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We present a machine learning-based method for tomographic
reconstruction of dense layered objects, with range of projection
angles limited to ±10◦. Whereas previous approaches to phase
tomography generally require 2 steps, first to retrieve phase
projections from intensity projections and then to perform tomo-
graphic reconstruction on the retrieved phase projections, in our
work a physics-informed preprocessor followed by a deep neural
network (DNN) conduct the 3-dimensional reconstruction directly
from the intensity projections. We demonstrate this single-step
method experimentally in the visible optical domain on a scaled-
up integrated circuit phantom. We show that even under con-
ditions of highly attenuated photon fluxes a DNN trained only
on synthetic data can be used to successfully reconstruct physical
samples disjoint from the synthetic training set. Thus, the need
for producing a large number of physical examples for training is
ameliorated. The method is generally applicable to tomography
with electromagnetic or other types of radiation at all bands.
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Tomography is the quintessential inverse problem. Since the
interior of a 3-dimensional (3D) object is not accessible non-

invasively, the original insight of tomographic approaches was to
illuminate through from multiple angles of incidence and then
process the resulting projections to reconstruct the interior slice
by slice (1–3). In the simplest case, when diffraction is negligible
and the illumination is collimated, as is generally permissible to
assume for X-ray attenuation (4–7) and electron scattering (8–
10) in the far field and for features of size ∼1 µm and above,
the object’s interior is represented by its Radon transform (11)
of line integrals along straight parallel paths. The interior of
the volume is then reconstructed by use of the Fourier-slice
theorem for the Radon projections. On the other hand, if the X-
ray beam is not collimated but spherical, then the slice-by-slice
approach is no longer applicable and full volumetric reconstruc-
tion is required (12, 13). Even when the object is available for
observation from the full 360◦ range of projection angles, these
instances of tomography are all highly ill-posed because the
Fourier-slice property results in uneven coverage of the Fourier
space with the high spatial frequencies ending up underrepre-
sented. Ill-posedness increases when the angular range is limited
because then an entire cone of spatial frequencies goes missing
from the measurement. Alternatively, in this case, tomosynthesis
(14) utilizes sheared (rather than rotated) projections to bring
slices from within the interior into focus, but with lower con-
trast since emission from the rest of the volume remains as
background.

Additional challenges occur when the inverse problem of
interest is to reconstruct in 3D the index of refraction, rather
than the attenuation. If the object features are large enough
compared to the wavelength, such that diffraction may still be
neglected, and the index variations through the object volume
are relatively small, then each projection may be modeled as
a set of Fermat integrals of phase delay along approximately
straight lines. The phase integrals may be obtained, for exam-

ple, using holographic interferometry (15, 16) or transport of
intensity (17). For smaller-sized features and still assuming weak
scattering (first-order Born approximation), the projection inte-
grals are instead obtained along curved paths on the surface of
the Ewald sphere, a method referred to as diffraction tomogra-
phy (18, 19). By decoupling the problem into 2 parts, first phase
projection retrieval, followed by tomography, these approaches
enjoy the benefit of using the advanced algorithms in the 2
respective research fields. However, there is also the danger that
errors generated independently during each step may amplify
each other. Finally, when strong scattering may no longer be
neglected, all 2-step approaches become questionable because
the interpretation of the first step as line integrals is no longer
valid.

Generally, ill-posed inverse problems are solved by regularized
optimization. If f is the object and g the measurement, then the
object estimate f̂ is obtained as (20, 21)

f̂ = argmin
f

{
‖Hf − g‖2 +αΦ(f )

}
. [1]

Here, H is the forward operator relating the measurement to
the object, Φ is the regularizer expressing prior knowledge about
the object, and α is the regularization parameter controlling the
competition between the 2 terms. The prior may be thought of
as rejecting solutions to the inverse problem that are known to
violate known properties of the class of objects being imaged;
for example, if the class where f belongs is known to have sharp
edges, then the regularizer should be applying a high penalty
to blurry solutions f̂ . Thus, the inherent uncertainty due to
ill-posedness is reduced. Sparsity-promoting compressive priors
(22–25) found some of their first successes in tomographic recon-
struction (26, 27). Compressive sensing is directly implemented
through a proximal gradient solution to Eq. 1 if a set of basis
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functions where the object class is sparse is a priori known. Alter-
natively, if a database of representative objects is available, then
these examples may be used to learn the optimal set of basis
functions as a dictionary (28, 29).

Rapid recent developments in the field of machine learn-
ing, and deep neural networks (30) (DNNs) in particular, have
provided an additional set of tools and insights for inverse prob-
lems. It may be shown (31, 32) that recurrent or unfolded
multistage DNN architectures are formally equivalent to the iter-
ative solution to the inverse problem in Eq. 1 where the prior
Φ need no longer be known or depend on sparsity; instead,
examples guide the discovery of the prior through the DNN
training process. Simpler learning architectures, where g is fed
to the DNN directly or after first passing through a preproces-
sor, have been used for retrieval of phase from intensity (33–36);
3D holographic reconstruction (37–39); superresolution photog-
raphy (40–42) and microscopy (43); imaging through scatter
(44–47); and imaging under extremely low light conditions in the
3 contexts computational ghost imaging (48), consumer-camera
photography (49), and phase retrieval (50).

Multistage DNN architectures have been shown to yield high-
quality reconstructions in numerous Radon tomography con-
figurations (32, 51–56). Recently, Nguyen et al. (57) used the
inverse Radon transform for optical tomography with a single-
stage DNN intended to partially correct for the assumption of
line integrals breaking down.

In this paper, we apply a Fourier-based beam propagation
method (BPM) (58) as a preprocessing step immune from any
Radon assumptions. The strongly scattering object is illuminated
by a parallel beam under a limited angular range of 20◦, i.e.,
±10◦ from the reference axis. Unlike the earlier works on refrac-
tive index tomography referenced above, we do not perform a
phase retrieval step; rather, the intensity measurements are pre-
processed to produce directly an initial crude 3D guess of the
object’s interior. This crude guess is then fed to our machine-
learning algorithm. The preprocessing step is necessary because,
even if we did convert intensity to phase, the results would not
be interpretable as line integrals under our experimental con-
ditions. Moreover, by merging phase retrieval and tomography
into a single step, our algorithm becomes less sensitive to error
accrual.

Large datasets, typically consisting of more than 5,000 exam-
ples, are generally required for DNN training. That is feasible
in many cases through spatial light modulators (33, 57). How-
ever, in many cases of interest spatial light modulators have
insufficient space-bandwidth product or are unavailable (e.g.,
in X-rays); and alternatives to generate physical specimens are
expensive or restricted due to proprietary processes. Instead,
our approach is to train the DNN on purely synthetic data
with the rigorous BPM forward model and then use a physical
test specimen (phantom) to test the reconstruction quality with
well-calibrated ground truth in experiments.

We chose to design our phantom as emulating the 3D geom-
etry of integrated circuits (ICs). These would normally be
inspected with X-rays, so we scaled up the feature dimensions
in the phantom for visible wavelengths. The advantage of this
choice is that IC layouts provide strong geometrical priors, e.g.,
Manhattan geometries, and our phantom also exhibited large
spatial gradients and refractive index contrast to strengthen scat-
tering. Thus, our methodology is directly applicable to all cases
of tomography at optical wavelengths, e.g., 3D-printed speci-
men characterization and identification and biological studies
in cells and tissue with moderate scattering properties. In each
case, testing the ground truth would require the fabrication
or the accurate simulation of different phantoms meeting the
corresponding priors.

There is also value in the study of emulating X-ray inspec-
tion of ICs at visible wavelengths, as extensive outsourcing

by the IC industry has created a growing concern that the
ICs delivered to the customer may not match the expected
design and that malicious features may have been added (59).
However, in our emulation the phase contrast of the features
against the background and the Fresnel number are both higher
than typical corresponding IC configurations even at soft X-ray
wavelengths.

One advantage of deep learning for inverse problems is speed.
Solving [1] separately for each instance of g is computation-
ally intensive, and training a DNN is even more so. This is
because both operations are iterative, and the latter is run on
large datasets. On the other hand, once the DNN has learned
the inverse map from the preprocessed version of g to f̂ , the
computations are feedforward only. For example, the IC lay-
out priors we exploit here could, in principle, also be learned by
dictionaries—but, under strong scattering conditions, the latter
would require iterative optimization of Eq. 1 with the forward
operator H itself consisting of an expensive computational pro-
cedure in each iteration. In our approach, the preprocessing
performed prior to the DNN is the most time-consuming opera-
tion, and therefore we aim at simplifying the preprocessing step
as much as we can, i.e., tolerate a crude approximation, and
leave it to the DNN to correct it. In our case, the execution
time is 51 s (out of which only 300 ms are taken by the DNN,
with the rest being the preprocessor), while learning tomography
(60, 61), which is based on a similar gradient descent algorithm,
takes 212 s and yields inferior reconstructions (see Fig. 4 for
this, and see Materials and Methods for the computing hardware
implementation).

Optical Experiment
We prepared a series of 4 glass wafers with etched structures rep-
resenting patterned layers from an actual IC design. A schematic
cross-section of the sample is shown in Fig. 1A. The glass
plates are held together and aligned in a custom-made holder.
Immersion oil is added between the plates to minimize parasitic
reflections and also tune the phase shift associated with the pat-
terns. The pattern depth was measured to be 575 nm, yielding a
phase shift of −0.33 rad for the particular oil used. Note that the
phase shift is negative as the refractive index of the oil is lower
than the refractive index of the glass. Details about the sample
preparation and phase-shift measurements are given in Materials
and Methods. The particular patterns etched on the sample are
shown in Fig. 1B.

The experimental apparatus is detailed in Fig. 2. A collimated
monochromatic plane wave from a continuous wave (CW) laser
is incident on the sample, which is mounted on a 2-axis rotation
stage. The sample is imaged through a demagnifying telescope
to increase the field of view. The detector (an EM-CCD camera)
is defocused from the image plane to simulate free-space prop-
agation in an X-ray experiment where no imaging system can be
used. Further details are given in Materials and Methods.

The strength of diffraction effects can be quantified with the
Fresnel number F = a2/(λd), where λ is the wavelength, d the
propagation distance, and a the characteristic feature size of
the object. The smaller the Fresnel number is, the stronger the
effects of diffraction. For the glass phantom considered here and
a defocus of 58 mm, F = 0.7 for the smallest features and F = 5.5
for the largest. The diffraction pattern is digitized on the camera
for different sample orientations. This series of measurements is
then passed through a numerical algorithm, described in the next
section, whose aim is to yield a first approximate reconstruction,
hereafter referred to as the “approximant.”

Computation of the Approximant
As mentioned above, the task of the DNN is significantly facil-
itated if the raw measurements are preprocessed to give an
approximation of the solution. We use a simple gradient descent
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Fig. 1. (A) Sample cross-section. The depth of the etched patterns was
measured (Materials and Methods) and the refractive index of the oil was
controlled to achieve a known phase shift of −0.32 rad. ∆z = 0.5 mm. (B)
IC patterns used for each of the 4 layers. The white background represents
the original wafer thickness and the black areas indicate where the wafer
has been etched.

method to generate the approximant of the sample refractive
index distribution.

Light propagation through the object can be computed using
the following split-step Fourier BPM. In this method each
sample layer l is modeled as a 2D complex mask fl(x , y) =
exp[αl(x , y) + jϕl(x , y)] and the space between 2 successive lay-
ers as Fresnel propagation through a homogeneous medium
whose index of refraction equals the average refractive index of
the sample, as

ul =F−1
{
F {ul−1fl−1}(kx , ky)e−j(k−

√
k2−k2

x −k2
y )∆z

}
. [2]

Here, ul(x , y) is the optical field at layer l , F the Fourier trans-
form, ∆z the distance between layers, and k the wavenumber in
the medium between layers. Each measurement is a collection
of Nv intensity patterns gi(x , y), with i = 1, . . . ,Nv , captured on
the detector for each orientation i of the sample. In this work, we

assume that the sample is a pure phase object; i.e., α(x , y) = 0.
This assumption is valid for the glass phantom in the optical
domain as well as for a sample composed of copper and silicon
in the X-ray domain at 17 keV, where the phase contrast (real
part of the refractive index contrast) is about 10 times larger than
the absorption contrast (imaginary part of the refractive index
contrast).

From the measurements, we produce an approximation f̃ of
the phase pattern ϕl(x , y) for each layer l in the sample. We
use the steepest gradient descent method with a fixed number of
iterations K = 8 to generate the approximant. In what follows,
we represent the measurements (consisting of M real pixel val-
ues) by a (M × 1) column vector gi and the discretized object
(consisting of N real voxel values) by a (N × 1) column vector f.
We then define a cost function J to minimize, consisting simply
of a data fidelity term

J =
1

2

Nv∑
i=1

‖Hi(f)− gi‖22, [3]

where Hi denotes the forward operator that maps the object
function f to a prediction of the measurement Hi(f), for a par-
ticular orientation i of the sample. In the problem presented
here, the optical field will first propagate through the sample L
layers, each of thickness ∆z , and then in free space to the detec-
tor over a distance d . The forward operator can thus be written
as a cascade of Fresnel propagation operations and thin mask
multiplications corresponding to the object layers, i.e., successive
applications of Eq. 2 written in operator form

Hi(f) = |udet|2 [4]
udet =Fddiag[fL] . . .F∆zdiag[f2]F∆zdiag[f1]uinc,i , [5]

where fl is the vector of object function values in layer l , F∆z

the Fresnel propagation operator over distance ∆z , uinc,i the
incident field, udet the field on the detector, and diag[v] the diag-
onal matrix with vector v on the diagonal. The gradient descent
iterative update can be written as

f(k+1) = f(k)− s(∇f(k)J )T , [6]

where f(k) is the object estimate at iteration k , s the step size,
and ∇f(k)J the gradient of J with respect to f evaluated at f(k).
We then set f̃ = f(K) with K chosen in advance, starting from
f(0) = 0. The detailed derivation of the gradient for the particular

He-Ne laser

EM-CCD
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L1L2
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Sample
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y z

Fig. 2. Experimental apparatus: spatial filter and beam expander. L1 is 10×,
0.25 numerical aperture objective; L2 is a 100-mm lens, with a 5-µm pinhole
F1 in the focal plane; L3 is a 200-mm lens; and L4 is a 100-mm lens. Aperture
A1 cuts the outer diffraction lobes of the beam. The sample is mounted on
a 2-axis rotation stage rotating along the x and y axes. The sample middle
plane is imaged using a telescope lens system with magnification 0.50×. The
camera is defocused by a distance ∆z = 58 mm from the image plane.
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Fig. 3. (A) Examples of experimental intensity measurement for the
sample orientation (θx =−10◦, θy = 0◦). (B) Phase approximant for IC
layer 1 obtained from the collection of 22 intensity patterns at dif-
ferent orientations (θx =−10◦,−8◦, . . . , +10◦, θy = 0◦) and (θx = 0◦, θy =

−10◦,−8◦, . . . , +10◦).

model in Eqs. 4 and 5 is given after the conclusion in the Deriva-
tion of the Gradient section. In Fig. 3, we give an example of 1
experimental intensity measurement (g1) taken from the series
of tomographic projections and the corresponding approximant
f(8) obtained from the whole series using Eq. 6.

DNN Architecture and Training
We use a DNN to map the approximant to the final recon-
struction f̂. The DNN is a convolutional neural network with a
DenseNet architecture (62). The implementation is the same as
the DNN used in ref. 45 except that the number of dense blocks
was reduced to 3 in both the encoder and the decoder, as we
empirically observed that using more dense blocks did not result
in a significant improvement of the results. We produce a total
of 5,500 synthetic sets of measurements obtained by simulating
the optical apparatus with the beam propagation method in Eq.
2. The synthetic measurements were subject to simulated shot
noise and read noise equivalent to the noise levels found in the
experiment. The shot noise was accounted for by converting the
simulated measurement pixel intensities I expressed in average
photon count per pixel per integration period of the detector to
integer numbers of photons N following Poisson statistics. The
actual optical power on the camera was measured with a power
meter and converted to an average photon flux per detector pixel.
Read noise following Gaussian statistics was subsequently added.
The parameters (variance and average) of the noise were mea-
sured from a series of dark frames from the camera taken with
the same gain (EM gain of 1) and integration time (2 ms) as the
experimental measurements.

From each set of measurements, we produce a multilayer
approximant using the gradient descent in Eq. 6. The examples
are split in a training set of 5,000 examples, a validation set of
450 examples, and a test set of 50 examples. Each set of measure-
ments (1 example) comprises 22 views corresponding to different
orientations of the sample. The DNN is then trained to map
the approximant to the ground truth used for the simulation.
Each layer of the sample is assigned to a different channel in
the DNN. We use the negative Pearson correlation coefficient
(NPCC =−PCC) as loss function and train in 20 epochs with a
batch size of 16 examples. For 2 images A and B , the PCC is
defined as

PCC(A,B) =

∑
i(Ai − Ā)(Bi − B̄)√∑

i(Ai − Ā)2
∑

i(Bi − B̄)2

, [7]

The PCC (and therefore the NPCC too) is agnostic to scale and
offset; i.e., PCC(aA+ b, cB + d) = PCC(A,B) for a, b, c, d ∈
R. As a consequence, the DNN, which is trained by minimizing
the NPCC, may apply some offset and scaling to the reconstruc-
tion. These parameters are not easily predictable; however, for a
given DNN they are constant once training is complete, which

allows us to correct the reconstructions. Offset and scale are
obtained by least-squares linear regression between the DNN
output and the ground truth from the synthetic test set examples
(not including the experimental example).

Results
The method described in the previous sections was applied to
the glass phantom shown in Fig. 1B. The synthetic measure-
ments were subject to Poisson noise resulting from 103 photon
flux per detector pixel, equal to the experimental photon flux,
and an additive Gaussian noise with a SD of 13 counts. For
DNN training, we compared 2 sets of approximants, obtained
with K = 1 and K = 8 with and without total variation (TV) reg-
ularization. In the case K = 1, the regularization parameter α
was set to 0.1 (step size 0.1). We chose a smaller value of 0.04
for the case K = 8 (step size 0.05) because the proximal opera-
tor corresponding to the regularizer is applied at each iteration
and its effect tends to accumulate. In the case K = 8, the partic-
ular choice for the number of iterations is an empirical trade-off
between computation time and accuracy. The same optimization
parameters (step size and number of iterations) were used to
compute the approximant of the IC phantom, and the result for
each layer is shown in Fig. 4 E–H for K = 1 and Fig. 4 I–L for
K = 8. The DNN reconstruction results are summarized in Fig. 4
M–P (K = 1) and Fig. 4 Q–T (K = 8). The approximant and the
DNN reconstruction represent the phase modulation imposed
by each layer in the sample. The absolute phase carries no use-
ful information; therefore we are free to offset the reconstructed
phase by an arbitrary constant. In the DNN reconstructions in
Fig. 4 I–L, the IC patterns (where the phase shift actually occurs)
are typically reconstructed with 0 phase due to the rectified linear
units (which project all negative values to 0) at the output layer
of the DNN. We reassign the phase of the pattern to the nomi-
nal phase of −0.33 rad so that it can be visually compared to the
ground truths in Fig. 4 M–P. An alternate approach leading to
very similar results is to assign a 0 phase to the background.

The DNN reconstructions can be compared to those obtained
using learning tomography (LT), a previously demonstrated
optical tomography technique (60, 61) based on proximal opti-
mization (FISTA) (63) with TV regularization (64). The role of
the TV regularizer is to favor piecewise constant solutions while
preserving sharp edges, which is especially well suited for IC pat-
terns. LT was initially designed for holographic measurements
and was modified here to work on intensity measurements by
computing the gradient for the data fidelity term in Eq. 3. The
essential difference in the LT optimization is that a TV filter
playing the role of a proximal operator is applied at each iter-
ation on the current solution. The LT reconstructions for the
experimental dataset are shown in Fig. 4 A–D. These particu-
lar reconstructions were obtained after 30 iterations of gradient
descent, a step size of 0.05, a regularization parameter α= 0.04,
and 20 iterations for the TV regularizer at each step. The com-
putation time of the f(8) approximant is 51 s for K = 8 (no
regularization) and 6 s for K = 1, including 570 ms for the DNN
vs. 212 s for LT on the same processor (see Materials and Methods
for hardware details).

In Table 1, we summarize the values of the PCC, which we
use to quantify the quality of the reconstructions. The values are
given for reconstructions on the synthetic test set (50 examples)
and also the reconstruction of the single experimental example.
Because the reconstruction quality turns out to depend strongly
on the particular layer, we display the value for each of the 4
layers separately. As may be expected, the values for the LT are
higher (better reconstructions) than those for the approximant
as LT was run for 30 iterations vs. 8 for the approximant and that
the latter was not regularized. The DNN reconstructions appear
to be the best according to the PCC metric, which shows that,
even while starting from a poor approximation, the DNN was
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Fig. 4. (A–D) Proximal gradient descent with TV regularization, K = 30 iterations, for each layer 1 to 4. (E–H) Approximants generated from the experimen-
tal measurements with K = 1. (I–L) Approximants generated from the experimental measurements with K = 8. (M–P) Reconstructions from the DNN of each
approximant E–H, respectively. (Q–T) Reconstructions from the DNN of each approximant I–L, respectively. (U–X) Idealized ground truth obtained from the
sample specifications for layers 1 to 4. Note that the color bar range covers more than the range of the data, so there is no saturation effect on the images.

able to outperform LT. Note that a direct comparison between
the performance of the DNN on the synthetic data and that on
the experimental example is not fair because the ground truth
is not known in the experiment. The ground truth used for the

experimental example is an idealization from the design param-
eters used to fabricate the sample. We also indicate the values
for reconstructions based on the regularized approximant (using
the same regularization parameters as in the LT algorithm).
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Table 1. PCC, expressed in percentage (i.e., PCC × 100), of the reconstructions in the test set
with respect to the ground truths for the approximant (not regularized) and the DNN
reconstructions, labeled “DNN,” obtained from the unregularized approximant

Approximant DNN DNN reg. LT

K Layer Simul. Exp. Simul. Exp. Simul. Exp. Simul. Exp.

1 1 62 ± 7 48 99 ± 0.3 80 99 ± 0.4 72 91 ± 2 65
1 2 43 ± 5 22 97 ± 1 56 96 ± 1 45 79 ± 7 37
1 3 49 ± 9 41 99 ± 0.4 77 94 ± 5 76 89 ± 3 62
1 4 24 ± 7 7 95 ± 1 38 92 ± 2 42 76 ± 7 27
8 1 75 ± 63 63 100 ± 0.2 75 100 ± 0.1 76 — —
8 2 57 ± 6.5 31 98 ± 0.7 44 99 ± 0.4 45 — —
8 3 62 ± 6.5 52 99 ± 0.3 80 99 ± 0.3 79 — —
8 4 41 ± 8.1 12 96 ± 0.8 48 98 ± 0.6 43 — —

We show the 2 cases K = 1 and K = 8 for the approximant calculation. The LT solution is obtained with K = 30
and is indicated on the right. The values for the DNN trained with regularized approximants are labeled “DNN
reg.” The uncertainty values indicated correspond to the SD over the 50 examples of the test set. For each case,
the values for the synthetic (simulated) and experimental examples are indicated in separated columns “Simul.”
and “Exp.,” respectively. No uncertainty is given for the experimental case as it contains only 1 example.

In terms of PCC, there is no significant difference from the
unregularized case.

The reconstructions based on regularized approximants are
shown in Fig. 5. By comparing these images with the unregular-
ized reconstructions shown in Fig. 4, and also by considering the
value of the PCC in Table 1, we conclude that the regularization
has little effect, especially on the experimental reconstructions.
Moreover, the TV regularization may not operate as a favorable
preconditioner for the DNN. The choice of the TV operator as a
regularizer is arbitrary and only based on our assumption that
the solution should be piecewise constant. In fact, because of
the small angle range, the approximants for the different phan-
tom layers are quite similar to each other and the regularization
may cancel information that the DNN could use to discrimi-
nate between them. Layers 3 and 4 can be said to look visually
better with the regularized approximant, but the situation is
reversed for layers 1 and 2. Iterating more, i.e., using K = 8 vs.
K = 1, yields slightly better results as can be expected intuitively,
but the improvement is quite minute considering the increased
computation time required to perform 7 more iterations.

In the regularized case K = 1 only we observed instability in
the behavior of the DNN for the regularized approximants. For
bipolar input (approximant containing both positive and nega-
tive values), one of the phantom layers (layer 3) would always be
reconstructed to null values. As we are using a rectified linear
unit as an activation function, this means that the output of one
layer within the network displays only negative values. By offset-
ting the input to the DNN (approximant) so that all values are
positive we were able to remove the problem (reconstructions of
Fig. 5 I–L). For the regularized K = 1 case where this behavior
was observed, the difference between approximant layers is the
smallest; i.e., the failure may be due to the regularizer washing
out the differences.

So far, we have reconstructed the phase shift distribution
ϕ(x , y) associated to each layer. In fact, it is possible, with the
same method, to infer the refractive index n(x , y) of the sam-
ple. For a given layer, the refractive index is simply given by
n(x , y) =ϕ(x , y)/(k∆z ), where ∆z is the thickness of the layer.
If the layer thicknesses are not known, one would instead slice
the object into layers at finer spacing to meet the applicable
Nyquist criterion.

Conclusion
In this paper, we have demonstrated through an emulated X-ray
experiment that DNNs can be used to improve the reconstruc-
tion of IC layouts from tomographic intensity measurements

acquired within an angle range of ±10◦ along each lateral
axis. The approximant obtained after 1 or several iterations
of the steepest gradient method does not provide a recon-
struction of sufficient quality for the purpose of IC integrity
assessment. The DNN, however, exploits the strong prior con-
tained in the object geometry and yields reconstructions that are
significantly improved over the approximant. One of the main
motivations for using DNN is indeed the speed of execution;
therefore, we want to limit any unnecessary preprocessing. In
fact, trying to improve the quality of the approximant by sim-
ply iterating more the gradient descent does not yield significant
improvement.

One significant challenge for the method we demonstrated is
to provide a proper training set for the DNN. In the case of
ICs, the training set is simply given by the many real layouts
that are available. For more generic objects, a problem needs
first to be formulated to clearly define the class of object on
which the training will be performed. This is, however, the case
in general for problem solving that involves DNNs. What has
been shown here is the compelling improvement that DNN can
bring to a phase tomography problem when the class of object
is known.

More generally, there is a trade-off between the specificity of
the required priors and the “difficulty” of an inverse problem—
measured as degree of ill-posedness, e.g., the ratio of largest to
smallest eigenvalue in a linearized representation of the forward
operator. The problem we addressed here is severely ill-posed
due to the presence of strong scattering within the object and the
limited range and number of angular measurements we allowed
ourselves to collect. Therefore, the rather restricted nature of
ICs as a class prior is justified; while, at the same time, our
approach is addressing an indisputably important practical prob-
lem. Detailed determination of the relationship between the
degree of ill-posedness and the complexity of the object class
prior would be a worthwhile topic for future work.

Derivation of the Gradient. This derivation follows a path similar
to the derivation given in ref. 61. We start from Eq. 3:

J =
1

2

Nv∑
i=1

‖Hi(f)− gi‖22 [8]

=
1

2

Nv∑
i=1

(
Hi(f)THi(f)− 2Hi(f)Tgi + gT

i gi

)
. [9]
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Fig. 5. (A–D) Approximants generated from the experimental measurements with K = 1 and TV regularization with α= 0.1. (E–H) Approximants obtained
with K = 8 and TV regularization with α= 0.04. (I–L) Reconstructions from the DNN of each approximant A–D, respectively. (M–P) Reconstructions from the
DNN of each approximant E–H, respectively.

The gradient of J is defined as

∇fJ =

[
∂J

∂ϕ1
, . . . ,

∂J

∂ϕN
,
∂J

∂α1
, . . . ,

∂J

∂αN

]
f(k)

, [10]

where the object function is defined as f = exp[jϕ−α], with
ϕ representing the phase delay and α the absorption. In what
follows we denote the gradient by ∇ for notational simplicity.
We take the gradient of Eq. 9 and, by linearity of the deriva-
tion operation and denoting Hi(f) by Hi = (H1, . . . ,HM )T ,
we get

∇J =
1

2

Nv∑
i=1

[
∇(HT

i Hi)− 2∇(HT
i gi)

]
. [11]

The term ∇(gT
i gi) is absent because measurements gi do not

depend on the estimate f. Then, by the definition

∇H =

 ∂H1
∂ϕ1

. . . ∂H1
∂ϕN

∂H1
∂α1

. . . ∂H1
∂αN

. . .
∂HM
∂ϕ1

. . . ∂HM
∂ϕN

∂HM
∂α1

. . . ∂HM
∂αN

, [12]

we get

∇J =

Nv∑
i=1

[
HT

i ∇Hi − gT
i ∇Hi

]
[13]

=

Nv∑
i=1

[
rTi ∇Hi

]
, [14]
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where ri is the residual defined as ri = Hi − gi . Finally, we get
the expression required in Eq. 6:

(∇J )T =

Nv∑
i=1

(∇Hi)
T ri . [15]

In Eq. 15, (∇Hi)
T is a matrix of size (2N ×M ) that is too large

to be computed directly. Instead, we use a routine, described
below, to calculate the vector (∇Hi)

T ri directly. We remind the
reader of Eqs. 4 and 5 that describe the forward model where
we drop the index i to simplify the notation as the expression
assumes the same form for each sample orientation:

H = |udet|2 [16]

udet =Fddiag[fL] . . .F∆zdiag[f2]F∆zdiag[f1]uinc. [17]

This forward operator allows for a convenient computation
of the gradient by using a backpropagation scheme. We first
calculate the gradient of Eq. 16,

∇H =∇|udet|2 [18]

=∇(diag[u∗det]udet) [19]

= diag[udet]∇u∗det + diag[u∗det]∇udet [20]

= 2<{diag[u∗det]∇udet}, [21]

where the asterisk represents the complex conjugate. Thus,

(∇H)†r = 2<
{

(∇udet)
†r′
}

, [22]

where the dagger represents the Hermitian transpose and we
have defined r′= diag[udet]r. Because it is not practical to com-
pute the matrix (∇udet)

† due to its size, we use a recursive
scheme to compute (∇udet)

†r′ directly. For that, we rewrite Eq.
17 as a recursive relationship for the optical field ul just after
layer l :

u1 = diag[f1]uinc [23]
ul = diag[fl ]F∆zul−1 [24]

udet =FduL. [25]

The optical field u is thus known everywhere for a given object
function f. We then propagate the residual r′ backward through
the sample by using the same propagation relationships:

r′L =F †d r′ [26]

r′l−1 =F †∆zdiag[fl ]
†r′l . [27]

Note that the Fresnel operator is unitary; i.e., F †=F−1. We take
the gradient of Eqs. 23–25:

∇u1 = diag[uinc]∇f1 [28]
∇ul = diag[F∆zul−1]∇fl + diag[fl ]F∆z∇ul−1 [29]
∇udet =Fd∇uL. [30]

We then take the Hermitian transpose and multiply by the
residual; we get

(∇u1)†r′1 = (∇f1)†diag[uinc]†r′1 [31]

(∇ul)
†r′l = (∇fl)

†diag[F∆zul−1]†r′l +

+ (∇ul−1)†F †∆zdiag[fl ]
†r′l [32]

(∇udet)
†r′= (∇uL)†F †d r′. [33]

We simplify the equations above by making use of Eqs. 24 and
25,

(∇u1)†r′1 = (∇f1)†diag[uinc]†r′1 [34]

(∇ul)
†r′l = (∇ul−1)†r′l−1 + (∇fl)

†diag[F∆zul−1]†r′l [35]

(∇udet)
†r′= (∇uL)†r′L, [36]

which gives us a recursive relationship to calculate the gradi-
ent of the field at each layer. Note that (∇fl)† is a matrix
of size 2N ×M whose entries are nonzeros only for the
diagonal entries corresponding to layer l because fi depends
only on αi and ϕi . In practice, (∇udet)

†r′ can be built
layer by layer by stacking the second term of the right-
hand side of Eq. 35 which reads, for pure phase objects
(α= 0),

(∇fl)
†diag[F∆zul−1]†r′l =−jdiag[e−jϕl ]diag[F∆zul−1]†r′l

[37]

=−jdiag[e−jϕl ]diag[e jϕl ]diag[u∗l ]r′l [38]

=−jdiag[u∗l ]r′l , [39]

where we have used Eq. 24. Finally, according to Eq. 22, we
obtain layer l of (∇H)†r,

(∇H)†r|layer l = 2=
{

diag[u∗l ]r′l
}

, [40]

where = denotes the imaginary part.

Materials and Methods
The experimental apparatus is shown in Fig. 2A. The light source is a CW
He-Ne laser at 632.8 nm that is spatially filtered, expanded, and collimated
into a quasi-plane wave with an Airy disk intensity profile of 33 mm in
diameter. The sample is mounted on a 2-axis rotation stage rotating along
the x and y axes. The sample middle plane is imaged using a demagni-
fying telescope (×0.50) lens system to enhance the effect of diffraction
and increase the field of view on the detector. The detector is an EM-CCD
(QImaging Rolera EM-C2) with a 1,004 × 1,002 array of 8× 8-µm pixels. To
simulate the diffraction occurring in an X-ray measurement, the detector is
defocused by a distance ∆z = 58 mm from the image plane, which corre-
sponds to Fresnel numbers ranging from 0.7 to 5.5 for the different object
features.

The sample corresponds to a 104× scale-up of a real IC design. The orig-
inal IC comprises 13 layers, including the doped layers. We kept only layers
5 to 8 from the original design (relabeled here 1 to 4) shown in Fig. 2C
that contain copper patterns that would induce a significant phase delay in
the X-ray regime. The 4 glass plates corresponding to the IC layers were cut
in a 500-µm-thick fused silica wafer and 575± 5-nm deep patterns (mea-
sured after fabrication with a Bruker DekTak XT stylus profilometer) were
obtained by wet etching. To control the phase contrast and reduce para-
sitic reflections between the layers, we used an immersion oil (Fig. 2B) with
a refractive index nD = 1.400± 0.0002 at 25 ◦C from Cargille-Sacher Lab-
oratories. According to the manufacturer, the refractive index of the oil is
noil = 1.4005± 0.0002 at 632.8 nm and 20 ◦C. The refractive index of fused
silica is nglass = 1.457 at 632.8 nm and 20 ◦C (65), which gives a contrast of
∆n = 0.0565± 0.0005. The corresponding phase shift for a single pattern is
then ∆ϕ= kd∆n = 0.323± 0.006 rad.

The sample layers are fabricated on double-sided polished 150-mm-
diameter and 500-µm-thick fused silica wafers. A 1-µm-thick positive tone
resist (Megaposit SPR700) is spin coated at 3,500 rpm on both sides of the
wafer and soft baked at 95 ◦C for 30 min in a convection oven. The back-
side was also coated for protection from the forthcoming wet etch. Scaled
versions of IC designs in GDSII format are then patterned directly using a
maskless aligner (MLA150; Heidelberg Instruments) with a 405-nm laser and
developed using an alkaline developer (Shipley Microposit MF CD-26) for
45 s followed by a deionized (DI) water rinse and N2 drying. A hard bake at
120 ◦C for 30 min is carried out to stabilize the patterned features. A short
descum of 2 min at 1,000-W and 0.1-Torr O2 pressure in a barrel asher is
also performed to remove any resist residue. The wafers are subsequently
etched for 7 min at a rate of ∼ 80 nm/min in buffered oxide etch. The resist
is then stripped from the wafer by a long ash (1 h) followed by a Piranha
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clean (3:1 H2SO4:H2O2), DI water rinse, and N2 drying. Finally, the wafers
are diced into squares of 50 mm× 50 mm and cleaned again with Piranha,
DI water rinse, and N2 drying.

The computation of the approximant is performed with the MATLAB soft-
ware on an Intel i9-7900X processor running at 3.3 GHz. The DNN training

and testing are performed under Keras with Tensorflow backend running
on an NVIDIA Titan Xp graphics processing unit.
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