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Project Summary

Scope: This research sought to develop a comprehensive, computationally tractable framework for synthe-
sizing information driven systems capable of both autonomously operating and supporting safety–critical
human operations in rapidly changing “data deluged” scenarios. Its conceptual backbone was a rigorous in-
tegration of systems theory, machine learning and optimization elements that emphasized robustness, com-
putational simplicity and improved situational awareness.

Relevance to the USAF mission: Flexible, provably correct autonomy is a key enabler for maintaining the
superiority and expanding the capabilities of the USAF in the next two decades. Autonomous systems en-
dowed with analysis and decision capabilities can collect data, assess intention, and if necessary, take action,
while at the same time substantially reducing the required manpower and cost, vis-a-vis existing unmanned
vehicles. Arguably, a major road-block to realizing this vision stems from the curse of dimensionality. Sim-
ply put, existing inferencing techniques are ill-equipped to deal with the extremely large volume of data that
needs to be analyzed in real time. This is precisely the challenge addressed by this research: development
of a computationally tractable framework that supports provably correct inferencing and decision making
in “data deluged” scenarios. The long term vision was to lay the foundations for designing systems en-
dowed with provably correct flexible autonomy, capable of making decisions in-situ, with minimal human
intervention, and of supporting human decisions by providing enhanced situational awareness.

Contributions to Basic Science: This research effort sought a rapprochement between systems theory and
machine learning, by using the metaphor of dynamic models as parsimonious information encapsulators.
It advanced the state of the art in systems theory by developing a tractable framework for robust identi-
fication/model (invalidation) of a broad class of dynamical systems that incorporates ideas from machine
learning and semi-algebraic optimization to handle outliers, missing data and substantial noise levels. On
the other hand, embedding machine learning problems in the conceptual world of dynamical systems lead
to scalable, computationally tractable algorithms, that are provably convergent. For instance, in this context,
the problems of simultaneous manifold embedding and classification of dynamic data, and semi-supervised
learning were recast as a sequence of convex optimization problems that exploited the inherent sparse struc-
ture of the problem to substantially reduce the computational burden.

Benefits to the General Public: In addition to directly supporting the USAF mission, autonomous plat-
forms endowed with activity analysis capabilities can assist law enforcement, allow elderly people to con-
tinue living independently, and help first responders and emergency workers in preventing hazards from
developing into full blown catastrophic situations.
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1 Motivation

This research sought to develop a comprehensive, computationally tractable framework for synthesizing
information driven systems capable of both autonomously operating and supporting safety–critical human
operations in rapidly changing “data deluged” scenarios. Its conceptual backbone was a rigorous integration
of systems theory, machine learning and optimization elements that emphasizes robustness, computational
simplicity and improved situational awareness. It included both theoretical developments at the confluence
of systems theory and machine learning, and an investigation of implementation issues.

1.1 Needs, Transformative Impact and Relevance to the USAF Mission

Flexible, provably correct autonomy is a key enabler for maintaining the superiority and expanding the
capabilities of the USAF in the next two decades: Autonomous systems endowed with analysis and de-
cision capabilities can collect data, assess intention, and if necessary, take action, while at the same time
substantially reducing the required manpower and cost, vis-a-vis existing unmanned vehicles. Arguably,
a major road-block to realizing this vision stems from the curse of dimensionality, illustrated in Figure 1.
Simply put, existing inferencing techniques are ill-equipped for analyzing the “data deluge” generated by
the sensors, within the constraints imposed by the need for robust, real time operation in dynamic, partially
stochastic scenarios. This research effort sought to address this issue by exploiting recent advances in ro-
bust dynamical systems, machine learning, semi-algebraic geometry and optimization. The long term vision
was to lay the foundations for designing systems endowed with provably correct flexible autonomy, capable
of making decisions in-situ, without human intervention, while passing on to the next decision level only
mission–relevant situational abstractions.

(a) (b) (c)

Figure 1: Sample scenarios where autonomous systems endowed with analysis capabilities can prevent
incidents from developing into tragedies. (a) finding objects left behind; (b) detecting an attempt to breach a
“sterile area” by entering through an exit; and (c) detecting an anomalous flight pattern. In all cases decisions
must be taken based on events discernible only in a small fraction of a very large data record.

The main idea driving this research was to combat the “curse of dimensionality” by exploiting the twin
“blessings” of self-similiarity and concentration of measure. While these ideas had already been recently
exploited in machine learning (for instance in the context of dimensionality reduction and variable selection),
we sought to extend them to a larger class of problems, inferencing from dynamic data, by embedding the
problem in the expanded dynamical systems identification framework outlined in Fig. 2. Briefly, in this
approach, self-similarity refers to the observation that actionable data exhibits high degree of spatio-temporal
correlation, and therefore can be treated as the output of an underlying switched nonlinear dynamical system,
with jumps indicating the occurrence of events. Similarly, concentration of measure, refers to the fact
that typically only relatively few parameters (far fewer than the dimensionality of the data), are needed

1
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Figure 2: Combating the “curse of dimensionality” using the twin “blessings” of self-similarity and concentration
of measure: a combined systems-identification/machine learning approach, enabled by recent advances in sparse
optimization.

to completely characterize these models. Combining these observations allowed for recasting the dynamic
inferencing problem into a dynamic sparsification form, which in turn could be reduced to a tractable convex
semidefinite optimization problem, via recents results connecting semi-algebraic geometry to the classical
theory of moments. As illustrated in the sequel, this approach led to compact representations of both the
data and underlying dynamics, allowing for computational efficient solutions to problems involving complex
dynamics and large sized data vectors.

2 Description of the Basic Research Performed and Summary of the Results

In this section we give a brief summary of the basic research performed under this grant and our findings,
grouped into four research themes (i) identification, (ii) model validation, (iii) fault detection, and (iv)
control. A more complete description can be found in the papers listed in the publications section, which
can be downloaded from the Robust Systems Lab website: http://robustystems.coe.neu.edu.

2.1 Identification.

In principle, embedding information extraction problems in the conceptual world of systems identifica-
tion made available a rich, extremely powerful resource base, leading to computationally tractable, robust
solutions. However, successful application of this idea hinged upon the development of computationally
tractable solutions to the following problems, open at the time that the project was started:

2.1.1 Identification of parsimonious dynamical models [1–4]. As indicated in the introduction, the goal
of this research was to exploit the ability of sparsification based techniques to provide computationally
tractable solutions to hard problems. One such problem is identifying parsimonious models from a combi-
nation of noisy measurements and a-priori information, related to the physics of the specific domain under
consideration. The main motivation for seeking low order models is the fact that, as we have shown during

2
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this research, computational complexity of both model identification and controller synthesis is directly de-
termined by the model order (since this order determines the tree width of the underlying correlative sparsity
graph). Indeed, exploiting the underlying sparsity, it is possible to design identification algorithms that scale
linearly with the number of data points, thus opening up the possibility of on-line controllers that make
optimal use of all the available information.

(i) Atomic norm approach to identification of LTI systems in the presence of missing data [1, 3, 4]

In view of the discussion above, our initial goal was to solve the following problem:

Problem 1. Given N (noisy) samples of the time response yt of an unknown plant G to a known input
ut and some a priori information about the underlying process, (i) determine whether there exists a model
compatible with these priors that explains the observed experimental data, and, (ii) if so, find the coefficients
of the lowest order model with this property.

The main approach that we used to solve the problem above was to recast it into an atomic-norm con-
strained minimization. In this context, a given object (in this case the unknown system to be identified)
is expressed in terms of the elements of a given dictionary A = {a} containing the “atoms” a, and as-
signed an “atomic norm” defined by ‖x‖A = inf

{∑
a∈A|ca| : x =

∑
a∈A caa

}
, allowing for reducing the

identification problem to a constrained optimization of the form:

min
x
f(x) subject to ‖x‖A ≤ τ (1)

where f(x) is a smooth convex function that measures fidelity to the observed data and τ is used to promote
sparsity. Note that (1) can be considered a constrained version of a regularized problem of the form:

min
x
f(x) + λ‖x‖A (2)
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Figure 3: Atomic norm versus ADMM computational
complexity scaling.

For instance, in the case where the set of atoms con-
sists of basis vectors and their symmetric images
with respect to the origin, ±ei ∈ Rn, the corre-
sponding atomic norm is simply the `1 norm and
the problem above reduces to the well known form
minx f(x) + λ‖x‖1. Similarly, a set of of atoms
consisting of all unit norm rank-1 matrices leads to
problems of the form minx f(x) + λ‖x‖∗. In gen-
eral scenarios, the set A can be tailored to include
all the a-priori available information, for instance
by constraining it to contain only elements compat-
ible with the physics of the problem under consid-
eration. For instance, if a bound ρ on the time con-
stant of the relevant process is known, a suitable set
of atoms is given by A = A1 ∪ A2 ∪ A3 ∪ A4, where:

A1 =

{
Ψp(z) = ±(1− |p|2)

2
(

1

z − p +
1

z − p∗ ) : |p| ≤ ρ
}

A2 =

{
Ψp(z) = ±(1− |p|2)

2
(
−j
z − p +

j

z − p∗ ) : |p| ≤ ρ
}

A3 = {Ψp(z) = ±1}

A4 =

{
Ψp(z) = ±(1− |p|2)

z − p : p ∈ [−ρ, ρ]

}
(3)

3
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p∗ denotes the complex conjugate of p, and where the normalization factor 1− |p|2 guarantees that each Ψp

has norm less than or equal to 1. A potential difficulty here is that the set A above is infinite dimensional,
since it contains all points inside Dρ, the origin centered disk of radius ρ. In principle, this could be handled
by simply discretizing this disk, but this approach can lead to poor performance if the system to be identi-
fied is lightly damped. To avoid this discretization, we have developed the randomized Frank-Wolfe type
algorithm shown below:

Algorithm 1 Randomized algorithm to minimize a convex function f over the τ -scaled atomic norm ball

1: x0 ← τΥN{a0(z)} for arbitrary a0(z) ∈ A . Init.
2: for k = 0,1,2,3,..., kmax do
3: Select Nk poles uniformly distributed over Dρ,

denote the set of these poles Sk
4: ak ← ΥN{argmina(z)∈A{Sk}〈∇f(xk),Υ

N{a(z)}〉}
5: αk ← argminα∈[0,1]f(xk + α[τak − xk])
6: xk+1 ← xk + αk[τak − xk]
7: end for

As we have shown in [1,4,5], this algorithm requires computing only inner products and thus its compu-
tational complexity scales linearly with the number of data points (see Fig. 3) as opposed to the cubic scale
when using ADMMs. Hence, it can comfortably handle very large data sets. Further, this algorithm has
a convergence rate of O(1

t ) and can be easily modified to handle missing data, non-uniform sampling and
multiple runs. Finally, we have used this approach to design a convolutional neural network that performs
system identification and time series prediction [6].

(ii) Extension to Wiener models [2]. Wiener systems, the interconnection of a linear time invariant

G(z) Ψ(·) ∑uk rk yk

ηk

Figure 4: General Wiener identification setup

system and a static nonlinear-
ity shown in Fig 4, are inter-
esting both in their own right,
since they are pervasive in
many diverse domain applica-
tions, and as a tractable ap-
proximation to general non-
linear control problems. Thus,
during the past decade a large research effort has been devoted to the problem of identifying models of these
systems from experimental data, leading to a number of techniques. Existing approaches can be roughly
divided into statistical and set membership, or control oriented. The latter are attractive for control applica-
tions, since the results of the identification process (a nominal plant and bounds on the identification error)
can be directly used by robust control methods. Unfortunately, as shown by the PIs, set membership iden-
tification of Wiener systems is NP hard, both in the number of experiments and in the number of outputs
of the LTI sub-system, even in cases where the non-linearity is known. Thus, handling moderately large
problems requires the use of relaxations, for instance based on polynomial optimization. However, while
these relaxations work well for medium size problems, the entailed computational complexity is non trivial.

To circumvent this difficulty, in this research we developed a computationally efficient approach to
the problem of set membership identification of the linear portion of a Wiener system from noisy output
data, assuming that the non-linearity is known. Such problems arise frequently in control applications,
where the physics of the problem determine the nonlinearity. In addition, similar problems arise in the
context of manifold embedding of dynamic data, [7] where the embedding function is determined using

4
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machine learning techniques such as Locally Linear Embeddings (LLE) and the challenge is to identify the
manifold dynamics. Briefly, the main idea was to use a combination of set inversions and properties of
interval matrices to efficiently determine a set of intervals guaranteed to contain, at all times, the output
of the (unknown) LTI system. This step was then followed by a combination of binary optimization and
atomic norm minimization to identify both the interval containing the actual signal as well as the lowest
order LTI system compatible with this choice and any available priors. Our main result (see [2] for details)
showed that exploiting the properties of interval matrices to prune the set of candidate intervals, resulted
in a substantial complexity reduction (typically 98% to 99% of the possible combinations are discarded),
allowing for efficiently solving problems whose size challenges existing techniques.

The starting point for this approach was the following result on interval matrices:

Theorem 1. The following are sufficient conditions for the regularity of an interval matrix:

1. Let Ac be nonsingular and ρ(|A−1
c |∆) < 1 hold. Then [Ac −∆, Ac + ∆] is regular.

2. Let the matrix ATc Ac − ‖∆T∆‖I be positive definite for some consistent matrix norm ‖ · ‖. Then
[Ac −∆, Ac + ∆] is regular.

This result allows for substantially pruning the set of candidate trajectories proceeding as follows.
Specifically, consider a single input single output LTI system of McMillan degree p, driven by an input
sequence u = [u0, u1, · · · , uM−1]T . Assume that M ≥ 3p+ 2 input/output pairs have been collected in the
vectors u = [u0, u1, · · · , uM−1]T and y = [y0, y1, · · · , uM−1]T , respectively, and that by performing a one
to many set inversion of the nonlinearity, a candidate consistent sequence of intervals for the intermediate
signal r, i.e. V1:M , was identified. From well known results in subspace identification methods, it follows
that, for the correct interval, the matrix G

.
= [H U] is rank deficient, where

H
.
=


[r, r]0 [r, r]1 . . . [r, r]p
[r, r]1 [r, r]2 . . . [r, r]p+1

...
. . . . . .

...
[r, r]2p+1 [r, r]2p+2 . . . [r, r]3p+1

 , U
.
=


u0 u1 u2 . . . up
u1 u2 u3 . . . up+1

...
. . . . . . . . .

...
u2p+1 u2p+2 u2p+3 . . . u3p+1

 (4)

Thus, all interval matrices G that are regular do not correspond to valid trajectories and can be eliminated,
leading to a set of unfalsified trajectories. Finally, the correct trajectory can be obtained by solving the
following optimization problem:

min
c,s

‖c‖`1
subject to TuDac = r

Ks ≤ r ≤ Ks

{s}i ∈ {0, 1}∑
i

{s}i = 1

(5)

Here Da denotes a dictionary of atomic impulse responses, K and K are matrices whose columns
contain the lower and upper bound of the unfalsified intervals and the variable s ∈ RJ selects exactly one
interval trajectory to be used as a bound for the estimated output of the LTI block, i.e. r. The resulting
problem can be efficiently solved using commercially available solvers such as Gurobi. The effectiveness

5
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of the proposed algorithm is illustrated in Fig. 5 for the case of a third order system cascaded with the
(non-invertible) non-linearity Ψ(r) = r2. As shown there, the proposed interval approach falsifies more
than 99% of the trajectories, allowing to identify the system in a few seconds (see [2] for more details).

Minimum Average Maximum
Estimation % Error 0.19 1.17 6.20
Estimation Time (s) 0.48 1.16 9.37

Figure 5: Wiener SysId using interval algebra. Left: number of pruned trajectories. Right: identification
error

(iii) Extension to LPV and non-linear systems [8, 9]. A common description of dynamic phenomena
is a nonlinear state-space model where the set of inputs and states define its operating conditions. When
this model is linearized, the resulting linear models are dependent upon the operating points about which the
linearization occurred. In a linear parameter varying (LPV) modeling approach, the dependence of the linear
model on its operating point is projected into a lower dimensional space called the scheduling space. This
projection is guided by physical intuition, or an analysis of the manner in which the inputs and states affect
the output. This task is not always apparent and bad assumptions, such as choosing scheduling variables
based on data acquisition convenience, may cause loss of fidelity in capturing the observed behavior. In this
portion of the research we extended the concept of parsimonious models to LPV and to bilinear systems (by
reducing the later case to the former). The main result of this portion of the research showed that both the
scheduling parameters and a parsimonious model can be identified by solving a rank minimization problem.
Specifically, we considered an ARX structure with time varying parameters:

A(t, q)y(t) = B(t, q)u(t) + e(t) (6)

where A(t, q) and B(t, q) are time-varying polynomials in delay operator q−1:

A(t, q) = 1 + a1(t)q−1 + a2(t)q−2 + . . .+ ana(t)q
−na

B(t, q) = b1(t)q−nk + b2(t)q−nk−1 + . . .+ bnb(t)q
−nb−nk+1

(7)

nk denotes input-to-output lag which can be zero. The model’s parameter vector is:

Θ(t) = [a1(t), a2(t), . . . , ana(t), b1(t), . . . , bnb(t)]
T (8)

The model structure can also be written as:

y(t) = Θ(t)TΦ(t) + e(t) (9)

where Φ(t) is the vector of model’s regressors composed of lagged input-output variables. The length of
Φ(t) is n = na + nb. The models parameters Θ(t) are assumed to evolve according to an affine auto-
regressive process driven by the “inputs” u(t) and y(t):

F (q)(Θ(t)− Θ̄) = G1(q)u(t) +G2(q)y(t) (10)

where F (q), G1(q), G2(q) are constant-coefficient polynomials of arbitrary orders and Θ̄ is the affine term.
G2(q)’s leading coefficient is zero so that there is at least one sample lag contributing to y(t). The free entries
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of Θ̄, F , G1 and G2 can be thought of as original model’s hyper-parameters. Equation (10) allows a rational
dependence of model’s parameters on the system’s states and inputs. Note that this form of parameter
representation makes the model essentially a bilinear structure. Such forms are appealing candidates for
modeling many nonlinear processes such as those arising in the areas of fMRI deconvolution and nonlinear
tracking. The identification approach that we proposed (see [9] for details) was to first realize the Θ(t)
trajectory of Equation (9) under suitable constraints, followed by the use of the estimated Θ(t) and the input-
output data measurements to estimate the values of Θ̄, F (q), G1(q) and G2(q) coefficients. This delivered
Θ(t) expressed as a function of model regressors in a rational form. Under the assumption that F , G1 and
G2 were sufficiently sparse, we treated the contributing regressors as scheduling variables. Briefly, suppose
u(t) and y(t) are uniformly sampled and N measurements for t = 1, 2, . . . , N are available. Consider a
state-space realization of the Θ(t) dynamics in Equation (10):

X(t+ 1) = AθX(t) +B1
θu(t) +B2

θy(t)

Θ(t) = CθX(t) +D1
θu(t) + Θ̄

(11)

Let U(t) = [u(t), y(t), 1(t)]T be the augmented input vector of length p = ny+nu+ 1, where the step
input 1(t) is added to account for the affine term Θ̄. Then, as described in subspace identification literature,
the minimal order of the parameter model (Equation (11)) is equal to the rank of the matrix Hn,m,N (Θ)H⊥U
where:

Hn,m,N (Θ) =


Θ(1) Θ(2) . . . Θ(N −m+ 1)
Θ(2) Θ(3) . . . Θ(N −m+ 2)

...
...

. . .
...

Θ(m) Θ(m+ 1) . . . Θ(N)

 (12)

H⊥U ∈ <(N−m+1)×q is a matrix whose columns form an orthogonal basis for the null space (nullity q)
of the Hankel matrix Hp,m,N (U):

Hp,m,N (U) =


U(1) U(2) . . . U(N −m+ 1)
U(2) U(3) . . . U(N −m+ 2)

...
...

. . .
...

U(m) U(m+ 1) . . . U(N)

 (13)

Thus, the minimal order Θ dynamics that explains the observed outputs while satisfying some additional
sparsity and rate of change constraints. Using nuclear norm as convex relaxation of matrix rank led to the
following optimization:

minimize
Θ

‖Hn,m,N (Θ)H⊥U ‖∗
subject to

‖y(t)−Θ(t)TΦ(t)‖ ≤ δ1

plus additional constraints

(14)

where the minimization is over the entire Θ(t) sequence of N samples, δ1 is a measure of maximum output
disturbance. The choice of additional constraints reflects our prior knowledge about the system behavior.
For example, we can impose constraints that Θ(t) changes more slowly than the output of y(t) of the model,

7
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the changes are “smooth”, and/or limited to a 1-norm ball with unknown center. These constraints may also
be considered as regularizing penalties in the primary objective. Once a trajectory for Θ(t) is obtained, a
linear (affine) model is fit to it using the standard subspace approach.

Figure 6: Input-output data. y1 is the output
(RPM/100) and u1 is the input (V).

Bilinear Systems: The proposed representation of
Θ(t) dynamics means that we essentially have a bi-
linear system with terms composed of lagged input-
output variables. As an example, consider the sys-
tem:

A(q)y(t) = B0u(t)F (u(t)) +B1(q)u(t) + e(t)

(15)

where A(q) and B1(q) are fixed coefficient polyno-
mials, B0 is a constant and F (.) is a low-pass filter.
This can be expressed in LPV form:

A(q)y(t) = B(q, t)u(t) + e(t) (16)

where B(q, t) is a time-varying polynomial. For
example, if A(q) and B1(q) are second-order,
B1(q) has no feedthrough term and F (.) is a
third-order moving average filter, then B(q, t) =
[b0(t), b1q

−1, b2q
−2], b0(t) =

∑2
i=0 αiu(t− i). We

then have a second order ARX model with a time-
varying input gain b0(t). The objective function is:

minimize
B,Θ

‖Hn,m,N (Θ)H⊥U ‖∗ subject to ‖y(t)−ΘTΦ(t)‖ ≤ δ1 and ‖∆Θmax‖1 ≤ δ2 (17)

The first constraint checks prediction error, the second imposes a limit on the rate of change of pa-
rameters Θ(t). Here ∆Θmax is a vector of maximum allowable parameter changes, such that for the ith

parameter, the value is max
t

(|θi(t + 1) − θi(t)|). The effectiveness of this approach is illustrated in Fig. 6,
where it was used to identify the dynamic relationship between the voltage controlling the Bypass Idle Air
Valve (BPAV) and the engine speed for an internal combustion engine.

2.1.3 Identifying Dynamical Graphical Models [10]. The research outlined above considered only un-
structured models. However, in many practical scenarios unstructured models can lead to models that do
not respect the physical constraints of the problem, since they fail to capture the structure of the interactions
between physical agents, allowing for non-realistic interactions. Examples of these scenarios range from
models of tightly interacting infrastructures (e.g. the power and communication grids) to biological systems
and crowd behavior. In order to model these systems, in this portion of the research we developed a novel
method for identifying dynamical graphical models, represented by a directed graph structure G = {V,E},
where each node V corresponds to a given time series (the behavior of a specific agent), and the edges E are
operators relating the values of these series at different time instants, accounting for the dynamics arising
from agent interactions (see Fig. 7). The corresponding equations are given by

xj(t) =
∑n

i=1

∑r
k=1 cj,i(k)xi(t− k) + ηj(t),

t ∈ [r + 1, T ], j = 1, . . . , n
(18)
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where xj(.) denotes the time series at the jth node, cj,i(.) are the coefficients of an ARX model relating
the present value of the time series at node j to the past values measured at node i, and ηj(t) represents
measurement noise. Our goal was to identify such a structure from experimental data. Note in passing that,
unless a regularization criteria is added, the problem is ill posed, since an infinite number of topologies
can explain a given set of finite, noisy observations. In this research, we used “sparsity’” to regularize the
problem, reflecting the fact that usually the solution with the fewest number of edges is the correct one. Let

xj
.
=

[
xj(T ), . . . , xj(r + 1)

]T
ηj

.
=

[
ηj(T ), . . . , ηj(r + 1)

]T
cj,i

.
=

[
cj,i(1), . . . , cj,i(r)

]T
cj

.
=

[
cTj,1 . . . , c

T
j,n

]T
C

.
=

[
c1, . . . , cn

]
X

.
=

[
x1, . . . ,xn

]
Hi

.
=


xi(T − 1) xi(T − 2) . . . xi(T − r)
xi(T − 2) xi(T − 3) . . . xi(T − r − 1)

... . . . . . .
...

xi(r) . . . . . . xi(1)


H

.
=

[
H1 . . . Hn

]
Ξ

.
=

[
η1, . . . ,ηn

]
With this notation, the equations describing the complete model can be written in compact form as:

X = HC + Ξ (19)

and the problem of interest here can be precisely stated as:

Problem 2. Given T measurements of n time series xi(t), i = 1, . . . , n, t ∈ [1, T ], and upper bounds ε
and r on the noise level and edge model order, respectively, solve:

min
∑

i ‖{ci}‖0 s. t. (19) and ‖ηi‖2 ≤ ε,
∀i = 1, . . . , n

(20)

where ci ∈ Rr and ‖{ci}‖0 denotes the number of non-zero elements of the vector sequence ci.

Network Structure Identification: 

Block sparse solutions of 

Goal: identify the network from I/O data 

 Finding interactions between humans 
Figure 7: Left: a dynamical graphical model. Right:
unveiling interactions between humans by identifying
the underlying graphical model.

Note that the objective function in this problem
is precisely |E|, the number of edges in the graph,
and that, due to its structure, the problem above de-
couples into n subproblems of the form:

min ‖{ci}‖0 s. t. ‖ηj‖2 ≤ ε and
xj =

∑
i Hici + ηj

(21)

This is a (vector) sparsification problem similar to
(29) and thus can be solved using a relaxation sim-
ilar to (30). However, a computationally attractive
alternative can be obtained by expanding the con-
cept of atomic norm introduced in §2.1.2 to encom-
pass the case where it is desired to block-sparsify a vector sequence. Specifically, given a set of atoms
A = {a}, assume that it can be partitioned into N centrally symmetric subsets Ai (the super-atoms), such

9



thatA = ∪iAi andAi ∩Aj = ∅, i 6= j and associate to each super-atomAi = {ai,1, ..ai,ni} the matrix Ai

having as its jth column ai,j , the coordinates of the atom ai,j in a suitable basis in X . Given a point x ∈ X ,
its super-atomic norm is defined as:

‖x‖sA = minc
∑N

i=1 ‖ci‖∞ s.t x =
∑

i Aici (22)

Since the convex envelope of the cardinality of a vector sequence {c}, ‖ci‖∞ ≤ 1 is given by:

‖{c}‖0,env =
∑
i

‖ci‖∞

it follows that, minimizing the super-atomic norm indeed promotes block-sparsity. Further, problems in-
volving the minimization of a function subject to super-atomic norm constraints can be efficiently solved by
using the following modification of Algorithm 1 [10]:

Algorithm 2 Convex minimization subject to super-atomic norm constraints

1: Data: set of super-atoms A = {A1, . . . ,Ai, . . . }
2: Initialize x(0) ← τa for some arbitrary a ∈ A
3: for k = 0,1,2,3,..., kmax do
4: L← arg minm

{
min‖c‖∞≤1〈∂f(x(k)),

∑
ai,mci〉 s.t. ai,m ∈ Am}

5: c← arg min
‖c‖∞≤1

〈∂f(x(k)),
∑

ai,Lci〉 s.t. ai,L ∈ AL.

6: a←∑
i ai,Lci

7: αk ← argminα∈[0,1]f(x(k) + α[τa− x(k)])

8: x(k+1) ← x(k) + αk[τa− x(k)]
9: end for

The ideas discussed above can be used to solve Problem 2 by simply defining each super-atom as the col-
lection of columns from the matrices Hi, (e.g a collection of vectors, each containing delayed measurements
of the respective time-series):

Ai = {Hi(:, t)}, t = 1, . . . r

leading to a super-atomic norm minimization of the form

min ‖z‖sA subject to ‖xj − z‖2 ≤ ε (23)

where z =
∑

i Hici. Finally, imposing soft, rather than hard constraints on the fitting error leads to:

min ‖xj − z‖2 subject to ‖z‖sA ≤ τ (24)

which can be efficiently solved using Algorithm 2. As before, this approach only requires computing inner
products and thus can handle large data sets. Further, as shown in [10], it can be easily extended to handle
unknown inputs, modeling for instance the interaction of the system with its environment.

2.1.4 Identification of Switched Systems [11–13]. Switched affine systems are important on their own,
since they arise in the context of a wide domain of application domains ranging from fault-tolerant control
to manufacturing, and as a “poor man’s” model of non-linear phenomena. Given their importance, sub-
stantial research has been devoted to develop algorithms for stability analysis and controller synthesis for
switched systems operating in different scenarios. However, in many practical cases, models of the system
under consideration are not available and must be obtained from a combination of experimental data and

10
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a-priori information before these analysis and synthesis tools can be applied. Identification of switched sys-
tems has been extensively studied in the past decade, mainly in the context of two different scenarions: (i)
error-in-process models and (ii) error-in-variables models. While the first case had been largely solved by
the time this research started, the case of error-in-variables models, where input/output measurements are
corrupted by noise (and the related output estimation problem where only the outputs are affected by noise)
was considerably less developed. Since in this case the problem is known to be NP hard, most existing
methods were based upon convex relaxations of the original non-convex problem. However, computational
complexity of these relaxations scaled combinatorially both with the number of subsystems and their order,
limiting the approach to systems consisting of relatively few low order subsystems.

To address these difficulties, in this portion of the research we developed a method that addressed the
computational complexity noted above, while, at the same time providing convergence guarantees in the set
theoretic sense. Specifically, we sought to develop a tractable, scalable framework to solve the following
Error-in-Variables (EiV) identification problem:

Problem 3. Given experimental input/output data {(ut, yt)Tt=t0} and a bound ση on the covariance of the
noise, find a set of coefficients {ana

k=1(i), bnb
k=1(i)} so that the EIV-SARX model

ŷt =

na∑
k=1

ak(st)ŷt−k +

nb∑
k=1

bk(st)ut−k, na ≥ nb

yt = ŷt + ηt

(25)

explains the observed data. Here ŷt represents the actual output, corrupted by additive noise ηt, yt denotes
its measured values, and st is the mode variable indicating which subsystem is active at time t.

Our main result was a computationally efficient identification algorithm, based upon the idea of em-
bedding the experimental data in the manifold of positive definite matrices and using a manifold metric to
identify time intervals guaranteed to contain no switches. The key idea behind the approach that we devel-
oped is to embed data in Sn++, the manifold of positive definite matrices, and use a suitable manifold distance
to detect switches and compare systems, exploiting the fact that the manifold distance between data points
generated by the same subsystem is substantially smaller than the distance between points corresponding
to different subsystems. Thus, switches can be detected by sharp increases in the manifold distance, and
segments where the same subsystem is active can be identified by finding clusters where this distance is
small, a problem that can be efficiently solved by recasting it into a graph cut form. In particular, in this
research we used the Jensen-Bregman Log-Det Divergence (JBLD) given by:

Jld(X,Y)
.
= log

∣∣∣∣X + Y

2

∣∣∣∣− 1

2
log |XY| (26)

Attractive properties of the JBLD include the facts that (i) its square root is a geometry aware metric in Sn++ ,
and (ii) its low computational burden, compared against the AIRM. Finally, for a fixed Y ∈ Sn++, Jld(X,Y)
is convex in the region {X ∈ Sn++ : X � (1 +

√
2)Y}. Note that (26) is only well defined for matrices in

Sn++ while our research required comparing positive semi-definite matrices. The following result extending
the JBLD to Sn+, provides the theoretical justification for the proposed identification method (see [13] for a
proof).

Theorem 2 ( [11]). Given X,Y ∈ Sn+, define the regularized matrices X(σ) = X + σI, Y(σ) = Y + σI,
where σ > 0. Then

lim
σ→0

Jld(X(σ),Y(σ)) 6=∞ ⇐⇒ N (X) = N (Y) (27)
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Corollary 1. Consider two time series xk and yk. Let Hx,Hy denote the corresponding Hankel matrices
and define Gx(σ)

.
= HxHx

T + σI and Gy(σ)
.
= HyHy

T + σI. Then the time series xk and yk are
behaviors of the same underlying dynamics if and only if limσ→0 Jld(Gx(σ),Gy(σ)) 6=∞

Direct application of this corollary led to the Algorithm outlined below:

Algorithm 3 Riemannian distance-like function based switched system identification

Inputs: input sequence u1:n, output sequence y1:n, sliding window size h, r = na + nb + 1.
Step 1: Data Segmentation. Use Corollary 1 to partition the input and output sequences into segments
of length h, each generated by a single LTI system. The ith segment of input and output are denoted
ui:i+h−1 and yi:i+h−1, respectively.
Step 2: Spectral Clustering.
for i = 1 to # of segments do

Hu,i← Hankelize ui:i+h−2

Hy,i← Hankelize yi:i+h−1

Gi ←
[
Hy,i

Hu,i

] [
HT

y,i HT
u,i

]
Ĝi(σ)← Gi

‖Gi‖∗ + σIr
end for
Compute D, where Dij = Jld(Ĝi(σ), Ĝj(σ))

Compute the similarity matrix W, where Wij = e−
D2
ij
2

Cluster labels z← normalized cuts on W
Step 3: Subsystem Identification.
for i = 1 to # of clusters do

Perform a LTI SysId step on cluster zi
end for
Outputs: ai,bi

The main result of this portion of the research showed that the algorithm is guaranteed to recover the
correct data segmentation and model parameters if the noise is below a certain threshold that depends only
on the problem data. Further, consistent numerical experience has shown that the algorithm performs well
even when for noise levels above this threshold [13]. Finally, note that the segmentation step scales linearly
with the number of data points, while the spectral clustering step scales as (number of clusters)3. Thus,
the algorithm has moderate computational complexity, even for large data sets, provided that the number of
switches is not too large.

2.1.5 Identification and decision making in the presence of gross outliers [14–17]. So far, we have
considered scenarios with noisy data, but where all this data has been generated by the system to be identi-
fied. However, many practical scenarios involve situations where the data is corrupted by outliers that, if not
corrected, can severely affect the quality of decisions taken based on the data. Examples of these situations
include control decisions in the face of sensor outages or tracking using data corrupted while transmitted
over a wireless link. Thus, a prerequisite to provably robust decision making in realistic scenarios is the
ability to find a model that interpolates the largest number of data points (the “inliers”), while, at the same
time, identifying the outliers. The simplest version of this problem is given by:
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Problem 4. Given noisy input/output data {(ut, yt)Tt=t0}, find an ARX model of the form

yt =

na∑
k=1

akyt−k +

nb∑
k=1

bkut−k + ηt (28)

that maximizes the number of points interpolated.

Figure 8: Identification error as a function of the num-
ber of outliers for a synthetic 5th order system. Note
that by exploiting priors, our method can handle up to
80% outliers.

It is well known that even this simplified prob-
lem is generically NP hard and scales combinatori-
ally with the number of data points. However, as we
have shown, efficient convex relaxations, in many
cases with optimality certificates, can be obtained
by recasting the problem into either (i) a regular-
ized robust regression form or (ii) a polynomial op-
timization form.

(i) Identification with outliers as a robust regres-
sion problem [14]:
Define r = [a1..ana b1..bnb

]T and xt =[
yt−1 · · · yt−na ut−1 · · · ut−nb

]T . In this
context, Problem 4 can be compactly stated as find-
ing a parameter vector r that maximizes the cardi-
nality of the set T .

= {t :
∣∣yt − rTxt

∣∣ ≤ ε}. As
shown in [14], by introducing additional variables
ri ∈ Rd the problem can be reformulated as:

r∗ = argminr,ri ‖{r− ri}‖0 subject to:
|yi − xTi ri| ≤ ε, i = 1, . . . , N

(29)

where ‖{r − ri}‖0 denotes the cardinality (e.g. number of non-zero vectors) of the sequence {r − ri}Ni=1.
While this problem is still generically NP hard, we have proved [14] that its tightest convex relaxation is
given by:

renv = argminr,ri

∑N
i=1 ‖r− ri‖∞ subject to:

|yi − xTi ri| ≤ ε, i = 1, . . . , N
(30)

leading to convex problems that can be efficiently solved. As we proved in [14], under suitable conditions
reminiscent of the restricted isometry property, this approach is guaranteed to recover the sparsest solution
to (29). Further, it has substantially better robustness properties than existing approaches, due to a “built-in”
self-scaling property, where the data is automatically scaled to mitigate the effects of gross outliers. This
is illustrated in Fig. 8 showing that, in cases where the outlier spaces are well separated from the data, the
proposed method can handle up to 80% of outliers, substantially outperforming existing methods.

(ii) A polynomial optimization based approach [15]:
As noted above, under certain conditions, Problem 4 can be exactly solved by the convex relaxation (30).
However, when these conditions fail, renv may provide a poor approximation to r∗. To avoid this difficulty,
we developed an alternative approach based on polynomial optimization. This approach is guaranteed to
recover the optimal solution r∗, at the price of increased computational complexity. The idea is to associate
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to each pair (yi,xi) a binary variable si ∈ {0, 1} that indicates whether the point is an inlier (si = 1) or
outlier (si = 0), allowing for recasting Problem 4 into the following polynomial optimization form:

p∗ = max
sj ,r

∑Np

j=1 sj

s.t. |sj(yj − rTxj)| ≤ εsj , s2
j = sj , ∀Np

j=1

rT r = 1, r(1) ≥ 0

(31)

Here, the first constraint enforces that (yj ,xj) is an inlier when sj 6= 0 and is trivially satisfied otherwise; the
second is simply a restatement of the fact that sj ∈ {0, 1}, while the third and fourth constraints normalize
the vector r and remove ambiguities. Clearly, since si = 1 ⇐⇒ (yi,xi) is an inlier, the objective
maximizes the number of inliers.

Problem (31) is a polynomial optimization problem and thus can be solved using sum-of-squares (SoS)
and moments techniques to reduce it to a convex semi-definite program [15, 18]. Further as shown in [15],
this problem exhibits the running intersection property (e.g. the underlying correlative sparsity graph is
sparse), allowing for developing an efficient algorithm whose complexity scales linearly with the number of
data points and can handle co-occurrence priors. An example of this situation is enforcing that a given set of
points are either all inliers or outliners, a situation arising for instance when the minimum length of sensor
outages is known, or when separating background from foreground.

2.1.6 Semi-supervised identification of switched systems in the presence of outliers [15–17]. In the
initial phase of this research, we have addressed identification of time-invariant systems. Subsequently,
we sought to extended the framework to switching systems. These systems are interesting in their own,
since they appear in many scenarios (biological systems transitioning amongst different metabolic stages,
human activity, physical systems with different operation modes, etc) and as tractable approximations to
more complex non-linear dynamics. For simplicity, we consider only single-input single-output systems,
but extension to the MIMO case is straightforward. Specifically, we considered the following extension of
Problem 4:

Problem 5. Given:

• A set of input/output data {(ut, yt)Tt=t0} generated by an SARX model of the form

yt =

na∑
k=1

ak(σt)yt−k +

nb∑
k=1

bk(σt)ut−k + ηt (32)

• A-priori information consisting of (i) a bound Ns on the number of subsystems (e.g. σt ∈ NNs), (ii)
a bound ε on the process noise ηt, (iii) additional information, such as Nfi , the relative frequency of
each submodel, point wise co-occurrences, constraints on the switching sequence, etc.

Find a set of coefficients {ana
k=1(i), bnb

k=1(i)}, each associated with the submodel Gi, ∀Ns
i=1, that maximizes

the number of inliers.

As in section 2.1.5, we pursued two alternative approaches to solving the problem above, one based on
robust-regression and the second based on polynomial optimization.

(i) A sparsification based approach [15]: The idea underlying this approach is to find one submodel at
a time, by successively finding a parameter vector r that makes

∣∣yt − xTt r
∣∣ ≤ ε feasible for as many time
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instants t as possible. Once this model is found, the points explained by it are removed from the data set
and the procedure is repeated until all data points are clustered. By considering at each stage, points not
explained by the model are treated as outliers, each parameter vector ri can be found using the algorithm
developed in §2.1.3. When the subspaces spanned by each subsystem are well separated, the recovery results
in [14] guarantee that this approach will indeed find the correct set of models. On the other hand, if these
conditions do not hold, due to its greedy nature, the algorithm can overestimate the number of subsystems
required to explained the observed data. Nevertheless, consistent numerical experience shows that these
instances are very rare, specially when the algorithm is combined with a re-weighted heuristics to enhance
sparsity.

(ii) A polynomial optimization based approach [15]: As in §2.1.3, an alternative approach, with optimality
certificates can be obtained by recasting the problem into a polynomial optimization form, by introducing a
set of binary variables si,t that indicate whether the submodel Gi is active at time instant t (σt = i⇔ si,t =
1) and auxiliary variables ei,t (the fitting error of point t to model i), leading to:

max
ri,ei,t,si,t

∑T
t=to

∑Ns
i=1 si,t

subject to
rTi xt − ei,t = 0
||ri||2 = 1
|si,tei,t| ≤ εsi,t
s2
i,t = si,t,

∑Ns
i=1 si,t ≤ 1

∀i = 1, · · · , Ns,∀t = to + na, · · · , T

(33)

Here, ri(j) is the jth entry of ri, and the last two constraints on si,t guarantee that no more than one
submodel is active at time instant t. As before, it can be easily shown that this problem satisfies the running
intersection property, leading to algorithms that scale linearly with the number of data points.
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Figure 9: A switching system with 3 subsystems. The
polynomial based approach correctly identified both
the outliers (black dots) and the parameters of each
subsystem.

In many practical scenarios, additional information
is available about the system to be identified. Exam-
ples of these situations include knowledge that cer-
tain transitions are inhibited (common in biological
applications), or co-occurrences (common in image
processing and computer vision) where some of the
data may be manually annotated, so that it is known
that two given data points belong (or do not belong)
to the same system. A salient feature of the ap-
proach above is its ability to incorporate these pri-
ors by imply imposing additional constraints on the
variables si,t. For instance:

(i) submodel Gi is active for f% of the time⇐⇒∑T
t=t0+na

si,t = 0.01f(T + 1− t0 − na);

(ii) the same submodel is active at time instants m and n⇐⇒ si,m = si,n, ∀i = 1, · · · , Ns;

(iii) different submodels are active at time instants m and n⇐⇒ si,msi,n = 0, ∀i = 1, · · · , Ns;

(iv) submodel i cannot be followed by submodel j ⇐⇒ si,tsj,t+1 = 0, ∀t.
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(iii) A solution based on Christoffel Polynomials [16, 17]: While the approach outlined above is guaran-
teed to find the correct system, its computational complexity is very high, even when exploiting the underly-
ing sparse structure of the problem. As an alternative, we developed a computationally cheaper method, with
stochastic certificates, by exploiting the connections between positive Borel measures, positive polynomials
and Christoffel functions. Specifically, we sought to solve the following problem:

Problem 6. [Robust Subspace Clustering] Given a (sufficiently dense) set of noisy i.i.d samples (with ar-
bitrary, unknown distribution µ) xi of points x̂i ∈ Rd drawn from an arrangement of (linear) subspaces
A .

= S1∪S2∪ . . . Sn, corrupted with gross outliers, and a bound n on the number of subspaces: 1) Identify
gross outliers in the data; and 2) Assign inliers to subspaces.

The main idea of the algorithm that we proposed, illustrated in Fig. 10, is to find a polynomial Ps(x)
whose level sets approximate the support of the inliers (that is, the polynomial is small in the inlier subspaces
and has large values elsewhere). This polynomial is obtained by (i) first identifying “reliable” inliers, (ii)
estimating the probability density function of these inliers, and (iii) finding a polynomial that minimizes
the expected value of the quadratic fitting error to the (estimated) inlier subspaces. Once this polynomial
approximation to the support set of the inliers is available, true inliers can be found by simply seeking points
where Ps(x) is small. Notably, as discussed in the sequel, steps (i)-(iii) only involve performing two singular
value decompositions on a matrix whose size is, in typical applications, much smaller than the data matrix,
and thus are computationally far less costly than solving a regularized optimization problem.

	
 	

(a)	 (b)	

(c)	(d)	

Figure 10: Proposed pipeline: (a) inliers (black) cor-
rupted with outliers (red); (b) SoS approximation of
the support of the inliers (blue) and its level set (red),
(c) approximating the support of the inlier subspace
using the inverse of the proposed polynomial; (d) in-
liers are the points inside a suitable level set of the
polynomial.

In order to explain our results, we need
to introduce first the following background re-
sults on positive polynomials and Borel mea-
sures:

Moment matrices and orthogonal polynomials
Given a probability measure µ supported on Rd, its
corresponding moments sequence is given by

mα = Eµ(xα) =

∫
Rd

xαdµ (34)

where α =
[
α1 α2 . . . αd

]
is a multi-

index , x
.
=

[
x1 x2 . . . xd

]T and xα .
=

xα1
1 xα2

2 · · ·xαd
d .

In the sequel, we are interested in using a ma-
trix representation of a given sequence m that con-
tains all the moments up to order 2n. To this effect,
we will arrange the moments according to a graded
reverse lexicographic order (grevlex) of the corre-
sponding monomials and form the matrix Mn ∈
Rsn,d×sn,d with entries given by Mn(α,β) =
mα+β. For example, for d = 2 variables, x1 and
x2, there are sn,d = 6 monomials of degree up to
n = 2: 1, x1, x2, x

2
1, x1x2, x

2
2. The elements of the corresponding moment matrix M2 with all moments of

order up to 2n = 4, are given by: m(i,j) = Eµ(xi1.x
j
2), with 0 ≤ i, j ≤ 3.
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Given a point x ∈ Rd, let

φn(x)
.
=
[
1 x1 x2 . . . (xα1

1 xα2
2 · · ·xαd

d ) . . . xnd
]T (35)

where
∑d

i=1 αi ≤ n. It can be easily seen that

Mn =

∫
Rd

φn(x)φTn (x)dµ (36)

Thus, Mn � 0 (in fact Mn � 0, except when x belongs to the zero set of a polynomial of degree at most
n). The measure µ induces an inner product in Pnd , the space of polynomials in d variables of degree at most
n, given by:

〈P1(.), P2(.)〉µ .
=

∫
Rd

P1(x)P2(x)dµ (37)

As shown next, this inner product can be computed directly from Mn. Consider a generic polynomial
P (x) ∈ Pnd , P (x) =

∑
α pαxα, where pα denotes the coefficients of P (.) in the canonical monomial basis.

Collecting all the coefficients pα in a vector p allows for compactly representing P (.) as P (x) = pTφn(x).
Then,

〈P1(.), P2(.)〉µ =

∫
Rd

pT1 φn(x)φTn (x)p2dµ = pT1 Mnp2 (38)

Assume that Mn � 0 and let ui, σi denote its singular vectors and the corresponding singular values. From
the derivation above, it follows that the polynomials associated with the coefficient vectors ci

.
= 1√

σi
ui

are an orthonormal basis, with respect to µ, of Pnd . These orthonormal polynomials define a reproducing
Kernel:

Kn(x,y)
.
=

sn,d∑
i=1

(cTi φn(x))(cTi φn(y)) (39)

Next, define the polynomial

Qn(x)
.
= Kn(x,x) =

sn,d∑
i=1

(cTi φn(x))2 (40)

Note that Qn(x) is a sum-of-squares polynomial, and hence non-negative (in fact, it can be shown that
Qn(x) ≥ 1). The function Qn(x)−1 is known as the Christoffel function and it is related to the probability
measure µ that induces orthorgonality of the set {ci} through the following result:

Qn(x)−1 = min
P∈Pn

d

∫
Rp

P 2(ξ)dµ s. t. P (x) = 1 (41)

a result that will play a key role in identifying outliers.

Finding reliable inliers: To find reliable inliers, we started by considering the matrix Mn,h
.
= 1

Np
VT
nVn ∈

Rsn,d−1×sn,d−1 . As in (37), Mn,h induces an inner product in Pnd,h, the space of homogeneous polynomials,
given by:

〈P1(.), P2(.)〉µ .
=

∫
Rd

P1(x)P2(x)dµ = pT1 Mn,hp2 (42)
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where Pi(x) = pTi νn(x). Next, let Udiag(σi)U
T = svd(Mn,h) and consider the homogeneous polynomi-

als Ci(x) ∈ Pn,h, Ci(x)
.
= cTi νn(x) with coefficient vectors ci

.
= 1√

σi
ui, where ui denotes the ith column

of U. Note that these polynomials form an orthonormal basis of Pn,h with respect to the inner product
defined by (42) since

〈Ci(.), Cj(.)〉µ =
1

√
σiσj

uTi Mn,huj =

{
1 if i=j
0 otherwise

Thus,

Kn,h(x,y)
.
=

sn,d−1∑
i=1

(cTi νn(x))(cTi νn(y)) (43)

is a reproducing kernel in this space, with associated Christoffel polynomial given by

Qn,h(x)
.
= Kn,h(x,x) =

sn,d−1∑
i=1

(cTi νn(x))2 (44)

Due to orthonormality, Eµ[Ci(x)] = cTi Mn,hci = 1. Thus, the expected value of Qn,h is given by

Eµ(Qn,h) =

sn,d−1∑
i=1

Eµ[ci(x)] = sn,d−1 (45)

Finally, given a threshold t, from Markov’s inequality it follows that

prob{Qn,h(x) ≥ t · sn,d} ≤
1

t
(46)

Hence, a set of “reliable” inliers can be found by simply selecting those points where Qn,h(x) < t · sn,d.
Since accurate estimation of a polynomial in the vanishing ideal I(A) hinges on using a set without outliers,

Figure 11: A few outliers (red points) can lead to a
GPCA polynomial whose level sets (red) are a poor
approximation of the inlier subspaces while the level
sets of the proposed polynomial (green) successfully
approximate the support of these subspaces.

t in this step should be taken reasonably low (e.g.
t ∼ 1− 3).

Estimating a polynomial that vanishes on all in-
lier subspaces: Since Kn,h defined in (43) is a re-
producing kernel in Pn,h, it follows that, for each
point x ∈ Rd

Qn,h(x)−1 = min
P∈Pn

d,h

∫
Rp

P 2(ξ)dµ s. t. P (x) = 1

(47)

For a given x∗, denote by P ∗ the minimizer
above. Markov’s inequality implies that, for any
given threshold t, the mass of the set S ={
x : (P ∗(x))2 ≤ t

}
satisfies

µ(S) =

∫
P ∗(x)2≤t

dµ ≥ 1− Eµ[(P ∗)2)]

t

= 1− 1

tQn,h(x∗)
≥ 1− σmin

t[uTminν(xo)]2

(48)
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where σmin denotes the minimum singular value of the moments matrix. It follows that, when
[uTminν(xo)]

2 � σmin (roughly speaking the outlier is well outside the noise level) then the set S con-
tains most of the inliers (see [17] for details). The effectiveness of this approach in capturing the distribution
of the true inliers and in detecting outliers is illustrated in Figure 11.

2.1.7 Optimal Identification and Filtering on the Positive Definite Manifold [19, 20]. In principle, com-
putationally efficient solutions to a large class of problems related to robust inferencing can be obtained
by encapsulating all the relevant information in a positive definite matrix (for instance containing the mo-
ments of the probability distribution characterizing the process). Examples range from target tracking and
re-identification to activity recognition and fault detection. However, successful implementation of these
ideas requires the ability to estimate a time-varying positive definite matrix from a collection of noisy mea-
surements, with the main difficulty stemming from the fact that, compared against traditional parameter
estimation methods, here the estimation algorithm should respect the fact that the matrix evolves on the PD
manifold. Specifically, the problem of interest can be formally stated as:

Problem 7. Given a noisy observation Qt of a positive semi-definite matrix Pt and past historical data
Pt−r,Pt−r+1, · · · ,Pt−1, find the Jensen Bregman LogDet (JBLD) divergence-based maximum likelihood
estimate (MLE) of Pt. where, for two positive definite matrices X,Y, the JBLD1 was defined in (26) (recall
that the JBLD is a metric that respects the Riemannian topology of the positive definite manifold).

To solve the problem above, we developed a new framework for recursive filtering on the PD manifold
using Generalized Autoregressive Conditional Heteroskedasticity (GARCH) models for propagating past
measurements, combined with a maximum likelihood estimator based on minimizing the Jensen Bregman
LogDet (JBLD) divergence. Specifically, we introduced a new probabilistic dynamic model for recursive
filtering on the PD manifold based on a generalized Gaussian distribution. As shown in [19, 20], under
suitable conditions, the generalized Gaussian conjugate prior can indeed be expressed in terms of the JBLD
distance between the observed and predicted data, leading to the following model for estimating Pt based
on past observations:.

p(Pt|Pt−1, . . . ,Pt−r) ∝ e−
Jld(Pt,

∑r
i=1 St−iAiSt−i)

2ω2 (49)

where St−i
.
= P

1
2
t−i, r denotes the system order and where Ai � 0 are the parameters that define the autore-

gressive model. Intuitively, the probability of obtaining a given covariance at time t decays exponentially
with its distance, measured in the Jld sense, from the predictions of the model

∑r
i=1 St−iAiSt−i. In this

context, Problem 7 above can be split into the following two subproblems:

Problem 8. Given a sequence of training data {Pt}Tt=1 ∈ Sn++, find the JBLD-based maximum a posteriori
estimate (MAP) of the parameters Ai, such that the dynamic model is stable.

Problem 9. Given a noisy observation Qt, find the JBLD-based maximum likelihood estimate of Pt, as-
suming a known propagation model of the form (49).

As shown in [19, 20], the first problem is convex and can be efficiently solved using an ADMM type
algorithm while the second admits a closed form solution, leading to a framework for data driven prediction
in the positive definite manifold that outperforms existing approaches both in quality of the predictions and
computational complexity (Fig. 12).

1Recall that the JBLD is a metric that respects the Riemannian topology of the positive definite manifold.
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Frame 11 Frame 14 Frame 21

Figure 12: Tracking a target with changing appearance via positive definite embeddings. A GARCH model
was used to predict the appearance of the target and locate it. Note that the JBLD based recursive filter
(JBRF) is the only method capable of tracking the target through the occlusion [20].

2.2 Model (In)Validation [5, 7].

Model (in)validation is the dual problem of identification: given a model and experimental data, the goal
here is to determine whether these are consistent. That is, whether or not the observed data (corrupted by
noise) could have been generated by the model. Validating identified models against additional data is a
key step before using these models for control synthesis. Additional applications of model (in)validation in-
clude fault detection and isolation, and, interestingly, to detect anomalies in time series, including abnormal
human activity. The original (in)validation framework developed in the late 1990’s and early 2000’s con-
sidered LTI systems described by a single model. While this was a good start, realistic scenarios typically
involve systems that switch amongst different models (e.g. an aircraft switching amongst different regimes,
a biological system transitioning between metabolic stages, or a human performing an activity composed of
different sub-activities). Thus, as part of this research we developed a framework for (in)validating switched
models for cases where the mode variable is not directly accessible (hence, it is not known which sub-
model generated a specific observation). Formally, the problem of interest here can be posed as determining
whether a noisy input/output sequence could have been generated by a given model of the form:

ξt =
∑na

i=1 ai(σt)ξt−i +
∑nb

i=1 bi(σt)ut−i
yt = ξt + ηt, σt ∈ {1, . . . , s}, ‖ηt‖∞ ≤ ε (50)

where yt denotes the measured output corrupted by the noise ηt. As in the identification case, this problem
is known to be generically NP-hard, due to the presence of noise and because the mode variable σt is
not directly measurable. However, it is possible to obtain tractable relaxations by using sparsification and
polynomial optimization tools. This can be done by noting that (50) holds if and only if there exist a set of
“indicator” variables si,t and admissible noise sequence ηt such that

si,t
(
gi,t − hiηt:t−na

)
= 0 ∀ t ∈ [to + na, T ]

subject to∑ns
i=1 si,t = 1

si,t ∈ {0, 1} and ‖ηt‖∞ ≤ ε
(51)

where the notation was simplified by defining:

gi,t
.
= a1(i)yt−1 + ..+ ana(i)yt+na

−yt + b1(i)ut−1 + . . .+ bnb
(i)ut−nc

hi
.
=
[
−1 a1(i) . . . ana(i)

]
ηTt:t−na

.
=
[
ηTt . . . ηTt−na

]T
20
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As shown in [5,7], the (generically non-convex) problem above can be solved using either (i) a sparsification
based approach where the variables si,t are relaxed to be real, rather than binary, subject to a constraint on
the cardinality of the sequence {si,t}, or (ii) a polynomial based approach where the fact that si,t ∈ {0, 1}
is handled via the polynomial constraint s2

i,t = si,t.

2.3 Time Series Comparisons and Data Driven Anomaly Detection.

The ability to quickly detect anomalies and take corrective action is a key enabler for operating in contested
environments and for developing fault tolerant controllers. While anomaly detection methods have a rich
history in the control community, most existing methods are model-based. Briefly, these methods make use
of a model, usually linear, in a filter that is tuned to detect a particular fault; when the filter residuals (which
reflect the differences between expected and observed operation) deviate sufficiently or become statistically
colored, a fault is flagged. However, in many scenarios a process model is not always available and there
is insufficient training data to find and validate one. In this case, there are currently fewer tools that can be
brought to bear on the problem, and these methods generally require extensive tuning and/or strong priors
on the statistical distribution of the data. Motivated by these difficulties, in this portion of the research
we developed two data–driven fault detection approaches that do not require knowledge of the underlying
process model, (i) a deterministic approach, based upon embedding the data in the positive definite manifold
and using a Riemannian geometry there to compare time series, and (ii) a stochastic approach that estimates
the probability that a given measurement has been generated by the same process that generated training
samples drawn from the non-faulty process.

2.3.1 Comparing Time Series via Positive Definite Embeddings [11, 21]. Consider the problem of de-
termining whether two given (noisy) pairs of time series can be considered to be input/output trajectories
of the same system, for some unknown initial conditions. For instance, this problem is a pre-requisite to
data-driven identification of piece-wise affine models, where usually the first step is to determine regions
where the experimental data can be explained by a single model. In addition, this problem also arises in
the context of fault detection, since typically faults cause a change in the underlying dynamics and thus a
single system cannot explain the observed data record. A similar reasoning can be used in video-analytics
to detect anomalies from video sequences. Formally, the problem above can be stated as a behavioral model
(in)validation problem and solved using tools developed in this context. For instance, it is possible to use
a two-step approach based on (i) first finding the most powerful unfalsified model that explains one of the
sequences and (ii) establishing whether this model admits the second sequence as a behavior. While this
approach works well with clean data, it may fail in the presence of measurement noise. In addition, the
entailed computational complexity is far from trivial. As we have shown in [11, 21] an alternative, compu-
tationally efficient method can be be obtained by first embedding the data in the positive definite manifold
and then using a Riemannian manifold metric to compared the embedded data.

Briefly, given two time series {y(1)
t }2n−1

t=1 and {y(2)
t }2n−1

t=1 , let H
y
(i)
t

denote their associated Hankel ma-
trices. Then, it can be easily shown that, under mild observability conditions, both sequences are behaviors
of the same underlying system if and only if

rank(H
y
(1)
t

) = rank(H
y
(2)
t

) = rank(
[
H

y
(1)
t

H
y
(2)
t

]
) (52)

While in principle this equation gives a tractable test, in practice rank is difficult to estimate in the presence
of noise. Thus, rather than working directly with Hankel matrices, we embedded the data in the positive
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(semi) definite manifold via the associated regularized Gram matrices defined as:

Gσ =
HH>

‖HH>‖F
+ σI (53)

Then, the main results of [19,20] show that, for noiseless data, two given sequences are behaviors of the same
underlying system, possibly for different initial conditions, if and only if limσ→0 JBLD(G

(1)
σ ,G

(2)
σ ) <∞.

In the case of noisy sequences, we have shown that, if the noise is white, the JBLD between behaviors of the
same system is generically much smaller than the distance between those originating from different ones.
Thus, from a practical standpoint, the hypothesis that two given sequences are behaviors of the same system
can be validated by simply computing the manifold distance. The advantage of this approach, in addition
to its robustness to noise, is its very low computational complexity, since computing the JBLD only entails
computing determinants (as opposed to computing rank that requires an SVD).

2.3.2 Anomaly Detection as a Generalized Moments Problem (GMP) [22]. The main idea here is to learnA Real Example (Test 1) 

Running average of upper bound probabilities 

 
l  Change apparent 

6.44 days before 
failure, 2% threshold 
crossed 4.96 days 
before failure 

 
l  Inner race defect in 

bearing 3 harder to 
detect than bearing 
4's “roller element 
defect” 

 

Figure 13: Data driven anomaly detection. Top: Test
rig. Bottom: Probability that an observation cor-
responds to a non-faulty state. The fault detection
threshold was crossed 5 days prior to bearing fail-
ure [22].

the shape of the non-faulty-state distribution, suc-
cinctly described by moment information and use
this information to compute an upper-bound on the
probability of observing a particular data sample
over all the distributions that have the same mo-
ments. Briefly, in this approach all available infor-
mation about the probability distribution function of
the nominal process is encapsulated in a (truncated)
sequence of moments of the form mα

.
= E(xα) ≈

1
N

∑N
i=1 x

α
i (recall that a probability density func-

tion is completely characterized by its moments se-
quence). Given a new measurement x, one can then
calculate an upper bound of the probability of the
observation x given the past data by solving a prob-
lem of the form:

ρmom = sup
µ∈M(Rn)+

1

2ε

∫ x+ε

x−ε
dµ (54)

s.t.
∫
Rn

xαdµ = γj , j = 1, . . . ,m

where M(Rn)+ is the positive cone containing finite Borel measures µ on Rn. As shown in [22], the
problem above is a special case of the so-called generalized moments problem and can be solved via a
sequence of convex relaxations. The effectiveness of this approach in detecting anomalies is illustrated in
Fig. 13, where it was used to detect an incipient failure in a test rig. It is worth noting that the failure was
detected substantially earlier than using existing methods.

2.4 Controller Synthesis

The ultimate goal of this research is to develop a comprehensive data-driven framework for data-driven ro-
bust decision making in contested environments. Thus, in parallel with the efforts directed towards control-
oriented identification and model (in)validation, we also carried out research aimed to synthesize data-driven
controllers that make optimal use of all the information available while respecting physical constraints. In-
terestingly, our results show that in, in many scenarios, the control synthesis problem exhibits a structure
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similar to that observed in systems identification (an underlying chordal graph that is sparse). As before,
exploiting this structure, together with polynomial optimization tools, leads to efficient relaxations of prob-
lems known to be, in principle, NP hard, along with optimality certificates showing that in many cases, the
solution to these relaxations are indeed optimal.

2.4.1 Data Driven Robust Control [23–25]. Many practical scenarios involve designing controllers for
systems where a model is not available and must be identified from a combination of experimental data and
some a-priori information. Classically, this problem has been addressed by a multi-step procedure. Firstly,
a suitable plant and associated worst-case identification bounds are obtained using control-oriented identi-
fication methods. If additional experimental data is available, then the uncertainty bounds can be refined
through a model (in)validation step. Finally, a robust controller is synthesized that attempts to stabilize the
family of plants defined by the identified nominal model and uncertainty bounds. While this multi-step
approach usually works in practice, it can be overly conservative (due to the use of upper bounds in the
identification and (in)validation steps). Thus, there is no guarantee that a suitable controller can be found.
In addition, the entailed computational complexity is far from trivial. Motivated by these difficulties, in this
portion of the research we developed a new framework for directly identifying controllers from experimen-
tal data, without explicitly identifying the plant. We have explored two different approaches: (i) imposing
superstability and (ii) using polyhedral Lyapunov functions combined with polynomial based optimization
and duality. The first approach leads to computationally tractable convex optimization problems, but can
be potentially conservative, while the second is guaranteed to find a controller, if one exists, at the cost of
increased computational complexity.

(i) Superstabilizing Data Driven Controllers: The SISO case [23]. Our initial approach focused on
designing super-stabilizing controllers. While super-stability is a stronger requirement than Schur stability,
it has the advantage of having a direct connection with time-domain, peak–to–peak performance, allowing
for designing a controller with guaranteed worst case performance over the entire consistency set. The main
result of this research is that the problem of synthesizing a robustly super-stabilizing controller directly
from the experimental data, albeit in principle non-convex, can be recast into a convex Linear Program by
exploiting results from Robust Optimization and exactly solved (see [23] for details).

Briefly, recall that a system of the form

yt = −
n∑
k=1

akyt−k +

n∑
k=0

bkwt−k (55)

where et and wt denote the output and exogenous disturbance, respectively is said to be superstable, if its
characteristic polynomial D(λ) is super stable, i.e.

∑n
1 |ak| < 1. As noted above, while superstability is a

stronger condition that just stability, the advantage is that it provides worst case bound on performance, that
is, a superstable system satisfies supw ‖y‖∞ ≤ ‖b‖1

1−‖a‖1 , and this bound is tight. Further, as shown below,
exploiting this bounds leads to data driven robust controllers with guaranteed performance for all plants
compatible with the observed data.

Specifically, given experimental input/output data {ut, yt}, ∀t = 0, . . . , T , where ut and yt denote a
known input and the system output corrupted by additive process noise, respectively, e.g.

yt = −
na∑
k=1

a
(p)
k yt−k +

nb∑
k=1

b
(p)
k (ut−k + wt−k) + ηt, |ηt| ≤ ε (56)

then the consistency set is defined as the set of all plants of the form (55) that could have generated the
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observed data. In the case of `∞ bounded noise, this set is a a polyhedron of the form

P(θp)
.
={θp ∈ <na+nb : |yt − xTt θp| ≤ ε,∀Tt=na

}
={θp ∈ <na+nb : Dθp + q ≥ 0}

(57)

where xt
.
=
[
−yt−1 . . . −yt−na ut−1 . . . ut−nb

]T and θp
.
=
[
a

(p)
1 . . . a

(p)
na b

(p)
1 . . . b

(p)
nb

]T
denotes the unknown parameters of the plant. Here, D ∈ <2(T+1−na)×(na+nb) and q ∈ <2(T+1−na) are
known constants. In this context, the problem of interest can be precisely stated as:

Problem 10. Given a set of experimental data {ut, yt}Tt=0 collected from a plant P of the form (56) with
known order na and nb, and a bound ε on `∞ norm of the noise, design a controller C (determined by
unknown θc = [a

(c)
1 , · · · , a(c)

nc , b
(c)
0 , · · · , b(c)nc ]T ) with the transfer function

C(λ) =
Nc(λ)

Dc(λ)
=

∑nc
k=0 b

(c)
k λk

1 +
∑nc

k=1 a
(c)
k λk

(58)

such that the resulting closed-loop system is superstable for any plant in the consistency set P(θp), and the
worst case `∞ induced norm of the closed–loop system is minimized.

To reformulate Problem 10 as an optimization problem, begin by writing explicitly the closed-loop
transfer function of the system as:

T (λ) =
P (λ)

1 + P (λ)C(λ)
=

NpDc

DpDc +NpNc

.
=

∑n
k=1 bkλ

k

1 +
∑n

k=1 akλ
k

(59)

where the unknown coefficients θ =
[
aT bT

]T ∈ <2n+1 of T (λ) are bilinear functions of the parameters
of the plant and controller, θp and θc respectively, of the form:

θi = (Qiθp + f
(c)
i )Tθc + f

(p)T
i θp + ri, ∀2n+1

i=1 (60)

where Qi ∈ <(2nc+1)×(na+nb), f
(c)
i ∈ <2nc+1, f

(p)
i ∈ <na+nb , and ri ∈ < are known constants. Using this

notation, Problem 10 can be reformulated as a constrained optimization problem of the form

µ̃∗ = min
θc,µ>0

µ (61a)

s.t. µ||a||1 + ||b||1 ≤ µ, ∀θp ∈ P(θp) (61b)

In principle, problem (61) is nonconvex due to the bilinear terms. However, as we have shown in [23],
surprisingly, application of the extended Farkas Lemma allows for reducing it to a Linear Program of the
form:

minµ subject to:

qT zi + f̄
(c)T
i θc + r̄i ≤ 0

−DT zi = f̄
(p)
i + Q̄T

i θc

zi ≥ 0

∀i = 1, · · · , 22n+1,

(62)

Further, as we have shown in [23] this relaxation is exact, that is, there is no duality gap.
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(ii) Extension to Switched MIMO Systems and Switched Difference Inclusions [24, 25]. As indicated
in section 2.1.4, switched systems have been the object of renewed interest in the past decade, since they
allow for handling scenarios where the dynamics change, for instance as the operating conditions change.
In particular, a class of problem of interest to this research is switched difference inclusions, where, due to
uncertainty, at any given time, the system is only known to belong to a given set, and the goal is to render the
origin an asymptotically equilibrium point, regardless of the switching sequence. An example of scenarios
where this approach is relevant is fault tolerant control, where the controller needs to drive the system to a
safe state, in the presence of faults whose dynamics were previously unknown. Specifically, we sought to
solve the following problem:

Problem 11. Consider the setup shown in Figure 14 and assume that the system under consideration con-
sists of s LTI subsystems, each described by a model of the form:

xik+1 = Aix
i
k + Biuk + wk, i ∈ {1, . . . , s} (63)

Given labeled experimental data {uk, xik, xik+1}Tk=0, i = 1, . . . , s, and a bound ε on `∞ norm of the noise,
find a switched state feedback gain Fi such that the resulting closed loop matrix Aσt + BσtFσt is asymp-
totically stable for any switching sequence σt ∈ {1, . . . , s}, for all pairs (Ai,Bi) in the consistency set P
defined as the set of all plants of the form (63) that could have generated the observed data.

c(P1) 

? 

c(P2) 

? 

c(Pn) 

? 

Figure 14: Setup for Switched Data Driven Control Syn-
thesis.

We solved this problem by exploiting the fact
that the origin is an asymptotically stable equilib-
rium point of (63) under arbitrary switching if and
only if there exists a full column rank matrix 2 V
and ns matrices Hi, ‖Hi‖∞ < 1 such that

VAi = HiV, i = 1, . . . , ns (64)

Next, note that since (63) is linear in A,B and the
noise is bounded in the `∞ sense, the consistency
set P = ∪P(i), where each of the P(i) is a polytope
of the form:

P(i) .
= {a(i)

j ,b
(i)
j : ‖

(
xT
t
(i)
1

⊗ I

)
a

(i)
j +(

uT
t
(i)
1

⊗ I

)
b

(i)
j − x

t
(i)
1 +1
‖∞ ≤ ε}

(65)

where (A(i)
j ,B

(i)
j ) denotes a generic pair in P(i), a

(i)
j

.
= vec(A(i)

j ), b
(i)
j

.
= vec(B(i)

j ) and where t(i)k , k =

1, . . . ,mi denotes the times at which the ith system is active. In this context, Problem 11 is equivalent to
the following robust optimization:

Problem 12. Find a full rank matrix V ∈ Rn×n, a switched feedback gain Fi and matrices H
(i)
j such that

V(A
(i)
j + B

(i)
j Fi) = H

(i)
j V and ‖H(i)

j ‖∞ ≤ d < 1 (66)

for all pairs (A
(i)
j ,B

(i)
j ) ∈ P(i), i = 1, . . . , ns.

2In this case the function V(x) .
= ‖Vx‖∞ is a polyhedral Lyapunov function for (??).
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The main result of this portion of the research showed that, through the use of duality Problem 12 can
be recast into a polynomial optimization form. Specifically, denote by t(i)k , k = 1, . . . ,mi the time instants
where the ith sub-system is active. Let:

X (i) .=


xT

t
(i)
1

⊗ I

...
xT

t
(i)
mi

⊗ I

 ,U (i) .=


uT

t
(i)
1

⊗ I

...
uT

t
(i)
mi

⊗ I

 , ξ(i) .=


x
t
(i)
k +1

...
x
t
(i)
mi

+1


We have shown (see [25] for details) that, given a (full rank) matrix V ∈ Rn×n, a matrix S ∈ Rr×n2

and a
non-negative vector λ ∈ Rr there exist switched feedback gains Fi and matrices H

(i)
j such that

V(A
(i)
j + B

(i)
j Fi) = H

(i)
j V and Svec(H

(i)
j ) ≤ λ (67)

for all pairs (A
(i)
j ,B

(i)
j ) ∈ P(i), i = 1, . . . , ns if and only if there exist ns matrices Y(i) ∈ Rr×2nmi , Y(i) ≥

0 and Fi ∈ Rm×n such that

Y(i)

[
X (i) U (i)

−X (i) −U (i)

]
=
[
(S(V−T ⊗V) S(FTi ⊗V)

]
Y(i)

[
ξ(i) + ε1

−ξ(i) + ε1

]
≤ λ

(68)

Exploiting this result allowed for recasting Problem 12 into the following polynomial feasibility problem:
s equivalent to the following polynomial feasibility problem: Find ns matrices Yi ∈ Rn×2nmi ≥ 0,Fi ∈
Rn×m, a full rank matrix V ∈ Rn×n and a non-negative vector λ with elements λi ≤ d < 1 such that (68)
holds for all matrices S ∈ Rn×n2

of the form:

S =
[
diag(s1) diag(s2) . . . diag(sn)

]
(69)

where si ∈ Rn is a vector with elements si,j = ±1. In turn, this problem can be solved using Algorithm 4
listed below, obtained using polynomial optimization techniques:

2.4.2 Synthesis of controllers subject to information flow constraints [26–28] The past decade has wit-
nessed an explosive growth in sensing and actuation capabilities, rendering feasible distributed control ap-
plications involving a very large number of networked sensors and actuators. However, fully exploiting
the capabilities of these distributed systems requires developing control synthesis methods that take into
account structural interconnection constraints. These arise for example from constraints on the number of
interconnections that can be handled at each node or the need to respect physical constraints. It is well
known that this problem is generically NP-hard, unless the plant satisfies the Quadratic Invariance property.
Unfortunately, this property does not hold for generic information structures. Motivated by this difficulty, in
this portion of the research we developed efficient, tractable convex relaxations for synthesizing information
flow constrained controllers. Specifically, we addressed the following problem:

Problem 13. Given system of the form

x(t+ 1) = Ax(t) + Bvv(t) + Bu(t)

y(t) = Cx(t) + Dvv(t)
(70)

where A ∈ Rr×r, B ∈ Rr×p, Bv ∈ Rr×e, C ∈ Rq×r and Dv ∈ Rq×e are known matrices, and where
u ∈ Rp, y ∈ Rq and v ∈ Re represent the control input, the measured output and disturbances, design a
stabilizing controller subject to constraints on the information exchange between sensors and actuators,

u(t) = Ky(t) and K ∈ S (71)

where S is a given sparsity structure.

26
DISTRIBUTION A: Distribution approved for public release



Algorithm 4 Reweighted ‖.‖∗ based DDC design

Initialize: iter = 0,W(0) = I , d < 1
repeat

Solve

minm Trace(W(iter)M)
subject to:
λ ≥ 0
M(m) � 0
M(1, 1) = 1
VZ = I
mat(λ)1 ≤ d1
and, for all i = 1, . . . , ns
Y(i) ≥ 0

Y(i)

[
X (i) U (i)

−X (i) −U (i)

]
=

[
K N (i)

−K −N (i)

]
Y(i)

[
ξ(i) + ε1

−ξ(i) + ε1

]
≤ λ

where K = ZT ⊗V,N (i) = FTi ⊗V
M represents the moment matrix given by:
M = [1, vec(V)T , vec(Z)T , vec(Fi)T ]T×

[1, vec(V)T , vec(Z)T , vec(Fi)T ]
Update

W(iter+1) = (M(iter) + σ2(M(iter))I)−1

iter = iter + 1

until rank{M} = 1.
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Figure 15: Sparse controller design as a sparse filter-
ing problem.

We have developed two different approaches to
solve this problem: the first method is based upon
the idea of recasting the problem into a sparse filter-
ing form while the second exploits a combination of
polyhedral Lyapunov function and polynomial op-
timization ideas.

(i) Sparse controller design as a filtering prob-
lem [26]. The main idea here, illustrated in Fig.
15, is to first design a non-sparse controller Kf

and then find the best sparse approximation to the
optimal control action (rather than the controller),
u = Φ(z)y. As shown in [26], finding the optimal
sparse “filter” Φ(z) can be recast into the following convex form:

J = min
Φ(z)∈RH∞∩S

‖Tuw(Kf )−ΦTyw(Kf )‖H∞ (72)

where Tuw(Kf ) = Kf (I−GKf )−1G and Tyw(Kf ) = (I−GKf )−1G denote the closed-loop transfer
functions from the disturbance input w to the control action u and measured output y, respectively.

(ii) Sparse controller design via polynomial optimization [27, 28]. The approach described above works
well when it is desired to approximate a stable controllerKf . However, in many cases, the desired controller
is not open-loop stable (for instance if the plant is not strongly stabilizable). To address this issue, we
have also developed an approach that can handle generic systems, at the price of higher computational
complexity. The starting point is to use a polyhedral Lyapunov function to parameterize the set of all
stabilizing controllers that have the desired structure. Consider first the case of static controllers. As shown
in [27,28], a static output-feedback controller K stabilizes the system (70) if and only if there exist matrices
P and H and a scalar δ, such that[

I
P

]
(A + BKC) = H

[
I
P

]
‖H‖1 ≤ δ, 0 ≤ δ < 1

(73)

Further, a given sparse structure S can be directly incorporated into the parameterization (73) by simply en-
forcing K(i, j) = 0, ∀(i, j) such that S(i, j) = 0. Since all the conditions above only involve polynomials,
a suitable K can be found by using moments (or SoS) techniques to reduce the problem to a semi-definite
program. Next, we briefly outline how to extend these ideas to dynamic controllers. Consider a controller
of the form

xu(t+ 1) = Auxu(t) + Buy(t)

u(t) = Cuxu(t) + Duy(t)
(74)

with Au ∈ Rru×ru . The corresponding closed loop dynamics are given by:

[
A + BDuC BCu

BuC Au

]
=

[
A

0

]
+

[
B

I

] [
Du Cu

Bu Au

] [
C

I

]
(75)

Since this is similar to the formulation A + BKC derived for the static control case, the same tools used
in that case be directly applied here. Finally, we note that the ideas outlined above can be combined with
tools from viability theory to synthesize sparse controllers subject to hard control constraints. Details are
provided in [27].
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3 Applications

Although the main focus of this effort is basic research, in order to illustrate the advantages of the proposed
framework, we have applied it to solve several non-trivial practical problems.

3.1 Applications of the parsimonious models identification framework

Next, we illustrate the potential applications of the parsimonious model identification outlined in section
2.1.2 to three different domains (i) damage mitigating control, (ii) tracking in contested environments, and
(iii) multi-sensor data fusion.

3.1.1 Identification of a lightly damped system for damage mitigation control [1, 3, 4].
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Figure 16: Left: A lightly damped system used for damage mitigation control testing. Right: Experimental
data vs identified model fit.

Damage mitigation control seeks to extend the life of compromised structures by switching from a
nominal controller to a less aggressive one that trades off performance versus stress with the goal of allowing
for a damaged vehicle to return to a safe base or a damaged structure to remain in place until it can be
replaced. Central to this concept is the ability to, once damage occurs, quickly identify a new model of
the process and synthesize a new controller. Since both of these must be done in real time, computational
complexity (which as indicated before is dominated by the order of the model) must be kept as low as
possibly, compatible with the requirement of fidelity of the model to the new data. Consider the problem of
identifying the very lightly damped two-degrees of freedom structure shown in Fig. 16, used as a benchmark
for damage mitigating control, from the experimental data shown there. Note the very large resonance peak
that renders the identification problem non-trivial. Using the proposed atomic norm approach leads to a
6th order system that fits well the data, in approximately 2 seconds. For comparison, an ADMM based
approach, while producing similar results, requires approximately 2500 seconds [7].

3.1.2 Multi radar target tracking in contested environments [29, 30]. In any adversarial environment,
it is important to keep a good view of the air space, since this information can be used as early warning
for headquarters, cities, and for deploying countermeasures. Most of the time, this air picture is generated
by surveillance radars. Since having a good and long range view creates advantage for the defending side,
adversaries usually try to interfere with radars and hence with the estimated air picture. One common prac-
tice is the use of jamming air vehicles. In a jammed environment, surveillance radars might lose the range

29
DISTRIBUTION A: Distribution approved for public release



information and only azimuth (direction) or bearing information can be measured.

IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS 2

Fig. 1: Geometry of Problem - Triangulation results ghost and
targets based on the intersection of lines

there are four intersections of lines, all of them being possible
locations of the targets. Of course, some of the intersections
do not represent actual targets but are in fact ghosts, and hence
not useful information. Unfortunately, ghosts behave like real
targets, making distinguishing targets from ghosts using radars
and triangulation methods a challenging problem. There are
two different scenarios related to this difficulty:
• Scenario 1 - Two Static radars and more than one

target: Line triangulation methods can still be utilized
to calculate the possible positions of the targets. Some
of these possible positions are “ghosts.” In 3D and noisy
environments, triangulation procedures may not be trivial.

• Scenario 2 - More than two static radars and more
than one target: In this case, the defending side can
still utilize line triangulation methods to calculate the
possible positions of the targets. Again some of them
are “ghosts.” Eliminating ghosts in this scenario is easier
than the scenario 1, since the number of lines crossing the
true positions is equal to the number of radars. However,
in a noisy case, this requirement can quickly be violated,
and again heuristics need to be employed.

Scenario 2 occurs less frequently and the deghosting (re-
moving ghosts [5], [4].) for this case is less demanding than the
process given for Scenario 1 because the number of intersect-
ing lines at the actual target locations is equal to the number of
radars, which is greater than the number of intersecting lines
at ghost positions in the noise-free measurement case [5].

Scenario 1 is the most common and more demanding
situation, because no analytical solutions for this scenario are
available in the literature, even in the noise free case. For
this reason, in this article, the “ghost elimination” problem is
examined for Scenario 1; i.e., there are exactly two radars and
more than one target in the environment. The main result of
the paper is an efficient method to distinguish actual targets
from ghosts, based on the the concept of Hankel rank. ?Should

we mention where this is defined?
Various methods for characterizing targets and ghosts in

these scenarios appear in the signal-processing literature [1],
[4], [5]. For instance, in study [5], existing deghosting al-
gorithms are classified according to whether they are (1)
probabilistic, (2) combinatorial, or (3) mixed (combination of
1 and 2). These algorithms generally consist of two steps. i)
The algorithms estimate the measurements of the intersections.
ii) The targets and ghosts are localized using these measure-
ments. Therefore having a passive radar on a static platform
requires triangulation to localize the targets, a process that is
susceptible to generate ghosts. As this might suggest, the lo-
calization of targets in a multi-radar scenario is a longstanding
and practically meaningful problem in the radar community.
Some of the existing studies on the ghost elimination problem
include [1], [6], [7], [8], [9], [3]. However in many related
works in the literature make too many assumptions to develop
a method for deghosting.

For example, one of the existing methods that has been de-
veloped for single frequency network based passive radars is -
associated hypothesis decision algorithm [3]. This study inves-
tigate the solvability analysis for measurement-to-transmitter
association ambiguity (MTAA) under noise free assumption.
This algorithm requires the velocity calculation of intersection
while proposed method does not need this requirement. Com-
monly available methods uses a probabilistic detection test by
employing maximum likelihood type estimator [3], [4]. There
are methods in [10] that use the hinge angle if the surveillance
radars or passive sensors can collect bearing and elevation
measures simultaneously. Different than these methods, we
show an analytic result can be found for deghosting problem.
On the other hand, advanced deghosting algorithms have to
be efficient in terms of computation and accuracy, especially
when bearing data contains bounded noise and/or outliers that
are caused by impulse noise or communication errors such as
missing measurement [11]. Therefore in this work, we present
an efficient filtering algorithm with Hankel rank as a new
indicator of ghost in bearing-only tracking.

Preliminary version of some of the results in this paper
were presented in [12]. Unlike our previous work, this paper
proposes a deghosting algorithm that is robust to noise and
outliers. In the proposed method, we are aware that ghost
trajectories are actually function of the trajectories of several
targets in a radar’s range and consequently, we expect to have
significantly greater degrees of “complexity” for the ghosts.
Trajectories in this context refer to the paths of targets and
ghosts. By approximating the measured trajectories as a linear
combination of impulse responses of first and second order
systems, and modifying the recently developed algorithms for
low-order system identification in [13], we are able to develop
a noise robust algorithm that simply classifies the observed
trajectory based on the number of impulse responses used
to approximate the trajectory. Our algorithm consists of four
steps: i) compute the trajectories (triangulation); (ii) compute
Hankel matrices of trajectories; (iii) rank minimization of
Hankel matrix (filtering) (iv) estimate ranks and distinguish
target/ghosts.

The organization of this article is as follows: In Section

Figure 17: Multi-target tracking using
bearing information only. Targets can be
distinguished from ghost based on the com-
plexity of their motion.

Such an ambiguity in range makes early deployment of coun-
termeasures very hard if not impossible. On the other hand,
it is possible to localize target jammers if there is more than
one radar. In this case, it is well known in the tracking lit-
erature that one can use triangulation methods to track jam-
mers. However, triangulation may produce extraneous inter-
sections which are called “ghosts” (see Fig 17). Unfortu-
nately, these ghosts move and behave like jammers, and so
the radars can not decide where are the correct targets. The
goal of this portion of the research was to develop a computa-
tionally tractable method to separate the real jamming vehicles
from the “ghosts”. The key observation is that “ghost” trajec-
tories are a function of trajectories of several “real” targets and,
hence, we expect them to have a substantially higher level of
complexity. Further, the number of “ghosts” ng is generically
known from the geometry of the scenario. Thus, “ghosts” can
be distinguished from actual targets by using the atomic norm
identification framework outlined in section 2.1.1 to identify a parsimonious model for each trajectory and
selecting the ng models that have the highest order [29].

Figure 18: Solving temporal puzzles via atomic norm minimiza-
tion. Top: unsorted data. Bottom: sorted data. The correct or-
dering corresponds to the lowest order interpolating model.

3.1.3 Solving “Temporal Puzzles” (multi-
sensor data fusion). Most of the prob-
lems of interest in this research are based
on having an ordered temporal sequence
of data y(t). Once this sequence is
available, the methods outlined in sec-
tion 2 can be used to identify a model,
detect anomalies and synthesize con-
trollers. However, in many practical sce-
narios, only “snapshots” yi of the tem-
poral sequence are available, with only a
rough time stamp. Examples include try-
ing to reconstruct an activity or track a target from pictures taken by different sensors (such as individual
cell-phones). In these cases, a pre-requisite to identification is to reconstruct the sequence y(t) from the
un-ordered samples yi. Clearly, as stated this problem is ill posed, since given any ordering of n data points,
one can always find an n − 1 order system that interpolates them. On the other hand, in the absence of
additional priors, the ordering that leads to the lowest order interpolant is usually the correct one (see Fig.
18). Combining this observation with the atomic norm framework outlined in section 2.1.2 leads to the
following regularized problem [31]:

minimizec ‖c‖`1
subject to ys = Dac

‖Pys − yu‖∞ ≤ ηmax, P ∈ P
(76)

Here ys and yu denote vectors containing the sorted and unsorted data, P is the set of permutation matrices
of appropriate dimension, ηmax is a bound on the size of the noise, and Da is a matrix whose columns are
the impulse response of atoms in a suitable dictionaryA, (for instance systems having poles inside an origin
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center ring of radius r). The resulting problem is a MILP that can be efficiently solved using off the shelf
solvers such as Gurobi that can handle very large problems. Note in passing that any a priori partial ordering
information available can be easily incorporated by introducing an auxiliary vector, l = [1, 2, . . . , T ]T .
If the ith data point is known to precede the jth input data point for a given sorting problem, this can be
enforced by adding the constraint Pi

T l < Pj
T l to (76), where Pi denotes the ith column of P.

3.2 Finding causally correlated activities in video sequences [10]

The goal of this portion of the research was to explore the use of dynamical graphical models to unveil causal
relationships from time series generated by different agents. In particular, we analyzed video sequences from
the UT Human Interaction Data Set. The specific time series used in this example are the trajectories of each
individual’s head, normalized to lie in the interval [−1, 1]. Figure 19 shows the result of applying Algorithm
2 (section 2.1.3), modified to take into account the existence of derivative-sparse exogenous inputs, to two
sample sequences. As shown there, this algorithm successfully identified the interactions between agents in
both sequences. In addition, the super-atomic norm based approach was, depending on the examples, 3 to 5
times faster than using an ADMM based algorithm [10].

Figure 19: Sample Frames of the UT Sequences 6 and 16 showing the causally interacting groups identified
using the approach outlined in Section 2.1.3 [10].

3.3 Activity analysis from noisy video data [5]

Frame 8 Frame 33 Frame 45

Figure 20: Sample frames for the activity segmentation applica-
tion.

The goal of this application is to seg-
ment a video containing multiple activ-
ities into sub-activities, each character-
ized by an affine model. As outlined in
section 3.5 below, identifying these mod-
els is a pre-requisite to recognize contex-
tually abnormal activity. The experimen-
tal data used in this application, illus-
trated in Figure 20, consist of 55 frames
extracted from a video sequence of a per-
son walking, bending and resuming walking. To simulate a realistic scenario, several frames were corrupted
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with large amounts of noise, consistent with a scenario where the data is corrupted by interference. In
order to recast the segmentation problem into an identification form, the position of the center of mass of
the person in each frame was modeled as the output of a switched affine system consisting of 2 first order
submodels, and the system was identified using the algorithm outlined in Section 2.1 4. As shown in Fig.
21, this approach successfully segmented the sequence in the presence of outliers.

3.4 Anomaly Detection

0 10 20 30 40 50 60
0

1

2
Moment Clustering

Figure 21: Activity segmentation as a Switched-ARX
identification problem with outliers. (red stars and
green circles denote the detected and true outliers, re-
spectively).

Next, we discuss the application of the ideas pre-
sented in this report to the problem of extracting
actionable information from large data sets. Fram-
ing this problem using concepts from dynamical
systems, allows us to exploit the tractable relax-
ations discussed above. This approach leads to scal-
able, computationally tractable algorithms, which
can help making critical decisions based on dy-
namic information that is very sparsely encoded in
the available data streams in real time. To this ef-
fect, we considered the observed data as the output
of a switched dynamical system, where jumps be-
tween systems indicate events that can be charac-
terized by the parameters of the corresponding sub-
systems.

Application 1: abnormal activity detection from video sequences [5, 7]. This problem, which arises in
surveillance systems of large public spaces. is very challenging, since the video data usually contains many
different activities. Thus, most machine learning based techniques must parse the data into sub-activities
before they can detect an anomaly. Furthermore, the parsing can be very difficult if the individual segments
are very short, spanning only a few frames. However, explicit parsing can be avoided by formulating the
problem as a model (in)validation one: first, identifying models corresponding to “safe activities” and then
detecting anomalies by using the approach outlined in Section 2.2 to invalidate the observed data against the
set of trajectories that could have been generated by switching among these safe activities. This approach
is illustrated by an example with three safe activities {waiting, walking, running}, described by the models
(see [7]):3

(
xt
yt

)
=

(
0.4747 0.0628
−0.3424 1.2250

)(
xt−1

yt−1

)
+

(
0.5230 −0.1144
0.3574 −0.2513

)(
xt−2

yt−2

)
(walking)

(
xt
yt

)
=

(
1 0
0 1

)(
xt−1

yt−1

)
(waiting)(

xt
yt

)
=

(
0.6058 0.0003
0.2597 0.8589

)(
xt−1

yt−1

)
+

(
0.3608 0.1853
−0.2381 0.1006

)(
xt−2

yt−2

)
(running)

3These models were identified by considering the trajectories of the centroid of the person and using LP to find the coefficients
that minimized the peak value of the fitting error. Note that both walking and running have two poles at 1, corresponding to
constant velocity motion. However, the remaining two poles for the running model are complex conjugate, corresponding to
oscillatory motion, while those in the walking model are real.
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where (xt, yt) are the coordinates of the centroid of the actor, and where transitions from waiting to running
are not allowed, as shown in Fig. 22. The proposed approach successfully flagged the sequence in Fig.
23 as “anomalous”, even though it all the sub-activities are safe activities, because it exhibits a forbidden
transition.

frame30

frame16

frame7

Figure 22: A structurally constrained transition graph. One-step transitions from waiting to running are not
allowed.

Figure 23: Anomalous behavior detection as a switched (in)validation problem. The video sequence is
flagged as abnormal, even though it consists of “normal” activities (walking,waiting,running), since it con-
tains an anomalous transition (waiting→ running).

Application 2: fault detection in refrigerated containers [32,33]. Refrigeration containers, are similar to

III. RESULTS

A. Algorithm

The algorithm is implemented in MATLAB, as presented
in Algorithm 1, and solved using YALMIP and MOSEK.

Algorithm 1: Fault Detection Algorithm
Input : data: xi, degree: d, window size: wlive

training window: wtrain, thresholds: tα, sβ
1 s0 ← 0, µC ← 1, ei = 0

2 xi ← xi−Xw

σ(Xw)
; . Normalize wrt. mean and

std.
3 Xtraining ←Xwtrain

4 while True do
5 for i = wlive do
6 Ydata ←Xwlive

7 Estimate moments γ̂α, ∀α ∈ Γ
8 Solve ρ∗i in (5).
9 if ρ∗i ≤ tα then

10 ei ← 1
11 else

Update CUSUM and prediction:
12 y+

i = x̄i − µC − d σ√
n

13 y−i = µC − x̄i − d σ√
n

14 si+1 ← max{si + max{y+
i+1,y

−
i+1}, 0}

15 Update β1 and β0 as in equation (22)
16 ∆i← i− sβ

β1
− β0

17 if si+1 ≥ sβ then
18 ei ← 1
19 end
20 end
21 end
22 end

Output: ei,∆i

B. Verification and Comparison on Log-Files

The proposed algorithm is tested, and compared to the
approach outlined in [11]. The reason for the comparison
between these two, is that both approaches are based
on moments. The comparison is done using Receiver-
Operation-Characteristic (ROC) Charts. ROC Charts is a
common way of comparing classifiers, [4]. The ROC chart
plots the True-Positive rate against the False-Positive rate.
The position on the plot, indicates the performance of the
classifier. The closer to the left hand corner (0, 1), the better.
Any algorithm falling below the diagonal line spanning
from (0, 0)→ (1, 1) is worse than flipping a coin. This plot
is shown on figure 2.

As seen, the algorithm generally performs better than that
of [11] when applied to the same log-files. Table I shows the
worst-case "distance to random" and "distance to perfect" as
well as the average for both, across the log-files.

Approach Dr,avg Dp,avg min(Dr) max(Dp)
SDP Approach 0.598 0.134 0.538 0.204
From [11], d = 3 0.321 0.545 0.158 0.776

TABLE I
COMPARISON OF APPROACHES.

The second figure 3 shows the CUSUM Control charts
across the 7 log-files used in the comparison with the
corresponding threshold values. Finally, figure 4 shows the
time-to-death. This is the estimated time until (19) crosses
the threshold in (21).
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Fig. 2. The results are based on 5 log-files, with known error signals. The
red dots represent the approach presented here, whereas the blue represent
those of [11]. The black diagonal line, represents the random-guess line.
Anything below that line, is worse than flipping a coin.
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Fig. 3. CUSUM Chart for the 5 log-files. The red line represents the
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To answer the objectives presented in section I-A, are
summed up in the following:

372

Figure 24: Operating curves for detecting anomalies
in a refrigeration container. These curves were ob-
tained using actual container data

.

conventional freight containers, but are fitted with
insulated walls and a refrigeration system. The ad-
vantage over conventional containers, is that the at-
mosphere inside is controllable which helps ensure
the quality and integrity of the product through-
out the supply chain. However, this also intro-
duces a potential failure point, since a malfunc-
tion in the refrigeration mechanism would cause
the contents to spoil, potentially leading to catas-
trophic consequences in cases where this cargo is
critically needed (for instance medicines or food
needed in the aftermath of a hazzard). Therefore, it
is of utmost importance, to be able to detect errors,
and ensure the integrity of the refrigeration system
throughout the entire journey. In this portion of the
research we have shown (see Fig. 24) that the anomaly detection methods described in sections 2.1.5 and
2.3.2 can successfully detect the early onset of failures (allowing for implementing corrective actions), sep-
arating these anomalies from the normal fluctuations in sensor readings.
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3.5 Data Driven Control of a Rotary Wing UAV [34]

The area of unmanned aerial vehicles (UAVs) has seen rapid growth, mainly because of the ability of UAVs
to effectively carry out a wide range of missions such as search and rescue, surveillance, power plants
inspection, and battle damage assessment, without risking human life. However, successfully carrying out
these missions require the ability to autonomously move in unknown environments subject to dynamic and
physical constraints. Accomplishing this task requires addressing the following two issues: (i) generation
of a safe trajectory capable in principle to reach the target by avoiding obstacle occurrences along the path,
and (ii) finding a control action whose aim is to drive “as close as possible” the UAV to the planned path
under the satisfaction of the constraints arising from the specific vehicle dynamics. In this portion of the
research we developed a controller, based on Command Governor ideas, capable of avoiding obstacles
whose presence is a priori-unknown and must be detected on-line, while respecting the physical constraints
imposed by the UAV platform. The proposed architecture, shown in Fig. 25, consists of a Planner unit,

Primal 

Controller
CG Vehicle

p(t)

c(t)

d(t)
u(t)

x  (t)v
x (t)
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p  (t)

p

CG-equipped control system
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Ο
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Ο
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next
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Figure 25: Control Architecture

tasked with computing a set of waypoints to be used
as references for the UAV until the target is reached,
a Control Module (SCG-OA) and a CG-equipped
control System. The combined action of these last
two modules guarantees that waypoints are reached
in a finite time, without constraint violations or ob-
stacle collisions. The Control Module (SCG-OA)
unit is tasked with updating the current waypoint
or (via switching arguments) and a convex approx-
imation of the obstacle-free region. This convex
approximation is obtained by replacing the actual
non-convex obstacle free region by a sequence of
properly overlapped convex approximations, computed on-line.

The CG module consists of two nested control loops (see Fig. 25). The internal loop is designed via a
generic linear control method, without taking into account the prescribed constraints, and allows the designer
to specify relevant system properties for small-signal regimes, e.g. stability, disturbance rejection. The outer

δ

C j

C i

δ

xω

x(0)

ω

ω

x

x

j

Figure 26: Viability retention under con-
straints change

loop consists of the CG unit which, whenever necessary, is in
charge of modifying the reference to be applied to the closed-
loop system so as to avoid constraint violation. The com-
plete computational complexity of the controller is shown in
Table 1. Here CG re-design indicates a situation where the
command-governor must be re-designed in order to maintain
viability of the overlapping constraints (Fig 26), CP denotes
the convexification procedure used to approximate the obsta-
cle free region with a sequence of overlapping convex sets, and
SCG-OA refers to the obstacle-avoidance trajectory planning.

As shown in the Table, as long as the number of obstacles
is not too large, this computational complexity remains mod-
erate, allowing for implementation on platforms with limited computational resources. The effectiveness of
this approach was validated in our lab using a Qball-X4 quadrotor (see Fig. 27 and [34] for details).
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Procedure Best-Case Worst-Case
CG re-design 0 k0 LP opts.

CP O(l log l) O(l2 log l)

SCG-OA 2 QP opts. 2 QP opts. + k0 LP opts. + O(l2 log l)

Table 1: Computational Cost: CG re-computation, CP procedure, and SCG-OA algorithm. Here l denotes
the number of obstacles.
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Figure 27: CG based control of an UAV. Left: experimental set-up. Right: a sample trajectory.
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