.3.2 FULL IMAGE COMPRESSION 

Average compressed data rates for full image compression are given in table 6-2 for a larger 
set of compression approaches than presented in table 6-1 of 6.3.1. 

Table 6-2: Average Compressed Data Rates (in Bits/Sample) for Full Image 
Compression 

 

NOTE – Better performance is indicated in green. 

Of the algorithms considered, the Recommended Standard typically delivers the best average 
lossless compression performance for full image compression using the test images.  In 
particular, it provides the best results for all of the hyperspectral image data except SFSI, 
where the combination of JPEG2000 and POT performs slightly better, but at the cost of 
significantly higher complexity and memory requirements. For the multispectral images, the 
Recommended Standard often provides the best average lossless results, but in some cases is 
outperformed by JPEG-LS (alone or with a pre-processor) or the combination of JPEG2000 
and POT, particularly for MODIS images. 

Complete results for other compression settings can be found in annex E. 
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6.3.3 SEGMENTED IMAGE COMPRESSION 

Average compressed data rates for compression of segmented images are given in table 6-3 
for a larger set of compression approaches than presented in table 6-1 of 6.3.1. 

Table 6-3: Average Compressed Data Rates (in Bits/Sample) for Segmented Image 
Compression 

direct differential direct  + IWT  + POT direct  + IWT  + POT

IASI 4.77 6.61 5.03 4.91 5.72 7.62 5.70 6.18 7.42 5.64 6.02

AIRS 4.32 6.35 4.85 4.68 6.13 6.91 5.09 5.07 7.01 5.19 5.14

CRISM-FRT 5.21 5.74 5.73 8.92 9.60 6.93 6.95 7.01 6.30 6.22 6.40

CRISM-HRL 4.73 5.75 5.21 8.38 9.15 6.82 6.43 6.54 6.32 5.75 5.98

CRISM-MSP 2.90 3.75 3.47 6.80 7.32 5.01 4.82 5.35 4.70 4.45 4.95

M3-Global 2.37 4.93 2.91 6.45 7.30 5.74 4.30 4.52 5.40 3.57 3.94

M3-Target 3.25 3.82 3.56 6.60 7.51 5.03 4.61 4.70 4.29 3.85 3.98

Hyperion 4.37 5.09 4.69 5.52 6.16 5.60 5.07 5.08 5.39 4.80 4.86

Hyperion flatfield 3.98 4.81 4.34 4.11 4.55 5.00 4.40 4.33 5.08 4.40 4.27

SFSI 4.69 4.77 5.03 4.91 5.43 5.30 4.98 4.91 4.79 4.72 4.67

SFSI_rmnoise 3.01 4.40 3.16 4.07 4.80 4.89 3.93 3.76 4.56 3.51 3.38

AVIRIS(16-bit raw) 5.99 8.64 6.71 6.16 7.42 8.79 6.82 6.47 8.98 6.87 6.46

AVIRIS(12-bit raw) 2.69 4.56 3.34 3.01 3.53 4.73 3.57 3.33 4.67 3.41 3.13

AVIRIS(16-bit cal) 3.76 6.41 4.49 4.32 4.75 6.58 4.58 4.42 6.65 4.50 4.30

CASI 5.03 6.79 5.36 5.10 5.96 7.04 5.47 5.56 7.09 5.40 5.49

MODIS-night 4.64 5.39 5.85 7.76 7.24 6.20 6.44 5.15 5.54 5.80 5.01

MODIS-day 5.63 4.69 5.04 5.75 6.54 5.59 6.65 6.52 5.43 6.57 6.32

MODIS-500m 7.19 7.63 6.66 8.36 8.88 8.21 8.16 7.56 7.80 7.16 6.95

MODIS-250m 6.43 6.96 6.63 7.15 7.73 7.14 7.07 6.50 7.11 7.02 6.43

MSG 3.40 3.50 3.83 4.11 5.07 3.70 4.06 3.90 3.53 3.90 3.72

LANDSAT 3.37 3.70 3.62 3.91 4.32 4.03 3.87 3.80 3.90 3.69 3.62

PLEIADES 7.32 7.85 7.33 7.95 8.74 8.05 7.58 7.83 8.25 7.75 8.01

VEGETATION_level1b 5.26 5.31 5.06 5.86 6.97 5.59 5.54 5.53 5.53 5.45 5.41

VEGETATION_level1c 5.04 5.27 5.03 5.55 6.77 5.46 5.35 5.29 5.46 5.34 5.28

SPOT5 4.53 4.71 4.72 5.17 5.66 4.96 5.07 4.70 4.94 5.06 4.64
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NOTE –  Better performance is indicated in green. 

Performance comparisons between different compression approaches for segmented images 
are similar to the full image case.  Among the compression approaches evaluated, the 
Recommended Standard provides the lowest compressed bit rate for all hyperspectral data in 
the corpus except SFSI, for which the combination of JPEG2000 and POT provides more 
effective compression but at a cost of substantially higher complexity.  For multispectral 
images, the Recommended Standard performs well but is sometimes outperformed by one of 
the JPEG-LS approaches evaluated. 
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7 STANDARD DEVELOPMENT CONSIDERATIONS 

7.1 OVERVIEW 

This section describes some of the decisions made in defining the Recommended Standard 
along with some of the motivation behind those decisions. Subsection 7.2 provides an 
overview of the algorithm definition process and documents the motivation and analysis that 
led to the selection of this algorithm. Subsection 7.3 describes differences between the 
Recommended Standard and two well-known image compression standards. 

7.2 SELECTION PROCESS 

In 2007, the CCSDS Multispectral & Hyperspectral Data Compression Working Group was 
established to develop data compression recommendation(s) suitable for space-borne 
compression of multispectral and hyperspectral imagery. It was the assumption of the 
Working Group that proposed algorithms would fall into one or more of the following 
categories: 

a) lossless compressors; 

b) lossy compressors providing adjustable coded data rate or reconstructed data quality; 

c) near-lossless compressors. 

The Working Group agreed that its first priority for standardization would be lossless 
compression, which is the subject of the present Recommended Standard. 

The Working Group established requirements, listed in table 7-1, that a compressor (whether 
lossy or lossless) must satisfy to be considered suitable for standardization; these 
requirements reflect the envisioned application of real-time hardware compression onboard a 
spacecraft. 

Table 7-1:  Image Compression Requirements 

1 A free license must be available for use of the compressor by CCSDS 
member agencies. 

2 The compressor must accommodate instrument bit depths from 8 to 16 bits 
per sample. 

3 The compressor must be capable of providing real-time hardware 
compression (20 Msamples/sec throughput @ ≤ 0.5 W/Msamples/sec using 
2008 space electronics technology). 

4 The compressor must be capable of scan-based and frame-based operation. 
5 The compressor must limit the effects of a packet loss due to bit errors in 

transmission to a small region of the data. 
6 The compressor must achieve effective compression performance without 

post-launch adjustment or updates of compression parameters. 
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In addition to these mandatory requirements, the Working Group also established selection 
criteria for the evaluation of proposed compressors, given in annex D. In summary, the 
selection criteria, as applied to candidate lossless compressors, are: 

a) implementation complexity, or the ease with which a compressor can be made to 
provide high speed compression in a hardware implementation; 

b) compression effectiveness measured by the compressed data rate required to 
losslessly compress a given multispectral or hyperspectral image; 

c) flexibility, which could include features such as the ability to provide both lossless 
and lossy compression from the same algorithm, or the ability to improve 
compression effectiveness by adjusting compression parameters; 

d) error containment, or the ability to effectively limit the impact of a communications 
packet loss on the reconstructed image; 

e) robustness, or the ability of a compressor to provide effective compression even when 
the input image suffers from detector defects (e.g., dead pixels) or instrument defects 
(e.g., spatial and spectral misregistration, keystoning); 

f) user-friendliness, or a compressor’s ability to provide effective compression without 
requiring significant expertise on the part of the user; 

g) license considerations, insofar as a third party will have more incentive to develop an 
implementation of the compressor if it can be used by both CCSDS member agencies 
as well as commercial customers without requiring a license fee. 

The working group also assembled a diverse set of multispectral and hyperspectral test 
images covering a variety of space-borne imaging sensors, including sounders, imaging 
spectrometers, optical mid- and high-resolution sensors. The image test set is described in 
annex A. 

Candidate algorithms were proposed and evaluations were conducted based on the selection 
criteria described above. In addition, implementation architecture studies were performed to 
assess the real-time processing potential of proposed algorithms, which is a key 
consideration for spacecraft applications. Lossless compression algorithms evaluated as part 
of the process of developing the Recommended Standard included the JPEG2000, JPEG-LS, 
and CCSDS 122.0-B-1 image compression standards, compression algorithms defined in 
references [37] and [38], as well as algorithms proposed by NASA (reference [18]) and ESA 
(reference [29]). Section 6 includes results illustrating compression effectiveness of several 
of these compressors, and 7.3 below discusses the JPEG2000 and JPEG-LS standards. 

The working group also evaluated the LUT compression approach of reference [35] as part 
of its assessment (see 6.2.6). The LUT approach was appealing because of its low complexity 
predictor and outstanding compression performance on the 1997 AVIRIS sample images 
which have been widely used in the literature for assessing the effectiveness of hyperspectral 
image compressors. However, in reference [39], it was demonstrated that the 1997 AVIRIS 
sample images include calibration-induced data artifacts that were being effectively exploited 
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by the adaptive range encoder being used by the LUT compressor. The LUT compressor 
provided noticeably less effective compression than the FL compressor on images that did 
not exhibit such regularities (see reference [39]) and also when the LUT range coder is 
replaced by a lower complexity approach. Consequently, the working group did not further 
pursue standardization of a LUT-based compressor. 

Implementation complexity played a significant role in the final algorithm selection. After 
some initial assessments of the various compressors, the working group narrowed the 
selection to the compressors proposed by ESA and NASA, motivated in large part by the fact 
that both approaches are amenable to a high-speed hardware implementation onboard a 
spacecraft. 

Both the NASA and ESA proposed compressors consist of a predictor followed by entropy 
coding of prediction residuals. To first order, both predictors have similar computational 
complexity, and both entropy coders have similar complexity and compression effectiveness. 
Since either predictor could be used with either entropy coder, the Working Group ultimately 
focused its attention on a comparison of compression effectiveness results for the two 
proposed predictors when used with the same sample-adaptive encoder described in 3.3.4. In 
this comparison, the FL predictor proposed by NASA demonstrated compression 
effectiveness advantages on hyperspectral images containing streaking artifacts and on 
multispectral images. 

The working group considered the possibility of augmenting the sample-adaptive encoder to 
incorporate run length (or similar) coding to provide more effective compression for long 
sequences of perfectly predicted samples. Ultimately it was the consensus of the working 
group that large regions of saturated or all-zero samples were not sufficiently common in 
practice to warrant this added complication. 

A consensus was reached in 2010 to standardize the FL predictor along with the block-
adaptive and sample-adaptive coding options. The resulting image compression 
Recommended Standard is the algorithm initially proposed by NASA, with the additional 
possibility of using the previously standardized CCSDS 121.0-B-2 block-adaptive encoding 
method (reference [13]) as an alternative to the new sample-adaptive encoder. Subsection 
4.3.4 describes some of the differences between the two encoding methods which motivated 
the working group to retain both options as part of the standard. The chosen algorithm 
provides good compression performance for both hyperspectral and multispectral imagers 
and low complexity. 

7.3 COMPARISON WITH OTHER IMAGE COMPRESSION STANDARDS 

7.3.1 INTRODUCTION 

A standard for multispectral and hyperspectral (three-dimensional) lossless image 
compression could have been developed by building on an existing two-dimensional image 
compression standard, rather than developing a new standard. Candidates for such an 
approach include the wavelet-based image compression standards JPEG2000 and 
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CCSDS 122.0-B-1, and the predictive-based JPEG-LS standard, all of which are capable of 
providing lossless image compression. 

However, wavelet-based compression approaches require significantly higher computational 
complexity than the sequential predictive approach ultimately standardized, while providing 
little or no improvement in compression effectiveness in return. 

The JPEG-LS compression standard has low complexity, comparable to that of the present 
Recommended Standard.  However, JPEG-LS was not designed to exploit the three-
dimensional structure present in multispectral and hyperspectral images, and simple 
modifications to exploit some of this structure via a pre-processing step prior to JPEG-LS 
compression failed to yield compression effectiveness matching that of the Recommended 
Standard. 

Comparisons between the Recommended Standard and the JPEG-LS and JPEG2000 image 
compression standards are further detailed in the following subsections. 

7.3.2 JPEG-LS 

JPEG-LS (reference [30]) is an International Organization for Standardization (ISO) and 
International Telecommunication Union (ITU) standard for lossless and near-lossless 
compression of continuous-tone still images. It provides more effective lossless compression 
than the lossless JPEG standard (reference [12]), while maintaining low complexity. JPEG-
LS is based on the LOCO-I (Low Complexity Lossless Compression for Images) algorithm 
(reference [12]). 

The near-lossless option included in JPEG-LS allows lossy compression where the maximum 
reconstruction error is bounded by a user-specified parameter, trading reconstructed image 
fidelity for compression ratio. This capability is not included as part of the current 
Recommended Standard, though it would be feasible to add it as a future extension.  
Hereinafter, JPEG-LS is discussed in the context of lossless compression. 

FL and LOCO-I are both low-complexity one-pass sequential predictive image compressors 
that adaptively predict each sample value based on preceding samples in the image and then 
losslessly encode the differences between predicted and actual sample values.  Both 
adaptively update statistics used in prediction and entropy coding during the course of 
compression. 

The LOCO-I predictor is nonlinear, incorporates a simple edge-detection approach to vary 
predictions when horizontal or vertical edges are likely, and alters the prediction depending 
on contexts defined by causal neighbors; statistics for each context are adaptively updated 
during compression. The FL predictor uses an adaptive linear filtering approach to perform 
prediction, and does not incorporate context modeling or any direct edge detection method as 
part of its prediction. 
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FL incorporates options (column-oriented local sums and reduced mode) to provide better 
compression performance on images containing pushbroom streaking artifacts (see 4.2.1).  
JPEG-LS was not specifically designed to handle such artifacts, although the simple edge-
detection incorporated as part of its prediction may provide some robustness to them. 

The JPEG-LS entropy coder incorporates a ‘run mode’ that allows efficient coding of long 
sequences of identically valued samples. The block-adaptive entropy coding option 
incorporates a similar feature (via the ‘zero-block’ coding described in reference [13]), but 
the sample-adaptive coding option does not. Apart from this difference, the sample-adaptive 
coder is very similar to the JPEG-LS entropy coder. 

The JPEG-LS standard supports ‘multi-component’ (3D) images, and the image components 
(i.e., spectral bands) need not all have the same dimensions. JPEG-LS multi-component 
compression allows encoding in ‘non-interleaved’, ‘line-interleaved’, or ‘sample-interleaved’ 
orders, which correspond to BSQ, BIL, and BIP orders, respectively, when all components 
have the same dimensions. 

In multi-component JPEG-LS compression, counters used to track context statistics may be 
shared between bands (depending on the encoding order), but otherwise JPEG-LS takes no 
advantage of similarities between spectral bands. This is the most significant difference 
between JPEG-LS and the present Recommended Standard: the algorithm underlying JPEG-
LS is essentially a 2D compressor, while the FL compressor significantly exploits 3D 
structure by using a small three-dimensional neighborhood for prediction. 

One can often improve the compression effectiveness of JPEG-LS on multispectral and 
hyperspectral images by first applying an invertible transformation (such as taking 
differences between consecutive spectral bands) and then flattening the 3D image to form a 
2D image to be compressed by JPEG-LS, as discussed in 6.2.3.  Approaches along these 
lines were evaluated by the Working Group but they provided less effective compression 
than the present Recommended Standard on the test images in annex A.  Moreover, as 
discussed in 6.2.3, the best performing methods of flattening the image would also impose 
the most significant buffer constraints for pushbroom imagers which naturally produce 
samples in BIP or BIL order. 

7.3.3 JPEG2000 

The JPEG2000 image compression standard relies on progressive bit-plane encoding of 
wavelet-transformed image data and provides a choice of integer and floating-point Discrete 
Wavelet Transforms (DWTs) so that effective lossy and lossless compression can be 
achieved. Moreover, for multicomponent images, the MCT extension defined in Part 2 of 
JPEG2000 offers the possibility of using a spectral transform prior to two-dimensional 
JPEG2000 compression of the decorrelated bands. For lossy coding, Lagrangian rate-control 
can be performed, but this is not necessary for lossless coding. 

The use of context modeling combined with arithmetic coding and Lagrangian rate-control 
leads to high compression effectiveness. Some of the components of JPEG2000 that help to 
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provide high compression performance (context modeling, arithmetic coding, Lagrangian 
rate-distortion optimization) have high implementation complexity, and this limits the 
suitability of JPEG2000 for space-borne missions, which require high data-throughput rates 
and have limited capacity of acquisition, storage, and transmission. Using JPEG2000 with 
the MCT option results in an even higher complexity. 

For the performance assessment, the Working Group computed lossless data rates for the test 
data set obtained using JPEG2000 with and without spectral transforms. To make a fair 
comparison between proposed algorithm and JPEG2000, under similar resiliency conditions, 
the settings of the JPEG2000 implementation were adjusted as described in 6.2.4. Such 
comparisons are detailed in 6.3.  The best performance was obtained by employing the POT 
for spectral decorrelation before applying JPEG2000 on each decorrelated band.  Even so, 
there are only a few images in the corpus for which this approach slightly outperformed the 
Recommended Standard. 

JPEG2000 includes capabilities that the Recommended Standard lacks.  Not only can it 
provide lossy compression, it can also be used to provide Region-Of-Interest (ROI) coding; 
i.e., certain regions of an image can be encoded with higher fidelity than remaining portions 
of the image.  JPEG2000 allows compressed image data to be arranged so that image 
resolution progressively improves as more compressed data are received. 

JPEG2000 code-blocks are independently encoded, and thus compression is amenable to 
parallelization at the code-block level.  Independent coding of JPEG2000 code-blocks and 
resynchronization markers also offer error-containment features in the event of data loss or 
bit errors. 

As a conclusion, JPEG2000-MCT offers a lot of benefits, including random image data 
access, and flexibility in arranging progression order, but with a high implementation cost. 
The proposed Recommended Standard targets lossless compression of multispectral and 
hyperspectral images with low complexity. It offers fewer features but the coding 
performance is usually better than that of the best configuration of JPEG2000. 
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ANNEX A 
 

TEST IMAGES 

Table A-1 summarizes the corpus of hyperspectral and multispectral images used for 
compression testing and evaluation in the course of developing the Recommended Standard. 

Table A-1:  Summary of the Corpus of Hyperspectral and Multispectral Test Images 

Instrument Image Type Bit Depth, D NZ NX NY 
IASI calibrated 12 8461 66 60×4   
AIRS raw 12–14 1501 90 135×10   
CRISM FRT, raw 12 545 640 {420×4, 450, 480×2, 510×2}  
CRISM HRL, raw 12 545 320 {420, 450×2, 480}  
CRISM MSP, raw 12 74 64 2700×7   
M3 target, raw 12 260 640 {1774, 2386, 2843}  
M3 global, raw 12 86 320 {11935, 28283}   
Hyperion raw 12 242 256 {1024, 3187, 3176, 3242}   
SFSI raw 12 240 496 140   
AVIRIS 16-bit, raw 16 224 680 512×5  
AVIRIS 12-bit, raw 12 224 {614, 680} 512 
AVIRIS 16-bit, calibrated 16 224 677 512×5  
CASI raw 12 72 405 {2852, 1225}   
MODIS night, raw 12 17 1354 2030×5  
MODIS day, raw 12 14 1354 2030×5  
MODIS 500m, raw 12 5 2708 4060×5  
MODIS 250m, raw 12 2 5416 8120×5   
MSG calibrated 10 11 3712 3712×3   
Landsat raw 8 6 1024 1024×3   
PLEIADES HR, simulated 12 4 224 {2456, 3928, 2448×4}   
Vegetation raw 10 4 1728 {10080, 10193}   
SPOT5 HRG, processed 8 3 1024 1024×3   

 

The corpus includes images from the following instruments: Infrared Atmospheric Sounding 
Interferometer (IASI), Atmospheric Infrared Sounder (AIRS), Compact Reconnaissance 
Imaging Spectrometer for Mars (CRISM), Moon Mineralogy Mapper (M3), Hyperion, SWIR 
Full Spectrum Imager (SFSI), Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), 
Compact Airborne Spectrographic Imager (CASI), Moderate Resolution Imaging 
Spectroradiometer (MODIS), Meteosat Second Generation (MSG), Landsat, PLEIADES 
High Resolution (HR), Vegetation, and Système Pour l’Observation de la Terre 5 (SPOT5) 
High Resolution Geometric (HRG). 

IASI and MSG images are not available for public distribution.  All other images can be 
downloaded at http://cwe.ccsds.org/sls/docs/sls-dc/123.0-B-Info/TestData, both 
uncompressed and compressed with the Recommended Standard. 

http://cwe.ccsds.org/sls/docs/sls-dc/123.0-B-Info/TestData�
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For a few of these instruments, more than one type of image is included in the CCSDS test 
set.  The CRISM data includes Full-Resolution Target (FRT) images, as well as Half-
Resolution Long (HRL) and MultiSpectral Survey (MSP).  The HRL and MSP images are 
produced onboard the Mars Reconnaissance Orbiter spacecraft by spatial and spectral 
binning of the samples from the imager.  Similarly, M3 ‘global’ images are produced 
onboard the Chandrayaan-1 spacecraft by spatial and spectral binning of the full resolution 
‘target’ images.  The 16-bit AVIRIS images were produced in 2006 from a newer version of 
the AVIRIS instrument than the 12-bit images which are from 2001 and 2003. 
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ANNEX B 
 

AVAILABLE SOFTWARE AND TEST PATTERN IMAGE 

B1 AVAILABLE SOFTWARE 

Software implementations of the Recommended Standard are available via links provided at 
http://cwe.ccsds.org/sls/docs/sls-dc/123.0-B-Info/Software. These implementations were 
developed only to demonstrate compression performance; no optimization in speed or 
programming was guaranteed.  The software and data are provided ‘as is’ to users as a 
courtesy.  In no event will the CCSDS, its member Agencies, or the author of the software be 
liable for any consequential, incidental, or indirect damages arising out of the use of or 
inability to use the software. 

B2 TEST PATTERN IMAGE 

A small test pattern image, along with associated documentation and compressed versions of 
the image, are available at the following location: 

http://cwe.ccsds.org/sls/docs/sls-dc/123.0-B-Info/TestData/TestPattern 

This synthetic image is designed to help confirm that an implementation of the 
CCSDS 123.0-B-1 multispectral and hyperspectral image compressor is compliant with the 
Recommended Standard.  It is a (very unnatural) image designed to exercise several features 
of the prediction and entropy coding operations specified in the Recommended Standard that 
might rarely arise for natural images. 

The documentation included with the test pattern image indicates compression settings that 
will: 

– cause clipping of weight values to occur (thus helping to confirm correct calculation 
of equation (34) of reference [1]); 

– result in overflow of the register used in the prediction calculation (thus helping to 
confirm correct calculation of equation (29) of reference [1]); 

– cause all allowed values of the variable length code parameter kz (t) to be used (when 
sample-adaptive coding is used); 

– ensure that the unary length limit (Umax ) is reached (when sample-adaptive coding is 
used); 

– ensure that the ‘zero-block’ coding option is used (when block-adaptive coding is 
used). 

Figure B-1 depicts the bands of the test pattern image. 
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(a)    (b)    (c) 

(a) first band (z=0); (b) bands z=1,2., …, 15; (c) last band (z=16). 

Figure B-1:  Grayscale Rendering of the Bands of the Test Pattern Image 
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ANNEX C 
 

COMPRESSION SETTINGS USED FOR EXPERIMENTS 

This annex tabulates default compression settings used to derive experimental results in this 
document. 

Default settings for prediction are given in table C-1.  Except where noted otherwise, 
compression results made use of the sample-adaptive entropy coder with settings given in 
table C-2.  In cases where block-adaptive coding was used, the default block size used is J=64. 

MODIS is a ‘whisk-push’ imager that exhibits streaking artifacts parallel to the cross-track 
direction, unlike typical pushbroom imagers. For this reason, within each segment the y and x 
dimensions correspond to the cross-track and along-track directions, respectively.  This is 
consistent with Note 1 in subsection 3.2.1 of the Recommended Standard (reference [1]). 

Table C-1:  Predictor Default Settings for Experimental Results 

Name Symbol Setting Description 
Number of Prediction 
Bands 

P 3 Number of previous bands used to perform 
prediction 

Register Size R 64 Size of register used in prediction 
calculation 

Local Sum Type  column-oriented for 
CRISM, Hyperion raw, 
M3, MODIS, SFSI rad; 
neighbor-oriented 
otherwise 

Identifies neighborhood used to calculate 
local sums 

Prediction Mode  reduced for AIRS, 
CASI raw, CRISM, 
IASI, M3, MODIS day 
and night; full otherwise

Indicates whether directional local 
differences are used in the prediction 
calculation 

Weight Component 
Resolution 

Ω 19 Determines number of bits used to 
represent each weight vector component 

Weight Initialization 
Method 

 default Determines initial values of weight vector 
components 

Weight Initialization Table {Λz} (unused) Defines the initial weight components under 
custom initialization. 

Weight Initialization 
Resolution 

Q (unused) Determines the precision of the initial weight 
components under custom initialization. 

Weight Update Scaling 
Exponent Initial Parameter 

νmin -1   Determines initial rate at which predictor 
adapts weight vector to input 

Weight Update Scaling 
Exponent Final Parameter 

νmax 3   Determines final rate at which predictor 
adapts weight vector to input 

Weight Update Scaling 
Exponent Change Interval 

tinc 
26  Determines the interval between 

increments to the weight update scaling 
exponent 
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Table C-2:  ample-Adaptive Entropy Coder Default Settings for Experimental Results 

Name Symbol Setting Description  
Unary Length Limit Umax 18 Limits the maximum length of any encoded sample 

Rescaling Counter Size γ* 6 Determines the interval between rescaling of 
counter and accumulator 

Initial Count Exponent γ0 1 Sets initial counter value 
Accumulator 
Initialization Table 

′kz{ } (unused) Sets an initial accumulator value for each band 

Accumulator 
Initialization Constant K 3 Sets initial accumulator value in all bands  
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ANNEX D 
 

SELECTION CRITERIA 

D1 INTRODUCTION 

In October 2007, the MHDC working group established selection criteria for the evaluation 
of compressors proposed for standardization. These criteria were intended to encompass both 
lossless and lossy compressors, and consequently some of the selection criteria are not 
applicable to lossless compressors.  The text of the selection criteria document forms the 
remainder of this annex, with references renumbered to match the reference numbers used 
in 1.6 of this document. 

In addition to the mandatory requirements, the following selection criteria will be considered 
by the MHDC working group in the evaluation of proposed compressors: 

a) implementation complexity; 

b) compression effectiveness; 

c) flexibility; 

d) error containment; 

e) robustness; 

f) user-friendliness; 

g) license considerations. 

Each of these criteria is described in further detail below. 

D2 IMPLEMENTATION COMPLEXITY 

The implementation complexity considerations are: 

a) throughput of hardware implementation; 

b) algorithmic complexity (number of arithmetic operations per sample or other relevant 
metric); 

c) memory/buffering requirements. 
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D3 COMPRESSION EFFECTIVENESS 

D3.1 GENERAL 

Compression effectiveness refers to the ability of a compressor to provide high-fidelity (or 
lossless) reconstructed data using a small compressed data volume, without regard to other 
concerns such as speed or memory use. 

For compressors offering flexibility in adjusting compression parameters, there should be 
provided compression-effectiveness results that indicate performance in a variety of 
configurations, e.g., scan-based vs. frame-based, small vs. large error-containment segment 
size, default vs. custom decorrelating transform, etc. 

D3.2 LOSSLESS COMPRESSION 

For lossless compression, compression effectiveness is measured by the bit rate required to 
achieve lossless compression on each test data set. 

D3.3 LOSSY COMPRESSION 

Lossy compression effectiveness is measured by the rate-distortion performance on the test 
data sets.  Unless indicated otherwise in the README file associated with a test data set, 
lossy compression algorithms should provide distortion results: 

a) at or near compressed bit rates of 4, 2, 1, 0.5, 0.25, 0.1 bits/sample (here a ‘sample’ 
refers to a single integer output value from a detector element); and 

b) at or near compression ratios of 10:1 and 20:1. 

At the bit rates examined, the following distortion metrics (described in the references) will 
be considered: 

– RRMSE (reference [40]); 

– Fλ (reference [40]); 

– Q(x,y) (reference [40]); 

– MAE (reference [40]); 

– MAD (reference [40]); 

– SNR =10 log10
signal power

MSE
⎛
⎝
⎜

⎞
⎠
⎟ (reference [41]); 
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– ‘classical’ PSNR: 

PSNR = 20log10
2b −1

1
NxNyNλ

(sx,y,λ − ˆ s x,y,λ)2

x,y,λ
∑

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ ⎟ 

 (dB); 

– ‘compression noise’ (reference [42]) (RMS error in each band, normalized by the 
standard deviation of the band). 

In addition, as a check for bias in reconstructed spectral bands, the following bias metric 
should be evaluated: 

b = max
λ

1
NxNy

sx,y,λ − ˆ s x,y,λ
x,y
∑  

Here sx,y,λ denotes the sample value at spatial position (x,y) in spectral band λ; ˆ s x,y,λ denotes 
the reconstructed value of sx,y,λ; Nx, Ny, and Nλ denote the number of columns, rows and 
spectral bands in the data set; b denotes the instrument bit depth. 

D4 FLEXIBILITY 

Desirable flexibility in the compressor includes features such as: 

a) flexibility in the ability to control the tradeoff between rate and distortion (e.g., bit-
accurate rate control, fine granularity of quality levels, and the ability to specify rate 
and/or quality); 

b) the ability to provide both lossless and lossy compression (for lossy compressors, the 
ability to provide effective compression over a wide range of bit rates or fidelity is 
desirable); 

c) the ability to tune the algorithm post-launch to improve performance (e.g., uploading 
new compression parameters to improve performance if, for example, a detector 
element was bad); 

d) flexibility in the structure of the compressed bitstream (e.g., progressive transmission, 
the ability to provide higher reconstructed fidelity or downlink priority in certain 
spectral bands or regions-of-interest, etc.). 
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D5 ERROR CONTAINMENT 

The effectiveness of the error-containment mechanism to deal with packet losses on the 
communications channel will be considered.  Considerations include the ability to adjust the 
size of error-containment segments and the impact of using small error-containment 
segments on compression effectiveness.  In certain applications, error concealment following 
data loss or corruption may be desirable. 

D6 USER-FRIENDLINESS 

A desirable feature of a compressor is that the algorithm achieves good performance without 
significant expertise on the part of the user implementing the algorithm.  Ideally, the 
algorithm should be operated as a black box; e.g., no tuning of coding tables would be 
required from user. 

D7 ROBUSTNESS 

Instrument defects tend to adversely affect compression performance.  It is desirable for 
compression effectiveness to not be dramatically affected by 

a) detector defects (dead pixels, frozen pixels, spikes, etc.); or 

b) instrument defects such as spectral and spatial misregistration, keystone, and smile. 

D8 LICENSE CONSIDERATIONS 

In addition to the mandatory requirement that CCSDS member agencies may use a 
recommended compressor without payment of a license fee, other license considerations may 
be relevant.  For example, the ability of a 3rd party to use a recommended algorithm for a 
commercial venture without paying a license fee may be desirable because it provides further 
incentive for such a party to develop a hardware implementation. 
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ANNEX E 
 

COMPRESSION RESULTS 

Compressed data rates, measured in bits/sample, are given in tables E-1 and E-2 for full 
image compression of hyperspectral and multispectral images, respectively.  Results for 
segmented images are given in tables E-3 and E-4 for hyperspectral and multispectral 
images, respectively. 
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Table E-1:  Compressed Data Rates (in Bits/Sample) for Full Image Compression of Hyperspectral Images 

reduced+
column

full+
neighbor

reduced+
neighbor

reduced+
column

full+
neighbor

reduced+
neighbor

reduced+
column

full+
neighbor

reduced+
neighbor direct differential direct + IWT + POT direct + IWT + POT

IASI desert 4.70 5.03 4.74 4.70 5.07 4.78 4.75 5.02 4.73 4.70 6.25 4.95 4.95 5.66 7.12 5.53 6.1 6.62 5.12 5.58
IASI ecosse 4.91 5.27 5.02 4.91 5.31 5.07 4.95 5.19 4.97 4.86 7.29 5.17 4.96 5.55 8.37 5.83 6.19 7.76 5.41 5.61
IASI polenord 4.64 4.97 4.70 4.64 5.01 4.73 4.68 4.91 4.65 4.60 6.34 4.86 4.70 5.17 7.21 5.43 5.92 6.73 5.03 5.34
IASI tropocean 4.77 5.09 4.80 4.77 5.13 4.85 4.81 5.10 4.83 4.79 6.53 5.10 5.04 5.89 7.5 5.72 6.24 6.95 5.28 5.68
IASI average 4.75 5.09 4.82 4.75 5.13 4.86 4.80 5.06 4.79 4.74 6.60 5.02 4.91 5.57 7.55 5.63 6.11 7.02 5.21 5.55
AIRS 9 4.22 4.54 4.24 4.22 4.60 4.29 4.28 4.64 4.32 4.32 6.35 4.77 4.59 5.53 6.91 5.01 4.94 6.69 4.76 4.58
AIRS 16 4.20 4.50 4.20 4.20 4.56 4.25 4.25 4.59 4.29 4.29 6.21 4.68 4.53 5.41 6.67 4.87 4.9 6.44 4.6 4.52
AIRS 60 4.38 4.71 4.40 4.38 4.77 4.46 4.44 4.81 4.50 4.49 6.84 4.98 4.81 5.85 7.38 5.25 5.16 7.15 5 4.8
AIRS 82 4.13 4.44 4.13 4.13 4.49 4.18 4.18 4.52 4.21 4.21 5.86 4.56 4.38 5.21 6.27 4.71 4.79 6.04 4.43 4.4
AIRS 120 4.29 4.62 4.29 4.29 4.68 4.35 4.34 4.72 4.38 4.38 6.32 4.80 4.66 5.49 6.84 5.02 5.01 6.61 4.77 4.65
AIRS 126 4.40 4.73 4.42 4.40 4.78 4.48 4.46 4.82 4.51 4.50 6.70 4.99 4.79 5.82 7.26 5.25 5.16 7.01 4.99 4.81
AIRS 129 4.14 4.43 4.13 4.14 4.49 4.19 4.19 4.52 4.21 4.22 5.56 4.53 4.45 5.32 6.03 4.67 4.8 5.78 4.39 4.43
AIRS 151 4.41 4.73 4.43 4.41 4.79 4.49 4.47 4.81 4.50 4.49 6.45 4.95 4.81 5.90 6.94 5.15 5.14 6.74 4.91 4.8
AIRS 182 4.43 4.72 4.46 4.43 4.78 4.51 4.49 4.80 4.53 4.52 6.51 4.96 4.90 6.26 7.07 5.22 5.21 6.82 4.96 4.85
AIRS 193 4.42 4.75 4.44 4.42 4.81 4.49 4.47 4.85 4.53 4.52 6.65 4.99 4.84 5.75 7.18 5.24 5.17 6.96 5 4.83
AIRS average 4.30 4.62 4.31 4.30 4.67 4.37 4.36 4.71 4.40 4.39 6.35 4.82 4.68 5.66 6.86 5.04 5.03 6.62 4.78 4.67
CRISM-FRT frt00006d1c_07_sc164 4.61 4.61 5.57 8.41 4.66 5.57 8.40 4.66 5.57 8.52 4.67 5.12 8.21 8.99 6.18 6.44 6.48 5.03 5.31 5.46
CRISM-FRT frt00010f86_07_sc167 5.28 5.28 6.90 9.48 5.33 6.90 9.49 5.32 6.99 9.71 5.29 5.80 9.46 9.96 6.98 7.39 7.43 5.85 6.27 6.48
CRISM-FRT frt00013e49_07_sc166 5.46 5.46 7.27 9.52 5.52 7.28 9.53 5.49 7.35 9.76 6.07 5.86 9.44 10.02 7.48 7.45 7.52 6.6 6.39 6.67
CRISM-FRT frt000065e6_07_sc164 4.83 4.83 5.84 8.46 4.88 5.84 8.46 4.88 5.81 8.57 5.14 5.26 8.37 9.14 6.5 6.53 6.56 5.5 5.45 5.57
CRISM-FRT frt0000869b_07_sc164 5.06 5.06 6.75 8.79 5.10 6.75 8.80 5.08 6.70 8.93 6.12 5.42 8.73 9.44 7.21 6.86 6.89 6.48 5.81 5.99
CRISM-FRT frt0001077d_07_sc166 5.39 5.39 6.97 9.45 5.45 6.98 9.46 5.42 7.05 9.68 5.61 5.82 9.36 9.95 7.14 7.37 7.4 6.14 6.3 6.52
CRISM-FRT frt0001241d_07_sc164 5.35 5.35 6.83 9.27 5.40 6.84 9.28 5.38 6.87 9.46 5.70 5.76 9.19 9.85 7.18 7.3 7.32 6.22 6.22 6.42
CRISM-FRT frt00008849_07_sc165 4.88 4.88 6.22 8.76 4.94 6.22 8.76 4.92 6.19 8.90 5.31 5.29 9.19 9.39 6.73 6.75 6.79 5.74 5.62 5.81
CRISM-FRT frt00009326_07_sc167 4.65 4.65 6.54 8.52 4.70 6.55 8.51 4.66 6.49 8.65 5.83 4.99 8.35 9.09 6.9 6.48 6.64 6.19 5.4 5.78
CRISM-FRT average (FRT) 5.06 5.06 6.54 8.96 5.11 6.55 8.97 5.09 6.56 9.13 5.53 5.48 8.92 9.54 6.92 6.95 7.00 5.97 5.86 6.08
CRISM-HRL hrl0000ba9c_07_sc183 4.92 4.92 6.20 8.96 4.97 6.21 8.97 4.96 6.25 9.17 5.29 5.37 8.91 9.47 6.79 6.87 6.95 5.81 5.8 6
CRISM-HRL hrl00004f38_07_sc181 4.26 4.26 6.22 7.99 4.30 6.22 7.98 4.26 6.15 8.10 6.08 4.59 7.90 8.66 6.98 6.01 6.18 6.34 4.94 5.32
CRISM-HRL hrl000089fd_07_sc182 4.58 4.58 5.70 8.54 4.63 5.72 8.55 4.61 5.71 8.69 5.03 4.99 8.49 9.15 6.53 6.48 6.56 5.5 5.35 5.53
CRISM-HRL hrl0000648f_07_sc182 4.46 4.46 6.15 8.28 4.50 6.15 8.27 4.47 6.10 8.41 5.82 4.81 8.22 8.95 6.89 6.28 6.4 6.15 5.19 5.46
CRISM-HRL average (HRL) 4.56 4.56 6.07 8.44 4.60 6.08 8.44 4.57 6.05 8.59 5.55 4.94 8.38 9.06 6.80 6.41 6.52 5.95 5.32 5.58
CRISM-MSP msp00003e34_01_sc214 2.37 2.37 3.12 6.51 2.41 3.15 6.54 2.46 3.19 6.95 2.84 2.73 6.68 6.94 4.53 4.53 5.06 3.33 3.29 3.79
CRISM-MSP msp00003ea5_07_sc214 2.37 2.37 3.38 6.48 2.41 3.42 6.51 2.46 3.44 6.93 3.19 2.77 6.63 6.94 4.68 4.56 5.16 3.61 3.35 4
CRISM-MSP msp00003fbc_03_sc214 2.42 2.42 3.73 6.41 2.46 3.77 6.45 2.52 3.75 6.84 3.68 2.86 6.60 6.93 4.97 4.58 5.22 4.03 3.41 4.04
CRISM-MSP msp0000426b_01_sc214 2.33 2.33 2.86 6.48 2.37 2.89 6.51 2.42 2.95 6.90 2.55 2.73 6.68 6.74 4.41 4.5 4.93 3.04 3.22 3.46
CRISM-MSP msp0000438d_03_sc214 2.36 2.36 3.47 6.42 2.41 3.51 6.45 2.47 3.50 6.86 3.36 2.77 6.58 6.87 4.78 4.53 5.21 3.74 3.33 3.95
CRISM-MSP msp0001081c_07_sc214 3.38 3.38 4.18 7.33 3.39 4.19 7.35 3.57 4.42 8.12 3.75 3.84 7.61 7.61 5.39 5.53 5.94 4.25 4.38 4.74
CRISM-MSP msp00004125_05_sc214 2.62 2.62 4.55 6.51 2.66 4.59 6.54 2.71 4.59 6.92 4.60 3.21 6.79 7.14 5.64 4.84 5.24 4.96 3.8 4.15
CRISM-MSP average (MSP) 2.55 2.55 3.61 6.59 2.59 3.65 6.62 2.66 3.69 7.08 3.42 2.99 6.80 7.02 4.91 4.72 5.25 3.85 3.54 4.02
M3-Global globalA 2.17 2.17 6.10 6.99 2.22 6.13 6.93 2.19 5.16 6.71 4.89 2.59 6.49 7.22 5.75 4.31 4.52 5.14 3.15 3.61
M3-Global globalB 2.12 2.12 6.08 6.97 2.17 6.12 6.91 2.15 5.08 6.68 4.77 2.54 6.41 7.18 5.69 4.26 4.48 5.05 3.1 3.5
M3-Global average (global) 2.14 2.14 6.09 6.98 2.19 6.12 6.92 2.17 5.12 6.69 4.83 2.56 6.45 7.20 5.72 4.29 4.50 5.10 3.13 3.56
M3-Target targetA 3.38 3.38 5.18 6.98 3.40 5.13 6.96 3.39 4.39 6.87 3.83 3.58 6.88 7.68 5.24 4.84 4.94 4.19 3.75 3.87
M3-Target targetB 3.18 3.18 5.09 6.68 3.21 5.06 6.65 3.21 4.35 6.59 3.95 3.39 6.70 7.59 5.13 4.64 4.72 4.21 3.56 3.69
M3-Target targetC 2.71 2.71 4.97 6.47 2.74 4.89 6.43 2.75 3.96 6.30 3.20 3.01 6.22 7.04 4.7 4.33 4.43 3.59 3.2 3.36
M3-Target average (target) 3.09 3.09 5.08 6.71 3.12 5.03 6.68 3.12 4.24 6.59 3.66 3.33 6.60 7.44 5.02 4.60 4.70 4.00 3.50 3.64
Hyperion ErtaAle 4.26 4.29 4.60 5.20 4.34 4.64 5.24 4.42 4.72 5.44 4.97 4.54 5.47 6.06 5.54 5.02 5.02 5.07 4.47 4.5
Hyperion LakeMonona 4.39 4.42 4.69 5.41 4.47 4.73 5.45 4.57 4.80 5.66 4.95 4.67 5.73 6.32 5.54 5.14 5.18 5.08 4.59 4.69
Hyperion MtStHelens 4.30 4.33 4.72 5.24 4.38 4.76 5.27 4.48 4.89 5.49 5.18 4.60 5.52 6.06 5.71 5.11 5.12 5.31 4.59 4.65
Hyperion Cuprite 4.26 4.29 4.57 5.07 4.34 4.61 5.11 4.42 4.68 5.31 4.99 4.53 5.35 5.89 5.54 4.94 4.96 5.1 4.42 4.49
Hyperion average (raw) 4.30 4.33 4.65 5.23 4.38 4.69 5.27 4.47 4.77 5.47 5.02 4.59 5.52 6.08 5.58 5.05 5.07 5.14 4.52 4.58
Hyperion Cuprite_flatfield 3.97 4.29 3.97 4.00 4.34 4.01 4.04 4.42 4.07 4.11 4.80 4.33 4.11 4.54 4.99 4.39 4.32 4.89 4.19 4.05
SFSI mantar_raw 4.67 4.85 4.67 4.76 4.89 4.70 4.80 5.04 4.71 4.93 4.75 5.02 4.91 5.43 5.3 4.97 4.9 4.65 4.61 4.56
SFSI mantar_rad_rmnoise 2.96 2.97 3.71 3.82 2.86 3.65 3.75 3.55 4.56 4.75 4.35 3.08 4.07 4.70 4.88 3.92 3.75 4.42 3.34 3.23
AVIRIS sc0_raw 6.19 6.54 6.19 6.20 6.58 6.23 6.24 6.81 6.45 6.47 9.16 6.95 6.45 7.15 9.31 7.13 6.7 9.46 7.13 6.65
AVIRIS sc3_raw 6.06 6.40 6.06 6.06 6.43 6.10 6.10 6.66 6.32 6.33 8.85 6.83 6.30 6.93 9.06 7.01 6.54 9.19 7 6.47
AVIRIS sc10_raw 5.58 5.92 5.58 5.59 5.95 5.60 5.62 6.18 5.82 5.84 7.29 6.16 5.62 6.23 7.46 6.18 5.93 7.45 6.09 5.8
AVIRIS sc11_raw 5.83 6.17 5.83 5.84 6.21 5.87 5.88 6.42 6.07 6.09 8.48 6.48 6.03 6.80 8.64 6.65 6.36 8.74 6.6 6.27
AVIRIS sc18_raw 6.21 6.53 6.21 6.19 6.56 6.23 6.21 6.79 6.47 6.46 9.28 6.94 6.39 7.22 9.42 7.12 6.76 9.58 7.12 6.71
AVIRIS average (16-bit raw) 5.98 6.31 5.98 5.98 6.35 6.01 6.01 6.57 6.22 6.24 8.61 6.67 6.16 6.87 8.78 6.82 6.46 8.88 6.79 6.38
AVIRIS hawaii_sc01_raw 2.62 2.94 2.62 2.63 2.99 2.68 2.69 3.06 2.76 2.77 4.58 3.27 2.94 3.38 4.77 3.51 3.29 4.62 3.26 2.99
AVIRIS maine_sc10_raw 2.73 3.03 2.73 2.73 3.08 2.77 2.78 3.16 2.86 2.87 4.50 3.36 3.07 3.51 4.66 3.62 3.36 4.55 3.41 3.09
AVIRIS average (12-bit raw) 2.68 2.99 2.68 2.68 3.04 2.72 2.73 3.11 2.81 2.82 4.54 3.32 3.01 3.44 4.72 3.57 3.33 4.59 3.34 3.04
AVIRIS sc0_cal 3.96 4.29 3.96 3.97 4.33 4.00 4.01 4.59 4.24 4.27 6.92 4.73 4.59 4.85 7.1 4.86 4.63 7.14 4.73 4.46
AVIRIS sc3_cal 3.83 4.15 3.83 3.84 4.19 3.87 3.88 4.45 4.11 4.14 6.65 4.63 4.46 4.65 6.85 4.75 4.5 6.86 4.62 4.31
AVIRIS sc10_cal 3.37 3.71 3.37 3.39 3.74 3.41 3.42 4.04 3.70 3.72 5.16 4.01 3.80 3.93 5.29 4.04 3.94 5.15 3.83 3.68
AVIRIS sc11_cal 3.64 3.98 3.64 3.65 4.02 3.68 3.70 4.28 3.93 3.95 6.21 4.28 4.18 4.43 6.42 4.41 4.31 6.39 4.24 4.1
AVIRIS sc18_cal 3.91 4.24 3.91 3.91 4.28 3.95 3.95 4.57 4.23 4.25 6.99 4.68 4.56 4.86 7.2 4.82 4.68 7.24 4.69 4.51
AVIRIS average (16-bit cal) 3.74 4.07 3.74 3.75 4.11 3.78 3.79 4.39 4.04 4.06 6.39 4.46 4.32 4.54 6.57 4.58 4.41 6.56 4.42 4.21
CASI t0180f07_raw 4.86 5.16 4.88 4.86 5.19 4.91 4.89 5.29 5.02 5.00 6.48 5.23 4.96 5.49 6.66 5.3 5.37 6.6 5.11 5.16
CASI t0477f06_raw 5.18 5.40 5.27 5.18 5.43 5.30 5.22 5.51 5.39 5.28 7.07 5.44 5.23 5.82 7.38 5.61 5.74 7.34 5.44 5.57
CASI average (raw) 5.02 5.28 5.07 5.02 5.31 5.10 5.05 5.40 5.20 5.14 6.77 5.33 5.10 5.65 7.02 5.46 5.56 6.97 5.28 5.37
CASI t0180f07_rad 7.58 7.96 7.58 7.61 8.00 7.62 7.66 8.24 7.83 7.89 9.23 7.91 7.79 8.33 9.41 7.96 8.06 9.46 7.87 7.98
CASI t0477f06_rad_rss 8.30 8.62 8.30 8.29 8.66 8.33 8.33 8.79 8.45 8.48 10.35 8.56 8.56 9.19 10.59 8.73 8.81 10.7 8.7 8.8
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Table E-2:  Compressed Data Rates (in Bits/Sample) for Full Image Compression of Multispectral Images 

reduced+
column

full+
neighbor

reduced+
neighbor

reduced+
column

full+
neighbor

reduced+
neighbor

reduced+
column

full+
neighbor

reduced+
neighbor direct differential direct + IWT + POT direct + IWT + POT

MODIS-night A2001123.0000_night 4.44 4.44 4.96 7.01 4.47 4.98 7.05 5.00 5.29 7.31 4.95 5.36 7.69 6.93 5.89 6.04 4.73 5.13 5.25 4.53
MODIS-night A2001123.1630_night 5.10 5.10 5.74 7.24 5.12 5.76 7.28 5.97 6.34 7.54 5.97 6.43 7.88 7.65 6.61 6.85 5.63 6.09 6.36 5.52
MODIS-night A2001222.0835_night 4.45 4.45 5.00 7.09 4.47 5.02 7.12 5.02 5.37 7.43 4.99 5.43 7.63 6.94 5.91 6.13 4.83 5.1 5.34 4.62
MODIS-night A2001222.0840_night 5.15 5.15 5.80 7.34 5.18 5.84 7.39 6.16 6.48 7.70 6.09 6.58 7.96 7.71 6.76 7.05 5.71 6.23 6.59 5.6
MODIS-night A2001222.1200_night 4.37 4.37 4.86 7.05 4.38 4.87 7.09 5.06 5.31 7.43 4.89 5.41 7.62 6.90 5.84 6.13 4.85 5.02 5.34 4.64
MODIS-night average (night) 4.70 4.70 5.27 7.14 4.72 5.29 7.18 5.44 5.76 7.48 5.38 5.84 7.76 7.22 6.20 6.44 5.15 5.51 5.78 4.98
MODIS-day A2001123.0000_day 4.21 4.21 4.18 4.26 3.53 3.50 3.57 6.48 6.21 6.52 2.83 3.07 4.08 4.56 3.51 5.01 4.67 3.31 4.89 4.29
MODIS-day A2001123.1630_day 6.04 6.04 6.05 6.10 5.73 5.76 5.81 7.34 7.36 7.50 5.07 5.58 6.02 6.94 5.91 7.13 7.15 5.74 7.02 6.99
MODIS-day A2001222.0835_day 6.37 6.37 6.58 6.59 5.97 6.24 6.26 6.96 7.17 7.28 5.38 5.66 6.48 7.31 6.44 7.07 6.99 6.15 6.88 6.77
MODIS-day A2001222.0840_day 6.22 6.22 6.19 6.21 5.98 5.94 5.96 7.62 7.53 7.63 5.13 5.67 6.26 6.66 6.18 7.42 7.17 5.96 7.33 6.96
MODIS-day A2001222.1200_day 5.78 5.78 5.94 5.94 5.34 5.55 5.57 6.69 6.89 7.02 5.03 5.18 5.91 6.72 5.9 6.61 6.64 5.68 6.4 6.38
MODIS-day average (day) 5.72 5.72 5.79 5.82 5.31 5.40 5.43 7.02 7.03 7.19 4.69 5.03 5.75 6.44 5.59 6.65 6.52 5.37 6.50 6.28
MODIS-500m A2001123.0000_500m 6.82 7.42 7.18 7.78 7.46 7.21 7.82 8.57 7.42 8.38 7.56 6.37 8.38 8.96 8.12 7.88 7.19 7.73 6.78 6.58
MODIS-500m A2001123.1630_500m 7.52 7.98 7.70 8.09 7.98 7.71 8.11 8.93 8.02 8.71 7.94 7.06 8.48 9.11 8.42 8.37 7.85 8.09 7.61 7.41
MODIS-500m A2001222.0835_500m 6.92 7.55 7.00 7.57 7.56 7.01 7.59 8.84 7.47 8.54 7.17 6.25 8.11 8.51 7.89 7.97 7.33 7.25 6.8 6.54
MODIS-500m A2001222.0840_500m 7.68 8.21 7.68 8.14 8.23 7.69 8.16 9.16 8.13 8.96 8.06 7.23 8.56 9.14 8.54 8.57 8.06 8.27 7.94 7.65
MODIS-500m A2001222.1200_500m 7.04 7.61 7.17 7.75 7.62 7.17 7.76 8.92 7.56 8.70 7.39 6.28 8.28 8.66 8.11 8.02 7.39 7.53 6.78 6.58
MODIS-500m average (500m) 7.20 7.75 7.35 7.87 7.77 7.36 7.89 8.88 7.72 8.66 7.62 6.64 8.36 8.88 8.22 8.16 7.56 7.77 7.18 6.95
MODIS-250m A2001123.0000_250m 5.83 6.11 6.07 6.32 6.12 6.08 6.34 6.53 6.23 6.57 6.88 6.29 6.79 6.84 6.95 6.59 5.64 6.94 6.52 5.41
MODIS-250m A2001123.1630_250m 7.11 7.38 7.10 7.29 7.33 7.06 7.25 7.48 7.18 7.39 7.19 6.99 7.44 8.35 7.36 7.37 7.2 7.34 7.33 7.16
MODIS-250m A2001222.0835_250m 6.16 6.35 6.47 6.79 6.32 6.47 6.80 6.58 6.66 6.92 6.65 6.35 6.86 7.51 6.84 6.86 6.25 6.7 6.71 6.15
MODIS-250m A2001222.0840_250m 7.33 7.63 7.35 7.61 7.61 7.35 7.61 7.84 7.54 7.79 7.45 7.22 7.90 8.54 7.68 7.84 7.52 7.69 7.87 7.56
MODIS-250m A2001222.1200_250m 6.00 6.18 6.45 6.76 6.13 6.44 6.76 6.39 6.54 6.86 6.61 6.25 6.78 7.40 6.87 6.71 5.9 6.75 6.54 5.75
MODIS-250m average (250m) 6.48 6.73 6.69 6.95 6.70 6.68 6.95 6.96 6.83 7.11 6.96 6.62 7.15 7.73 7.14 7.07 6.50 7.08 6.99 6.41
MSG 3 3.34 3.78 3.34 3.54 3.74 3.30 3.49 4.06 3.58 3.81 3.43 3.80 4.06 5.01 3.62 4.04 3.86 3.43 3.86 3.67
MSG 15 3.54 4.02 3.54 3.74 3.99 3.51 3.70 4.29 3.77 4.00 3.69 3.96 4.26 5.25 3.89 4.17 4.02 3.69 3.96 3.81
MSG 31 3.30 3.75 3.30 3.52 3.71 3.27 3.47 3.99 3.51 3.73 3.37 3.73 4.01 4.93 3.58 3.97 3.81 3.38 3.78 3.61
MSG average 3.39 3.85 3.39 3.60 3.81 3.36 3.56 4.11 3.62 3.85 3.50 3.83 4.11 5.06 3.70 4.06 3.90 3.50 3.87 3.70
LANDSAT agriculture 3.60 3.96 3.60 3.71 3.97 3.62 3.73 3.99 3.65 3.77 3.99 3.81 4.51 4.82 4.38 4.07 3.99 4.27 3.92 3.82
LANDSAT coast 2.74 3.06 2.74 2.76 3.06 2.74 2.76 3.11 2.76 2.79 2.93 2.97 2.89 3.50 3.25 3.16 3.18 2.99 2.86 2.88
LANDSAT mountain 3.78 4.15 3.78 3.84 4.17 3.80 3.87 4.39 3.99 4.11 4.16 4.08 4.32 4.65 4.45 4.37 4.25 4.34 4.22 4.11
LANDSAT average 3.37 3.73 3.37 3.44 3.74 3.39 3.45 3.83 3.47 3.56 3.70 3.62 3.91 4.32 4.03 3.87 3.81 3.87 3.67 3.60
PLEIADES montp_trans 7.42 7.77 7.42 7.56 7.83 7.48 7.62 8.15 7.74 7.95 7.98 7.40 8.05 8.70 8.2 7.76 8.02 8.3 7.84 8.11
PLEIADES perp_trans 7.21 7.52 7.21 7.36 7.53 7.24 7.39 7.70 7.37 7.57 7.69 7.22 7.85 8.61 7.89 7.4 7.64 8 7.47 7.72
PLEIADES average 7.32 7.64 7.32 7.46 7.68 7.36 7.50 7.93 7.55 7.76 7.84 7.31 7.95 8.65 8.05 7.58 7.83 8.15 7.66 7.92
PLEIADES montp_misreg0 6.71 7.03 6.71 6.84 7.07 6.75 6.88 7.47 7.11 7.29 7.24 6.67 7.31 7.99 7.46 7.1 7.29 7.53 7.15 7.33
PLEIADES montp_misreg20 6.98 7.27 6.98 7.12 7.31 7.01 7.15 7.64 7.29 7.48 7.24 6.88 7.53 8.16 7.46 7.26 7.48 7.53 7.31 7.54
PLEIADES montp_misreg35 7.14 7.44 7.14 7.29 7.46 7.17 7.32 7.74 7.40 7.58 7.24 7.05 7.69 8.31 7.46 7.37 7.59 7.53 7.42 7.66
PLEIADES montp_misreg50 7.26 7.57 7.26 7.42 7.59 7.28 7.45 7.82 7.47 7.66 7.24 7.19 7.83 8.44 7.46 7.44 7.66 7.53 7.49 7.74
VEGETATION 1_1b 5.24 5.28 5.24 5.72 5.19 5.17 5.62 5.32 5.30 5.99 5.29 5.04 5.82 6.93 5.56 5.52 5.5 5.46 5.36 5.33
VEGETATION 2_1b 5.28 5.31 5.28 5.76 5.23 5.21 5.66 5.37 5.34 6.03 5.32 5.06 5.90 7.00 5.61 5.56 5.56 5.5 5.41 5.39
VEGETATION average (level 1b) 5.26 5.30 5.26 5.74 5.21 5.19 5.64 5.35 5.32 6.01 5.30 5.05 5.86 6.96 5.59 5.54 5.53 5.48 5.39 5.36
VEGETATION 1_1c 5.02 5.29 5.02 5.14 5.21 4.95 5.06 5.34 5.03 5.18 5.25 5.01 5.51 6.73 5.44 5.32 5.26 5.4 5.28 5.21
VEGETATION 2_1c 5.06 5.33 5.06 5.18 5.25 4.99 5.10 5.38 5.08 5.23 5.28 5.03 5.58 6.80 5.48 5.37 5.33 5.44 5.33 5.28
VEGETATION average (level 1c) 5.04 5.31 5.04 5.16 5.23 4.97 5.08 5.36 5.05 5.20 5.26 5.02 5.55 6.77 5.46 5.35 5.30 5.42 5.31 5.25
SPOT5 1 5.14 5.48 5.14 5.25 5.48 5.14 5.25 5.50 5.17 5.30 5.44 5.39 5.63 6.04 5.64 5.7 5.34 5.61 5.68 5.28
SPOT5 2 4.27 4.64 4.27 4.37 4.63 4.26 4.35 4.65 4.28 4.39 4.35 4.39 4.89 5.43 4.63 4.79 4.4 4.58 4.74 4.3
SPOT5 3 4.17 4.60 4.17 4.34 4.60 4.17 4.34 4.60 4.16 4.35 4.32 4.36 4.99 5.52 4.61 4.73 4.36 4.57 4.68 4.26
SPOT5 average 4.53 4.91 4.53 4.65 4.90 4.52 4.65 4.92 4.54 4.68 4.71 4.71 5.17 5.66 4.96 5.07 4.70 4.92 5.03 4.61

CCSDS-122.0-B JPEG2000

defaults
sample-adaptive block-adaptive BIL block-adaptive BIP

Instrument scene

CCSDS-123.0-B
JPEG-LS ESA +

sample-
adaptive
coding

LUT +
sample-
adaptive
coding
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Table E-3:  Compressed Data Rates (in Bits/Sample) for Segmented Compression of Hyperspectral Images 

reduced+
column

full+
neighbor

reduced+
neighbor

reduced+
column

full+
neighbor

reduced+
neighbor

reduced+
column

full+
neighbor

reduced+
neighbor direct differential direct + IWT + POT direct + IWT + POT

IASI desert 4.72 5.04 4.76 4.72 5.08 4.80 4.76 5.03 4.75 4.71 6.25 4.96 4.95 5.83 7.19 5.6 6.17 7.01 5.54 6.02
IASI ecosse 4.92 5.27 5.04 4.92 5.31 5.08 4.96 5.20 4.98 4.87 7.29 5.19 4.96 5.68 8.45 5.9 6.25 8.17 5.84 6.08
IASI polenord 4.65 4.98 4.72 4.65 5.01 4.75 4.69 4.92 4.67 4.61 6.34 4.87 4.70 5.23 7.28 5.49 5.98 7.14 5.46 5.81
IASI tropocean 4.78 5.10 4.82 4.78 5.14 4.87 4.83 5.11 4.85 4.81 6.54 5.11 5.04 6.13 7.57 5.79 6.3 7.35 5.71 6.15
IASI average 4.77 5.10 4.83 4.77 5.14 4.88 4.81 5.06 4.81 4.75 6.61 5.03 4.91 5.72 7.62 5.70 6.18 7.42 5.64 6.02
AIRS 9 4.25 4.56 4.27 4.25 4.62 4.32 4.30 4.65 4.35 4.34 6.36 4.81 4.59 6.05 6.96 5.06 4.99 7.07 5.17 5.04
AIRS 16 4.22 4.51 4.23 4.22 4.57 4.28 4.28 4.60 4.31 4.31 6.22 4.71 4.53 5.84 6.73 4.92 4.94 6.82 5.01 5
AIRS 60 4.40 4.72 4.43 4.40 4.78 4.49 4.46 4.81 4.52 4.50 6.82 5.01 4.81 6.29 7.44 5.3 5.2 7.53 5.41 5.27
AIRS 82 4.15 4.45 4.16 4.15 4.50 4.21 4.20 4.53 4.24 4.23 5.85 4.59 4.38 5.63 6.32 4.76 4.83 6.42 4.85 4.88
AIRS 120 4.30 4.62 4.32 4.30 4.68 4.37 4.36 4.72 4.40 4.39 6.32 4.83 4.66 5.98 6.89 5.07 5.05 6.98 5.18 5.12
AIRS 126 4.42 4.74 4.45 4.42 4.80 4.51 4.48 4.82 4.53 4.51 6.70 5.02 4.79 6.29 7.31 5.3 5.2 7.39 5.41 5.27
AIRS 129 4.16 4.44 4.17 4.16 4.50 4.22 4.21 4.53 4.24 4.24 5.58 4.56 4.45 5.75 6.09 4.72 4.84 6.17 4.81 4.9
AIRS 151 4.43 4.74 4.46 4.43 4.80 4.52 4.49 4.82 4.53 4.51 6.45 4.98 4.81 6.48 6.99 5.19 5.18 7.12 5.32 5.27
AIRS 182 4.46 4.74 4.49 4.46 4.79 4.55 4.51 4.82 4.56 4.54 6.52 5.00 4.90 6.70 7.13 5.27 5.25 7.21 5.38 5.32
AIRS 193 4.44 4.76 4.47 4.44 4.82 4.53 4.50 4.86 4.56 4.54 6.65 5.03 4.84 6.29 7.23 5.29 5.22 7.34 5.4 5.29
AIRS average 4.32 4.63 4.34 4.32 4.69 4.40 4.38 4.72 4.43 4.41 6.35 4.85 4.68 6.13 6.91 5.09 5.07 7.01 5.19 5.14
CRISM-FRT frt00006d1c_07_sc164 4.76 4.76 5.69 8.42 4.80 5.68 8.41 4.80 5.69 8.53 4.88 5.34 8.21 9.06 6.18 6.44 6.49 5.39 5.67 5.79
CRISM-FRT frt00010f86_07_sc167 5.43 5.43 7.00 9.50 5.48 7.00 9.51 5.47 7.09 9.73 5.55 6.06 9.46 10.02 6.99 7.39 7.43 6.23 6.64 6.82
CRISM-FRT frt00013e49_07_sc166 5.62 5.62 7.36 9.54 5.66 7.36 9.54 5.63 7.44 9.77 6.29 6.12 9.44 10.08 7.49 7.45 7.53 6.93 6.75 6.99
CRISM-FRT frt000065e6_07_sc164 4.98 4.98 5.95 8.48 5.01 5.95 8.47 5.01 5.92 8.59 5.34 5.49 8.37 9.20 6.5 6.54 6.56 5.84 5.8 5.89
CRISM-FRT frt0000869b_07_sc164 5.20 5.20 6.83 8.81 5.24 6.84 8.81 5.22 6.79 8.94 6.29 5.66 8.73 9.49 7.22 6.86 6.89 6.76 6.14 6.29
CRISM-FRT frt0001077d_07_sc166 5.54 5.54 7.06 9.47 5.59 7.07 9.48 5.56 7.15 9.69 5.84 6.08 9.36 10.01 7.14 7.37 7.4 6.5 6.66 6.85
CRISM-FRT frt0001241d_07_sc164 5.51 5.51 6.93 9.29 5.54 6.94 9.29 5.52 6.97 9.48 5.92 6.01 9.19 9.89 7.19 7.3 7.32 6.54 6.56 6.72
CRISM-FRT frt00008849_07_sc165 5.04 5.04 6.33 8.78 5.08 6.33 8.78 5.06 6.30 8.91 5.52 5.53 9.19 9.45 6.74 6.75 6.8 6.07 5.98 6.14
CRISM-FRT frt00009326_07_sc167 4.79 4.79 6.62 8.54 4.83 6.62 8.53 4.80 6.57 8.66 5.99 5.22 8.35 9.16 6.91 6.49 6.64 6.48 5.76 6.09
CRISM-FRT average (FRT) 5.21 5.21 6.64 8.98 5.25 6.64 8.98 5.23 6.66 9.15 5.74 5.73 8.92 9.60 6.93 6.95 7.01 6.30 6.22 6.40
CRISM-HRL hrl0000ba9c_07_sc183 5.09 5.09 6.32 8.98 5.11 6.32 8.99 5.10 6.36 9.19 5.53 5.64 8.91 9.58 6.81 6.89 6.97 6.23 6.23 6.41
CRISM-HRL hrl00004f38_07_sc181 4.44 4.44 6.31 8.01 4.45 6.30 8.00 4.41 6.24 8.12 6.21 4.84 7.90 8.73 7 6.03 6.19 6.65 5.36 5.69
CRISM-HRL hrl000089fd_07_sc182 4.76 4.76 5.84 8.57 4.78 5.85 8.57 4.76 5.83 8.71 5.26 5.26 8.49 9.25 6.55 6.5 6.58 5.92 5.79 5.95
CRISM-HRL hrl0000648f_07_sc182 4.63 4.63 6.26 8.30 4.64 6.25 8.29 4.62 6.20 8.43 5.98 5.08 8.22 9.03 6.91 6.3 6.42 6.49 5.61 5.85
CRISM-HRL average (HRL) 4.73 4.73 6.18 8.46 4.74 6.18 8.46 4.72 6.16 8.61 5.75 5.21 8.38 9.15 6.82 6.43 6.54 6.32 5.75 5.98
CRISM-MSP msp00003e34_01_sc214 2.73 2.73 3.39 6.55 2.63 3.33 6.57 2.69 3.37 6.98 3.22 3.25 6.68 7.21 4.63 4.63 5.16 4.22 4.22 4.73
CRISM-MSP msp00003ea5_07_sc214 2.73 2.73 3.63 6.52 2.63 3.58 6.54 2.69 3.60 6.97 3.52 3.30 6.63 7.19 4.78 4.65 5.26 4.46 4.27 4.92
CRISM-MSP msp00003fbc_03_sc214 2.77 2.77 3.95 6.45 2.67 3.92 6.48 2.74 3.90 6.87 3.95 3.35 6.60 7.19 5.07 4.67 5.32 4.85 4.31 4.96
CRISM-MSP msp0000426b_01_sc214 2.70 2.70 3.17 6.52 2.60 3.09 6.55 2.66 3.14 6.93 2.96 3.21 6.68 7.02 4.51 4.6 5.02 3.94 4.15 4.43
CRISM-MSP msp0000438d_03_sc214 2.72 2.72 3.71 6.46 2.62 3.67 6.48 2.69 3.66 6.89 3.67 3.28 6.58 7.11 4.88 4.63 5.3 4.58 4.24 4.88
CRISM-MSP msp0001081c_07_sc214 3.70 3.70 4.45 7.37 3.59 4.38 7.39 3.78 4.59 8.15 4.11 4.28 7.61 8.02 5.49 5.63 6.03 5.14 5.29 5.66
CRISM-MSP msp00004125_05_sc214 2.95 2.95 4.72 6.56 2.86 4.71 6.58 2.92 4.72 6.95 4.83 3.66 6.79 7.47 5.74 4.94 5.34 5.72 4.68 5.04
CRISM-MSP average (MSP) 2.90 2.90 3.86 6.63 2.80 3.81 6.66 2.88 3.86 7.11 3.75 3.47 6.80 7.32 5.01 4.82 5.35 4.70 4.45 4.95
M3-Global globalA 2.40 2.40 6.17 7.01 2.41 6.20 6.95 2.38 5.24 6.73 4.99 2.94 6.49 7.33 5.77 4.32 4.53 5.44 3.59 3.98
M3-Global globalB 2.35 2.35 6.15 6.99 2.37 6.19 6.93 2.34 5.16 6.70 4.87 2.89 6.41 7.26 5.71 4.28 4.5 5.36 3.54 3.89
M3-Global average (global) 2.37 2.37 6.16 7.00 2.39 6.19 6.94 2.36 5.20 6.71 4.93 2.91 6.45 7.30 5.74 4.30 4.52 5.40 3.57 3.94
M3-Target targetA 3.53 3.53 5.27 7.01 3.54 5.22 6.99 3.53 4.50 6.89 3.99 3.81 6.88 7.77 5.25 4.85 4.95 4.5 4.1 4.22
M3-Target targetB 3.33 3.33 5.18 6.70 3.35 5.14 6.67 3.34 4.45 6.61 4.08 3.62 6.70 7.65 5.14 4.65 4.72 4.48 3.9 4.02
M3-Target targetC 2.88 2.88 5.06 6.49 2.91 4.98 6.45 2.90 4.07 6.32 3.37 3.24 6.22 7.12 4.7 4.33 4.44 3.88 3.55 3.69
M3-Target average (target) 3.25 3.25 5.17 6.73 3.27 5.11 6.70 3.26 4.34 6.61 3.82 3.56 6.60 7.51 5.03 4.61 4.70 4.29 3.85 3.98
Hyperion ErtaAle 4.33 4.36 4.66 5.22 4.40 4.70 5.26 4.49 4.78 5.46 5.04 4.65 5.47 6.14 5.55 5.03 5.03 5.33 4.76 4.79
Hyperion LakeMonona 4.46 4.49 4.75 5.43 4.54 4.79 5.46 4.63 4.87 5.68 5.02 4.78 5.73 6.41 5.55 5.16 5.19 5.34 4.88 4.97
Hyperion MtStHelens 4.38 4.40 4.77 5.25 4.44 4.81 5.29 4.55 4.95 5.51 5.25 4.71 5.52 6.14 5.73 5.12 5.13 5.55 4.87 4.93
Hyperion Cuprite 4.33 4.35 4.63 5.09 4.40 4.67 5.13 4.48 4.74 5.33 5.05 4.62 5.35 5.96 5.56 4.96 4.97 5.34 4.7 4.76
Hyperion average (raw) 4.37 4.40 4.70 5.25 4.44 4.74 5.29 4.54 4.84 5.49 5.09 4.69 5.52 6.16 5.60 5.07 5.08 5.39 4.80 4.86
Hyperion Cuprite_flatfield 3.98 4.29 3.98 4.01 4.34 4.03 4.06 4.42 4.09 4.12 4.81 4.34 4.11 4.55 5 4.4 4.33 5.08 4.4 4.27
SFSI mantar_raw 4.69 4.87 4.69 4.77 4.91 4.72 4.81 5.05 4.73 4.94 4.77 5.03 4.91 5.43 5.3 4.98 4.91 4.79 4.72 4.67
SFSI mantar_rad_rmnoise 3.01 3.01 3.74 3.83 2.90 3.67 3.77 3.60 4.59 4.77 4.40 3.16 4.07 4.80 4.89 3.93 3.76 4.56 3.51 3.38
AVIRIS sc0_raw 6.21 6.54 6.21 6.21 6.58 6.25 6.25 6.81 6.46 6.48 9.19 6.99 6.45 7.81 9.31 7.14 6.71 9.54 7.21 6.72
AVIRIS sc3_raw 6.08 6.40 6.08 6.07 6.43 6.11 6.11 6.66 6.33 6.34 8.89 6.87 6.30 7.54 9.07 7.01 6.55 9.27 7.08 6.55
AVIRIS sc10_raw 5.59 5.92 5.59 5.60 5.95 5.62 5.63 6.18 5.83 5.85 7.32 6.20 5.62 6.68 7.47 6.19 5.94 7.57 6.19 5.9
AVIRIS sc11_raw 5.85 6.17 5.85 5.85 6.21 5.88 5.89 6.42 6.08 6.10 8.50 6.52 6.03 7.27 8.65 6.66 6.36 8.83 6.68 6.35
AVIRIS sc18_raw 6.22 6.53 6.22 6.20 6.56 6.24 6.22 6.79 6.48 6.47 9.31 6.98 6.39 7.79 9.43 7.12 6.77 9.67 7.2 6.8
AVIRIS average (16-bit raw) 5.99 6.31 5.99 5.99 6.35 6.02 6.02 6.57 6.24 6.25 8.64 6.71 6.16 7.42 8.79 6.82 6.47 8.98 6.87 6.46
AVIRIS hawaii_sc01_raw 2.64 2.94 2.64 2.65 3.00 2.69 2.70 3.06 2.77 2.78 4.60 3.29 2.94 3.43 4.78 3.51 3.3 4.7 3.34 3.08
AVIRIS maine_sc10_raw 2.74 3.04 2.74 2.75 3.08 2.79 2.79 3.17 2.87 2.88 4.53 3.39 3.07 3.64 4.67 3.62 3.36 4.64 3.48 3.17
AVIRIS average (12-bit raw) 2.69 2.99 2.69 2.70 3.04 2.74 2.74 3.11 2.82 2.83 4.56 3.34 3.01 3.53 4.73 3.57 3.33 4.67 3.41 3.13
AVIRIS sc0_cal 3.97 4.29 3.97 3.98 4.33 4.01 4.03 4.59 4.25 4.28 6.94 4.75 4.59 5.05 7.11 4.86 4.64 7.22 4.81 4.54
AVIRIS sc3_cal 3.85 4.15 3.85 3.86 4.19 3.88 3.89 4.45 4.13 4.15 6.67 4.65 4.46 4.83 6.86 4.76 4.51 6.95 4.7 4.4
AVIRIS sc10_cal 3.39 3.71 3.39 3.40 3.74 3.43 3.43 4.05 3.71 3.73 5.17 4.03 3.80 4.11 5.3 4.04 3.94 5.28 3.92 3.77
AVIRIS sc11_cal 3.66 3.98 3.66 3.67 4.02 3.70 3.71 4.28 3.94 3.97 6.23 4.30 4.18 4.67 6.42 4.42 4.31 6.47 4.32 4.18
AVIRIS sc18_cal 3.93 4.24 3.93 3.93 4.28 3.96 3.96 4.57 4.24 4.26 7.01 4.70 4.56 5.09 7.21 4.82 4.68 7.32 4.77 4.59
AVIRIS average (16-bit cal) 3.76 4.08 3.76 3.77 4.11 3.80 3.81 4.39 4.06 4.08 6.41 4.49 4.32 4.75 6.58 4.58 4.42 6.65 4.50 4.30
CASI t0180f07_raw 4.87 5.16 4.89 4.87 5.19 4.92 4.90 5.29 5.03 5.01 6.50 5.25 4.96 5.76 6.67 5.31 5.37 6.71 5.24 5.29
CASI t0477f06_raw 5.20 5.41 5.28 5.20 5.43 5.31 5.23 5.51 5.39 5.29 7.08 5.46 5.23 6.15 7.4 5.62 5.75 7.46 5.56 5.69
CASI average (raw) 5.03 5.28 5.08 5.03 5.31 5.11 5.07 5.40 5.21 5.15 6.79 5.36 5.10 5.96 7.04 5.47 5.56 7.09 5.40 5.49
CASI t0180f07_rad 7.59 7.96 7.59 7.62 8.00 7.63 7.66 8.24 7.84 7.90 9.24 7.93 7.79 8.73 9.42 7.97 8.07 9.57 7.98 8.11
CASI t0477f06_rad_rss 8.31 8.62 8.31 8.30 8.65 8.34 8.33 8.79 8.46 8.49 10.37 8.59 8.56 9.80 10.61 8.74 8.82 10.82 8.81 8.92

defaults
sample-adaptive block-adaptive BIL block-adaptive BIP

Instrument scene

ESA +
sample-
adaptive
coding

LUT +
sample-
adaptive
coding
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Table E-4:  Compressed Data Rates (in Bits/Sample) for Segmented Compression of Multispectral Images 

reduced+
column

full+
neighbor

reduced+
neighbor

reduced+
column

full+
neighbor

reduced+
neighbor

reduced+
column

full+
neighbor

reduced+
neighbor direct differential direct + IWT + POT direct + IWT + POT

MODIS-night A2001123.0000_night 4.35 4.35 4.88 6.94 4.38 4.90 6.99 4.94 5.22 7.26 4.96 5.36 7.69 6.94 5.89 6.04 4.72 5.14 5.27 4.55
MODIS-night A2001123.1630_night 5.06 5.06 5.69 7.20 5.07 5.71 7.24 5.93 6.27 7.50 5.98 6.44 7.88 7.67 6.61 6.85 5.63 6.12 6.4 5.56
MODIS-night A2001222.0835_night 4.38 4.38 4.90 7.03 4.39 4.91 7.07 4.96 5.25 7.39 5.00 5.44 7.63 6.96 5.9 6.13 4.83 5.13 5.36 4.65
MODIS-night A2001222.0840_night 5.10 5.10 5.74 7.32 5.13 5.77 7.36 6.12 6.41 7.68 6.10 6.59 7.96 7.73 6.76 7.05 5.71 6.26 6.61 5.63
MODIS-night A2001222.1200_night 4.32 4.32 4.80 7.01 4.34 4.81 7.05 5.03 5.24 7.40 4.90 5.42 7.62 6.92 5.84 6.13 4.85 5.05 5.36 4.67
MODIS-night average (night) 4.64 4.64 5.20 7.10 4.66 5.22 7.14 5.40 5.68 7.45 5.39 5.85 7.76 7.24 6.20 6.44 5.15 5.54 5.80 5.01
MODIS-day A2001123.0000_day 4.13 4.13 4.13 4.20 3.44 3.43 3.50 6.45 6.17 6.50 2.83 3.07 4.08 4.69 3.51 5.01 4.67 3.35 4.94 4.3
MODIS-day A2001123.1630_day 5.96 5.96 5.98 6.04 5.65 5.67 5.74 7.27 7.29 7.46 5.08 5.59 6.02 7.04 5.91 7.13 7.15 5.8 7.08 7.04
MODIS-day A2001222.0835_day 6.26 6.26 6.41 6.48 5.87 6.06 6.15 6.90 7.03 7.21 5.39 5.67 6.48 7.40 6.44 7.07 6.99 6.22 6.95 6.82
MODIS-day A2001222.0840_day 6.15 6.15 6.13 6.16 5.89 5.87 5.90 7.56 7.48 7.59 5.13 5.67 6.26 6.77 6.18 7.42 7.17 6.01 7.39 7
MODIS-day A2001222.1200_day 5.66 5.66 5.82 5.85 5.22 5.42 5.46 6.63 6.82 6.98 5.04 5.19 5.91 6.82 5.9 6.61 6.64 5.76 6.48 6.43
MODIS-day average (day) 5.63 5.63 5.69 5.75 5.21 5.29 5.35 6.96 6.96 7.15 4.69 5.04 5.75 6.54 5.59 6.65 6.52 5.43 6.57 6.32
MODIS-500m A2001123.0000_500m 6.83 7.40 7.17 7.77 7.44 7.20 7.81 8.55 7.42 8.37 7.57 6.39 8.38 8.97 8.12 7.88 7.19 7.73 6.73 6.57
MODIS-500m A2001123.1630_500m 7.51 7.96 7.63 8.07 7.95 7.62 8.08 8.91 7.98 8.68 7.95 7.08 8.48 9.11 8.42 8.37 7.85 8.13 7.61 7.43
MODIS-500m A2001222.0835_500m 6.89 7.52 6.95 7.53 7.53 6.95 7.55 8.81 7.45 8.51 7.18 6.27 8.11 8.51 7.88 7.97 7.33 7.28 6.78 6.53
MODIS-500m A2001222.0840_500m 7.67 8.19 7.66 8.11 8.21 7.67 8.14 9.14 8.12 8.94 8.07 7.24 8.56 9.14 8.54 8.57 8.06 8.29 7.93 7.65
MODIS-500m A2001222.1200_500m 7.03 7.60 7.14 7.73 7.60 7.13 7.74 8.90 7.56 8.68 7.40 6.30 8.28 8.67 8.11 8.02 7.39 7.55 6.76 6.57
MODIS-500m average (500m) 7.19 7.73 7.31 7.84 7.75 7.31 7.86 8.86 7.71 8.64 7.63 6.66 8.36 8.88 8.21 8.16 7.56 7.80 7.16 6.95
MODIS-250m A2001123.0000_250m 5.83 6.12 6.03 6.31 6.12 6.04 6.33 6.52 6.18 6.56 6.88 6.29 6.79 6.85 6.95 6.59 5.64 6.97 6.54 5.44
MODIS-250m A2001123.1630_250m 7.02 7.33 6.99 7.25 7.26 6.93 7.20 7.42 7.05 7.34 7.20 7.00 7.44 8.35 7.36 7.37 7.2 7.37 7.36 7.19
MODIS-250m A2001222.0835_250m 6.06 6.29 6.24 6.69 6.24 6.21 6.69 6.51 6.36 6.83 6.66 6.36 6.86 7.51 6.84 6.86 6.25 6.73 6.74 6.18
MODIS-250m A2001222.0840_250m 7.29 7.62 7.28 7.59 7.59 7.27 7.58 7.81 7.45 7.75 7.45 7.23 7.90 8.54 7.67 7.84 7.52 7.71 7.89 7.58
MODIS-250m A2001222.1200_250m 5.94 6.16 6.25 6.66 6.10 6.21 6.66 6.36 6.27 6.75 6.61 6.25 6.78 7.41 6.87 6.71 5.9 6.77 6.56 5.78
MODIS-250m average (250m) 6.43 6.70 6.56 6.90 6.66 6.53 6.89 6.92 6.66 7.05 6.96 6.63 7.15 7.73 7.14 7.07 6.50 7.11 7.02 6.43
MSG 3 3.34 3.78 3.34 3.55 3.74 3.30 3.50 4.06 3.58 3.81 3.44 3.80 4.06 5.01 3.62 4.04 3.86 3.46 3.89 3.69
MSG 15 3.54 4.02 3.54 3.74 3.99 3.51 3.70 4.29 3.77 4.00 3.70 3.96 4.26 5.25 3.89 4.17 4.02 3.72 3.99 3.83
MSG 31 3.31 3.75 3.31 3.52 3.71 3.27 3.47 3.99 3.51 3.73 3.37 3.74 4.01 4.93 3.58 3.97 3.81 3.41 3.81 3.63
MSG average 3.40 3.85 3.40 3.60 3.81 3.36 3.56 4.11 3.62 3.85 3.50 3.83 4.11 5.07 3.70 4.06 3.90 3.53 3.90 3.72
LANDSAT agriculture 3.60 3.97 3.60 3.71 3.98 3.62 3.73 3.99 3.65 3.77 3.99 3.81 4.51 4.82 4.38 4.07 3.99 4.29 3.94 3.83
LANDSAT coast 2.74 3.06 2.74 2.76 3.06 2.74 2.76 3.11 2.76 2.79 2.94 2.97 2.89 3.50 3.25 3.16 3.17 3.05 2.9 2.92
LANDSAT mountain 3.78 4.15 3.78 3.84 4.17 3.80 3.87 4.39 4.00 4.11 4.17 4.08 4.32 4.65 4.45 4.37 4.25 4.35 4.23 4.12
LANDSAT average 3.37 3.73 3.37 3.44 3.74 3.39 3.45 3.83 3.47 3.56 3.70 3.62 3.91 4.32 4.03 3.87 3.80 3.90 3.69 3.62
PLEIADES montp_trans 7.43 7.77 7.43 7.57 7.83 7.48 7.63 8.16 7.75 7.95 8.00 7.42 8.05 8.76 8.2 7.76 8.02 8.4 7.93 8.2
PLEIADES perp_trans 7.22 7.52 7.22 7.37 7.53 7.24 7.39 7.70 7.37 7.57 7.70 7.24 7.85 8.71 7.89 7.4 7.64 8.09 7.56 7.81
PLEIADES average 7.32 7.65 7.32 7.47 7.68 7.36 7.51 7.93 7.56 7.76 7.85 7.33 7.95 8.74 8.05 7.58 7.83 8.25 7.75 8.01
PLEIADES montp_misreg0 6.72 7.03 6.72 6.85 7.08 6.76 6.89 7.48 7.12 7.30 7.26 6.68 7.31 8.02 7.46 7.1 7.28 7.6 7.21 7.39
PLEIADES montp_misreg20 6.98 7.27 6.98 7.12 7.31 7.02 7.16 7.64 7.30 7.48 7.25 6.90 7.53 8.19 7.46 7.26 7.48 7.6 7.38 7.6
PLEIADES montp_misreg35 7.14 7.44 7.14 7.29 7.46 7.17 7.32 7.74 7.40 7.58 7.26 7.07 7.69 8.33 7.46 7.37 7.59 7.6 7.49 7.72
PLEIADES montp_misreg50 7.26 7.57 7.26 7.43 7.59 7.29 7.45 7.82 7.47 7.66 7.26 7.21 7.83 8.46 7.46 7.44 7.66 7.6 7.56 7.79
VEGETATION 1_1b 5.24 5.28 5.24 5.72 5.20 5.17 5.62 5.33 5.30 6.00 5.30 5.05 5.82 6.93 5.56 5.52 5.5 5.51 5.42 5.38
VEGETATION 2_1b 5.28 5.32 5.28 5.76 5.24 5.21 5.66 5.37 5.35 6.03 5.33 5.07 5.90 7.00 5.61 5.56 5.56 5.55 5.47 5.44
VEGETATION average (level 1b) 5.26 5.30 5.26 5.74 5.22 5.19 5.64 5.35 5.32 6.02 5.31 5.06 5.86 6.97 5.59 5.54 5.53 5.53 5.45 5.41
VEGETATION 1_1c 5.02 5.29 5.02 5.14 5.21 4.95 5.06 5.34 5.03 5.18 5.25 5.02 5.51 6.73 5.44 5.32 5.25 5.44 5.32 5.24
VEGETATION 2_1c 5.06 5.33 5.06 5.18 5.25 4.99 5.11 5.38 5.08 5.23 5.29 5.04 5.58 6.81 5.48 5.37 5.33 5.48 5.36 5.32
VEGETATION average (level 1c) 5.04 5.31 5.04 5.16 5.23 4.97 5.08 5.36 5.06 5.21 5.27 5.03 5.55 6.77 5.46 5.35 5.29 5.46 5.34 5.28
SPOT5 1 5.14 5.48 5.14 5.25 5.48 5.15 5.26 5.50 5.17 5.30 5.45 5.39 5.63 6.04 5.64 5.7 5.34 5.63 5.7 5.3
SPOT5 2 4.28 4.64 4.28 4.37 4.63 4.26 4.35 4.65 4.28 4.39 4.36 4.40 4.89 5.44 4.63 4.79 4.4 4.61 4.77 4.33
SPOT5 3 4.17 4.60 4.17 4.34 4.60 4.17 4.34 4.60 4.17 4.35 4.33 4.36 4.99 5.52 4.61 4.73 4.36 4.59 4.7 4.28
SPOT5 average 4.53 4.91 4.53 4.66 4.90 4.53 4.65 4.92 4.54 4.68 4.71 4.72 5.17 5.66 4.96 5.07 4.70 4.94 5.06 4.64

CCSDS-122.0-B JPEG2000

defaults
sample-adaptive block-adaptive BIL block-adaptive BIP

Instrument scene

CCSDS-123.0-B
JPEG-LS ESA +

sample-
adaptive
coding

LUT +
sample-
adaptive
coding
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ANNEX F 
 

ABBREVIATIONS AND ACRONYMS 

AIRS Atmospheric Infrared Sounder 

AVIRIS Airborne Visible/Infrared Imaging Spectrometer 

BI band interleaved 

BIL band-interleaved lines 

BIP band-interleaved pixels 

BSQ band sequential 

CASI Compact Airborne Spectrographic Imager 

CFDP CCSDS File Delivery Protocol 

CRISM Compact Reconnaissance Imaging Spectrometer for Mars 

DN digital number 

DPCM differential pulse code modulation 

DWTs discrete wavelet transforms 

FL fast lossless 

FPGA field programmable gate array  

FRT full-resolution target 

GPO2 Golomb-power-of-2 

HR high resolution 

HRG high resolution geometric 

HRL half-resolution long 

IASI Infrared Atmospheric Sounding Interferometer 

ISO International Organization for Standardization 

ITU International Telecommunication Union 

IWT integer wavelet transform 

LMS least mean square 

LUT lookup table 

M3 Moon Mineralogy Mapper 
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MAD maximum absolute difference 

MAE mean absolute error 

MCT multi-component transform 

MODIS Moderate Resolution Imaging Spectroradiometer 

MSG Meteosat Second Generation 

MSP multispectral survey 

POT pairwise orthogonal transform 

PSNR peak signal-to-noise ratio 

PVN packet version number 

RMS root mean square 

RMSE root mean square error 

ROI region-of-interest 

RRMSE relative RMSE 

SFSI SWIR Full Spectrum Imager 

SNR signal-to-noise ratio 

SWIR short wave infrared 
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