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Abstract

This final report summarizes the results from the four (3+1 NCE) years of support
under the grant. Technical advances were made in three interrelated research areas,
with novel optimization frameworks conferring the common theme. (1) An optimization
framework that tunes the dynamics of a network of non-spiking neurons to display an
observed behavior, was developed. The framework was then used to identify synaptic
profiles in a parsimonious network model of the elementary motion detector. To our
knowledge, this is the first conductance based compartmental model neuronal network
implementation replicating the behavior of the T4 neuron in the fly optic lobe. (2) A
framework was developed for the coding and decoding of continuous time signals using an
ensemble of spike trains. The technique distinguishes itself in the quality of reconstruction
achieved under low spike rate regimes. (3) A framework named Spike-triggered descent
was developed to complement the widely used technique, Spike-triggered average, to
characterize the response of a neuron to sensory stimuli. The framework improves upon
the model assumption from spikes generated using an inhomogeneous Poisson process
to spikes generated using a cumulative spike response model. Superior performance was
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demonstrated on a Locusta migratoria tympanal nerve dataset. The technique has wide
applicability to all neural systems that display low levels of noise.

1 Introduction

The vast majority of neurons in animal brains communicate with one another using action
potentials, also known as spikes. How information is represented and transformed using
the spike trains of networks of neurons is one of the central problems in Computational
Neuroscience. One of the more popular hypotheses, rate coding, posits that continuous time
signals are encoded in the rate at which the spikes are generated by the neurons. Although,
this might be the case in some regions of the brain in some animals, there is now clear evidence
that ‘continuous-time signal to spike train’ coding can be significantly more sophisticated.
For example, [33] have shown that the spike train generated by the H1 neuron in the fly
optic lobe represents horizontal ego motion in a very complex manner. Additionally, this
spike code has sub-millisecond precision, that is, individual spikes shifted by submilliseconds
represent different horizontal motion trajectories.

Noise is intrinsic to all physical systems. However, the magnitude of this noise dictates
the tools that ought to be used to study the system. All the work described in this report
assumes noise levels that are so small (such as in the H1 neuron) that the system is best
analyzed as a deterministic system. In the remainder of this section, we present summary
abstracts of the three advances made during the course of this grant. In section 2, we describe
these results in more detail, In section 3, we list the graduate students that were partially or
fully supported by this grant. In section 4, we list publications that were the result of these
efforts.

Summary Abstract 1: We present a general optimization procedure that given a
parameterized network of nonspiking conductance based compartmentally modeled neurons,
tunes the parameters to elicit a desired network behavior. Armed with this tool, we address
the elementary motion detector problem. Central to established theoretical models, the
Hassenstein-Reichardt and Barlow-Levick detectors, are delay lines whose outputs from
spatially separated locations are prescribed to be nonlinearly integrated with the direct
outputs to engender direction selectivity. The neural implementation of the delays—which
are substantial as stipulated by interomatidial angles—has remained elusive although there is
consensus regarding the neurons that constitute the network. Assisted by the optimization
procedure, we identify parameter settings consistent with the connectivity architecture and
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physiology of the Drosophila optic lobe, that demonstrates that the requisite delay and
the concomitant direction selectivity can emerge from the nonlinear dynamics of small
recurrent networks of neurons with simple tonically active synapses. Additionally, although
the temporally extended responses of the neurons permit simple synaptic integration of their
signals to be sufficient to induce direction selectivity, both preferred direction enhancement
and null direction suppression is necessary to abridge the overall response. Finally, the
characteristics of the response to drifting sinusoidal gratings are readily explained by the
charging-up of the recurrent networks and their low-pass nature.

Summary Abstract 2: In many animal sensory pathways, the transformation from
external stimuli to spike trains is essentially deterministic. In this context, a new mathematical
framework for coding and reconstruction, based on a biologically plausible model of the
spiking neuron, is presented. The framework considers encoding of a signal through spike
trains generated by an ensemble of neurons via a standard convolve-then-threshold mechanism.
Neurons are distinguished by their convolution kernels and threshold values. Reconstruction
is posited as a convex optimization minimizing energy. Formal conditions under which
perfect reconstruction of the signal from the spike trains is possible are then identified in
this setup. Finally, a stochastic gradient descent mechanism is proposed to achieve these
conditions. Simulation experiments are presented to demonstrate the strength and efficacy of
the framework.

Summary Abstract 3: The characterization of neural responses to sensory stimuli is
a central problem in neuroscience. Spike-triggered average (STA), an influential technique,
has been used to extract optimal linear kernels in a variety of animal subjects. However,
when the model assumptions are not met, it can lead to misleading and imprecise results.
We introduce a technique, called spike-triggered descent (STD), which can be used alone
or in conjunction with STA to increase precision and yield success in scenarios where STA
fails. STD works by simulating a model neuron that learns to reproduce the observed spike
train. Learning is achieved via parameter optimization that relies on a metric induced on the
space of spike trains modeled as a novel inner product space. This technique can precisely
learn higher order kernels using limited data. Kernels extracted from a Locusta migratoria
tympanal nerve dataset (http://crcns.org/data-sets/ia/ia-1) demonstrate the strength
of this approach.
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2 Results

We now contextualize each problem with the necessary background, following which we
briefly describe the technical result. For more detailed descriptions, we refer the reader to
the correspondingly titled articles noted in Section 4.

2.1 An Optimization framework for Nonspiking Neuronal Networks

and Aided Discovery of a Parsimonious Model for the Elemen-

tary Motion Detector

A major goal of Neuroscience is to understand how the activity of identified neural circuits
relate to behavior. Recent advances in (semi)automated reconstruction from EM data and
immunolabeling have generated a wealth of information regarding the neural connectivity
architecture and polarity of synapses in the brains of model organisms. For example, [48]
has released an EM volume of the complete Drosophila brain, parts of which have been
reconstructed for neural connectivity. These notable advances have, however, not been
followed by the anticipated spate of neural implementation solutions to well characterized
high level operations. This discrepancy stems from the fact that the dynamics of a neural
circuit is determined not only by connectivity and synaptic polarities, but also by the synaptic
gain profiles, information which the current techniques do not reveal at the necessary level of
detail. Lacking synaptic profile information, relating circuits to behavior has therefore been
difficult.

The observation that network behavior is influenced by synaptic profiles also implies
that it is, in principle, possible to infer synaptic profiles from the recorded behavior of a
network. Such a data driven approach, where a parameterized model is adapted to the
characteristics of a dataset, has been the cornerstone of recent successes in Machine Learning.
The general problem in the current context, where a network comprises both spiking and
nonspiking neurons, is likely both formally and computationally intractable. However, as
we demonstrate here, a more restricted class, that of nonspiking neuronal networks, lends
itself to this approach. Specifically, we show that local analysis of the trajectories of the
corresponding dynamical system is tractable: in operational terms, given a parameterized
network of compartmentally modeled conductance based nonspiking neurons interacting with
tonically active synapses, computational optimization can tune the parameters to cause the
network’s behavior to display desired properties. The optimization procedure developed
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is general and applies to a large class of parameters, including synaptic profiles as well as
morphological properties of the constituent neurons.

In order to showcase the strength of the optimization driven approach, we have chosen
a network whose (a) architecture is conserved across multiple insect species, (b) has been
characterized in substantial detail, and (c) has well established theoretical models whose
relationship to the neural implementation remains to be reconciled. In resolving this problem,
we show that computational optimization of parameterized synaptic profiles to fit a network’s
behavior can be a potent tool when combined with connectivity and synaptic polarity
information.

The elementary motion detector (EMD) in the fly brain is a paradigmatic neural com-
putation that has been the subject of intense investigation over decades [6]. Established
theoretical models, the Hassenstein-Reichardt (HR) [23] and the Barlow-Levick (BL) [2]
detectors prescribe delay lines, the neural implementation of which has thus far remained
elusive. Much is however known about the neural circuits that implement the EMD, that we
summarized here.

The compound eyes of flies consist of anatomically identical units, called omatidia, laid
out in a hexagonal lattice. Visual information processing begins at the photoreceptors in the
omatidium, advancing thereafter through neurons in four retinotopically organized neuropile,
the lamina, medulla, lobula, and lobula plate. Broad interest in fly motion vision, stemming
from its status as a canonical computation, has led to the accumulation of a wealth of
data—particularly with regard to the Drosophila—concerning the connectivity architecture
and physiology of the neurons in the repeating modules associated with each omatidium, in
the lamina [31, 45] as well as the medulla and lobula [44, 42]. Briefly, axons of photoreceptors
R1-R6 innervate lamina monopolar cells (LMC) L1-L3 in the corresponding lamina module.
Of the cells identified in the lamina, only the joint silencing of the similarly responding [13]
L1 and L2 abolishes direction selectivity [45]. Exiting the lamina, motion information is
extracted in parallel pathways with L1 feeding the brightness increment (ON) and L2 feeding
the brightness decrement (OFF) circuitry [25]. The connectome of the ON module in the
medulla has been elucidated in substantial detail (Fig.6 in [44]). Based on the preponderance
of different synaptic contacts, the following core circuit emerges (Fig.1a). The primary targets
of L1 are Mi1, Tm3, L5, and C3. L5 drives Mi4, C3 drives Mi9, and Mi4 and Mi9 are
reciprocally connected. Lastly, Mi1, Tm3, Mi4, and Mi9 constitute the primary inputs to T4
which is the first cell on the pathway to exhibit direction selectivity. Although Fig.6 in [44]
contains additional cells and synaptic contacts, our results demonstrate that this parsimonious
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circuit is sufficient to manifest direction selectivity, with Mi1/Tm3 providing the direct input
and Mi4/Mi9 providing the delayed input into T4. The narrow receptive field T4 comes in
four flavors: T4a-d each tuned to one of four cardinal directions. Whole-cell recordings [4]
indicate that all of the noted cells are graded potential neurons, and therefore communicate
using tonically active synapses [27]. The connectome of the OFF module exhibits strong
parallels [42].

We chose to computationally model the ON pathway because data pertaining to the
dimensions of neurites and the polarity of synapses is largely available in this case [44]. The
principles we have discovered, however, apply to the OFF pathway as well.

We begin with the standard conductance based compartmental modeling methodology,
where each neuron is partitioned into equipotential segments whose terminals are then linked
to assemble the network (Fig.1c). Each compartment i is modeled using the differential
equation,

τ i
dV i

dt
= (Ei

l − V i) + 2(V i
in − V i)πi + 2(V i

out − V i)πi + (Ei
syn − V i)ρi (1)

where V i, V i
in and V i

out denote the time varying membrane potential at the middle and
the two terminals of a compartment, and Ei

l , E
i
syn denote the constant leak and constant

synaptic potentials. Also, τ i = Ci/gil , π
i = gia/g

i
l , and ρi = gisyn/g

i
l , where Ci, gil , g

i
a and gisyn

denote the constant capacitance, constant leak, constant axial, and time varying synaptic
conductances. The scaling by (1/gil) makes πi and ρi dimensionless quantities, which in turn
aid in the interpretability of the equation.

Compartments are linked as mandated by the modeled cellular morphology of the neurons
(Fig.1a and c). Each terminal of each compartment satisfied one current balance algebraic
constraint: if the terminal corresponding to V ∗in of compartment ∗ is linked to the terminals
corresponding to V i

out of compartments i = 1 . . .m, then setting V i
out = V ∗in for all i = 1 . . .m,

we have

V ∗in = (V ∗π∗g∗l +
m∑
i=1

V iπigil)/(π
∗g∗l +

m∑
i=1

πigil) (2)

and likewise, if the terminal corresponding to V ∗out of compartment ∗ is linked to the
terminals corresponding to V i

in of compartments i = 1 . . .m, then setting V i
in = V ∗out for all
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i = 1 . . .m, we have

V ∗out = (V ∗π∗g∗l +
m∑
i=1

V iπigil)/(π
∗g∗l +

m∑
i=1

πigil) (3)

The V i
in and V i

out in Eq. 1 can be eliminated by plugging in Eq. 2 and Eq. 3, resulting in a
system of ordinary differential equations (ODE) involving only the V i of each compartment.

What remains is the specification of the model for the time varying relative synaptic
conductances gisyn/gil = ρi as a function of the presynaptic potential, i.e., ρi(Vpre), where Vpre
denotes the V j of the presynaptic compartment. In our model, ρi(Vpre) is parameterized as a
monotonically increasing and saturating function of the instantaneous potential Vpre of the
appropriate presynaptic compartment:

ρi(Vpre) =
µi

1 + e−(νiVpre+ηi)
(4)

where the parameters µi, νi, and ηi, set to be strictly positive, determine the gain,
sensitivity, and baseline relative conductance (Fig.1d). For a fixed connectivity architecture,
the entire network is thus specified by the set of parameters {πi, gil , µi, νi, ηi}, with i ranging
over the finitely many compartments in the network. The input drive into a network is
specified as time varying trajectories of presynaptic potentials at the input synapses of the
network. Given initial conditions V i(0) for all compartments i, the entire differential-algebraic
system of equations traces out a trajectory for V i(t), V i

in(t), V i
out(t), in the high dimensional

Euclidean space, R3n, where n is the number of compartments.
We now describe, at a conceptual level, the technical advance we have achieved. For

a formal and comprehensive description, we refer the reader to the correspondingly titled
article in Section 4. Any compartmentally modeled neural system, feedforward or recurrent,
can be parameterized as described above, using finitely many parameters. What we have
derived is a new set of inhomogeneous ODE’s that encapsulate how a trajectory for the V i(t),
V i
in(t), V i

out(t), for all i, would change in the limit, if one were to infinitesimally perturb any of
the parameters {πi, gil , µi, νi, ηi}, with i ranging over the finitely many compartments in the
network. Armed with this new system of ODE’s, one can perform a gradient descent on an
error functional that models the discrepancy between the observed and desired trajectories
of the potentials. Instead of presenting the framework here, we present the final outcome
of optimizing the synapses in the EMD network to display the requisite behavior. This is
presented via Figures 1,2, and 3, their self contained captions, and Table 1 that reports the
optimized synaptic constants. The figures and table are replicated from the article.
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Figure 1: Neural circuit and representative behavior. a, Circuit for a single
module. The circuit is replicated for all modules in the hexagonal lattice, each receiving
input from its corresponding photoreceptors (gray). The home module T4 receives input from
three Mi9 (from contiguous neighboring modules), three Mi4 (from symmetrically opposing
modules), and the Mi1 and Tm3 of the home module. Synaptic parameters, set symmetrically
for each Mi4/Mi9 opposing pair, differ for T4s tuned to different cardinal directions (Methods).
b, Responses of neurons to a 2◦ wide bar of light traveling at 12◦/s. Responses from circuits
tuned to two cardinal directions are shown; responses for the other two cardinal directions
are symmetric. (i) Temporal profiles of the normalized stimulus intensity sensed by the
photoreceptors of seven contiguous omatidia in the lattice for the two cardinal circuits. Insets
display the orientation of the lattice points with respect to the bar stimulus traveling left to
right. (ii) Responses of L1, Mi1, Mi4, and Mi9, color coded and shifted along the ordinate
by their respective equilibrium resting potentials. The responses of Mi4 and Mi9 are also
scaled ×10. (iii) Responses of the home module T4s tuned to the two cardinal directions.
Stimulus directions PD, PD±π/4, PD±π/2, ND±π/4, and ND, are with respect to the insets
in (i). Horizontal scale bars in (i), (ii), (iii) = 500ms. Vertical scale bar in (ii) = 5mV , in (iii)
= 1mV . Pointers on abscissa mark time alignment for the home module. c, Conductance
based model for a single compartment. Linked compartments i, j satisfy V i

in = V j
out. d, First

model of synapse.
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Figure 2: Responses of Mi4, Mi9, and T4 to bar and drifting sinusoidal grating
stimuli. a, Bar stimuli. (i) Responses of Mi4 and Mi9 to a 2◦ wide bar traveling at different
velocities. The responses are color coded and shifted along the ordinate by their respective
equilibrium resting potentials. (ii) Corresponding responses of the home module T4s tuned
to the two cardinal directions. Peak response above equilibrium resting potential is displayed
for each stimulus direction PD, PD±π/4, PD±π/2, ND±π/4, and ND, for the different
velocities. (iii) The Mi4-Mi9 dynamics is robust: response of a network with different synaptic
parameters (Methods) from another optimization run. (iv) The optimization in action: the
delayed and extended dynamics (only Mi9 shown) evolved gradually with changing synaptic
parameters for the same stimulus. b, Sinusoidal grating stimuli. (i) Responses of Mi4 and
Mi9 to a 20◦ wavelength sinusoidal grating traveling at different velocities. The responses
are color coded and shifted along the ordinate by their respective pre-stimulus equilibrium
resting potentials. Both the charging-up and the low-pass nature of the circuit are manifest.
(ii) Same as a(ii) for this stimuli. Horizontal scale bars in a(i), a(iii), a(iv), b(i) = 1s. Vertical
scale bar in a(i), a(iii) = 2mV , in b(i) = 3mV . Voltage increment of concentric circles in
a(ii) = 2mV , in b(ii) = 1mV .
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Figure 3: Pre- and Post Optimized Mi4-Mi9 network and corresponding T4
behavior. a, ρ(Vpre) of the pair of synapses. Initialization, i.e., pre-optimized synapse pair
labeled in red. Optimized synapse pair of the network presented in the article labeled in
green. A second optimized pair, corresponding to the network in Fig.2a-iii labeled in blue.
Note that the range [−61,−57]mV subsumes the operating range of all three synapse pairs
as shown in (b). The optimization was not constrained to update the synapses symmetrically.
However, it did to within precision bounds. All parallel graphs of ρ(Vpre) between the green
and blue curves manifest the delay necessary to implement the EMD, demonstrating that the
phenomenon is robust. b, Responses of Mi4 (cyan) and Mi9 (magenta) in the three networks
for a 2◦ wide bar of light traveling at 12◦/s. Traces are labeled with adjacent color coded
dots to distinguish between the three networks. Not only does the optimization delay the
time to peak for both Mi4 and Mi9, it also substantially slows the tail decay. Note that both
Vrest and V (t) change as the synaptic parameters are changed. c, Responses of the home
module T4s tuned to the two cardinal directions (as in Fig.1b-i) when the Mi4/Mi9 synapses
are in the pre-optimized parameter setting in red from (a). Compare these to Fig.1b-iii which
corresponds to the Mi4/Mi9 synapses in the post-optimized parameter setting in green from
(a). Stimulus directions PD, PD±π/4, PD±π/2, ND±π/4, and ND, are with respect to the
insets in Fig.1b-i. Note that directionally selective response is almost absent. Horizontal
scale bars in (b), (c), = 500ms. Vertical scale bar in (c) = 1mV . Pointers on abscissa mark
time alignment for the home module as in Fig.1b.
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Table 1: Parameters for the full network using l = 30µm compartments.

Presynaptic Neuron Postsynaptic Neuron Esyn µ ν η

(Diameter d, Length l)
R1-R6 (−,−) L1 −85mV 40.0 3.0 -3.82

L1 (1µm, 100µm) Mi1/C3/L5 −85mV 5.0 0.4 27.4
L5 (0.6µm, 60µm) Mi4 0mV 0.6 0.3 15.0
C3 (0.6µm, 60µm) Mi9 −85mV 0.6 0.3 15.0
Mi4 (0.6µm, 60µm) Mi9 −85mV 4.03555 0.29494 15.10545
Mi9 (0.6µm, 60µm) Mi4 −85mV 4.03574 0.29485 15.10667
Mi1 (0.6µm, 60µm) T4a(b) 0mV 1.5 (1.5) 0.1 7.4912
Mi9 (0.6µm, 60µm) T4a(b) −85mV 1.5 (2.25) 1.0 58.435
Mi4 (0.6µm, 60µm) T4a(b) −85mV 1.5 (2.25) 1.0 60.317

2.2 Signal Coding and Perfect Reconstruction using Spike Trains

Spike based encoding of sensory stimuli is a hallmark of biological systems. It is now well-
established that the coding of continuous time sensory signals in spike trains is a complex and
diverse phenomenon, and is fairly deterministic in many animal sensory pathways[32, 12, 34,
46, 26, 33]. Spike train representations, when sparse, are not only intrinsically energy efficient,
but can also facilitate computation at later stages of processing[18, 22]. In their seminal
work, Olshausen and Field [35] showed how efficient codes can arise from learning sparse
representations of natural stimulus statistics, resulting in striking similarities with observed
biological receptive fields. Smith and Lewicki [28, 9] likewise showed that auditory filters could
be estimated by training a population spike code model with natural sounds. These studies,
by and large, fall under the general framework of dictionary learning: identifying an over-
complete dictionary {φj|j = 1 . . .m} such that each stimulus si in an ensemble {si|i = 1 . . . n}
can be represented as si =

∑m
j=1 αjφj where the vector of coefficients αj is sparse. The studies

only made passing reference to how the αj’s may be derived (e.g. matching pursuit [29]) or
even be represented (e.g. local population of neurons spiking probabilistically proportional to
αj in [9]). Lacking clearly specified plausible neural implementations, the extent to which
the proposed schemes underlie biological sensory processing therefore remained unclear. To
remedy this, several subsequent learning techniques based on biologically plausible models of
spiking neurons have been proposed. For example, [49] developed a biophysically motivated
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spiking neural network which for the first time predicted the full diversity of V1 simple
cell receptive field shapes when trained on natural images. Elsewhere [41] presented a rate
encoded spiking neural network of integrate-and-fire neurons demonstrating convergence to
nearly optimal encodings.

Although these results signify substantial progress, the classical signal processing question
of what class of signals support perfect or approximate reconstruction when coded using
spike trains, remains to be fully resolved. Admittedly, the very coarse Σ∆ quantization
of bandlimited signals investigated in [14] does amount to a spike train representation.
However, due to the classical nature of its framework, not only is biological plausibility not a
concern, but also coding is explored in the oversampled regime. Along similar lines, [11] has
explored the spike generating mechanism of the neuron as an oversampling, noise shaping
analog-to-digital converter.

Here we present a new framework for coding and reconstruction that begins with a
biologically plausible coding mechanism which is a superset of the standard leaky integrate-
and-fire mechanism. Reconstruction is first formulated as an optimization that minimizes
the energy of the reconstructed signal subject to consistency with the spike train, and then
solved in closed form. We then identify a general class of signals for which reconstruction is
provably perfect under certain conditions. Surprisingly, the result instantiates a version of
Barlow’s “efficient coding hypothesis” [3], which posits that the coding strategy of sensory
neurons should be adapted to the statistics of the stimuli in an animal’s natural environment.

Coding: Formally, we assume the input signal X(t) to be a bounded continuous function
in the interval [0, L] for some L ∈ R+, i.e., we are interested in the class of input signals
F = {X(t)|X(t) ∈ C[0, L]}. Since the framework involves signal snippets of arbitrary length,
this choice of L is without loss of generalization. We assume an ensemble of convolution kernels
K = {Kj|j ∈ Z+, j ≤ n}, consisting of n kernels Kj, j = 1, . . . , n. We assume that Kj(t) is
a continuous function on a bounded time interval [0, T ], i.e. ∀j ∈ {1, . . . , n}, Kj(t) ∈ C[0, T ]

for some T ∈ R+. Finally, we assume that Kj has a time varying threshold denoted by T j(t).
The ensemble of convolution kernels K encodes a given input signal X(t) into a sequence

of spikes {(ti, Kji)}, where the ith spike is produced by the jthi kernel Kji at time ti if and
only if: ∫

X(τ)Kji(ti − τ)dτ = T ji(ti) (5)

We assume that the time varying threshold T j(t) of the jth kernel remains constant at Cj

until that kernel produces a spike, at which time an after-hyperpolarization potential (ahp)
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kicks in to raise the threshold to a high value M j � Cj, which then drops back linearly to
its original value within a refractory period δj. Formally, the threshold function T j(t) of the
jth kernel is given by:

T j(t) =

C
j, t− δj > tjl (t)

M j − (t−tjl (t))(M
j−Cj)

δj
, t− δj ≤ tjl (t)

(6)

Where tjl (t) denotes the time of the last spike generated by Kj prior to time t.
Notably, apart from the contribution due to the ahp, we have considered the threshold of the
jth kernel (alternately called a neuron) to be a constant Cj in our model.

Decoding: The objective of the decoding module is to reconstruct the original signal
from the encoded spike trains. Considering the prospect of the invertibility of the coding
scheme, we seek a signal that satisfies the same set of constraints as the original signal when
generating all spikes apropos the set of kernels in ensemble K. Recognizing that such a signal
might not be unique, we choose the reconstructed signal as the one with minimum L2-norm.
Formally, the reconstruction (denoted by X∗(t)) of the input signal X(t) is formulated to be
the solution to the optimization problem:

X∗(t) = argmin
X̃

||X̃(t)||22

s.t.
∫
X̃(τ)Kji(ti − τ)dτ = T ji(ti); 1 ≤ i ≤ N

(7)

where {(ti, Kji)|i ∈ {1, ..., N}} is the set of all spikes generated by the encoder.
Our work presents several theorems that (a) identify the precise class of signals that

can be coded and perfectly reconstructed, and (b) present formal bounds for approximate
reconstruction. The work also presents a stochastic gradient descent mechanism to optimize
kernels so as to achieve these conditions. For these we refer the reader to the correspondingly
titled article.

Here we present results from experiments on an audio dataset that demonstrates the
efficacy of the framework. We chose the Freesound Dataset Kaggle 2018 (or FSDKaggle2018
for short), an audio dataset posted on Kaggle referred in [19], containing 18,873 audio files
annotated with labels from Google’s AudioSet Ontology [20]. For our purpose we ignored the
labels and only focused on the sound data itself, since we were only interested in encoding and
decoding of input signals. All audio samples in this dataset are provided as uncompressed
PCM 16bit, 44.1kHz, mono audio files, with each file consisting of sound snippets of duration
ranging between 300ms to 30s. In each trail of our experiment, we reported the accuracy
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in reconstruction based on our proposed methodology over at least 1000 randomly chosen
sound snippets from the training samples of the dataset. For ease of computation, we kept
the length of the input audio snippets to be relatively small (ideally of size less than 5ms).
This choice of considering small snippets as input made the computation feasible on limited
resource machines within reasonable time bounds. This choice is without loss of generalization
and for encoding signals of greater length, reconstruction using this framework can be done
piece-wise, partitioning a longer signal into smaller pieces, reconstructing piece-wise and
finally stitching the reconstructed pieces together. Results of our experiment are reported by
varying the number of kernels, the kernel thresholds or the absolute refractory period.

Bag of Kernels: The proposed encoding technique is operational on a bag of kernels.
So we needed to choose a suitable set of kernels for our experiments. Since gammatone
filters are widely used as reasonable models for cochlear filters in auditory systems [36] and
mathematically, are simple enough to represent, in our experiments for the bag of kernels we
chose kernels whose response functions are gammatone filters. The implementation of the
filterbank is similar to the one provided in [43], and we have used up to 2000 gammatone
kernels whose center frequencies are equally spaced on the ERB scale. Figure 4 shows a sample
gammatone filter used as a kernel whose center frequency is at 250 Hz. Rest of the kernels
were similar in shape, scaled differently along the time axis based on their corresponding
center frequencies.

Results: In each trial of our experiment, the initial threshold value and the absolute
refractory period was kept low enough so that for each sound snippet we could get nearly
perfect reconstruction at a high spike rate. Figure 5 displays the spikes generated by a subset
of the kernels for a representative sound snippet. Once we got a reconstruction at a high
spike rate, we discarded less important spikes sequentially to get a compressed representation
of each snippet. Figure 6 shows the reconstruction results of a trail with bag of kernels
consisting of 2000 gammatone filters over more than 1000 sound snippets chosen from the
above mentioned dataset. As one can infer from Figure 6, reconstruction is almost prefect
(≈ 40DB) at high spike rate (≈ 15kHz), and then as we gradually keep discarding spikes
based on their importance the reconstruction accuracy goes down. From the results it is clear
that based on an application’s requirements, a suitable point on the graph can be chosen to
get the necessary reconstruction accuracy at a reasonable spike rate.
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Fig. 4. A sample gammatone filter used as a kernel with center frequency at 250 Hz.
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Fig. 5. The spike pattern of 80 chosen kernels from the bag of kernels. On the left the input
signal is shown in green and on the right the spike pattern of the chosen 80 kernels is shown
on the same time scale.
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Fig. 6. Plot of SNR values at different spike rates averaged over reconstruction of 1000
sound snippets with a bag of kernels consisting of 2000 gammatone filters
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2.3 Spike-Triggered Descent

A major goal of sensory neuroscience is to precisely characterize the mapping that specifies
how a neuron responds to sensory stimuli. This response function accounts for intermedi-
ary physical processes along with activity of the entire network upstream from the target
neuron. The complexity of this problem arises from variations in network connectivity and
constituent ion channels which cause wildly differing behavior. There’s additional difficulty
in a direct component wise analysis resulting from discontinuity of the spiking behavior
caused by Hodgkin Huxley ion channels [24]. The inaccessible and innumerable physical
parameters create complex interactions which lead to intractable calculations necessitating
model simplifications.

A key simplifying assumption comes from signal processing: Any time-invariant continuous
nonlinear operator with fading memory can be approximated by a Volterra series operator
[7]. The overall impact upon the membrane potential by the upstream network can then
be described by a set of Volterra Wiener kernels [47] [5] [37]. Using the first order kernel:
Spike-triggered average (STA), a technique which has seen widespread application, assumes
a simple probabilistic model of spike generation. When the model assumptions are met, it
returns an optimal first order kernel. We introduce a new technique, called spike-triggered
descent (STD), which can learn higher order kernels and yield higher accuracy. These
techniques approximate the desired kernel by constructing a relationship between sensory
stimuli and the spike trains they cause.

Here we give an overview of how STA [15] [30] [10] [40] and STD work, describe their models,
and point out a few key differences. STA is based on the linear non-linear Poisson cascade
model (LNP) which convolves the signal with a linear kernel, applies a point nonlinearity to
convert it into a firing rate, and then samples it using an inhomogeneous Poisson point process
to generate spikes. Obtaining the kernel from the signal and resulting spikes requires the
signal to be a stationary Gaussian process so that Bussgang’s theorem [8] can be applied. In
contrast to STA, STD is based on the cumulative spike response model (CSRM) [21] and can
approximate higher order kernels for any sufficiently complex signal. Replacing the nonlinear
Poisson spike generation, the CSRM spikes occur when the convolution’s resulting membrane
potential exceeds threshold which inhibits future spikes by way of an after hyperpolarizing
potential (AHP). STD works by comparing simulated and recorded spike trains to form a
gradient that optimizes kernel parameters.

Neuroscientists use STA because it recovers the optimal linear kernel and is easy to use.

21
DISTRIBUTION A: Distribution approved for public release



However, the reliance on the stimulus being a Gaussian process and the restriction to first
order kernels are weaknesses which STD does not share. The techniques can be used in
tandem or STD’s initial learning kernel can be randomly guessed. Surprisingly without over
fitting, it can precisely approximate while reusing limited data. In the following paragraphs,
we introduce a spike train metric used in momentum based stochastic gradient descent (SGD)
to update kernels that represent response functions.

The cumulative spike response model (CSRM) [21] can be generalized to include the full
Volterra series of kernels (8). These kernels, approximated here by splines, represent the
impact on the membrane potential by the stimuli’s higher order auto-correlates. Increasing
n allows for increased pattern detection capabilities. The AHP function η = −Ae(tl−tk)/µ

models the refractory period which is a region where spikes are highly unlikely to occur right
after firing. In contrast to Poisson sampling, the AHP approach is deterministic and imposes
a prior state dependency. A spike is generated when a threshold (Θ̃) is exceeded by the
signal convolved with kernel(s) minus past spikes’ AHPs. The n-order kernel Kn is a spline
function composed of the n-ary Cartesian product of third order cardinal B-splines Bn. The
kernel is incrementally updated by the optimization process. At time t = tOl the kernel is
Kl,n =

∑
iBi,l,nβi,l,n. The current and prior spike times are tOl and tOk . The AHP parameter

µ modifies the refractory time.

Θ̃ =
∞∑
n=1

∫
. . .

∫
Kl,n(τ1 . . . τn; βi,l,n)

n∏
i

x(tOl − τi)dτi +
∑
k

η(tOl − tOk ;µ) (8)

Spike-triggered descent updates parameters based off of the distance between simulated
and desired spike trains. To support using the distance (11) from [1] on the GCSRM, it is
important to also generalize spike trains and show that they’re a subset of a vector space
with an inner product 〈·, ·〉. Considering augmented spike trains with countably infinite
(N = {1, 2, ...}) spikes gives the framework the versatility to compare spike trains of any
length. The augmentation turns spike trains into tuples of times and coefficients t = {(ti, αi)}.
This forms a vector space and provides the foundation for creating an inner product (9) that
induces a metric (Methods). Setting the α′s to 1 for finitely many spikes reduces to the usual
space of spike trains within a bounded past. This is a subset of the generalization with the
same metric and is squared to simplify the algebra (10).

〈tA, tB〉 =
∞∑

i,j=1

(αAi × αBj )
tAi × tBj

(tAi + tBj )2
e−

tAi +tBj
τ (9)
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E = d2 = 〈tD − tO, tD − tO〉 (10)

Setting α values to 1 for N,M spikes, and 0 otherwise, we get:

E(tD, tO) =

M,M∑
i,j=1

tDi × tDj
(tDi + tDj )2

e−
tDi +tDj

τ

+

N,N∑
i,j=1

tOi × tOj
(tOi + tOj )2

e−
tOi +tOj

τ

− 2

M,N∑
i,j=1

tDi × tOj
(tDi + tOj )2

e−
tDi +tOj

τ

(11)

The gradient descent equations that are used to incrementally reduce the error E can be
found in the article. Here we present results from learning the kernel from a recorded dataset
that demonstrates the strength of STD.

Sensory neurons which, when given the same stimuli, reliably produce similar spike trains
are good candidates to test STD. One such possibility is the tympanal nerve’s auditory
receptor axons in the Locusta migratoria grasshopper whose action potentials, recorded
intracellularly, can have a 0.15ms[39] inter trial jitter. This dataset, collected by Ariel
Rokem[17] [16] at the lab of Andreas Herz, was graciously shared through the CRCNS
program (http://crcns.org) [38]. The stimuli consisted of a carrier wave perturbed by random
amplitude modulations and a cutoff frequency of up to 800Hz. We used a particular subset
of this dataset to demonstrate kernel extraction.

Repeated updates lead to a kernel which attempts to reconstruct the provided spike train.
When running a simulation with a known desired neuron the absolute distance between
kernels can be measured. In absence of a known answer, and in lieu of a universally accepted
metric, we revert to demonstrating the effectiveness by showcasing the simulated spike train
reconstruction for a particular kernel. Figure 7 demonstrates this using a (stimuli, spike train)
pair as input. The stimuli we used had a cutoff frequency of 200Hz. The reconstruction (green
dashes) was learned from (blue dashes) one of the 6 recorded spike trains for a particular
cell (“./crcns-ia1/Data1/03-04-23-ad/"). The reconstruction occasionally fires where the
desired does not but the other (orange dashes) recordings do. This is an indication that the
underlying model is being accurately represented.
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Given that the data set was recorded at 0.05ms and borrowing inspiration from Ne-
menman’s work[33], showing that a blowfly’s H1 neuron represents information with sub-
millisecond precision even for slow stimuli, finer time resolution STD kernels were explored.
The best observed reconstruction was for an STD kernel (green) composed of 50 splines and
four 0.25ms units per knot interval shown in Figure 8 along with raw (blue) and smoothed
(orange) STA kernels. The STA results were omitted from Figure 7 due to a large variety of
low quality reconstructions. It was trained with all 6 recorded spike trains, different sized
kernels, various levels of smoothing, and multiple spike generation methods (LNP, CSRM).
STD is a better technique for learning kernels that have the ability to reconstruct spike trains.
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Fig. 7. a, The Locusta migratoria spike data (blue and orange dots) collected by A. Rokem
in cell “./crcns-ia1/Data1/03-04-23-ad/" corresponding to the “gauss_st6_co200.dat" stimuli
with a cutoff frequency of 200Hz. The recording is sliced up with milliseconds on the y axis
and seconds on the x for a total of 10 seconds. Each spike train consists of approximately
1000 spikes. The goal was to train an STD kernel that could reconstruct (green dashes) the
desired (blue dashes) spike train. There are 5 other recordings (orange dashes) for this stimuli
and cell. The final kernel’s simulated spike train closely approximates the desired. The green
line represents error between the learning and desired spike trains from a preceding window
of 100ms and is clipped to a range from 0 to 6. Similarly, the blue and red lines represent
the minimum and maximum error between any pair of recorded spike trains. b, Zoomed
sections of the reconstruction were randomly chosen. Notice that the learning error is often
between the minimum and maximum errors between recordings. Additionally, a simulated
spike will sometimes align with the other recordings even when the desired does not. These
are indications that the kernel accurately represents underlying model.
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Fig. 8. The raw STA kernel (blue) spanning 1000 time units of 0.05ms was smoothed
(orange) and compared with the STD result (green). The smoothed STA kernel was the
result of of convolving 5 times against a box spline spanning 1ms.
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