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1 Project Descriptions and Goals

This is the final report for the Young Investigator Program Grant, Number: FA9550-17-1-0125 man-

aged by Dr. Fariba Fahroo (formerly managed by Dr. Jean-Luc Cambier), AFOSR Computational

Mathematics.

The main goal of the grant was to construct new approaches and algorithms for learning dynamical

systems from data. The objective of this research was to develop and analyze new approaches

for discovering the underlying governing equations that model a given dataset. We assumed that

the data was generated by some unknown dynamic process, typically satisfying a time-dependent

differential equation. The technical strategies were based on sparse optimization (with limited

sampling) and structured networks. This work involved sparsity-promoting optimization based on

the `1 penalty, which was used to regularize the recovery process. The results include several new

algorithmic and theoretical developments.

2 Significant Findings and Conclusions

We summarize the significant findings, which can also be found in the papers supported by this

grant [2–12].

Some highlights of the results produced by this grant include:

• introducing a random sampling strategy for recovering high-dimensional dynamical systems from

data based on our random burst framework,

• providing sparse recovery results for dependent (time-series) data,

• developing a group-sparse recovery model for learning dynamical systems sampled from different

sources and unknown bifurcation regimes,

• providing convergence guarantees for the SINDy algorithm,

• constructing methods for learning sparse dynamical systems for noisy state samples,

• developing new neural network architectures and theory for computational physics problems.

Preprints, publications, and codes are available online, and links to access them are provided in

this final report.
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2.1 Overview

The main computational and algorithmic goals in this grant were to develop methods for learning

dynamical systems from trajectories (time-series samples). We have constructed `1 optimization

approaches that successful solve various learning problems [2,4–8]. Additionally, we have provided

convergence theory for alternative approaches [12]. We developed new deep neural network (DNN)

and machine learning algorithms for uncovering unknown dynamical systems from data [9, 11].

Applications related to the goals of the AFOSR include: making data-based predictions, learning

nonlinear reduced order dynamics, and computing surrogate models for complex systems.

Technical Summary: Before summarizing our findings, we provide an overview of the mathe-

matical problem. Given time-series data, x(t) ∈ Rn (likely in a high dimension n � 1), we fit

the data to a dynamical system, ẋ = f(x) with x(t0) = x0. The goal is to learn the unknown

function f = (f1, . . . , fn), from samples of the trajectory x(t). This problem is difficult since, in

high dimensions, the data is often under-determined and thus one does not have enough samples to

determine the function f using standard approaches. We used sparse approximations and neural

networks to construct tractable methods with various approximation guarantees.

2.2 Extracting Dynamical Systems from High-Dimensional Data using Randomness

In [6–8], we used the sparse structure of the governing equations (the fact that the dynamics

only depend on a limited number of nonlinear interactions) along with recent results from random

sampling theory to develop methods for extracting dynamical systems from under-sampled data.

In [7], we proposed three random sampling strategies that led to the exact recovery of first-order

dynamical systems even when we are given fewer samples than unknowns. The strategies balance

between information on the system and control over the sampling process. The first strategy made

no assumptions on the behavior of the data, and required a certain number of random initial

samples. The second strategy utilized the structure of the governing equation to limit the number

of random initializations needed. The third strategy leveraged any intrinsic randomness or chaos

in the data to construct a nearly deterministic sampling strategy. Each are viable in different

applications.

As the dimension increase, the number of candidate functions grows rapidly. Using prior informa-

tion on locality or connectivity between coordinates, we developed tractable algorithms for very

high dimensional structured systems [8]. Computational results show that we can reconstruct

the underlying PDE from measurements of the state variable. Additionally, we have theoretical

guarantees of success beyond the standard compressive sensing results.

2.3 Sparse Approximation from Data with Outliers

In [2], we constructed a sparse learning approach for approximating non-linear systems from noisy,

limited, and/or dependent data. When the data is acquired from a time-series, the measurements
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will often have non-trivial dependencies. In addition, the measurements may have errors which can

bias the learning process (e.g. outliers or noise). This is an important issue to deal with, since it

is related to modern applications. The main contribution is the development of a sparse-outlier

optimization problem that can recover the parameters of the model and remove outliers. We also

provided guarantees of successful recovery via the optimization problem, where the sampling matrix

is formed from dependent data.

2.4 Dictionary Matrix and Noise

Another approach to deal with moderate levels of noise is to reformulate the dynamical system

as an integral equation [4]. In particular, instead of learning an approximation for ẋ = f(x) with

x(t0) = x0, we learned an approximation to x(t)− x0 =
∫ t
t0
f(x(s))ds with initial data x(t0) = x0.

For moderate noise levels, the algorithm produced an approximation to the underlying model as

well as a smooth approximation to the noisy dynamics. Computational experiments on simulated

data showed that this approach is stable with respect to data-size, robust to noise, and accurate

when dynamic behavior is included in the dataset. Figure 2 shows an example of the method

applied to data generated by the Rössler System. This system contains fast and slow dynamics,

which we corrupt with additive noise. We restrict the variables to the slow ones, in this case the

first three components. In this example, we are able to recover the slow (dominate) dynamics (the

curve in the right figure).

(a) True u (b) Learned u (c) Difference in u

(d) True v (e) Learned v (f) Difference in v

Figure 1: From [8]: Learning a two variable reaction-diffusion system. (a)(d) The true evolution of

both variables at T = 1000. (b)(e) The learned system at T = 1000 using our model. (c)(f) The

difference between the true evolution and the learned evolution.
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Figure 2: Fast-Slow Approximation The left figure plots the noisy data projected onto the xy-

plane with noise level 3.5%. The right figure plots the noisy data along with the data-driven

approximation from [4].

2.5 New Deep Neural Network Architectures

As an alternative to stationary dictionaries, we developed a new DNN architecture for learning

dynamical systems [9]. The network is learned via an optimal control problem, with constraints ẋ =

f(x), where f is parameterized by shallow multilayer perceptrons with nonlinear differential terms.

This new architecture incorporated relevant correlations between spatio-temporal samples and thus,

experimentally, needed fewer parameters to get an accurate approximation. We demonstrated our

approach on dynamical systems, reduced order models for fluids, and conservation laws. In addition,

we showed that this approach can be used to lower the parameter cost for deep networks used in

image classification.

(a) Our Approach with 263 parameters. (b) Previous DNN approach with 269 parameters.

Figure 3: Time-series data generated by Lorenz system and the corresponding learned processes

using our DNN approach. The original data (dashed) and the learned series (solid) are plotted,

where RGB corresponds to x1, x2, and x3 respectively.
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(a) Our reduced order model using a new DNN ar-

chitecture with 8 modes

(b) DMD method with 8 modes

Figure 4: Comparison between our DNN approach vs. standard reduced order models..

2.6 Related Theoretical Advances

We also investigated convergence of various algorithms related to the goals of this grant.

In [12], we proved that the sparse identification of nonlinear dynamics framework proposed in [1]

approximates local minimizers of an unconstrained `0-penalized least-squares problem. We also

provided sufficient conditions for general convergence, rate of convergence, and conditions for one-

step recovery. This showed that the algorithm enforces sparsity via an `0 penalty and provided

theoretical verification to several observed phenomena.

The most popular algorithm in optimization is the gradient descent method. For problems in

machine learning, the objective functions are often non-convex and thus the energy landscape

can include saddles and local maxima. In [5], we provided larger step-size restrictions for which

gradient descent based algorithms (almost surely) avoid strict saddle points. We proved that given

one uniformly random initialization, the probability that gradient descent with a step-size up to

2/L will converge to a strict saddle point is zero (where L is the Lipschitz constant of the gradient).

We showed that the assumptions are robust in the sense that functions which do not satisfy the

assumptions are meager with respect to analytic functions.

3 Codes

Our codes for sparse learning of dynamical systems, high-dimensional functions, and bifurcation

regimes can be found on:

• Extracting structured dynamical systems using sparse optimization with very few samples:

https://github.com/linanzhang/SparseCyclicRecovery

• On the Convergence of the SINDy Algorithm:

https://github.com/linanzhang/SINDyConvergenceExamples

• Extracting Sparse High-Dimensional Dynamics from Limited Data:

https://github.com/GiangTTran/ExtractingSparseHighDimensionalDynamicsFromLimitedData

• Learning Dynamical Systems and Bifurcation via Group Sparsity:
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https://github.com/GiangTTran/GroupHardIterativeThresholdingAlgorithm
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