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1. INTRODUCTION AND PURPOSE 

The Methodology Team in the Joint Software Engineering Branch of the U.S. Army Combat 
Capabilities Development Command Data & Analysis Center is charged with providing 
quantification methods for the sensitivity and uncertainty in the Advanced Joint Effectiveness 
Model’s (AJEM’s) response measures based on variations of model inputs.  Sensitivity analysis 
(SA) and uncertainty quantification (UQ), referred to jointly as SA/UQ, are disciplines that 
provide the working space for this effort.  AJEM is a joint forces model developed by the U.S. 
Army that is used in vulnerability and lethality (V/L) predictions for threat/target interactions.  
These model estimates are subsequently used for a variety of efforts, including use in higher 
level models.  The quantification of the sensitivity and uncertainty of these V/L predictions 
requires a comparative measure that will help us characterize the effect of an input change on the 
predicted outcome. 

Requirements for this methodology include the following: 

1. Shall take into account customer perspective and how results will be contextualized or 
reported by them. 

2. Measures of uncertainty/sensitivity shall be relevant but not over-complex. 

3. A visual aid shall be developed to help report results. 

4. Computing resources for the implemented method shall not be overburdened. 

5. A developed application shall include capability for analysis for component, element, and 
system-level quantification. 

Though this effort is aimed at the AJEM specifically, the resulting approach can be used for any 
modeling, and could be especially useful for any model that produces probability estimates. 
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2. METHODOLOGY 

There are several challenges to overcome when modeling probability estimates.  A general 
challenge is often the language of probability estimates.  Though not always, we commonly 
report probability estimates as percentage, and in many statistical procedures we want to 
characterize estimates using confidence, prediction, or tolerance intervals with a designed level 
of confidence that is also reported in percentages.  We would like to avoid referring to 
“percentages of percentages with respect to percentages”, which can easily lead to confusion.  
The use of adequately descriptive language that provides clarity and consistency is more critical 
than usual as confusion from the language can easily occur in this topic, especially when 
referring to models with probability estimates.  Our subject model in this case is AJEM, but we 
may want to use a General Linear Model (GLM) or similar to characterize the sensitivity of our 
probability estimation model responses with respect to changes in inputs.  So modeling the 
model responses can seem confusing.  We may not entirely escape nested yet similar sounding 
terminology, but we will try to be clear where it is used. 

Another challenge in using a standard GLM approach is the conditional nature of odds ratios.  
Odds ratios and log odds ratios are probably the most common way of comparatively analyzing 
probability estimates.  It is common to use a GLM (specifically Logistic Regression or similar) 
to understand probability measures.  Yet confidence intervals and other standard estimators are 
conditional to the value of the estimate.  Simply put, the variance of a simple binomial response 
behaves somewhat normally between 0.2 and 0.8, but changes rapidly as the estimate approaches 
zero or one.  This changing variance affects interval estimation in the same way.  Add to this that 
these procedures can require that our true expected value is always greater than zero and less 
than one.  Yet for AJEM and other models out there, a value of zero or one can sometimes be 
expected.  For example, the expected probability that shooting a main battle tank with a BB gun 
will cause the tank to lose mobility is expected to be zero in practice.  We want the capability to 
characterize where a change in input affects a change in prediction from zero/one to a non-
zero/one outcome, or vice versa, and in many measures that leads to a division by zero. 

A challenge with AJEM is that a typical data set that we want to analyze is not independent and 
identically distributed (iid) with respect to how we want to characterize an overall estimate.  A 
threat can hit a target from any aspect (angle and elevation), and each aspect has an expected 
probability of kill (Pk) or component damage (Pcd|h).  So for each aspect, we can estimate a set 
of probability outcomes since the model is multivariate (we typically look at 4–6 outcomes, but 
there can be dozens of outcomes).  At the aspect level, a set of runs of the model appear to 
produce iid results, often with a Gaussian spread, but estimates are expected to differ across 
aspects.  We want to aggregate results across aspects so that we can characterize the possible 
outcomes for a given scenario.  For our phase 1 effort of quantifying uncertainty in the model, 
we are using AJEM iterations to estimate results for a set of 62 chosen aspects (Figure 1) on four 
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or five defined kill types on two threat/target combinations. Note that the set of aspects are 
defined in 30° increments, but any set can be used, even a random set.  

For each output estimated at a given aspect, the projected 2-D image from the aspect-based 
viewpoint of the target is meshed into a cell-by-cell grid pattern.  Each cell of this mesh is 
modeled to be impacted by the threat at least once, either at a random location within the cell or a 
predefined location such as center.  A level of vulnerability for each cell is determined with 
value on [0,1].  The vulnerability is summed across all cell estimates multiplied by cell size, and 
this sum is divided by the total presented area of the target for the given aspect.  The resulting 
vulnerability estimate is one iteration of the AJEM model for a single aspect with the caveat that 
each cell has equal weight (i.e., hitting a cell has approximately uniform random probability).  
We can increase the resolution of the estimate by decreasing the cell size, or by increasing the 
number of shots per cell while using random placement.  The cost of more resolution is more 
computation time, thus the classic tradeoff of accuracy versus cost. 
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Figure 1. Rendering of the 62 aspects color coded for elevation 
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The aspects we chose to use in phase 1 are pairwise angular combinations of elevation (–90°,  
–60°,…, 90°) and azimuth (0°, 30°, …, 330°).  There are 12 azimuths for each elevation except 
at –90° and 90° where all azimuths result in the same vector (5 × 12 + 1 + 1 = 62).  For each 
aspect we generated a set of probability estimates repeating that 100 to 1000 times (depending on 
resolution/computational burden). Standard descriptors produced in the AJEM output to 
characterize results included median, mean, min, max, standard deviation, and range.  To 
characterize sensitivity of an output to an input, the input was changed by a defined ratio and 
another cycle of iterations were completed to produce another set of AJEM outputs. We then 
compare results between the two sets of results by aspect.  We can also look at percentile type 
responses, and may follow that direction at a later date.  For now the descriptors we settled on 
comparing were median, min and max values by aspect.  Figure 2 shows our model as a black 
box. 

 
Figure 2. Generic model depiction 

Inputs: {A}, threat, target, aspect ≥ Outputs: {A}, Pk|h, Av, PA  

Inputs: {B}, threat, target, aspect ≥ Outputs: {B}, Pk|h, Av, PA 

The ideal measure for comparison has the capability compare the two sets of outputs/predictions 
and meets the requirements listed above, and we considered several candidate measures toward 
those goals.  Important measures that do not adequately meet our SA/UQ assessment needs: 
odds, odds ratio, log odds ratio, and coefficient of variation (CV) (odds ratio and its log may be 
worth revisiting). 

Without iid, much of our standard estimation procedures to provide a comparison of two results, 
such as prediction or confidence intervals are not valid, and yet we still want to be able to 
characterize the spread of a set of results (in our case, the 62 aspects). 

Why symmetric relative effect (SRE)?  The relative effect is an existing quantity used in 
epidemiology and has its roots in categorical data analysis.  Dr. Alan Agresti’s book of the same 
name states, “A difference in proportions of fixed size may have greater importance when both 
proportions are close to 0 or 1 than when they are near the middle of the range.”  The importance 
of this statement cannot be overstated in our world of modeling the probabilities of an outcome 
for a given scenario.  The example he gives is that the difference between 0.010 and 0.001 may 
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be more noteworthy than the difference between 0.410 and 0.401.  The delta P  
(dp = ∆p = p2 – p1) in both cases is dp = 0.001.  However, these results in a V/L model would 
imply (for probability of kill Pk) that our kill frequency is 10 times more often in the first case, 
but not much different in the second.  We want to assess our uncertainty based on a measure that 
will help us determine how appropriate we believe our model estimate to be.  The consideration 
of dp for SA/UQ purposes would lead us to conclude that a dp of 0.001 means the same for both 
of those scenarios.  Clearly, we need a measure that gives a more relevant context. 

Risk analysts examine relative increases or reductions in risk using specific terms for each 
direction of change.  The general term “relative effect” is used to indicate either change with 
respect to the sign of the value (negative for reduction and positive for increase).  A relative 
change is a fairly familiar and intuitive concept to professionals from most disciplines, and is 
used to characterize outcomes other than probability estimates.   

What is meant by symmetric?  For our analysis with respect to probability estimates, we want to 
treat that relative effect symmetrically about 0.5 on the interval [0,1].  Thus a change from  
p1 = 0.2 to p2 = 0.1 will be treated the same as a change from 0.8 to 0.9 (though this last change 
is negative).  We see this symmetric nature reflected in variance calculation related to the 
binomial distribution variance which is V=np(1-p).  Our symmetric effect uses a stepwise 
function that changes the denominator from p1 to 1-p1 if p1 > 0.5.  Of course at zero and one, 
these denominators become zero.  A zero or one outcome, specifically for the base p1, may be 
important to preserve, so a flag will be set if p1 is zero or one. The numerator of our ratio will be 
the difference dp = p2 – p1.  If an outcome is p1 = p2 =0 or p1 = p2 = 1, then the comparison 
measure is set as zero (i.e., we have the same outcome).  The measure logic is then: 

SRE: Comparison of two outputs (p1,p2) where p1 is the baseline or true value:  

• SRE(p1,p2) =  

1. (p2–p1)/p1 for p1<0.5 else. 

2. (p2–p1)/(1–p1).  

3. Special consideration for p1 = 0 or 1:  

• If p1 = p2 = 0 or p1 = p2 = 1 then SRE = 0 

• Otherwise use dp=p2–p1 and flag the occurrence  

• Sign of SRE indicates a decrease(–) or increase(+) in effect. 

• “Symmetric” so that our measure of influence is robust near the ends of [0,1]: 

• i.e., SRE (0.8, 0.9) = –SRE (0.2, 0.1). 
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• p1 is usually a baseline response or a highly accurate response. 

• SRE result is the same if vulnerable area is used instead of Pk|h. 

• SRE is the same for both V/L perspectives. 

The measure function is defined to be complete with respect to all possible outcomes.  Yet we 
expect that parts 1 and 2 of the measure will be relevant for the vast majority of any such 
analysis because those will be the encounter scenarios we are most interested in.  The main 
measures that were considered are shown in Table 1.  Another measure initially considered was 
sqrt(p(1–p)), and related to the standard deviation of a binomial distribution, but this measure 
was not consistent when crossing 0.5.  As mentioned earlier, the odds ratio and log odds ratio are 
a standard way of comparing to probability measures.   
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3. ADDITIONAL DISCUSSION 

Over the next few pages, we examine how the SRE compares to odds ratio measures and how 
SRE can be influenced by various conditions.  Keep in mind, this part of the discussion is not 
about error, but is interested in how input and responses can vary.  The values in Table 1 give us 
some idea of how these two measures and SRE compare.  These are really chosen points off of a 
3-D surface.  The column to the right is the SRE measure in percentage.  Using percentage to 
report SRE is meant to help reduce confusion when working with probability comparisons.  
Notice that dp/p1 is the same for all but the last three rows since the p1 is less than or equal to 
0.5, thus the same calculation as the first part of SRE.  The odds ratio looks close to SRE, but the 
context for odds ratio is that a value of 1 means no difference.  The log odds (which is the natural 
log of the odds ratio) has a no change reference point at 0 (like SRE), where negative indicates 
reduction and positive indicates an increase (also like SRE), but practical interpretation of the log 
odds is a challenge.  The table mainly illustrates two changes across several values for p1 
ranging from close to zero to 0.5.  A constant change of 0.1 for the first seven rows where the 
SRE shows a relative change that is larger as the p1 nears zero.  The next eight rows show 
measure values when p2 is half of p1 across those, so naturally the SRE will be –0.5.  Our 
position is that the SRE measure is well associated with the other two measures, and gives us 
consistent, practical, and intuitive values.  

Table 1. Comparison Measures by Some Examples 

p1 p2 dp= 
p2–p1 dp/p1 Odds 

Ratio 
Log 

Odds SRE SRE 
(%) 

0.01 0.11 0.1 10 12.24 2.50 10 1000 
0.05 0.15 0.1 2 3.35 1.21 2 200 
0.1 0.2 0.1 1 2.25 0.81 1 100 
0.2 0.3 0.1 0.5 1.71 0.54 0.5 50 
0.3 0.4 0.1 0.33 1.56 0.44 0.33 33 
0.4 0.5 0.1 0.25 1.5 0.41 0.25 25 
0.5 0.6 0.1 0.2 1.5 0.41 0.2 20 

0.01 0.005 –0.005 –0.5 0.5 –0.69 –0.5 –50 
0.05 0.025 –0.025 –0.5 0.49 –0.71 –0.5 –50 
0.1 0.05 –0.05 –0.5 0.47 –0.76 –0.5 –50 
0.2 0.1 –0.1 –0.5 0.44 –0.82 –0.5 –50 
0.3 0.15 –0.15 –0.5 0.41 –0.89 –0.5 –50 
0.4 0.2 –0.2 –0.5 0.38 –0.97 –0.5 –50 
0.5 0.25 –0.25 –0.5 0.33 –1.11 –0.5 –50 
0.6 0.4 –0.2 –0.33 0.44 –0.82 –0.5 –50 

0.95 0.85 –0.1 –0.11 0.3 –1.20 –2 –200 
0.99 0.89 –0.1 –0.10 0.08 –2.53 –10 –1000 
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For scenario encounters, a relative frequency can be as important in estimating mission success 
as actual underlying probabilities.  For example, if we use a set of inputs into our model, and 
determine to expect a loss rate of 20% of vehicles in an encounter, and we have estimated that 
we need 30 to be functional to complete a mission, we would compensate for the expected loss.  
Using another set of inputs in the model could change that 20% so that now we can see how 
much a change of the inputs could affect that adjustment and adjust the strategy as needed. 

For the AJEM V/L model there are questions that need practical answers that influence how it is 
used by analysts.  Questions about how we set up runs for AJEM include the following: 

• What size cells are good enough? 

• How many shots per cell are enough using random location? 

o Should we use pseudo-random strategies? 

We also have questions concerning inputs: 

• Which inputs have the biggest effect on responses? 

• What inputs interact significantly? 

• Can we generalize results? (maybe) 

Any comparative measure above can help answer these questions.  The SRE measure has a few 
advantages from a practical perspective: 

• That SRE explains a relative change is easier for most people to comprehend than an 
odds ratio 

• SRE measure can be used from a requirement perspective: 

o That is, a percentage of aspect points within a specification (threshold and/objective) 

• SRE can also be easily incorporated with cutoff for very small or high values: 

o For example, rare events (e.g., pk|h < 0.001) may treat as probability of zero. 

o For example, very likely events (e.g., pk|h > 0.999) may treat as probability of 
one. 

o Customizable to user needs  
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For a sensitivity analysis, we aim to change our inputs by an amount or percentage and use the 
SRE measure to assess the change in model output.  Each input has some amount of influence on 
the outcome, but the amount of influence can be very different. For example, if our penetration is 
insignificant (say 0.01 mm RHA with a Pk of or near zero), then increasing or reducing by 25% 
would not likely change the outcome.  The points in the parameter space for our modeling, and 
the underlying distribution, can influence our comparative measure.  We can illustrate the 
influence of an input on the model response by using an underlying S-curve.  In Figure 3, we see 
the effect of a fixed change in an input parameter (rather than the probability directly) centered at 
three points on a simplified univariate probability response using a typical S-curve (Cumulative 
Normal).  This simple probability response curve has a transition point (at the inflection point) 
where the change in the input value has a larger magnitude of relative change in the Pk|h.  Using 
a fixed amount of difference in the input parameter, the SREs on the left and right side of the 
color coded boxes are reported in Table 1.  Note that the fixed change to the left or right of a 
point is non-symmetric for SRE.  This effectively shows that a fixed change in a parameter is 
conditional on the predicted value, and also shows whether it is an increase or decrease in the 
parameter. 

 
Figure 3. Fixed interval changes in estimation at various points on a typical S-curve 

In Table 2, those effects are shown based on the three locations in the graph.  This is more than 
an illustration of the model; this also illustrates what can happen in testing.  The base values and 
the changes chosen (in modeling or testing) could have influence on the effect.  Our SREs for the 
three points do differ, but they are all near the same magnitude.  As always, analysis gets more 
challenging near zero and one.  These table values tell us that we have consistency in the 
measure, for this underlying S-curve holds up even near zero and one.  In testing, we would 
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prefer that our experimental design finds the parameter base somewhere in the sweet spot of 
interest (between 0.2 and 0.8 would be ideal).  This would lead to better fidelity in the results for 
a given sample size and thus validation for the model for that parameter space.  A more 
important ideal is to be near the expected reality of more common engagement scenarios.   

Table 2. SRE Values Associated with Figure 3 

Box Region Pk|h  Left SRE (%) Right SRE (%) 
Green 0.006 –78.3 266.4 
Blue 0.274 –50.5 67.8 
Purple 0.933 –137.5 65.9 

 
In Figure 4, we use a similar perspective of increasing/decreasing an input variable using two 
different S-curves to get an idea how SRE may differ due to a change in the underlying simple 
univariate quantal response curve for a standard normal cumulative distribution function (CDF) 
and a logistic function.  Just from these two examples, we can see that the SRE can differ by 
about a factor of two for two different inputs (or possibly the same input for two different 
systems).  The potential benefit of SA/UQ efforts in general is to identify those differences and 
plan tests or develop models accordingly. 

 
Figure 4. The blue and green curves are the SREs using the standard normal CDF S-curve, 
while the red and orange curves are the SREs using the logistic S-curve.  Red and blue curves 
are associated with the +25% input, while orange and green are the –25% input. 
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4. ANALYSIS 

Let us look at some example analysis using SRE.  Initially we used mean, minimum, and 
maximum values from each aspect as the base data for analysis.  We switched from mean to 
median because we felt the median is a better general descriptor of average across aspects, since 
they are not iid, and it made more sense to use the median of medians rather than a median of 
means.  Median tends to be more robust for iid data than mean and is also a relevant descriptor 
for non-iid data.  Median also works well with skewed data, which is often seen produced from 
our model.  Our interest is in the spread of results across aspects when we look for trends.  We 
used a threshold/objective approach in our graphical analysis of SRE using within 5% and 10% 
of the baseline as a way of keeping perspective on the effects of changing inputs. An early 
analysis looked into the question of how many shots per cell (SPC) are sufficient to get the level 
of accuracy desired.  The main assumption being that more SPC give better resolution.  We 
looked at 1, 4, and 16 SPC and compared to a baseline of 100 SPC.  These equate to decreasing 
cell sizes of 100 × 100, 50 × 50, 25 × 25, and 10 × 10.   Figure 5 shows results from an 
unspecified target/threat combination.  Initially, we jittered the plots and used numbers coded to 
the elevation.  This version takes advantage of ordering the points left to right by elevation 
(notice only 1 point on the left and right of each cluster for –90° and 90°).  The azimuth is now 
coded from 1 to 4 in the points to indicate front, right, rear, and left aspects.  Points are also color 
coded to the base probability, p1 (scale not shown).  There are three clusters in each graph, each 
of which is related to the relative effect on different probability outcomes (these may or may not 
be related depending on the outcomes we are considering).  Some simple examples of outcomes 
might be a probability of a mobility kill, firepower kill, and a combination of both (mobility or 
firepower).  It is easy to see that there is a lot of information in each graph, which allows for 
greater data exploration.  We immediately made a discovery that we did not expect.  Using the 
100 SPC as the “truth” set, we expected that our SRE values would be centered around zero with 
the spread decreasing as we used 1, 4, and 16 shots per cell (increasing resolution).  Instead, we 
notice that, though the spread is certainly decreasing, the SREs are centered near 5%, 3%, and 
0.5%, respectively.  After investigating these and other results, we understood that the increase in 
SPC was the source of the bias.  So our baseline was higher by about 5% on average.  We used 
our center shot by cell size to help verify this.  The center shot method increases resolution by 
reducing the cell size, thus increasing the number of cells in the grid, and there is only one shot 
per cell located at the center of the cell.  Using the 100 SPC as a baseline for SRE generation 
with respect to the range of cell sizes, we saw that same bias across all cell sizes using the center 
shot method.  For our first phase analysis, we then switched to using the 1 SPC set as the 
baseline where appropriate.  From that, it was clear that the magnitude of the SRE increased in 
the negative direction as the SPC increased.  We used 1000 runs in this scenario for the 1 SPC 
case, and 100 for the 100 SPC case.  We were still able to observe the decrease in spread with 
increasing SPC.  An example output table the application produces, and that would associate 
with a single pane of plots, is in Table 3.  Note that the estimates for p1 and p2 are very small, 
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and this may be a case where an analyst might decide that they are too small to be of concern.  It 
is at these low levels we can see sometimes very large SRE values.  Note also that the SRE 
values in the table are reported in percentages, and the estimates are all in the [0,1] range.   

 
Figure 5. Example graphical output 

Table 3. Example Output Table 

 
 

Note that the application automatically reports at the bottom of the graphs in Figure 5 the 
percentage of SREs within 5% and 10% of zero, and this is across all points shown in that pane.  
Table 3 gives a by-kill-type evaluation of this percentage.  This was an early approach to 
assessing how much a change affected the outcome, and could be the basis for setting 
requirements for the robustness of our model analysis and our input data.  For example, 
penetration is an input described by depth of penetration in a baseline rolled hardened armor.  
Model validators could use this context to describe how accurate test data must be to satisfy 
input validity.  If we know that more than 90% of the SREs will be within 5% of zero when a 

Code 
#

Kill Type Within 
5%   

Within 
10%   

Median 
p1   

Median 
p2   

dp  
∆p

Median 
SRE  

Min 
SRE  

Max 
SRE  

Min 
p1  

Max 
p1  

Min 
p2  

Max 
p2  

1 Function 1 40.3 62.9 0.17 0.12 -0.05 -30.7 -77.2 16.9 0.43 0.43 0.01 0.16
2 Function 2 54.8 71.0 0.47 0.44 -0.03 -6.4 -44.3 14.3 2.28 2.28 0.01 2.55
3 Component 1 59.7 87.1 0.26 0.28 0.02 6.1 -1.0 13.3 1.81 1.81 0.00 1.87
4 Mission 1 96.8 96.8 0.05 0.05 0.01 10.6 0.0 12.1 1.46 1.46 0.00 1.61
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change in penetration is 15% or less, then we could set the testing requirement that test results 
have to be accurate within 15% to limit influence on the model results.  The 5% and 10% are not 
fixed in stone, but rather are a commonsense easy-to-remember set of values that can be changed 
as needed by the user. 

Because of the breadth of variables and changes our first phase produced, the amount of the 
above tables and graphs became dominate in the report being written.  So to consolidate the same 
information, we added a summary graph and table for the main body of the report and placed the 
more detailed information in the appendix for reference.  An example of the consolidated graph 
is in Figure 6.  

 
Figure 6. Example graphical summary output 

Figure 6 is a consolidation of the information from Figure 3, and the application produces an 
accompanying table (not shown).  In that table, we wanted to point out the most extreme points 
and show the min and max SRE found at each aspect. Using Figure 4, the median of medians by 
aspect are displayed as an integer (which indicates kill type), the maximum SRE produced uses 
the down-pointing triangle (so the visual context is that all SRE values are between the min and 
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max).  The kill types are color coded as well, and we can see from the graph that the absolute 
biggest change we observed was for kill type 3 on file 1 (which would associate to the details in 
the table not shown), with an SRE at about 9.1%.  Our median effects range from about 5.9% to 
7.2% for the conditions associated with file 1 with respect to the baseline data file.  We can see 
the spread decreases somewhat consistently across, and the bias we observed in Figure 3 is still 
evident.  So we have a somewhat smaller package to show the main results.   

A natural question is “What is the worst case change we might see?”  We quickly realized that 
using it is not as simple as reporting the minimum of minimum SREs and maximum of 
maximum SREs results across kill types and by aspects. Sometimes, the SREs are mostly 
positive, and sometimes they are mostly negative, but most of the time the SREs are centered at 
or near zero (which is not surprising).  So a worst case would be the furthest point from zero.  If 
a down-the-line user wants to know what the worst possible case is of increasing variable A, or 
decreasing variable B by some amount, then there are two perspectives we decided to report:  the 
absolute furthest point for each data file analyzed across all kill types, and the worst case median 
value across all kill types.  It was surprising that standard statistical language to cover these 
concepts did not seem to be in the main stream of terminology.  It is possible there is something 
related to multivariate concepts, but we borrowed from the planetary sciences to describe these 
points of interest.  The apogee is the furthest distance in orbit for an orbiting moon around its 
planet (the concept is extended to other conditions as well).  Apogee is related to the word apex.  
The opposite of apogee is perigee. We named our worst cases for the two perspectives as the 
apogee and the apogean median.   

Of course, if the worst case is defined, a natural question is what the best case would be, which 
can be more complicated.  We do report the perigee (a closest value with respect to SRE = 0).  
However, we do not recommend using “best case” language here.  Let us illustrate with only two 
values.  Suppose I have extreme SRE values of –12% and 4%.  The apogee of those two values 
with respect to zero is –12%, definitely the farthest point from center 0.  The perigee of the two 
extremes is 4%, but it is certain that there were many individual SRE values between –12% and 
4%, possibly very close to zero.  So the perigee of 4% can be said to be the best of the worst case 
effects.  Whether or not this can be applied in a useful/practical way can be determined by the 
user.  That example also clarifies why minimum and maximum values are not equivalent to best 
and worst, as the –12% is both the minimum and the worst case SRE. 

The R code for our functional version of apogee and perigee on a data vector ×1 centered at 
z1 = 0 is 

APOGEE=function(x1,z1=0) return(x1[which.max(abs(x1-z1))]) 

PERIGEE=function(x1,z1=0) return(x1[which.min(abs(x1-z1))]) 
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Apogee returns the maximum value of the absolute value of each value in ×1, and restores the 
original sign.  Perigee does the same for the minimum.  In our application, the min and max 
SREs are put combined as the ×1 data vector to find the apogee and perigee values.  The function 
is used on the vector of medians to find the apogean median and the perigean median.  These are 
all real terms borrowed from astronomy.  These values are marked for each data file number 
across all kill types and reported in the associated table in the current version of the application 
(not illustrated here).  We are of course open to better terminology if it already exists.  
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5. RESULTS 

Results are reported in the technical report.  We do see a fair amount of consistency in the effect 
changing input variables and settings across the main kill types, with some larger differences in 
the characteristics of effects when looking at special or component-level probability estimates.  
Analysts and other users should be able to adapt the ideas to their needs and requirements.  The 
5% and 10% within bounds can be tailored to user needs, or not used at all depending on the 
analysis.  Our discovery of the bias for multiple SPC runs has already led to improvement in 
code to address the bias.  We will use the same analysis approach to verify that we have 
successfully addressed the bias.  We can also answer questions such as “What is the effect of 
including spall versus no spall?” by framing the effects in terms of SRE. 
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6. CONCLUSION 

Our SRE measure will be used for this and future SA/UQ efforts.  It has the customizability 
needed. It can be explored and explained through graphs and tables.  It can be used to set 
requirements and characterize the effective differences influenced by changes in methodology.  
Our intent is to build in equivalent tools and capabilities to our model database tools so analysts 
and other users can assess their efforts within the AJEM application tools. 
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2-D two-dimensional 

AJEM  Advanced Joint Effectiveness Model 

CCDC U.S. Army Combat Capabilities Development Command 

CDF cumulative distribution function  

CV coefficient of variation 

DAC Data & Analysis Center 

GLM General Linear Model 

iid not independent and identically distributed  

Pcd|h  probability of component damage 

Pk probability of kill  

SA sensitivity analysis 

SPC  shots per cell 

SRE symmetric relative effect 

UQ uncertainty quantification 

V/L vulnerability and lethality 
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