
QUANTITATIVE ANALYSIS OF
EVALUATION CRITERIA FOR

GENERATIVE MODELS

THESIS

Marvin W Newlin, Second Lieutenant, USAF

AFIT-ENG-MS-20-M-048

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this document are those of the author and do not reflect the
official policy or position of the United States Air Force, the United States Department
of Defense or the United States Government. This material is declared a work of the
U.S. Government and is not subject to copyright protection in the United States.

AFIT-ENG-MS-20-M-048

QUANTITATIVE ANALYSIS OF EVALUATION CRITERIA FOR

GENERATIVE MODELS

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Cyber Operations

Marvin W Newlin, B.S.C.S., B.S.M.

Second Lieutenant, USAF

March 2020

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT-ENG-MS-20-M-048

QUANTITATIVE ANALYSIS OF EVALUATION CRITERIA FOR

GENERATIVE MODELS

THESIS

Marvin W Newlin, B.S.C.S., B.S.M.
Second Lieutenant, USAF

Committee Membership:

Mark E DeYoung, Lt Col, Ph.D
Chair

Laurence D Merkle, Ph.D
Member

Clark N Taylor, Ph.D
Member

AFIT-ENG-MS-20-M-048

Abstract

Machine Learning (ML) is rapidly becoming integrated in critical aspects of cy-

bersecurity today, particularly in the area of network intrusion/anomaly detection.

However, ML techniques require large volumes of data to be effective. The available

data is a critical aspect of the ML process for training, classification, and testing

purposes. One solution to the problem is to generate synthetic data that is realistic.

With the application of ML to this area, one promising application is the use of ML

to perform the data generation. With the ability to generate synthetic data comes

the need to evaluate the “realness” of the generated data. This research focuses

specifically on the problem of evaluating the evaluation criteria. Quantitative anal-

ysis of evaluation criteria is important so that future research can have quantitative

evidence for the evaluation criteria they utilize. The goal of this research is to provide

a framework that can be used to inform and improve the process of generating syn-

thetic semi-structured sequential data. A series of experiments evaluating a chosen

set of metrics on discriminative ability and efficiency is performed. This research

shows that the choice of feature space in which distances are calculated in is critical.

The ability to discriminate between real and generated data hinges on the space that

the distances are calculated in. Additionally, the choice of metric significantly affects

the sample distance distributions in a suitable feature space. There are three main

contributions from this work. First, this work provides the first known framework for

evaluating metrics for semi-structured sequential synthetic data generation. Second,

this work provides a “black box” evaluation framework which is generator agnostic.

Third, this research provides the first known evaluation of metrics for semi-structured

sequential data.

iv

AFIT-ENG-MS-20-M-048

This work is dedicated to my wife and our sons

v

Acknowledgements

I would like to thank my advisor for guiding me through the research process

and continuing to provide input after his deployment. I would also like to thank

the members of my committee for their valuable input and guidance throughout my

research. I would like to acknowledge my lovely wife for taking care of our children and

managing our house through the long nights and weekends of homework and research.

Lastly, I would like to thank the members of Dinner Squad for the camaraderie, input,

and thought-provoking discussions every Taco Tuesday.

Marvin W Newlin

vi

Table of Contents

Page

Abstract . iv

Acknowledgements . vi

List of Figures . ix

List of Tables . xii

I. Introduction . 1

1.1 Problem Background. 1
1.2 Problem Statement and Research Goals . 2
1.3 Research Questions and Hypothesis . 3
1.4 Assumptions . 4
1.5 Research Contributions . 4
1.6 Document Overview . 4

II. Background and Literature Review . 5

2.1 Artificial Intelligence and Machine Learning . 5
2.2 Generative Methods . 5

2.2.1 Generative Adversarial Networks . 6
2.2.2 Improvements on Generative Adversarial

Networks . 7
2.2.3 Other Generative Methods . 10

2.3 Applications of Generative Adversarial Networks 11
2.4 Evaluation of Generative Adversarial Networks . 12
2.5 Evaluation Metrics . 14

2.5.1 Power Distances . 14
2.5.2 Probability Distribution Measures . 15
2.5.3 Other Distance Measures . 18

2.6 Related Work . 18
2.6.1 Synthetic Data Generation . 18
2.6.2 Quantitative Evaluation of Generative Methods 20

2.7 Summary . 22

III. Methodology . 23

3.1 Methodology Overview . 23
3.2 Research Questions . 24
3.3 Data Understanding . 25

3.3.1 Network Events . 25
3.3.2 Host Events . 26

vii

Page

3.4 Data Preparation . 27
3.5 Modeling . 30
3.6 Metrics . 31
3.7 Evaluation . 32
3.8 Data Transformations . 32
3.9 Experiment overview . 33

3.9.1 Discriminative Behavior . 33
3.9.2 Efficiency. 35

3.10 Expected Outcomes . 36

IV. Results and Analysis . 38

4.1 Network Events Data . 38
4.2 Host Events Data . 54

4.2.1 Time Efficiency . 79
4.2.2 Sample Efficiency - Network Events Data . 82
4.2.3 Sample Efficiency - Host Events Data . 83

V. Conclusions . 95

5.1 Research Summary . 95
5.1.1 Discriminative Ability . 96
5.1.2 Efficiency. 98

5.2 Future Work . 98
5.2.1 Generative Failure Detection . 99
5.2.2 Overfitting Detection . 99

5.3 Contributions . 100
5.4 Summary . 100

Appendix A. User Guide . 101

1.1 System Configuration . 101
1.2 Dataset Preparation . 101
1.3 Data Generation . 102

1.3.1 Real Samples . 102
1.3.2 Fake Samples . 103

1.4 Discriminative Ability Experiment - Network Events
Dataset . 104

1.5 Discriminative Ability Experiment - Host Events Dataset 105
1.6 Efficiency Experiment - Host Events Dataset . 107
1.7 Efficiency Experiment - Host Events Dataset . 107

Appendix B. Metric Calculation Code . 109

Bibliography . 124
Acronyms . 133

viii

List of Figures

Figure Page

1. GAN Architecture . 7

2. SeqGAN Architecture . 9

3. CRISP-DM Process . 24

4. UHNDS Network Events Data Format . 26

5. UHNDS Host Event Data in Raw JSON Format . 27

6. Flow Diagram of Discriminative Experiment . 35

7. Discriminative Results: Network Events Data -
Untransformed . 44

8. Box and Whisker Plot of JSD Scores - Network Events:
Untransformed . 45

9. Discriminative Results: Network Events Data - SQRT
Transform . 46

10. Box and Whisker Plot of JSD Scores - Network Events:
SQRT Transform . 47

11. Discriminative Results: Network Events Data - Log
Transform . 48

12. Box and Whisker Plot of JSD Scores - Network Events:
Log Transform . 49

13. Discriminative Results: Network Events Data - PCA
Transform . 50

14. Box and Whisker Plot of JSD Scores - Network Events:
PCA Transform . 51

15. Discriminative Results: Network Events Data - FFT
Transform . 52

16. Box and Whisker Plot of JSD Scores - Network Events:
FFT Transform . 53

ix

Figure Page

17. Discriminative Results: Host Events Data -
Untransformed . 64

18. Box and Whisker Plot of JSD Scores - Host Events:
Untransformed - Uniform . 65

19. Box and Whisker Plot of JSD Scores - Host Events:
Untransformed - Normal . 66

20. Discriminative Results: Host Events Data - SQRT
Transform . 67

21. Box and Whisker Plot of JSD Scores - Host Events:
SQRT Transform - Uniform . 68

22. Box and Whisker Plot of JSD Scores - Host Events:
SQRT Transform - Normal . 69

23. Discriminative Results: Host Events Data - Log
Transform . 70

24. Box and Whisker Plot of JSD Scores - Host Events: Log
Transform - Uniform . 71

25. Box and Whisker Plot of JSD Scores - Host Events: Log
Transform - Normal . 72

26. Discriminative Results: Host Events Data - PCA
Transform . 73

27. Box and Whisker Plot of JSD Scores - Host Events:
PCA Transform - Uniform . 74

28. Box and Whisker Plot of JSD Scores - Host Events:
PCA Transform - Normal . 75

29. Discriminative Results: Host Events Data - FFT
Transform . 76

30. Box and Whisker Plot of JSD Scores - Host Events:
FFT Transform - Uniform . 77

31. Box and Whisker Plot of JSD Scores - Host Events:
FFT Transform - Normal . 78

x

Figure Page

32. Runtime (Seconds) vs. Sample Length - Network
Events Data . 80

33. Runtime (Seconds) vs. Sample Length - Host Events
Data . 81

34. Network Events Data: JSD Scores vs. Number of
Samples - Untransformed . 83

35. Network Events Data: JSD Scores vs. Number of
Samples - SQRT Transform . 84

36. Network Events Data: JSD Scores vs. Number of
Samples - Log Transform . 85

37. Network Events Data: JSD Scores vs. Number of
Samples - PCA Transform . 86

38. Network Events Data: JSD Scores vs. Number of
Samples - FFT Transform . 87

39. Host Events Data: JSD Scores vs. Number of Samples -
Untransformed . 88

40. Host Events Data: JSD Scores vs. Number of Samples -
SQRT Transform . 89

41. Host Events Data: JSD Scores vs. Number of Samples -
Log Transform . 90

42. Host Events Data: JSD Scores vs. Number of Samples -
PCA Transform . 91

43. Host Events Data: JSD Scores vs. Number of Samples -
FFT Transform . 92

44. JSD Scores for Small Sample Sizes - Untransformed
Network Events Data . 93

45. JSD Scores for Small Sample Sizes - Untransformed
Host Events Data . 94

xi

List of Tables

Table Page

1. Description of Fields in Network Events Portion of
UHNDS Dataset . 26

2. Mappings of Non-numeric Data in UHNDS Dataset 29

3. Network Events Data: JSD Results - Untransformed 40

4. Network Events Data: JSD Results - SQRT Transform 41

5. Network Events Data: JSD Results - Log Transform 42

6. Network Events Data: JSD Results - PCA Transform. 43

7. Network Events Data: JSD Results - FFT Transform 43

8. Host Events Data: JSD Results - Untransformed -
Uniform . 56

9. Host Events Data: JSD Results - Untransformed -
Normal . 56

10. Host Events Data: JSD Results - SQRT Transform -
Uniform . 57

11. Host Events Data: JSD Results - SQRT Transform -
Normal . 57

12. Host Events Data: JSD Results - Log Transform -
Uniform . 59

13. Host Events Data: JSD Results - Log Transform - Normal 59

14. Host Events Data: JSD Results - PCA Transform -
Uniform . 60

15. Host Events Data: JSD Results - PCA Transform -
Normal . 61

16. Host Events Data: JSD Results - FFT Transform -
Uniform . 62

17. Host Events Data: JSD Results - FFT Transform -
Normal . 62

xii

QUANTITATIVE ANALYSIS OF EVALUATION CRITERIA FOR

GENERATIVE MODELS

I. Introduction

1.1 Problem Background

Machine Learning (ML) is rapidly becoming integrated in critical aspects of cy-

bersecurity today, particularly in the area of network intrusion/anomaly detection.

However, ML techniques require large volumes of data to be effective. The availability

of data is a critical aspect of the ML process for training, classification, and testing

purposes [1]. Network Intrusion Detection System (IDS) are an area where ML and

Deep Learning (DL) are being heavily utilized. Network IDS are a critical component

of network security as they form the backbone of a network’s defense strategy for pre-

venting cyber attacks. The ability of IDS to effectively leverage the capabilities of

ML and DL relies heavily upon the data available for training and testing purposes.

This reliance on data is negatively impacted by a lack of realistic datasets with which

IDS can be trained [2, 3].

One impediment to the availability of datasets is the privacy issues that arise

with utilizing real data. Anonymizing real data so that the perpetrators of certain

attacks are not revealed or private data is not dispersed is difficult and often leads to

only analysing parts of the network data, or removing the actual payload data from

the traffic [4]. Another impediment to dataset availability is the general difficulty

in obtaining network data. This can be due to agreements set in place to prevent

use of real data, which relates back to the privacy issues with real data utilization.

1

Additionally, some types of network anomalies like certain types of malware do not

exist or are very hard to find in real network data so using that data for anomaly

detection may not work as intended [5].

One solution to the data availability problem is to generate synthetic data that

is realistic [6, 2, 7]. Synthetically generated data that is realistic can improve the

training process for IDS. Synthetic data can potentially address privacy concerns

since it doesn’t come from real sources. Additionally, synthetically generated data

can be produced in arbitrary amounts and is not subject to availability constraints

like real data.

To this point, much of the work for synthetic data generation, has been done

through simulation or emulation. Simulation is where the synthetic data is generated

via software such as OPNET where the network exists only in the software. Emulation

is a physical network set up where the traffic occurring on it can be captured and

used for testing and research purposes [5].

With the application of ML and DL to this area, one promising approach is the

use of ML to perform the data generation. The underlying idea is to use real data to

train the ML algorithm, then with ML, produce synthetic data that is realistic. This

process is inherently challenging and some of the issues are explored in Section 2.2.2.

1.2 Problem Statement and Research Goals

An overarching problem for synthetic data generation is the question of how to

evaluate the synthetically generated data. Specifically, how should we evaluate the

similarity of generated data and real data? Specific to applying ML to data genera-

tion, throughout the generative process, some measurement, i.e. evaluation criteria

must be iteratively applied to the data being generated in order to determine how

the generative process is progressing.

2

This research focuses specifically on the problem of characterizing select evaluation

criteria. There is not much research on this particular area, however, it is an important

one. Quantitatively evaluating the evaluation criteria is important as we desire to use

quantitative evaluation instead of expert review to determine the quality of synthetic

data (i.e. its similarity to real data).

Thus, the goal of this research is to provide a set of metrics that can be used

to inform and improve the process of generating synthetic semi-structured sequential

data. Through quantitative evaluation, the generative process can be improved and

eventually reduce or remove the need for human validation of results.

1.3 Research Questions and Hypothesis

Our hypothesis is as follows:

Hypothesis: There exist metrics with characteristics that allow for discrimina-

tion between real semi-structured sequential data and synthetically generated semi-

structured sequential data.

This research seeks to determine what those metrics are by answering three re-

search questions (RQs):

RQ 1 - What methods exist for measuring the “closeness” of real semi-structured

sequential data to generated semi-structured sequential data?

RQ 2 - What characteristics should a potential metric possess?

RQ 3 - Given metrics for comparing data and the characteristics we want, what met-

rics perform best for temporally ordered, semi-structured sequential data?

3

1.4 Assumptions

The main assumption laid out in the research hypothesis in Section 1.3 is that there

exists at least one (or more) metrics whose characteristics allow for the generation of

synthetic semi-structured data. This is a hard problem that persists throughout all of

synthetic data generation. While there has been much research in some areas of syn-

thetic data generation and some metrics have been found to have nice characteristics,

that research has not been applied specifically to semi-structured data.

1.5 Research Contributions

The purpose of this research is to augment the research on synthetic data gener-

ation being done in the areas of image generation and unstructured text generation.

Several works explore quantitative evaluation of these kinds of data. However, little

to no work exists in quantitatively evaluating metrics for semi-structured sequential

text generation.

The contributions of this work are as follows:

• Adaptation of framework for evaluating metrics for image generation to semi-

structured sequential data generation

• Evaluation of metrics for semi-structured sequential data generation

• “Black box” evaluation framework which is generator agnostic

1.6 Document Overview

In Chapter II, necessary background and related work is discussed. Chapter III

lays out the methodology and the work necessary to perform the experiments. In

Chapter IV, results and analysis of those results are presented. Chapter V discusses

conclusions and future work recommendation.

4

II. Background and Literature Review

2.1 Artificial Intelligence and Machine Learning

Artificial Intelligence (AI) is a multidisciplinary field generally associated with

Computer Science involving elements from mathematics, psychology, philosophy, and

several other fields [8]. AI is an umbrella term encompassing many elements, however,

the fundamental function of AI can be reduced to two things: search and knowledge

representation [9].

Machine Learning (ML) is an area that falls under the umbrella of AI. ML, also

called Statistical Learning, is an approach that involves analyzing data to model a

function in order to provide a prediction [10]. This process involves performing one of

two tasks, regression or classification. The ML task of regression involves predicting

a real valued output, for example, predicting income based on years of education [10].

Classification is a task that involves a qualitative or categorical prediction based on

input features, for example, predicting whether a person will default on their credit

card based on income [11].

Deep Learning (DL) is a class of ML algorithms that utilize multiple layers to

extract features from the raw input data. Most DL involves some form of Artifi-

cial Neural Network (ANN), usually either a Recurrent Neural Network (RNN) or

Convolutional Neural Network (CNN). DL is significantly more powerful for some

applications than traditional ML, with the main difference being that no data engi-

neering is required for DL.

2.2 Generative Methods

One application of DL that has emerged is the idea of generating synthetic data,

whether it be images, text, or other forms of data. In this section we discuss some of

5

these generative methods.

2.2.1 Generative Adversarial Networks

The concept of the Generative Adversarial Network (GAN) was introduced in

2014 by Ian Goodfellow in [12]. The GAN architecture is a DL architecture designed

to generate synthetic images and is composed of a Generator, G, and a Discriminator,

D. G takes as input real samples and generates a sample based on the real samples

with some noise added in. G and D then play an adversarial game where G passes

a sample to D and D must classify whether the sample belongs to the real sample

distribution, P, or the generated sample distribution, G. This adversarial minimax

game continues with both G and D until D can no longer successfully classify whether

a sample belongs to P or G. Figure 1 below depicts the GAN architecture.

Formally, D seeks to learn the generator’s distribution, pg over the input data x.

Additionally, the input noise is defined as pz(z). G and D are defined as differentiable

functions, represented in [12] as multilayer perceptrons, a form of DL architecture.

Thus, D(x) can be interpreted as the probability that x came from the real input

data rather than pg [12]. D is then trained to maximize the probability of identifying

true positives and true negatives from the input data and samples from G. G is also

simultaneously trained to minimize log(1−D(G(z)) [12]. The GAN architecture can

then be defined as a two-player minimax game with value function V (G,D) [12].

min
G

max
D

V (D,G) = Ex∼pdata
[logD(x)] + Ez∼pz(z)[log(1−D(G(z))] (1)

Two significant issues that exist in the original GAN architecture are the problems

of mode collapse and mode drop. Generally, the real distribution, Pr, is diverse and

inherently multimodal [14]. Many generative methods to include GAN, can have

generated distributions Pg that are less diverse than Pr. Mode collapse and mode

6

Figure 1: GAN architecture [13]

drop are typically how this lack of diversity gets manifested.

Mode collapse occurs when multiple modes of Pr are “averaged” into a single

mode. This can result in Pg having modes that do not exist in Pr and having fewer

modes overall. Mode drop occurs when harder to represent modes of Pr are left out

by the generator because it has found certain modes that fool the discriminator [15].

2.2.2 Improvements on Generative Adversarial Networks

There have been many improvements and tweaks made to the original GAN since

its introduction in 2014. In this section we describe some of the more significant

improvements introduced in the GAN field.

Wasserstein GAN (WGAN)

One of the first major improvements to GAN was introduced by Arjovsky et

al. in [16]. The overarching question they sought to answer was how to determine

the closeness of the real distribution, Pr and the generated distribution Pg. The

fundamental change they applied was the introduction of the Wasserstein distance

as the metric for determining the similarity between Pr and Pg, hence it was termed

WGAN [16]. The WGAN algorithm allows for a more stable learning process than

the original GAN. Additionally, the WGAN virtually eliminates the problem of mode

7

collapse, thus producing more stabilized training.

WGAN - Gradient Penalty (WGAN-GP)

Soon after the introduction of WGAN, Gulrajani et al. introduced some solutions

to problems that arise from WGAN [17]. In particular, they address the problem of

weight clipping in WGAN. WGAN used a process called weight clipping to enforce a

Lipschitz condition on the discriminator during the training process. Gulrajani et al.

shows that this process can induce undesirable behavior such as vanishing gradients,

where the gradients quickly drop to zero and exploding gradients, where the gradients

rapidly become very large. To alleviate this issue, they suggest utilizing a gradient

penalty and term it WGAN-GP. [16]. Using WGAN-GP, the authors show better

performance than weight clipping while also possessing more stable gradients than

WGAN.

Sequence GAN (SeqGAN)

One limitation of GAN and its variants as originally presented was that they only

worked on images and were not suitable for generating text or other forms of discrete

data. This is because images exist in a continuous space so it is easy to tweak images

with feedback from a gradient. With text and other discrete data, it is significantly

more difficult to tweak the input with the gradient feedback.

Yu et al. present a solution to this problem of applying GAN to text generation

with their variant called SeqGAN [18]. SeqGAN works by modelling sentences as

numbered sequences and generating synthetic sequences which are then mapped to a

corpus based on the numbers in the sequence. To perform this, SeqGAN incorporates

Reinforcement Learning using a Monte Carlo (MC) Tree Search. The model for

SeqGAN is depicted in Figure 2. Each number of the sequence is modelled as a

8

state of the MC search with the end state reward being applied as the gradient in

the transition to the next state. This solution bypasses the issue of gradient updates

in the generator which are hard to perform on discrete data. In their results, they

outperformed human scoring and had a significant p-value.

Figure 2: SeqGAN architecture [18]

CycleGAN

CycleGAN was developed to address the problem of unpaired image-to-image

translation [19]. As in a typical GAN, the goal is to develop a map from G : X → Y

such that at convergence Y is equivalent to G(X). The novel aspect that Zhu et

al. introduce is the idea of coupling this with an inverse mapping. They introduce

the notion of pairing an inverse mapping F : Y → X such that when enforced with

cycle consistency loss, F (G(X)) ≈ X and G(F (X)) ≈ Y . As the name indicates, this

mapping and inverse mapping creates a cycle between the two images. This approach

is incredibly powerful and produces excellent synthetic images.

TreeGAN

TreeGAN, like SeqGAN, addresses the issue of applying GAN to discrete data.

[20] However, rather than regular sentences, TreeGAN address the problem of syntax-

9

aware sequence generation. To accomplish this, they couple the SeqGAN architecture

with a Context-Free Grammar (CFG) to develop a parse tree, hence the name Tree-

GAN. They then are able to translate the generated parse tree into a sequence that

is valid according to the CFG. One of the methods of evaluation they demonstrate

is the ability to generate 100% syntactically correct SQL queries that are completely

synthetic. This beat the existing SeqGAN and other generative methods which could

only generate about 70% syntactically correct SQL queries. This variant of GAN

takes a large step in the direction of being able to develop discrete synthetic data

that also requires syntactic correctness.

Evolutionary GANs

Wang et al. propose the idea of the Evolutionary GAN in [21]. Typical GAN

architectures employ only one generator. However, the Evolutionary GAN utilizes and

evolves an entire population of generators to play the adversarial game. The mutation

operations are applied during the adversarial training process and the generators

are updated based upon the mutations. They also introduce some new evaluation

mechanisms for the generators in order identify the best performing generators and

then select those generators for further training. Overall, the results of Evolutionary

GAN are promising and show better training and performance results on most of the

common image datasets used in GAN training.

2.2.3 Other Generative Methods

In this section, we describe some other non-GAN methods that have been used

for generating synthetic data.

A Variational Auto-Encoder (VAE) is an architecture that can be used to generate

a variety of types of data. VAEs work by encoding the input features down to a

10

continuous latent space and then using random sampling to generate a new sample

which is then decoded into a generated sample. [22]

Bachman and Precup in [23] present a generalized method for generating syn-

thetic data. Titled Data Generation as Sequential Decision Making, their process

builds models using neural networks trained with a form of guided policy search.

Their models then generate predictions using an iterative process. They show some

promising results, however, the quality of their results are lower than certain GAN

variants.

Neural Text Generation is another generative method commonly used for text

generation problems. Traditionally, neural text generation is built upon a RNN com-

bined with Maximum Likelihood Estimation (MLE) [24]. However, this process can

be difficult and requires a large amount of human correction for grammar and other

errors.

Hajdik et al. in [25] present a method for neural text generation using minimal

recursion semantics. Minimal Recursion Semantics allows for deeper semantic detail

which corresponds to a better encoding for the model. Using this, the authors are

able to achieve a higher Bilingual Language Evaluation Understudy (BLEU) score on

evaluation than typical neural text generation models.

2.3 Applications of Generative Adversarial Networks

Aside from the original image synthesis task, GANs have been applied to many

other fields. Image translation [19] and video generation [26] are some applications

that have been explored.

In the discrete field, GANs have been applied to generating text [18]. They have

also been used to generate syntax aware text such as SQL queries and Python code

[20].

11

GANs have also begun to be applied in cybersecurity contexts. Yin et al. in

[27] created a GAN variant called Bot-GAN for the purpose of botnet detection.

Bot-GAN is composed of a generator that generates Transmission Control Protocol

(TCP) flows which are then fed to the “discriminator”, i.e. a botnet detector who

classifies the input as real, anomaly, or fake. In their experiments, Bot-GAN has

improved detection rate and a lesser false positive rate compared to existing botnet

detection methods.

Ring et al. extend the idea of generating discrete data by generating synthetic

network flow traffic using WGAN-GP [28]. Their approach uses three variants of

WGAN-GP and is able to generate high quality synthetic network flows with two

out of three of them. They also introduce a new evaluation method called domain

knowledge checks. This approach defines several tests to ensure that the network flow

data is high quality. For example, one test is that if the protocol is User Datagram

Protocol (UDP) then no TCP flags can be set. While the introduction of the domain

knowledge check is useful, the quantitative evaluation of the generated sample distri-

bution is somewhat lacking. The authors default to measuring the difference between

the real and generated data with Euclidean distance, which has been shown to not

be as informative with higher-dimensional data [29].

2.4 Evaluation of Generative Adversarial Networks

The question of how to evaluate GANs has persisted since its introduction. Theis

et al. were some of the first authors to discuss the quantitative evaluation of gen-

erative models in [29]. Part of the issue with objective evaluation of GANs is that

many different metrics can be used and their use is not standardized. Theis et al.

discuss three different evaluation techniques: average log-likelihood, Parzen window

estimates, and visual fidelity of samples. One of their key contributions is that they

12

show that these three techniques are largely independent so good performance in

one doesn’t correspond to good performance in another. they suggest that GANs

should be evaluated for their specific application in order to get the best indicator of

performance.

One of the first efforts at introducing a standardized evaluation criteria for GANs

is the Inception Score, introduced by Salimans et al. in [30]. The Inception Score

utilizesM, the Inception Network image classification model [31], which is pre-trained

on the ImageNet dataset [32]. The equation for the Inception Score on the generated

distribution, Pg is defined in [30] and given by:

IS(Pg) = exp(Ex∼Pg [KL(pM(y|x)||pM(y))]) (2)

The Inception Score correlates to human evaluation of the generated images and

is a useful tool providing a good initial benchmark for GAN evaluation. However, it

falls short in a few aspects. First, the assumption of the model being trained on the

ImageNet dataset means that the Inception Score does not generalize well to images

that are not part of ImageNet [15]. Additionally, this reliance on ImageNet means

that the Inception Score is not sensitive to the existing distribution of the training

data labels [33].

The Fréchet Inception Distance (FID) proposed by Heusel et al. in [34] is another

effort to provide a standardized evaluation metric for GANs. The FID scores samples

by embedding them into a feature space (originally a layer of the Inception model).

It then assumes that the embedding can be represented as a continuous multivariate

Gaussian. Assuming that X represents φ(Pr) and Y represents φ(Pg), where φ is the

embedding into the desired feature space, the FID is defined in [34] by:

FID(X, Y) =
∥∥µx − µy∥∥+ Tr(CX + CY − 2(CXCY)

1
2). (3)

13

Where (µx, Cx) and (µy, Cy) are the means and covariance matrices of X and Y

respectively.

Like the Inception Score, the FID has been shown to correlate to human evaluation

and is also more robust to noise than the Inception Score [33].

2.5 Evaluation Metrics

In this section, we describe several metrics that are of use in the fields on Network

Intrusion Detection, GAN, and other statistical applications.

Mathematically, the term distance metric has a specific definition. According to

The Encyclopedia of Distances [35], a distance metric is a function d(x, y) : X ×X → R

satisfying the following properties:

1. d(x, y) ≥ 0 (Non-negativity)

2. d(x, y) = 0⇒ x = y (Identity of indiscernibles)

3. d(x, y) = d(y, x) (Symmetry)

4. d(x, y) + d(y, z) ≥ d(x, z) (Triangle inequality)

Not all of the metrics described in this section satisfy the above definition of

distance metric, however, we use the term metric for ease of reference.

2.5.1 Power Distances

The first category of commonly used distances is the Power Distances. The Power

(p, r)-distance is a distance on Rn defined by

(n∑
i=1

|xi − yi|p
) 1

r

. (4)

14

When p = r ≥ 1, this distance is the lp metric and is a proper distance metric.

This encompasses the Manhattan (p = r = 1) and Euclidean (p = r = 2) distances

commonly used for many applications (particularly Euclidean since it is the intuitive

definition of physical distance in three or less dimensions). When 0 < p = r < 1,

this distance is called the fractional lp-distance, and is used for high dimensional data

[35].

The Mahalanobis distance [36] is defined in [35, 37] as shown in Equation (5). The

Mahalanobis distance is a generalization of the power distance to multiple dimensions.

Within the equation, x and y are assumed to be of size n, A is a positive-definite

matrix (generally the covariance matrix of x and y), detA is the determinant of A,

and T indicates the transpose of the matrix.

∥∥x− y∥∥
A

=
√

(x− y)A−1(x− y)T (5)

When A is the identity matrix, the Mahalanobis distance is the Euclidean distance

[35].

2.5.2 Probability Distribution Measures

χ2-distance is a commonly used distribution distance. Shown in Equation (6), x

and y are vectors of length n, p(xi) is the probability of that the ith element of x

occurs and p(yi) is the probability of that the ith element of y occurs [37].

d(x, y) =
n∑
i=1

(p(xi)− p(yi))2

p(yi)
(6)

A simplified χ2 distance introduced by Wang and Stolfo [38] is a version of the

χ2 distance that is less computationally intensive. The simplified χ2 distance, mµ,σ

is defined in Equation (7). x is a vector containing all of the dimensions of a single

15

observation, µ is a vector that represents the center of mass of all observations,

n = |x| = |µ|, and d(xi, µi) represents the difference between the ith element of x an

µ.

mµ,σ(x) =
n∑
i=1

d(xi, µi)

σi
(7)

Entropy is another form of distance measure that falls under probability measures.

Entropy of a random variable is calculated as shown in Equation (8), where p(x) is

the probability a random variable X takes on the value x [39].

H(X) = −
∑
x∈X

p(x) loga p(x). (8)

Using the definition of entropy in Equation (8), we can then define Standardized

entropy [40] as shown in Equation (9). This form of entropy normalizes the entropy

calculation so that the size of the random variable doesn’t affect the value of the

entropy calculation.

Hs(X) =
H(X)

logam
. (9)

Perplexity is another measure related to Entropy and can be interpreted as a

measure of how well a probability distribution predicts a given sample [41]. Using

the definition of Entropy as the function H(X) in Equation (8), Perplexity is defined

as shown in Equation (10).

Perp(X) = 2H(X). (10)

The Wasserstein distance [42], also known as Earth Mover’s Distance, is another

form of probability measure. Analogizing two probability distributions to two piles of

dirt, the Wasserstein distance between the two piles can be thought of as the amount

of dirt that has to be moved times the distance the dirt is moved to transform one pile

into the other. The Wasserstein distance has been used as a GAN evaluation metric,

16

namely in the WGAN and WGAN-GP due its desirable properties of continuity and

differentiability everywhere in its domain [16]. The Wasserstein distance is defined

in Equation (11), where Γ(u, v) is the set of joint probability distributions whose

marginals are u(x) and v(y).

inf
π∈Γ(u,v)

∫
R×R
|x− y|dπ(x, y) (11)

Kullback-Leibler Divergence (KLD) or “information gain” between probability

distributions is another metric that has been considered for GAN evaluation. As the

name implies, it is a measure of dissimilarity between two probability distributions.

One issue with the KLD is that it lacks the symmetry and Triangle Inequality proper-

ties making it undesirable in some cases. The KLD between P1 and P2 over a domain

X is defined in Equation (12) [43].

KLD(P1, P2) =
∑
x∈X

p1(x) loga
p1(x)

p2(x)
(12)

Jensen-Shannon Divergence is a smoothed, well-behaved, symmetric, and bounded

version of the KLD [44]. Let P and Q be probability distributions and D(P ||Q) be

the KLD as shown in Equation (12). The formula for the Jensen-Shannon Divergence

is shown in Equation (13).

JSD(P,Q) =
1

2
D(P ||M) +

1

2
D(Q||M) (13)

Where M = 1
2
(P + Q), the arithmetic mean of P and Q. The square root of the

Jensen-Shannon Divergence is known as the Jensen-Shannon Distance (JSD) and is

a proper distance metric as it obeys the Triangle Inequality [45].

17

2.5.3 Other Distance Measures

Cosine similarity [46] is another metric commonly used for document similarity

and other applications in network intrusion detection. Cosine similarity is defined as

shown in Equation (14).

cosφ =
〈x, y〉√
x2 ·

√
y2

(14)

Kernel Maximum Mean Discrepancy (MMD) [47] is another metric that has been

used as a GAN evaluation metric. The kernel MMD is also a measure of dissimilarity

between two probability distributions . Let X = {x1, ..., xn1} and Y = {y1, ..., yn2}

and let φ be a fixed kernel function (typically the Radial Basis Function).

MMD(X, Y) =
1

n1

n1∑
i=1

φ(xi)−
1

n2

n2∑
i=1

φ(yi) (15)

2.6 Related Work

In this section we detail related work that has been done in the fields of synthetic

traffic generation and quantitative evaluation of generative methods. This is not an

extensive list of all work in these fields, just a reference of work relative to the research

we are conducting.

2.6.1 Synthetic Data Generation

Synthetic Data generation, particularly for cybersecurity purposes is a heavily

researched and discussed problem as documented in [6, 2, 7]. Wurzenberger et al. in

[48] discuss a method of generating synthetic network log files for Intrusion Detection

System training. Their approach includes a combination of log-line clustering and

Markov chain simulation to develop synthetic log files. The real value of this approach

is that they are able to intake a small amount of real log data and then augment it

18

with synthetically generated data to enhance the training process of the Intrusion

Detection System (IDS). This work focuses on evaluating the clustering algorithm

rather than the quality of the semi-synthetic logs they generate. Specifically, they

focus on the clustering by determining if the log lines pertain to the cluster description.

Kulkarni and Garbinato [49] explored the process of generating synthetic mobility

traffic using RNNs. They were interested in generating synthetic location data in

order to generate realistic location trajectories since privacy concerns generally pre-

vent the use of actual location data. They utilized an RNN due to its ability to learn

long term patterns in sequential data. With this approach they were successfully able

to generate synthetic location data. They claim that their synthetic data possessed

the same statistical characteristics as the real data, however, they do not specifically

say what characteristics. When trained on the synthetic data though, their model

predicted the same sleep and wake cycles, movement periodicity, and variance in the

movement distance magnitudes as the model did when it was trained on real data.

Garcia-Torres in [7] discusses the idea of generating synthetic network data with a

GAN. The goal of this work was to explore the possibility of generating synthetic con-

tinuous, discrete, and text network data. The author utilizes two forms of WGAN to

carry out the data generation experiments. The generation of continuous and discrete

data was overall successful. To determine how well the generated data preserves the

real data distribution, the author utilizes the Wasserstein distance. However, in order

to evaluate the similarity of the generated data and real data features, the author

uses Euclidean distance, which has been shown to not be a very useful or informative

metric for higher dimensional data [29].

19

2.6.2 Quantitative Evaluation of Generative Methods

One important aspect of GAN evaluation is the quantitative evaluation. Human

judgement is subjective and not always the best indicator of how good or realistic

the synthetically generated data is. To this end, there has been some work within

the GAN community focused on developing standardized methods and criteria for

evaluating GANs. Arjovsky and Bottou [50] present some approaches for standardized

training and evaluation of GAN, but focus mainly on standardized training while

briefly mentioning evaluation with the Wasserstein distance.

Kawthekar et al. [41] discuss a framework for evaluating generated text. Their ap-

proach is not only limited to GAN as they also evaluate text generated from Scheduled

Sampling and RNN text generation. Their framework focuses on three different eval-

uation metrics: cross-entropy loss, perplexity, and human judgement. In their results,

they found that cross-entropy and perplexity tended to underperform on the test set.

However, despite the poor performance, they found that the human judgement found

the generated text to be more realistic than suggested by the test performance. This

suggests that other metrics may work better for demonstrating performance.

Semeniuta et al. [51] explore the problem of GAN evaluation from the angle of

evaluating the text generated by the GAN. They discuss how the standard metric for

language generation evaluation, the BLEU score [52] falls short in GAN application.

They demonstrate that the BLEU scores do not reflect any degradation of semantics

in the generated samples. To remedy this, they propose other metrics that better

capture the real quality of generated samples. Their work evaluates three metrics,

the BLEU score, Language Model score, the FID adapted to use the feature space

from a sequence embedding model, and human evaluation. In their evaluations, they

found that FID was the best metric for evaluating the generated text, corresponding

highly with human evaluation.

20

The closest related work to this research is the work by Xu et al. in [15]. Xu

et al. present a quantitative evaluation of several GAN metrics for image generating

GANs. Like many others, they recognized that there was no evaluation of the metrics

being used for GAN, other than analysis of the theoretical properties of the metrics

themselves. The authors evaluate six commonly used GAN metrics: Inception Score,

Mode Score (improved version of the Inception Score), Kernel MMD, Wasserstein

distance, FID, and the 1-Nearest Neighbor classifier. One important feature of the

metrics that they choose is that all of the metrics are “model agnostic”, i.e. they can

be calculated by directly inputting the samples into the model like a black box. This

allows the framework they present to be applied to more broad generative methods

and not just GANs [15].

Xu et al. [15] conduct experiments on the chosen metrics in two different feature

spaces. First is “pixel space”, a direct comparison pixel-to-pixel of the input images.

The second space is termed “convolutional space”, the space of the features extracted

by their chosen model, a 34-layer ResNet model. The reason the authors include the

pixel space is to demonstrate that it is not a suitable space for evaluating the metrics

as all of them fail in pixel space.

The experiment setup that Xu et al. utilize evaluates their chosen metrics in

several categories. Discriminability, the ability to discriminate between real and gen-

erated images is the first and arguably the most important aspect of a GAN evaluation

metric. Behaviors under the conditions of mode collapse and mode drop (described

in Section 2.2.1) are also evaluated for all of the metrics. The authors also evaluate

robustness to transformations by performing random translations to the input images

and observing the behavior of the metrics. They also evaluate the efficiency of the

metrics in two ways. First, they examine the wall-clock time required for each met-

rics against an increasing number of evaluated samples. Second, they examine the

21

scores of each metric as the sample size increases to determine how many samples are

required for each metric to reach a “good” score. The authors also evaluate each of

the metrics in their ability to detect overfitting.

Their findings were that overall, the kernel MMD performed well in the convolu-

tional space with FID also performing well in all categories except that it is unable to

detect overfitting. The most important conclusion that the authors make is that the

feature space in which the metrics are calculated is the most crucial aspect of metric

performance.

2.7 Summary

The work of Xu et al. [15] forms the framework for the research performed in this

work. While Xu et al.’s framework applies to image GANs, the goal of this research

is to apply this experimental approach to various types of semi-structured sequential

data. Conducting this research will lay an empirical base for choosing what metrics

are useful for future research seeking to generate synthetic network data. The need

for this is made clear by the default reliance on Euclidean distance as the evaluation

for measuring how “good” synthetically generated data is [7, 28].

22

III. Methodology

The focus of this chapter is to outline the experimental methodology for this

research. As mentioned in Section 2.7, the research methodology here is based on

the research conducted by Xu et al. in [15], with this research seeking to apply their

methodology on semi-structured sequential data rather than images.

3.1 Methodology Overview

Our overarching research methodology is based on the Cross-Industry Standard

Process for Data Mining (CRISP-DM) [53]. As the name states, CRISP-DM is a

general process that can be applied to broad areas of research in order to guide the

data mining process. Figure 3 presents a flowchart of the CRISP-DM methodology.

The background and literature review from Chapter II fall into the Business Un-

derstanding portion of the CRISP-DM cycle. Details about the dataset described

in Section 3.3 fall under the Data Understanding portion of the CRISP-DM cycle.

Data pre-processing and data generation (section 3.4 and section 3.5 respectively)

fall under the Data Preparation portion of the CRISP-DM cycle. The experiments

performed in this research, described in chapter IV fall into the Modeling section of

the CRISP-DM cycle. Analysis of the results and suggestions for future work fall into

the Evaluation portion of the CRISP-DM cycle.

23

Figure 3: Flowchart of the CRISP-DM process [54].

3.2 Research Questions

The research questions (RQs) that this research seeks to answer are the following:

RQ 1 - What methods exist for measuring the “closeness” of real semi-structured

sequential data to generated semi-structured sequential data?

RQ 2 - What characteristics should a potential metric possess?

RQ 3 - Given metrics for comparing data and the characteristics we want, what met-

rics perform best for temporally ordered, semi-structured sequential data?

In order to answer these questions, we explore the dataset(s) being utilized, the

data pre-processing and generation process required for the experiment, the metrics

24

being evaluated, the characteristics we are examining, and overview the experiments

themselves. A detailed user guide for reproduction of the data pre-processing, data

generation, and experiments described in this research is provided in Appendix A.

3.3 Data Understanding

3.3.1 Network Events

The dataset used in this research is the Unified Host and Network Data Set (UH-

NDS) from Los Alamos National Labratory [55]. This dataset is freely available and is

also fairly large. This particular dataset was chosen because it contains two different

types of data as well as its currency and general representation of semi-structured

sequential network data. The dataset consists of two portions: Network Event Data

and Host Event data.

The Network Event portion of the dataset contains records and statistics for net-

work connections between different devices. Details about the fields of this portion of

the dataset are shown in Table 1. For this research, the Time field was removed. The

Duration, *Packets, and *Bytes fields are all 32-bit unsigned integers. The Proto-

col field is typically an unsigned integer with standard transport layer port numbers

ranging from 0 - 65,536, however, sometimes the port number is prefaced with the

text “Port”. The *Device fields are typically ASCII text “Comp” followed by a 5 or

6 digit integer. In some cases, the device is identified just as “Mail” as in Figure 4 or

“ActiveDirectory”, etc.

An example of the Network Event portion of the dataset is shown in Figure 4.

This portion of the dataset is representative of numeric semi-structured sequential

network data, which is commonly the type of data in packet capture and NetFlow

files. Details about pre-processing of the data for the experiment are described in

Section 3.4.

25

Table 1: Field names, descriptions, and data formats for features of the
UHNDS Network Events dataset.

Field Name Description Format
Time The start time of the event in epoch time format int32

Duration The duration of the event in seconds. int32

SrcDevice The device that likely initiated the event. ASCII text
DstDevice The receiving device. ASCII text
Protocol The protocol number. int32

SrcPort The port used by the SrcDevice. ASCII/int32
DstPort The port used by the DstDevice. ASCII/int32
SrcPackets The number of packets the SrcDevice sent during the event. int32

DstPackets The number of packets the DstDevice sent during the event. int32

SrcBytes The number of bytes the SrcDevice sent during the event. int32

DstBytes The number of bytes the DstDevice sent during the event. int32

Figure 4: Network Events dataset in raw format.

3.3.2 Host Events

The Host Event Data section of the UHNDS is representative of semi-structured

sequential text data. This type of data is commonly seen in system logs or other types

of log files where text and numerical data is combined. Formally, semi-structured data

is a form of structured data that does not obey the typical structure of relational

databases or other data tables. The key element that defines semi-structured data is

that it contains tags that separate the semantic elements of the data [56]. Examples

of this type of data are Extensible Markup Language (XML), JavaScript Object

26

Notation (JSON), and email. As can be seen in Figure 4 and Figure 5 both datasets

fit the definition of semi-structured data. An example of the Host Events data is

shown in Figure 5. The raw data is formatted in JSON. In total, there are 20 different

fields of data within the Host Events portion of the dataset. Some of these shown in

Figure 5 are: EventID, UserName, DomainName, etc. The main difference between

the Host Events and Network Events data, aside from the data type, is that the

Host Events data describe specific events on the network such as a user log on while

the Network Events data describe Transmission Control Protocol (TCP) or User

Datagram Protocol (UDP) flows.

Figure 5: Host Events data in raw JSON format.

3.4 Data Preparation

Since the Network Event data is not all numeric to begin with, some pre-processing

is required. The non-numeric data occurs in the Device, Protocol, and Port sections

27

of the data. In cases where the text is followed by a number (e.g. Comp178973), we

simply remove the text since the numbers are also unique identifiers. For example,

“Comp178973” becomes 178973 after processing. We chose this approach since it was

the most straightforward and each of the numbers after the text were unique. For

the text data that does not contain numbers, the text is converted to integers by

converting the text to hex and then taking the first 5 nibbles and converting that

number to a base 10 integer. For example, “EnterpriseAppServer” becomes 456e7

in hex which is 284391 in base 10. We took this approach in an effort to create a

generalized conversion method to the data that could be applied without knowing

beforehand exactly what text data would show up. Table 2 below contains the full

set of mappings between non-numeric and numeric data used in the experiments.

We chose to not apply pre-processing other that removing the “Port” text to

the Port field for simplicity. One step that is utilized in [28] for pre-processing the

Port field is to convert the value of the field to an element of the [0, 1] range by

dividing the value of the field by 65,536 (e.g. Port 80 becomes 80
65536

= 0.00122). The

authors of [28] acknowledge that a field like port number is actually a categorical

value, however, the numerical nature of the port number lends itself to normalization

in this method. There are many ways to encode categorical variables and a list of

them can be found at [57]. Normalization to the [0, 1] range is generally a good thing

to apply to data for Machine Learning (ML) approaches. We did not discover this

normalization method until the data pre-processing was complete and had started

to run experiments so we chose not to implement this. We instead utilize a scaling

function from Scikit-learn [58] to perform normalization of the data. Specifically we

chose the RobustScaler() function [59]. The RobustScaler() removes the median

and scales the data between the first and third quartiles. Each feature is then centered

and scaled using the appropriate statistics [59]. We chose this function over the

28

StandardScaler() because the RobustScaler() is more robust to outliers, of which

there are many in the UHNDS dataset.

Table 2: Mappings of original values to numeric values for Network Events
dataset.

Original Value Numeric Value
EnterpriseAppServer 284391
ActiveDirectory 267831
VPN 56566
VSCanner 353590
CompXXXXXX XXXXXX
IPXXXXX XXXXX
PortXXXX XXXX

Pre-processing the Host Events data requires more work due to the presence of

text data. In order to convert the Host Events data to a numeric form, we utilize Term

Frequency - Inverse Document Frequency (TF-IDF) to convert text to numbers.TF-

IDF is a method of measuring the importance of a word in a collection of documents

[60]. TF-IDF, as the name implies, has two components: Term Frequency (TF) and

Inverse Document Frequency (IDF). TF is used within a single “document” and is

calculated as shown in Equation (16). First, let N be the total number of documents,

let fij be the number of times word i occurs in document j. The TF of term i in

document j is defined in [60] as:

TFij =
fij

maxk fkj
(16)

IDF for a given term can be calculated as shown in Equation (17). Suppose that

term i appears in ni out of N documents in the set of documents. The IDF is defined

in [60] as:

29

IDFi = log(
N

ni
) (17)

The TF-IDF for term i in document j can then be calculated as TFij × IDFi

[60]. This multiplication of TF and IDF produces a balanced representation of the

importance of a given term in a document.

TF-IDF is normally applied to unstructured text such as sentences and documents.

The results of this is that the resulting size of the TF-IDF matrix can vary from

collection to collection. Since the data we utilize is semi-structured, we need the TF-

IDF matrix to have a repeatable and constant size. To accomplish this, we adapted

the TF-IDF conversion process in the following way. First, define a single “document”

to be a single column of the data (e.g. LogonID). This then allows us to define the

total number of documents in the collection to be the number of columns in the Host

Events dataset. Thus, the TF of a term within a single column is the number of

occurrences of that term in the column divided by the number of distinct terms in

the column. Similarly, we then define IDF of a term as the log of the total number

of columns divided by the number of columns that term appears in.

3.5 Modeling

For this experiment, we utilize 1,000 line log samples as the standard size. In

initial tests, 1,000 line samples showed best performance for stable calculation of

metrics. For both datasets, in order to build our repository of ”real” samples, we

iterate through the processed real data, partitioning it into contiguous 1,000 line

samples. Due to the large size of both portions of the dataset, we are able to build a

set of 10,000 real samples from the real data.

In order to construct the “generated” log samples, we iterate through the entire

real set of log samples tracking the global minimum and maximum for each column.

30

Once these values have been determined we then generate 1,000 line samples through

uniform random sampling between the global minimum and maximum for each col-

umn. In order to have equally sized datasets, we also generate 10,000 samples. We

also explored generating random samples from a Normal distribution based on the

global mean and variance of the real data and the results of the Discriminative ex-

periment are discussed in Section 4.2. However, the results were not significantly

different from the results with the uniform random samples, thus we did not include

them in the Efficiency experiment.

In the future, the generated samples would ideally be provided by a Generative

Adversarial Network (GAN). However, the focus of this work is on the evaluation

framework and not the quality of the generated samples. The real and generated

samples are provided via a “black box” so that the evaluation framework is generator

agnostic, similar to [15].

3.6 Metrics

For the experiment, eleven metrics have been chosen for evaluation and are listed

below. The details of the metrics and their equations are provided in Section 2.5.

• Power distance (Equation (4)): Euclidean (p = r = 2), Manhattan (p = r = 1),

fractional lp distance (p = r = 0.5 and p = r = 0.75)

• Mahalanobis distance (Equation (5))

• Cosine similarity (Equation (14))

• Wasserstein Distance (Equation (11))

• Maximum Mean Discrepancy (MMD) (Equation (15))

• Fréchet Inception Distance (FID) (Equation (3))

31

• Entropy (Equation (8))

• Perplexity (Equation (10))

The Power distance measures are selected as they are representative of general use

distance metrics commonly used on network data [37]. The Mahalanobis, Entropy,

and Perplexity are selected since they are probability distribution measures. The

MMD, FID, and Wasserstein distances are chosen because of their extensive use for

GAN evaluation in the image context.

3.7 Evaluation

Following the methodology from [15], there are four categories in which it is useful

to evaluate metrics for GAN use: Discriminative ability, efficiency, generative failure

detection, and overfitting detection. This research explores the Discriminative Abil-

ity and Efficiency experiments and the details of these experiments are laid out in

Section 3.9. The Generative Failure Detection and Overfitting Detection experiments

are left as future work.

3.8 Data Transformations

In order to fully explore the behavior of the metrics in the experiments, we per-

form five different transformations on the data. These transformations act as “feature

spaces” to calculate the metrics in since we do not have a Deep Learning (DL) model

with layers that we can use as the feature space. The five transformations are: un-

transformed, Square Root (SQRT), logarithm, Principal Component Analysis (PCA),

and Fast Fourier Transform (FFT).

As the name implies, for untransformed, we take the original pre-processed data.

This transformation is similar to the “pixel space” from [15]. For SQRT and logarithm

32

transformations, we take the SQRT and natural log using the NumPy library. For the

PCA transformation we conduct a PCA on the samples using the Scikit-Learn

PCA() function. For the FFT transformation we use the NumPy fftn() function to

perform a Discrete Fourier Transform on the data.

3.9 Experiment overview

The purpose of the experiments is the following. Given a class of network data,

evaluate and rank the metrics based on performance. Performance of the metrics is

evaluated in the areas of discriminative ability (Chapter IV) and two categories of

efficiency (Section 4.2).

As mentioned earlier, we utilize 1,000 line log samples as the standard length for

all metric evaluations. This line count can be thought of as being analogous to image

size when working with images.

3.9.1 Discriminative Behavior

In order to evaluate the discriminative ability of a metric, we use the following

approach. A flow diagram of the experiment is shown in Figure 6. We create two

sets of n = 1000 samples, Sr1 and Sr2 with Sr1 and Sr2 both made up of real samples

and generate Sr = d(Sr1 , Sr2) for each metric d. Sr is then composed of 1,000 metric

distances between real samples (Real-Real (R-R) samples). We then build two new

sets Sr3 and Sg1 , where Sr3 is composed of n real samples and Sg3 is composed of n

generated (fake) samples. From these sets, we compose a second set, Sg = d(Sr3 , Sg1)

for each metric d. Sg is thus made up of n samples of metric distances between real

samples and generated samples (Real-Fake (R-F) samples). Each of the sets is built

of randomly chosen samples from a repository of 10,000 samples with no duplicates.

Randomness is controlled with a random seed for repeatability.

33

From the samples we create two discrete probability distributions, Pr for the R-R

samples and Pg for the R-F samples. To create the distributions we split the values

into 100 equally sized bins between min(Sr, Sg) and max(Sr, Sg). This way, both

distributions are split into equally sized bins. 100 bins was chosen because in pilot

tests, 50 bins didn’t produce a fine enough distribution and 200 bins was too fine.

The number of elements in each bin is used to generate the histogram figures in

Chapter IV using the Matplotlib hist() function. The counts for the histogram are

then normalized by dividing by 1,000 in order create a Probability Mass Function

with a sum of 1 for the Jensen-Shannon Distance (JSD) calculation. We use a base 2

calculation for JSD so that the values from JSD are bounded between 0 and 1. Prior

to binning for the histograms, we take the natural log of all the metric values to make

the Probability Mass Function (PMF)s nicer. After generating Pr and Pg, we then

calculate the JSD between Pr and Pg, JSD(Pr,Pg). If the two sample distributions,

Pr and Pg, are identical, then the JSD between them is zero. We can then judge the

discriminative ability of the metric on the JSD score. The closer the JSD score is to

1, the more discriminative the metric. Conversely, the closer the JSD score is to 0,

the less discriminative the metric is.

For repeatability, this process is repeated 10 times. The mean JSD score is re-

ported along with the minimum, maximum, and the range (maximum - minimum).

We choose to use JSD over Kullback-Leibler Divergence (KLD) because JSD fits

the definition of a distance metric. Since KLD is not symmetric and doesn’t follow

the Triangle Inequality, ordering of KLD values is not possible. However, since JSD

is a metric, we can order JSD values. Additionally, the JSD is bounded between 0

and 1, so interpretation of the JSD is more intuitive than the KLD. The JSD, along

with all other code is written in Python. Exact code for the JSD can be found in

Appendix B.

34

R_R: 1,000 R_F: 1,000

R1: 1,000
real

samples

R2: 1,000
real

samples

R1: 1,000
real

samples

G: 1,000
fake

samples

d(R1,R2) d(R1,G)

P_g = R_F
PMF

P_r = R_R
PMF

log(R_R) log(R_F)

JSD(P_r,P_g)

Feature Space Transform (if any)

Figure 6: Flow Diagram of Discriminative Experiment

3.9.2 Efficiency

For efficiency, we explore two different categories of efficiency. First we examine

time efficiency by examining the wall clock time for metric calculation based on the

number of lines in the sample (sample length). Second, we examine the sample

efficiency of the metric as we increase the number of samples.

The time efficiency experiment examines the wall-clock time for metric calculation

as the size of the sample or number of lines (termed sample length) in the sample

increases. For this experiment we use sample lengths of [100, 500, 1, 000, ..., 5, 000]. To

35

calculate these runtimes, we calculate the wall-clock time to score a set of 10 samples

of a given length and then take the average to find the average wall-clock time to

calculate a given metric on a single sample. This is then repeated 10 times and the

average is reported.

For sample efficiency, we explore the behavior of the JSD score by repeating

the discriminative behavior experiment for increasing number of samples. For this

experiment, we calculate the JSD score between Pr and Pg for an increasing number

of samples [100, 500, 1000, ..., 5, 000].

3.10 Expected Outcomes

Our research hypothesis is the following: There exist metrics with characteris-

tics that allow for discrimination between real semi-structured sequential data and

synthetically generated semi-structured sequential data. In this section we detail the

expected outcomes of our experiments and how they support our research hypothesis.

The expected outcome for the discriminative experiment is twofold. First, we ex-

pect that we will be able to see a difference between the R-R and R-F distributions

for some if not all of the metrics. Second, we expect to also see differences in the

distributions based on the applied transforms. Being able to quantitatively find dif-

ferences in the R-R and R-F distributions for certain metrics supports the hypothesis

that there exists metrics that allow for discrimination between real and generated

data.

For the efficiency experiments, we expect to see increasing time for calculating

the metrics as we increase the number of samples in the calculation. For sample

efficiency, we expect to see an increase in the JSD score as we increase the number of

samples involved in the calculation. This supports the hypothesis because efficiency

is an important aspect of being able to practically use a possible metric for discrim-

36

ination between real and generated data. Actual results and analysis are detailed in

Chapter IV.

37

IV. Results and Analysis

Discriminative Results

In this section, we detail the results of the discriminative ability experiment. We

present the results for all five of the transforms on both datasets. For each transform,

a box-and-whisker plot of the Jensen-Shannon Distance (JSD) for each metric over

the 10 runs is shown. We also present a table with the results ordered by decreasing

mean JSD score and a histogram plot of the Real-Real (R-R) and Real-Fake (R-F)

distributions for all of the metrics are presented. Note that the histogram plots all

represent a single one of the ten runs. The histograms for each run look fairly similar

so a single one was chosen to be a visual representative.

JSD values are bounded between 0 and 1. A 0 JSD indicates that the two distribu-

tions are identical and a JSD of 1 indicates that the two distributions are completely

dissimilar. Based on visual inspection of the histogram plots in Figures 7, 9, 11, 13,

15, 17, 20, 23, 26 and 29, we noticed that for JSD scores between 0 and 0.5, little

difference is noticeable in the R-R and R-F distributions, with both having similar

shapes and lots of overlap. For JSD scores between 0.5 and 1.0 significant differ-

ences in distribution shape are noticeable with some overlap between the R-R and

R-F distributions. A JSD score of 1 means that the R-R and R-F distributions are

completely disjoint. To gauge the overall performance of each transform, we report

how many of the metrics reach the aforementioned thresholds.

4.1 Network Events Data

Untransformed

Here we present the results of the discriminative experiment on the untransformed

Network Events data. In Table 3 the results of the 10 runs are presented in order of

38

decreasing JSD score. Entropy, Perplexity, and Cosine are the top three performing

metrics and examining the range of the values we see that these numbers are fairly

consistent. Additionally, we see that 3 of the 10 metrics in this space reach the first

JSD threshold of 0.5. None of the metrics reach a JSD of 1.0 indicating that there is

still some overlap between the distributions for the three metrics.

Cross referencing the results in Table 3 with Figure 7, we see that Entropy, Per-

plexity, and Cosine produce the most significant differences in the R-R and R-F

distributions which corresponds with these three being the only ones to reach the

previously defined thresholds.

Examining the boxplot of the JSD scores for each metric in Figure 8, we see the

same results as in Table 3. Entropy, Perplexity, and Cosine are the only metrics

which have a mean above 0.5 JSD. All of the metrics have fairly small ranges as

evidenced by the small size of all the boxes and caps. Entropy has a very tight range

with the edges of the box almost indistinguishable from the median and mean lines.

Additionally we see for all of the metrics that the mean and median are very close

together.

Square Root (SQRT) Transform

Examining the results from the SQRT transform on the Network Events data,

we see similar orderings to the untransformed Network Events results with different

magnitudes of JSD score. Table 4 shows the same top three performing metrics of

Entropy, Perplexity, and Cosine. Examining Figure 9 we can verify that Entropy and

Perplexity show the largest difference in the R-R and R-F distributions. Cosine and

Mahalanobis also exhibit some differences but also have a large overlap in the two

distributions, which corresponds with them being right on the threshold of 0.5 JSD.

Examining the boxplot of the JSD scores over the 10 runs of the experiment in

39

Table 3: Results of the discriminative experiment on the untransformed
Network Events data. Only 3 of the 10 metrics reach the initial JSD
threshold of 0.5. Corresponding with Figure 7, we see that Entropy, Per-
plexity, and Cosine are the only metrics with significant differences in the
R-R and R-F distributions.

Metric Mean Min Max Range
Entropy 0.9342 0.9231 0.9428 0.0197

Perplexity 0.8501 0.8308 0.8651 0.0343
Cosine 0.6259 0.6039 0.6601 0.0562

Mahalanobis 0.4245 0.4058 0.4462 0.0404
Wasserstein 0.4097 0.3971 0.4285 0.0314
lp: p = r = 0.5 0.346 0.3193 0.368 0.0487
lp: p = r = 0.75 0.346 0.3166 0.3661 0.0495

Manhattan 0.3379 0.31 0.361 0.051
Euclidean 0.3246 0.3084 0.3342 0.0258

MMD 0.2338 0.2004 0.2572 0.0568

Figure 10, we see that several of the metrics have larger boxes than in Figure 8,

particularly Entropy and Perplexity and this is confirmed by the larger ranges we see

in Table 4. The Mahalanobis scores increase from the untransformed space, and it is

the only metric to experience an increase.

Log Transform

The log transform results on the Network Events data show a similar overall degra-

dation in the JSD scores to the SQRT transform. Table 5 shows the log transform

results and in this case, Mahalanobis, lp: p = r = 0.5, and Entropy are the top

performers. None of the metrics reach the 0.5 JSD threshold. This indicates that

the log transform produces very poor results for being able to discriminate between

the R-R and R-F distributions. Figure 11 confirms this as there is very little visual

difference in the two distributions for all of the metrics and lots of overlap is visible

between them.

40

Table 4: JSD results from the SQRT transform on the Network Events
data. The results have similar orderings to the untransformed results in
Table 3 with lower overall scores. This time however, 4 of the 10 metrics
reach the 0.5 JSD threshold. Cross referencing with Figure 9, we see that
Entropy, Perplexity, Cosine, and Mahalanobis exhibit visible differences
in the distributions.

Metric Mean Min Max Range
Entropy 0.7383 0.7047 0.7727 0.068

Perplexity 0.6454 0.6147 0.6762 0.0615
Cosine 0.5038 0.4849 0.5298 0.0449

Mahalanobis 0.502 0.4557 0.5246 0.0689
Wasserstein 0.3867 0.369 0.4133 0.0443
Manhattan 0.3356 0.3085 0.3566 0.0481
Euclidean 0.3342 0.3141 0.3485 0.0344

lp: p = r = 0.75 0.322 0.2939 0.3389 0.045
lp: p = r = 0.5 0.3045 0.2574 0.335 0.0776

MMD 0.2137 0.1831 0.2397 0.0566

The boxplot of the JSD scores in Figure 12 tells the same story as Table 5. Overall

poor performance for this transform. With Mahalanobis as the top performer, we also

see that it has a single outlier that is very low, pulling the mean outside of the box.

We also see that the fractional lp distances have larger ranges than on the other

transforms.

Principal Components Analysis

The results of the Principal Component Analysis (PCA) transform on the Network

Events data are displayed in Table 6 and a boxplot of the JSD scores is shown in

Figure 14. Here we see that there is much better overall performance than from any

of the other transforms with 8 of 11 metrics above 0.5 JSD. Additionally, we see that

the fractional lp and Wasserstein distances are the best performers.

The ranges for these metrics are also relatively small as well and this is confirmed

by the small boxes for the high performing metric in Figure 14. Figure 13 verifies

41

Table 5: Log transform results on the Network Events data. Overall very
poor results with none of the metrics reaching the 0.5 JSD threshold.
Mahalanobis comes close and has a max value of 0.5108, indicating that
during one of the runs it did reach the 0.5 threshold.

Metric Mean Min Max Range
Mahalanobis 0.4762 0.3099 0.5108 0.2009
lp: p = r = 0.5 0.4061 0.3622 0.4522 0.09

Entropy 0.3702 0.3554 0.3816 0.0262
Euclidean 0.3333 0.3226 0.343 0.0204

Wasserstein 0.3324 0.3119 0.3534 0.0415
Cosine 0.3116 0.2981 0.3293 0.0312

Perplexity 0.3094 0.2928 0.3293 0.0365
lp: p = r = 0.75 0.2996 0.2567 0.3315 0.0748

Manhattan 0.2873 0.2643 0.3044 0.0401
MMD 0.2326 0.1877 0.2537 0.066

these higher scores with clear differences in the metrics with JSD scores above 0.5.

It is important to note that with the PCA transform we are able to evaluate

the Fréchet Inception Distance (FID). This is because the FID involves calculating a

matrix square root, which can only be performed on a square matrix. The output of

the PCA transform is an n×n matrix, where n is the number of features of the input

sample. For all of the other transforms the input size is 1, 000 × n meaning that we

cannot calculate the FID in those spaces.

Fast Fourier Transform

The Fast Fourier Transform (FFT) on the Network Events data is wholly ineffec-

tive. Table 7 shows the results for the metrics and none of the mean JSD scores are

greater than 0.4. Examining Figure 15 we see that the R-R and R-F distributions

are very similar with few noticeable differences.

Examining the boxplot in Figure 16 we confirm the results from Table 7. Inter-

estingly, many of the metrics have very low outliers that pull down the mean scores.

42

Table 6: JSD results from the PCA transform on the Network Events
data. 8 of 11 metrics reach the 0.5 JSD threshold. Cross referencing with
Figure 13, we see significant differences in the R-R and R-F distributions
for these 8 metrics. This indicates that this is a good transform to use for
this dataset.

Metric Mean Min Max Range
lp: p = r = 0.5 0.9594 0.9513 0.9669 0.0156
lp: p = r = 0.75 0.9391 0.9308 0.946 0.0152

Wasserstein 0.9031 0.8923 0.9212 0.0289
Manhattan 0.8878 0.8732 0.8965 0.0233

Entropy 0.8369 0.8158 0.8649 0.0491
Perplexity 0.8049 0.7775 0.8313 0.0538

MMD 0.5662 0.5415 0.5873 0.0458
FID 0.5544 0.5301 0.5779 0.0478

Cosine 0.395 0.3707 0.4192 0.0485
Euclidean 0.3875 0.3605 0.4056 0.0451

Mahalanobis 0.3806 0.3506 0.4048 0.0542

However, these low outliers don’t matter much because the entire box and whiskers

for all metrics is below 0.5 JSD.

Table 7: JSD results from the FFT transform on Network Events data.
Very poor results for all metrics with all metrics falling under 0.4 JSD in-
dicating an inability to distinguish between the R-R and R-F distributions
in this space.

Metric Mean Min Max Range
Euclidean 0.3994 0.3799 0.4436 0.0637

Cosine 0.3374 0.3193 0.3597 0.0404
Mahalanobis 0.3135 0.2274 0.3381 0.1107

Entropy 0.3052 0.2838 0.3255 0.0417
Perplexity 0.3049 0.2748 0.3238 0.049
Manhattan 0.2998 0.233 0.3179 0.0849

lp: p = r = 0.75 0.286 0.1863 0.3113 0.125
Wasserstein 0.2807 0.2441 0.3048 0.0607
lp: p = r = 0.5 0.2662 0.13 0.292 0.162

MMD 0.259 0.2329 0.3014 0.0685

43

5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5
Natural log metric values

0

50

100

150

200

250

300

Co
un

t
Manhattan

Real-Real
Real-Fake

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5
Natural log metric values

0

50

100

150

200

250

300

Co
un

t

Euclidean
Real-Real
Real-Fake

12 14 16 18 20 22 24 26
Natural log metric values

0

50

100

150

200

250

300

Co
un

t

lp: p = r = 0.5
Real-Real
Real-Fake

7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0
Natural log metric values

0

50

100

150

200

250

300

Co
un

t

lp: p = r = 0.75
Real-Real
Real-Fake

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Natural log metric values

0

50

100

150

200

250

300

Co
un

t

Cosine
Real-Real
Real-Fake

5.5 6.0 6.5 7.0 7.5 8.0 8.5
Natural log metric values

0

50

100

150

200

250

300
Co

un
t

Mahalanobis
Real-Real
Real-Fake

0 1 2 3 4 5 6 7 8
Natural log metric values

0

50

100

150

200

250

300

Co
un

t

Wasserstein
Real-Real
Real-Fake

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
Natural log metric values

0

50

100

150

200

250

300

Co
un

t

Entropy
Real-Real
Real-Fake

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
Natural log metric values

0

50

100

150

200

250

300

Co
un

t

Perplexity
Real-Real
Real-Fake

0.0 0.1 0.2 0.3 0.4 0.5
Natural log metric values

0

50

100

150

200

250

300

Co
un

t

MMD
Real-Real
Real-Fake

Figure 7: Discriminative results on untransformed Network Events data.
Corresponding to the results in Table 3, only Cosine, Entropy, and Per-
plexity produce a noticeable difference in the R-R and R-F distributions
with only Entropy and Perplexity being significantly different.

44

Eu
clid

ea
n

Man
ha

tta
n

l p:
p= r=

0.5

l p:
p= r=

0.7
5

Cosi
ne

Mah
ala

no
bis

Wass
ers

tei
n

En
tro

py

Pe
rpl

ex
ity

MMD

JSD Score

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 8: Untransformed Network Events boxplot of JSD scores for 10
runs of the experiment. 3 of the 10 metrics reach the 0.5 JSD threshold,
indicating low overall performance for this transform.

45

6 7 8 9 10 11 12
Natural log metric values

0

50

100

150

200

250

300

Co
un

t
Manhattan

Real-Real
Real-Fake

3 4 5 6 7 8 9 10
Natural log metric values

0

50

100

150

200

250

300

Co
un

t

Euclidean
Real-Real
Real-Fake

12 13 14 15 16 17
Natural log metric values

0

50

100

150

200

250

300

Co
un

t

lp: p = r = 0.5
Real-Real
Real-Fake

8 9 10 11 12 13
Natural log metric values

0

50

100

150

200

250

300

Co
un

t

lp: p = r = 0.75
Real-Real
Real-Fake

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Natural log metric values

0

50

100

150

200

250

300

Co
un

t

Cosine
Real-Real
Real-Fake

7.7 7.8 7.9 8.0 8.1 8.2 8.3 8.4
Natural log metric values

0

50

100

150

200

250

300
Co

un
t

Mahalanobis
Real-Real
Real-Fake

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Natural log metric values

0

50

100

150

200

250

300

Co
un

t

Wasserstein
Real-Real
Real-Fake

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
Natural log metric values

0

50

100

150

200

250

300

Co
un

t

Entropy
Real-Real
Real-Fake

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
Natural log metric values

0

50

100

150

200

250

300

Co
un

t

Perplexity
Real-Real
Real-Fake

0.0 0.1 0.2 0.3 0.4
Natural log metric values

0

50

100

150

200

250

300

Co
un

t

MMD
Real-Real
Real-Fake

Figure 9: Discriminative results from SQRT transform on Network Events
data. Corresponding to the results in Table 4 there is lots of overlap be-
tween the R-R and R-F distributions. Only Entropy and Perplexity are
noticeably different, with some difference visible in Cosine and Maha-
lanobis.

46

Eu
clid

ea
n

Man
ha

tta
n

l p:
p= r=

0.5

l p:
p= r=

0.7
5

Cosi
ne

Mah
ala

no
bis

Wass
ers

tei
n

En
tro

py

Pe
rpl

ex
ity

MMD

JSD Score

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 10: SQRT Network Events boxplot of JSD scores for 10 runs of the
experiment. Here we get 4 of 10 metrics with a mean above 0.5 JSD. We
also see larger boxes for Entropy and Perplexity compared to the boxes in
Figure 8.

47

5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5
Natural log metric values

0

50

100

150

200

250

300

Co
un

t
Manhattan

Real-Real
Real-Fake

3 4 5 6 7
Natural log metric values

0

50

100

150

200

250

300

Co
un

t

Euclidean
Real-Real
Real-Fake

12.0 12.5 13.0 13.5 14.0 14.5 15.0
Natural log metric values

0

50

100

150

200

250

300

Co
un

t

lp: p = r = 0.5
Real-Real
Real-Fake

8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5
Natural log metric values

0

50

100

150

200

250

300

Co
un

t

lp: p = r = 0.75
Real-Real
Real-Fake

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Natural log metric values

0

50

100

150

200

250

300

Co
un

t

Cosine
Real-Real
Real-Fake

7.7 7.8 7.9 8.0 8.1 8.2 8.3 8.4
Natural log metric values

0

50

100

150

200

250

300
Co

un
t

Mahalanobis
Real-Real
Real-Fake

0.2 0.4 0.6 0.8 1.0
Natural log metric values

0

50

100

150

200

250

300

Co
un

t

Wasserstein
Real-Real
Real-Fake

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
Natural log metric values

0

50

100

150

200

250

300

Co
un

t

Entropy
Real-Real
Real-Fake

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
Natural log metric values

0

50

100

150

200

250

300

Co
un

t

Perplexity
Real-Real
Real-Fake

0.0 0.1 0.2 0.3 0.4 0.5
Natural log metric values

0

50

100

150

200

250

300

Co
un

t

MMD
Real-Real
Real-Fake

Figure 11: Discriminative results from log transform on Network Events
data. There is very little difference in the R-R and R-F distributions for
all of the metrics which corresponds to Table 5. This transform on this
data produces very poor results.

48

Eu
clid

ea
n

Man
ha

tta
n

l p:
p= r=

0.5

l p:
p= r=

0.7
5

Cosi
ne

Mah
ala

no
bis

Wass
ers

tei
n

En
tro

py

Pe
rpl

ex
ity

MMD

JSD Score

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 12: Log transform Network Events boxplot of JSD scores for 10
runs of the experiment. All metrics suffer a drop in JSD with none of the
metrics having a mean JSD over 0.5, which is also reflected in Table 5.

49

0.8 1.0 1.2 1.4 1.6
Natural log metric values
0

50

100

150

200

250

300
Co

un
t

Manhattan
Real-Real
Real-Fake

0.5 0.6 0.7 0.8 0.9
Natural log metric values
0

50

100

150

200

250

300

Co
un

t

Euclidean
Real-Real
Real-Fake

2.0 2.5 3.0 3.5
Natural log metric values
0

50

100

150

200

250

300

Co
un

t

lp: p = r = 0.5
Real-Real
Real-Fake

1.00 1.25 1.50 1.75 2.00
Natural log metric values
0

50

100

150

200

250

300

Co
un

t

lp: p = r = 0.75
Real-Real
Real-Fake

0.2 0.4 0.6
Natural log metric values
0

50

100

150

200

250

300
Co

un
t

Cosine
Real-Real
Real-Fake

3.2 3.4 3.6 3.8
Natural log metric values
0

50

100

150

200

250

300

Co
un

t

Mahalanobis
Real-Real
Real-Fake

0.00 0.05 0.10 0.15 0.20
Natural log metric values
0

50

100

150

200

250

300

Co
un

t

Wasserstein
Real-Real
Real-Fake

0.1 0.2 0.3 0.4 0.5
Natural log metric values
0

50

100

150

200

250

300

Co
un

t

Entropy
Real-Real
Real-Fake

0.2 0.4 0.6 0.8 1.0
Natural log metric values
0

50

100

150

200

250

300
Co

un
t

Perplexity
Real-Real
Real-Fake

0.0 0.1 0.2 0.3 0.4 0.5
Natural log metric values
0

50

100

150

200

250

300

Co
un

t

MMD
Real-Real
Real-Fake

2.0 2.5 3.0 3.5 4.0
Natural log metric values
0

50

100

150

200

250

300

Co
un

t

FID
Real-Real
Real-Fake

Figure 13: Discriminative results from PCA transform on Network Events
data. As seen in Table 6, there are visible differences in the R-R and R-F
distributions for most of the metrics. The most noticeable difference is
between the fractional lp distances and Wasserstein distances which have
almost no overlap.

50

Eu
clid

ea
n

Man
ha

tta
n

l p:
p= r=

0.5

l p:
p= r=

0.7
5

Cosi
ne

Mah
ala

no
bis

Wass
ers

tei
n

En
tro

py

Pe
rpl

ex
ity

MMD FID

JSD Score

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 14: PCA transform Network Events boxplot of JSD scores for
10 runs of the experiment. Much better performance with 8 of 11 met-
rics reaching the 0.5 JSD threshold. The highest performing metrics also
have very small boxes and whiskers indicating good repeatability for these
scores.

51

6.50 6.75 7.00 7.25 7.50 7.75 8.00
Natural log metric values

0

50

100

150

200

250

300

Co
un

t
Manhattan

Real-Real
Real-Fake

3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0
Natural log metric values

0

50

100

150

200

250

300

Co
un

t

Euclidean
Real-Real
Real-Fake

13.2 13.4 13.6 13.8 14.0
Natural log metric values

0

50

100

150

200

250

300

Co
un

t

lp: p = r = 0.5
Real-Real
Real-Fake

8.6 8.8 9.0 9.2 9.4 9.6
Natural log metric values

0

50

100

150

200

250

300

Co
un

t

lp: p = r = 0.75
Real-Real
Real-Fake

0.1 0.2 0.3 0.4 0.5 0.6
Natural log metric values

0

50

100

150

200

250

300

Co
un

t

Cosine
Real-Real
Real-Fake

8.05 8.10 8.15 8.20 8.25 8.30 8.35 8.40
Natural log metric values

0

50

100

150

200

250

300
Co

un
t

Mahalanobis
Real-Real
Real-Fake

0.0 0.2 0.4 0.6 0.8 1.0
Natural log metric values

0

50

100

150

200

250

300

Co
un

t

Wasserstein
Real-Real
Real-Fake

0.0 0.1 0.2 0.3 0.4
Natural log metric values

0

50

100

150

200

250

300

Co
un

t

Entropy
Real-Real
Real-Fake

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Natural log metric values

0

50

100

150

200

250

300

Co
un

t

Perplexity
Real-Real
Real-Fake

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Natural log metric values

0

50

100

150

200

250

300

Co
un

t

MMD
Real-Real
Real-Fake

Figure 15: Discriminative results from FFT transform on Network Events
data. Examining the histograms we see that there is lots of overlap be-
tween the R-R and R-F distributions for all metrics. This corresponds to
the extremely low JSD scores (< 0.4) seen in Table 7.

52

Eu
clid

ea
n

Man
ha

tta
n

l p:
p= r=

0.5

l p:
p= r=

0.7
5

Cosi
ne

Mah
ala

no
bis

Wass
ers

tei
n

En
tro

py

Pe
rpl

ex
ity

MMD

JSD Score

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 16: FFT transform network events boxplot of JSD scores for 10
runs of the experiment. Overall results for the FFT transform are very
poor with all metrics failing to reach 0.5 JSD. May metrics have low out-
liers indicated by the blue pluses, however they do not greatly affect the
position of the boxes.

53

4.2 Host Events Data

For the host events data, we experimented with two different methods of generat-

ing the fake data. First, like the Network Events data, samples were generated from

a Uniform distribution between the global minimum and maximum between each

feature. For reference, we say that these samples are from the uniform distribution.

Second, we generated a set of fake data from a Normal distribution based on the

global mean and global variance for each feature. For reference we say that these

samples are from the normal distribution.

For each transform, we show the mean JSD results in tables from both the uni-

form and normal distributions. We also display box-and-whisker plots for the 10 runs

of JSD scores for both the uniform and normal data to correspond with the data

displayed in the tables. However, due to the overall similarity, we only report the his-

togram figures based on the uniform data. Additionally, due to the overall similarity

between the results on the uniform and normal data, we only use the uniform data

for the Efficiency experiments described in Section 4.2.

Untransformed

Table 8 contains the results of the discriminative experiment on the Host Events

data with the generated sample from the uniform distribution while Table 9 contains

the JSD results for generated samples from the normal distribution. There is a large

difference is the overall JSD scores from the Network Events untransformed data to

the Host Events untransformed data, with the Host Events JSD scores being higher

across the board. Wasserstein, lp: p = r = 0.5, and Mahalanobis distance exhibit the

best performance. 8 of the 10 metrics reach the 0.5 JSD threshold.

Additionally, Wasserstein distance reaches a JSD of 1.0 for all 10 runs as indicated

by the min and max being 1 as well. These results show an ability to distinguish

54

between the R-R and R-F distributions which can be seen in Figure 17. For this

dataset, not performing any transform on the data produces surprisingly good results.

Examining the boxplots in Figure 18 and Figure 19 gives us some insights. For

the uniform and normal data,the Wasserstein distance is also confirmed to have a

JSD of 1.0 for all 10 runs because the entire box, whiskers, and mean and median

line are all on 1.0. Mahalanobis comes close, however, it appears that an outlier just

above 0.8 skews the mean lower than the rest of the runs for both the normal and

uniform data. We also see the drop in JSD for Perplexity as the JSD box shifts from

the 0.8 range to just above 0.5.

Despite the better results on the Host Events data, we do see a larger range over

all of the runs for many of the metrics, particularly Mahalanobis distance at 0.177.

However, examining the minimum and maximum values we see that the JSD scores

are still rather high, so the JSD score for this metric is still a meaningful value.

Similarly, with the JSD results from the normal data in Table 9, we see that 8 of

the 10 metrics reach the 0.5 JSD threshold with Wasserstein again reaching a JSD

of 1.0 for all 10 runs. The main difference from the uniform to normal results is the

drop in JSD for the Perplexity metric from 0.7999 on the uniform data to 0.5338 on

the normal data.

SQRT Transform

The SQRT transformed Host Events data also shows much better results overall

than the Network Events data. Examining Table 10 and Table 11 we see that 9 of

the 10 metrics reach the 0.5 JSD. The Wasserstein, lp: p = r = 0.5, and Mahalanobis

metrics come in as the top three performing metrics again, with Wasserstein main-

taining a JSD of 1.0 for all 10 runs, indicating that the distributions are completely

separate. This is an interesting development on this data since the JSD scores don’t

55

Table 8: JSD results on uniform untransformed Host Events data. 8 of 10
metrics reach the 0.5 JSD threshold with Wasserstein also reaching a JSD
of 1 for all 10 runs as indicated by the Min and Max being 1.

Metric Mean Min Max Range
Wasserstein 1.0 1.0 1.0 0.0
Mahalanobis 0.9815 0.823 1.0 0.177

Cosine 0.964 0.9483 0.9751 0.0268
lp: p = r = 0.5 0.9331 0.9236 0.9435 0.0199

Perplexity 0.7999 0.7813 0.8117 0.0304
lp: p = r = 0.75 0.7649 0.744 0.7818 0.0378

Entropy 0.7224 0.7077 0.7347 0.027
Manhattan 0.5836 0.5606 0.6052 0.0446
Euclidean 0.2833 0.2746 0.2945 0.0199

MMD 0.1842 0.1292 0.2069 0.0777

Table 9: JSD results on normal untransformed Host Events data. 8 of
10 metrics reach the 0.5 JSD threshold with Wasserstein reaching a JSD
of 1.0 for all 10 runs. Main noticeable difference in normal and uniform
results is the JSD for Perplexity dropping from 0.7999 to 0.5338.

Metric Mean Min Max Range
Wasserstein 1.0 1.0 1.0 0.0
Mahalanobis 0.9799 0.815 1.0 0.185

Cosine 0.9616 0.9449 0.9743 0.0294
lp: p = r = 0.5 0.946 0.9328 0.9587 0.0259
lp: p = r = 0.75 0.8337 0.8161 0.8458 0.0297

Entropy 0.7092 0.6911 0.7374 0.0463
Manhattan 0.688 0.6703 0.7082 0.0379
Perplexity 0.5338 0.5101 0.5474 0.0373
Euclidean 0.4177 0.4015 0.4332 0.0317

MMD 0.1838 0.1336 0.2149 0.0813

drop on the Host Events data like they do on the Network Events data.

The boxplots of the JSD scores in Figure 21 and Figure 22 confirm the results we

see in Table 10 and Table 11. For both uniform and normal, Wasserstein has a JSD

of 1.0 for all 10 runs. Mahalanobis also contains the single outlier skewing the mean

down. The JSD for Perplexity drops again, this time from around 0.6 down to just

56

under 0.5 in the normal.

Examining the differences between the uniform results in Table 10 and normal

results in Table 9 we again see that Perplexity drops, this time from 0.6041 to 0.471.

Table 10: JSD results from SQRT transform on Host Events uniform data.
9 of the 10 metrics reach the 0.5 JSD threshold. Overall this transform
produces good results on this dataset, in contrast to the results of this
transform on the Network Events dataset from Table 4.

Metric Mean Min Max Range
Wasserstein 1.0 1.0 1.0 0.0
Mahalanobis 0.9827 0.8293 1.0 0.1707

Cosine 0.9596 0.9438 0.9717 0.0279
lp: p = r = 0.5 0.9483 0.9348 0.9587 0.0239
lp: p = r = 0.75 0.8606 0.8468 0.8741 0.0273

Manhattan 0.764 0.7354 0.7836 0.0482
Perplexity 0.6041 0.5853 0.6198 0.0345
Entropy 0.5948 0.5813 0.6156 0.0343

Euclidean 0.5565 0.5451 0.5739 0.0288
MMD 0.1778 0.1336 0.2009 0.0673

Table 11: JSD results from SQRT transform on Host Events normal data.
Similar results to Table 10 with 9 of the 10 metrics reaching the 0.5 JSD
threshold. The only significant difference from the uniform data is the
decrease in Perplexity JSD from 0.6041 to 0.471.

Metric Mean Min Max Range
Wasserstein 1.0 1.0 1.0 0.0
Mahalanobis 0.9814 0.8221 1.0 0.1779

Cosine 0.9571 0.94 0.97 0.03
lp: p = r = 0.5 0.9568 0.9452 0.9639 0.0187
lp: p = r = 0.75 0.8863 0.8761 0.9082 0.0321

Manhattan 0.809 0.7865 0.8221 0.0356
Euclidean 0.6425 0.6186 0.6558 0.0372
Entropy 0.6144 0.5986 0.6295 0.0309

Perplexity 0.471 0.4443 0.4875 0.0432
MMD 0.1896 0.1535 0.218 0.0645

57

Log Transform

The results for log transformed Host Events data are shown in Table 12 and Ta-

ble 13. On the uniform data in Table 12 8 of the 10 metrics reach the 0.5 JSD

threshold. On the normal data in Table 13, 8 of 10 metrics reach the 0.5 JSD thresh-

old.

Wasserstein outperforms the other metrics again with all 10 runs having a JSD of

1.0. Table 12 shows that the Wasserstein, lp: p = r = 0.5, and Mahalanobis metrics

all once again are in the top three and exhibit similar JSD scores to the untransformed

and SQRT transform results.

Figure 23 confirms the results we see in Table 12. There are clear differences in

the R-R and R-F distributions for all of the metrics except for Euclidean distance and

Maximum Mean Discrepancy (MMD). Examining the differences from the uniform

samples in Table 12 and the normal samples in Table 13, we see that again the only

significant difference is the drop in Perplexity JSD from 0.7629 in Table 12 to 0.5569

in Table 13.

The boxplots in Figure 24 and Figure 25 show similar results to the untransformed

and SQRT transform. Once again in both cases, the Wasserstein JSD is 1.0 for all

10 runs and Mahalanobis contains the single outlier which brings down the mean.

Like other transforms, we also see the Perplexity JSD drop. This time it drops from

around 0.75 in the uniform data to around 0.55 in the normal data.

Principal Components Analysis

Examining the results of the PCA transform on the Host Events data in Table 14

and Table 15 we see that all 11 of the metrics exceed the 0.5 JSD threshold with 6 of

the 11 also getting a 1.0 JSD score for all 10 runs. It is important to note that with

the PCA transform, all of the metrics have higher mean scores compared to some of

58

Table 12: JSD results from log transform on uniform Host Events data. 8
of the 10 metrics reach the 0.5 JSD threshold, indicating once again that
this transform works well on this data.

Metric Mean Min Max Range
Wasserstein 1.0 1.0 1.0 0.0
Mahalanobis 0.9817 0.8239 1.0 0.1761

Cosine 0.9635 0.9478 0.9747 0.0269
lp: p = r = 0.5 0.9385 0.9249 0.9475 0.0226
lp: p = r = 0.75 0.7922 0.7731 0.8063 0.0332

Perplexity 0.7629 0.7498 0.776 0.0262
Entropy 0.6496 0.6316 0.665 0.0334

Manhattan 0.6277 0.6062 0.6523 0.0461
Euclidean 0.3377 0.318 0.3512 0.0332

MMD 0.1783 0.1444 0.201 0.0566

Table 13: JSD results from log transform on normal Host Events data. 8
of the 10 metrics reach the 0.5 JSD threshold. Perplexity JSD drops again
from the uniform to normal, this time from 0.7629 to 0.5569.

Metric Mean Min Max Range
Wasserstein 1.0 1.0 1.0 0.0
Mahalanobis 0.9806 0.8177 1.0 0.1823

Cosine 0.9626 0.9477 0.9768 0.0291
lp: p = r = 0.5 0.9475 0.9317 0.9567 0.025
lp: p = r = 0.75 0.8442 0.8286 0.8587 0.0301

Entropy 0.7179 0.7007 0.7332 0.0325
Manhattan 0.7107 0.6925 0.7355 0.043
Perplexity 0.5569 0.5353 0.5739 0.0386
Euclidean 0.4494 0.4319 0.4631 0.0312

MMD 0.1838 0.1296 0.2007 0.0711

the other transforms which have low scores for Euclidean distance and MMD.

Comparing the differences between the uniform results in Table 14 and the normal

results in Table 15 we see that the Perplexity JSD does not experience the large

decrease of the other transforms and maintains a JSD score of 1.0 for all 10 runs in

both cases. The only difference in the relative rankings is that MMD drops below

59

Mahalanobis on the normal samples, but it is not a large drop.

Examining the boxplots in Figure 27 and Figure 28 confirms the results from

Table 14 and Table 15. This time, in both cases, six of the metrics still have a

JSD above 1.0 for all 10 runs. Additionally, for all other metrics we see boxes and

whiskers with no outliers in the uniform data, unlike the other transforms. This time,

Perplexity JSD does not drop as it stays at 1.0 JSD in both instances. For the first

time, the MMD also makes it above the 0.5 threshold in both the uniform and normal

instances.

Table 14: JSD results from PCA transform on uniform Host Events data.
All 11 metrics exceed the 0.5 JSD threshold with 6 of the 11 getting
a 1.0 JSD, indicating complete dissimilarity between the R-R and R-F
distributions for these metrics. This indicates that the PCA transform
produces good results much as it did with the Network Events data in
Table 6.

Metric Mean Min Max Range
Manhattan 1.0 1.0 1.0 0.0

lp: p = r = 0.5 1.0 1.0 1.0 0.0
lp: p = r = 0.75 1.0 1.0 1.0 0.0

Wasserstein 1.0 1.0 1.0 0.0
Entropy 1.0 1.0 1.0 0.0

Perplexity 1.0 1.0 1.0 0.0
FID 0.8976 0.888 0.9152 0.0272

Cosine 0.7353 0.7214 0.7457 0.0243
MMD 0.6833 0.6653 0.7062 0.0409

Mahalanobis 0.6686 0.6499 0.6984 0.0485
Euclidean 0.6446 0.6274 0.6705 0.0431

Fast Fourier Transform

The FFT results on the Host Events data are much more successful than on the

Network Events data. Entropy, Cosine, and Perplexity come out as the top performers

and are shown in Table 16. 7 of the 10 metrics meet the 0.5 JSD threshold with 2 of

60

Table 15: JSD results from PCA transform on normal Host Events data.
All 11 metrics exceed the 0.5 JSD threshold with 6 of the 11 getting
a 1.0 JSD, indicating complete dissimilarity between the R-R and R-F
distributions for these metrics. In contrast to the other transforms, this
time the JSD for Perplexity does not drop between the uniform and normal
samples.

Metric Mean Min Max Range
Manhattan 1.0 1.0 1.0 0.0

lp: p = r = 0.5 1.0 1.0 1.0 0.0
lp: p = r = 0.75 1.0 1.0 1.0 0.0

Wasserstein 1.0 1.0 1.0 0.0
Entropy 1.0 1.0 1.0 0.0

Perplexity 1.0 1.0 1.0 0.0
FID 0.8534 0.8369 0.8739 0.037

Cosine 0.7525 0.7396 0.7663 0.0267
Mahalanobis 0.6752 0.6531 0.7004 0.0473

MMD 0.6666 0.648 0.6959 0.0479
Euclidean 0.6549 0.6369 0.6793 0.0424

the 7 getting a 1.0 JSD. Even though it performs well, Mahalanobis distance has a

large range of 0.4662, indicating it might not be very stable with the FFT data.

Examining the differences in the uniform data in Table 16 and normal data in

Table 17 we see some different things happening with the FFT transform. For the

other spaces, there were not many differences in the ordering of the metrics between

the uniform and normal data. However, with the FFT transform we see a difference

in the ordering of the metrics and a difference in the overall JSD values between the

uniform and normal data.

In the uniform data, the top four metrics are Entropy, Perplexity, Cosine, and

Mahalanobis. With the normal data, the top four metrics are Mahalanobis , Entropy,

Perplexity, and Wasserstein. The overall JSD decreases from the uniform to normal

as well, with the Cosine JSD going from 0.9968 to 0.7243. Additionally, Entropy and

Perplexity both drop from 1.0 JSD for all 10 runs on uniform data down to around

61

Table 16: JSD results from FFT transform on uniform Host Events data.
7 of the 10 metrics meet the 0.5 JSD threshold with 2 of the 7 getting a
1.0 JSD, indicating complete dissimilarity between the distributions.

Metric Mean Min Max Range
Entropy 1.0 1.0 1.0 0.0

Perplexity 1.0 1.0 1.0 0.0
Cosine 0.9968 0.9939 0.9995 0.0056

Mahalanobis 0.9498 0.5316 0.9978 0.4662
Wasserstein 0.895 0.8802 0.9084 0.0282
Euclidean 0.8846 0.8602 0.8985 0.0383

MMD 0.5763 0.5528 0.5983 0.0455
lp: p = r = 0.75 0.2486 0.1085 0.2951 0.1866

Manhattan 0.2435 0.0839 0.2821 0.1982
lp: p = r = 0.5 0.2229 0.0224 0.267 0.2446

Table 17: JSD results from FFT transform on Host Events data. 5 of
the 10 metrics meet the 0.5 JSD threshold with. The FFT transform is
the only one in which there are significant differences in the order of the
metrics and overall JSD between the uniform data (Table 16) and normal
data.

Metric Mean Min Max Range
Mahalanobis 0.9457 0.5359 0.994 0.4581

Entropy 0.8568 0.8436 0.8759 0.0323
Perplexity 0.843 0.8289 0.8597 0.0308

Wasserstein 0.7456 0.7282 0.7612 0.033
Cosine 0.7243 0.7152 0.7471 0.0319
MMD 0.5274 0.4995 0.5579 0.0584

Manhattan 0.4905 0.3958 0.5273 0.1315
lp: p = r = 0.75 0.429 0.3281 0.4696 0.1415

Euclidean 0.4231 0.3815 0.4517 0.0702
lp: p = r = 0.5 0.2872 0.0224 0.3396 0.3172

0.85 on normal data. The largest drop however, is the Euclidean JSD. With the

uniform data, the JSD is 0.8846 and with the normal data it drops to 0.4231 which

doesn’t happen in any of the other transforms.

Examining the boxplots in Figure 30 and Figure 31, we confirm the major differ-

62

ences in the uniform and normal data. In the uniform data, 7 of the 10 metrics are

above the 0.5 JSD threshold while in the normal data, only 5 of 10 are above the

threshold. In the uniform five of the metrics are around the 0.9 or above range while

in the normal data, only one of the metrics is above 0.9.

There are also very low outliers for many of the metrics in both instances, partic-

ularly for Mahalanobis at about 0.5 while the other runs are all at 1.0. Manhattan

distance experiences a drastic decrease from the uniform to normal, dropping from

just under 0.9 to just above 0.4. MMD also performs much better in this transform,

making it above 0.5 JSD in the uniform and normal instances.

63

6 7 8 9 10 11
Natural log metric values

0

50

100

150

200

250

300

Co
un

t
Manhattan

Real-Real
Real-Fake

3 4 5 6 7 8 9
Natural log metric values

0

50

100

150

200

250

300

Co
un

t

Euclidean
Real-Real
Real-Fake

12 13 14 15 16 17
Natural log metric values

0

50

100

150

200

250

300

Co
un

t

lp: p = r = 0.5
Real-Real
Real-Fake

8 9 10 11 12 13
Natural log metric values

0

50

100

150

200

250

300

Co
un

t

lp: p = r = 0.75
Real-Real
Real-Fake

0.35 0.40 0.45 0.50 0.55 0.60 0.65
Natural log metric values

0

50

100

150

200

250

300

Co
un

t

Cosine
Real-Real
Real-Fake

8.50 8.55 8.60 8.65 8.70 8.75
Natural log metric values

0

50

100

150

200

250

300
Co

un
t

Mahalanobis
Real-Real
Real-Fake

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Natural log metric values

0

50

100

150

200

250

300

Co
un

t

Wasserstein
Real-Real
Real-Fake

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Natural log metric values

0

50

100

150

200

250

300

Co
un

t

Entropy
Real-Real
Real-Fake

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Natural log metric values

0

50

100

150

200

250

300

Co
un

t

Perplexity
Real-Real
Real-Fake

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Natural log metric values

0

50

100

150

200

250

300

Co
un

t

MMD
Real-Real
Real-Fake

Figure 17: Discriminative results from untransformed Host Events data.
Differences in the R-R and R-F distributions are clearly visible for most
of the metrics. This corresponds with most of the metrics having higher
JSD scores in Table 8.

64

Eu
clid

ea
n

Man
ha

tta
n

l p:
p= r=

0.5

l p:
p= r=

0.7
5

Cosi
ne

Mah
ala

no
bis

Wass
ers

tei
n

En
tro

py

Pe
rpl

ex
ity

MMD
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
JS

D
Sc

or
e

Figure 18: Untransformed uniform Host Events boxplot of JSD scores for
10 runs of the experiment. Wasserstein maintains a JSD of 1.0 for all 10
runs, indicated by the box being just a single line. Mahalanobis also comes
close but has an outlier run skewing the mean down.

65

Eu
clid

ea
n

Man
ha

tta
n

l p:
p= r=

0.5

l p:
p= r=

0.7
5

Cosi
ne

Mah
ala

no
bis

Wass
ers

tei
n

En
tro

py

Pe
rpl

ex
ity

MMD
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
JS

D
Sc

or
e

Figure 19: Untransformed normal Host Events boxplot of JSD scores for
10 runs of the experiment. Wasserstein maintains a JSD of 1.0 for all 10
runs, indicated by the box being just a single line. Mahalanobis has an
outlier run skewing the mean down. Perplexity also drops from the 0.8
range to the 0.5 range.

66

6 7 8 9 10 11
Natural log metric values

0

50

100

150

200

250

300

Co
un

t
Manhattan

Real-Real
Real-Fake

3 4 5 6 7 8
Natural log metric values

0

50

100

150

200

250

300

Co
un

t

Euclidean
Real-Real
Real-Fake

12 13 14 15 16
Natural log metric values

0

50

100

150

200

250

300

Co
un

t

lp: p = r = 0.5
Real-Real
Real-Fake

8 9 10 11 12 13
Natural log metric values

0
50

100
150
200
250
300

Co
un

t

lp: p = r = 0.75
Real-Real
Real-Fake

0.40 0.45 0.50 0.55 0.60 0.65
Natural log metric values

0

50

100

150

200

250

300

Co
un

t

Cosine
Real-Real
Real-Fake

8.50 8.55 8.60 8.65 8.70 8.75
Natural log metric values

0

50

100

150

200

250

300
Co

un
t

Mahalanobis
Real-Real
Real-Fake

0.0 0.1 0.2 0.3 0.4 0.5
Natural log metric values

0

50

100

150

200

250

300

Co
un

t

Wasserstein
Real-Real
Real-Fake

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Natural log metric values

0

50

100

150

200

250

300

Co
un

t

Entropy
Real-Real
Real-Fake

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Natural log metric values

0

50

100

150

200

250

300

Co
un

t

Perplexity
Real-Real
Real-Fake

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Natural log metric values

0

50

100

150

200

250

300

Co
un

t

MMD
Real-Real
Real-Fake

Figure 20: Discriminative results from SQRT transform on Host Events
dataset. Differences in the R-R and R-F distributions are clearly visible
for most of the metrics which corresponds to the scores in Table 10. This
transform performs markedly better on the Host Events data than it did
on the Network Events data.

67

Eu
clid

ea
n

Man
ha

tta
n

l p:
p= r=

0.5

l p:
p= r=

0.7
5

Cosi
ne

Mah
ala

no
bis

Wass
ers

tei
n

En
tro

py

Pe
rpl

ex
ity

MMD
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
JS

D
Sc

or
e

Figure 21: SQRT Transform uniform Host Events boxplot of JSD scores
for 10 runs of the experiment. Wasserstein has a JSD of 1.0 for all 10 runs.
Mahalanobis also contains the single outlier skewing the mean down. The
JSD for Perplexity drops again, this time from around 0.6 down to just
under 0.5 in the normal.

68

Eu
clid

ea
n

Man
ha

tta
n

l p:
p= r=

0.5

l p:
p= r=

0.7
5

Cosi
ne

Mah
ala

no
bis

Wass
ers

tei
n

En
tro

py

Pe
rpl

ex
ity

MMD
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
JS

D
Sc

or
e

Figure 22: SQRT Transform normal Host Events boxplot of JSD scores
for 10 runs of the experiment. Wasserstein has a JSD of 1.0 for all 10
runs. Mahalanobis also contains the single outlier. Perplexity drops from
around 0.6 down to just under 0.5. Few significant differences overall from
the uniform results.

69

6 7 8 9 10 11
Natural log metric values

0

50

100

150

200

250

300

Co
un

t
Manhattan

Real-Real
Real-Fake

3 4 5 6 7 8
Natural log metric values

0

50

100

150

200

250

300

Co
un

t

Euclidean
Real-Real
Real-Fake

12 13 14 15 16 17
Natural log metric values

0

50

100

150

200

250

300

Co
un

t

lp: p = r = 0.5
Real-Real
Real-Fake

8 9 10 11 12 13
Natural log metric values

0

50

100

150

200

250

300

Co
un

t

lp: p = r = 0.75
Real-Real
Real-Fake

0.40 0.45 0.50 0.55 0.60 0.65
Natural log metric values

0

50

100

150

200

250

300

Co
un

t

Cosine
Real-Real
Real-Fake

8.50 8.55 8.60 8.65 8.70 8.75
Natural log metric values

0

50

100

150

200

250

300
Co

un
t

Mahalanobis
Real-Real
Real-Fake

0.0 0.1 0.2 0.3 0.4 0.5
Natural log metric values

0

50

100

150

200

250

300

Co
un

t

Wasserstein
Real-Real
Real-Fake

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Natural log metric values

0

50

100

150

200

250

300

Co
un

t

Entropy
Real-Real
Real-Fake

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Natural log metric values

0

50

100

150

200

250

300

Co
un

t

Perplexity
Real-Real
Real-Fake

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Natural log metric values

0

50

100

150

200

250

300

Co
un

t

MMD
Real-Real
Real-Fake

Figure 23: Discriminative results from log transform on Host Events data.
Clear differences in the R-R and R-F are visible as indicated by the JSD
scores from Table 12. This transform also performs much better on the
Host Events data than on the Network events data.

70

Eu
clid

ea
n

Man
ha

tta
n

l p:
p= r=

0.5

l p:
p= r=

0.7
5

Cosi
ne

Mah
ala

no
bis

Wass
ers

tei
n

En
tro

py

Pe
rpl

ex
ity

MMD
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
JS

D
Sc

or
e

Figure 24: Log Transform uniform Host Events boxplot of JSD scores for
10 runs of the experiment. Wasserstein JSD is 1.0 for all 10 runs and
Mahalanobis contains the single outlier which brings down the mean, as
it did in the other transforms.

71

Eu
clid

ea
n

Man
ha

tta
n

l p:
p= r=

0.5

l p:
p= r=

0.7
5

Cosi
ne

Mah
ala

no
bis

Wass
ers

tei
n

En
tro

py

Pe
rpl

ex
ity

MMD
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
JS

D
Sc

or
e

Figure 25: Log Transform normal Host Events boxplot of JSD scores for
10 runs of the experiment. Wasserstein JSD is 1.0 for all 10 runs and Ma-
halanobis contains the single outlier which brings down the mean. Like the
other transforms, Perplexity JSD drops from around 0.75 in the uniform
to around 0.55 in the normal.

72

1.0 1.2 1.4 1.6 1.8
Natural log metric values
0

50

100

150

200

250

300
Co

un
t

Manhattan
Real-Real
Real-Fake

0.6 0.7 0.8 0.9
Natural log metric values
0

50

100

150

200

250

300

Co
un

t

Euclidean
Real-Real
Real-Fake

2.5 3.0 3.5 4.0 4.5
Natural log metric values
0

50

100

150

200

250

300

Co
un

t

lp: p = r = 0.5
Real-Real
Real-Fake

1.50 1.75 2.00 2.25 2.50
Natural log metric values
0

50

100

150

200

250

300

Co
un

t

lp: p = r = 0.75
Real-Real
Real-Fake

0.1 0.2 0.3 0.4 0.5 0.6
Natural log metric values
0

50

100

150

200

250

300
Co

un
t

Cosine
Real-Real
Real-Fake

4.2 4.4 4.6 4.8
Natural log metric values
0

50

100

150

200

250

300

Co
un

t

Mahalanobis
Real-Real
Real-Fake

0.025 0.050 0.075 0.100 0.125 0.150
Natural log metric values
0

50

100

150

200

250

300

Co
un

t

Wasserstein
Real-Real
Real-Fake

0.2 0.4 0.6
Natural log metric values
0

50

100

150

200

250

300

Co
un

t

Entropy
Real-Real
Real-Fake

0.25 0.50 0.75 1.00 1.25 1.50
Natural log metric values
0

50

100

150

200

250

300
Co

un
t

Perplexity
Real-Real
Real-Fake

0.0 0.1 0.2 0.3 0.4 0.5
Natural log metric values
0

50

100

150

200

250

300

Co
un

t

MMD
Real-Real
Real-Fake

4.0 4.5 5.0 5.5
Natural log metric values
0

50

100

150

200

250

300

Co
un

t

FID
Real-Real
Real-Fake

Figure 26: Discriminative results from PCA transform on Host Events
data. Visible differences are noticeable between the R-R and R-F distri-
butions for all 11 metrics. This is confirmed by Table 14 with all of the
JSD scores above the 0.5 JSD threshold.

73

Eu
clid

ea
n

Man
ha

tta
n

l p:
p= r=

0.5

l p:
p= r=

0.7
5
Cosi

ne

Mah
ala

no
bis

Wass
ers

tei
n

En
tro

py

Pe
rpl

ex
ity

MMD FID
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
JS

D
Sc

or
e

Figure 27: PCA Transform uniform Host Events boxplot of JSD scores
for 10 runs of the experiment. This time, 6 of the metrics have a JSD of
1.0 for all 10 runs. Additionally, none of the boxes have any outliers.

74

Eu
clid

ea
n

Man
ha

tta
n

l p:
p= r=

0.5

l p:
p= r=

0.7
5
Cosi

ne

Mah
ala

no
bis

Wass
ers

tei
n

En
tro

py

Pe
rpl

ex
ity

MMD FID
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
JS

D
Sc

or
e

Figure 28: PCA Transform normal Host Events boxplot of JSD scores for
10 runs of the experiment. This time, 6 of the metrics have a JSD of 1.0
for all 10 runs. No drop in Perplexity JSD in this transform as it stays at
1.0 in both the uniform and normal.

75

6.775 6.800 6.825 6.850 6.875 6.900 6.925 6.950 6.975
Natural log metric values

0

50

100

150

200

250

300

Co
un

t
Manhattan

Real-Real
Real-Fake

3.8 4.0 4.2 4.4 4.6 4.8
Natural log metric values

0

50

100

150

200

250

300

Co
un

t

Euclidean
Real-Real
Real-Fake

13.48 13.50 13.52 13.54 13.56 13.58 13.60
Natural log metric values

0

50

100

150

200

250

300

Co
un

t

lp: p = r = 0.5
Real-Real
Real-Fake

8.98 9.00 9.02 9.04 9.06 9.08 9.10 9.12
Natural log metric values

0

50

100

150

200

250

300

Co
un

t

lp: p = r = 0.75
Real-Real
Real-Fake

0.10 0.15 0.20 0.25 0.30 0.35
Natural log metric values

0

50

100

150

200

250

300

Co
un

t

Cosine
Real-Real
Real-Fake

8.56 8.58 8.60 8.62 8.64 8.66 8.68 8.70
Natural log metric values

0

50

100

150

200

250

300
Co

un
t

Mahalanobis
Real-Real
Real-Fake

0.06 0.08 0.10 0.12 0.14 0.16 0.18
Natural log metric values

0

50

100

150

200

250

300

Co
un

t

Wasserstein
Real-Real
Real-Fake

0.00 0.02 0.04 0.06 0.08 0.10
Natural log metric values

0

50

100

150

200

250

300

Co
un

t

Entropy
Real-Real
Real-Fake

0.0 0.5 1.0 1.5 2.0
Natural log metric values

0

50

100

150

200

250

300

Co
un

t

Perplexity
Real-Real
Real-Fake

0.00 0.05 0.10 0.15 0.20 0.25
Natural log metric values

0

50

100

150

200

250

300

Co
un

t

MMD
Real-Real
Real-Fake

Figure 29: Discriminative results from the FFT transform on Host Events
data. Differences in the R-R and R-F distributions are more noticeable
than from the FFT transform on the Network Events data. Table 16
confirms this with 7 of the 10 metrics meeting the 0.5 JSD threshold.

76

Eu
clid

ea
n

Man
ha

tta
n

l p:
p= r=

0.5

l p:
p= r=

0.7
5

Cosi
ne

Mah
ala

no
bis

Wass
ers

tei
n

En
tro

py

Pe
rpl

ex
ity

MMD

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
JS

D
Sc

or
e

Figure 30: FFT Transform uniform Host Events boxplot of JSD scores for
10 runs of the experiment. Many of the metrics have very low outliers,
producing larger differences in the mean and median than we have seen
in the other transforms.

77

Eu
clid

ea
n

Man
ha

tta
n

l p:
p= r=

0.5

l p:
p= r=

0.7
5

Cosi
ne

Mah
ala

no
bis

Wass
ers

tei
n

En
tro

py

Pe
rpl

ex
ity

MMD

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
JS

D
Sc

or
e

Figure 31: FFT Transform normal Host Events boxplot of JSD scores
for 10 runs of the experiment. Manhattan distance experiences a drastic
decrease from the uniform to normal, dropping from just under 0.9 to just
above 0.4.

78

Efficiency

In this section, we examine the efficiency of the metrics chose for evaluation.

Specifically, we explore the Computational Efficiency and Sample Efficiency.

4.2.1 Time Efficiency

The time efficiency experiment results for the Network Events data are displayed

in Figure 32. The results on the Host Events data are displayed in Figure 33. The

overall behavior is that the wall-clock time to calculate the metrics increases as the

sample length increases which is expected. The wall-clock times displayed in Figure 32

and ?? are separated into two groups. The three metrics with the highest runtimes

with both datasets are the FID, MMD, and Mahalanobis distance. These three

metrics have O(n2) runtime complexity based on their implementations. The FID

involves calculating a matrix multiply, which is O(n2). The MMD is also O(n2) in

its complexity. The Mahalanobis distance is not O(n2), however, we use the Scipy

cdist() function to calculate the Mahalanobis distance and it calculates pairwise

distances between all elements of two collections, thus making it O(n2).

Examining Figure 32 and ?? further, we notice some non-monotonic behavior for

some of the metrics. Generally, it would be expected that the runtimes should be

monotonic increasing as the sample length increases. There are two likely reasons for

this behavior. First, some of the metrics involve calculating a probability distribution

based on input values and this time is included in the calculation. Thus, it is possible

that due to background optimizations, a distribution could be generated faster with

more samples based on the values of the input. If this occurs, then the sample with

more lines could be calculated faster if these background optimizations occur.

Specific to the Host Events runtimes in Figure 33, the Term Frequency - Inverse

Document Frequency (TF-IDF) process induces a large amount of zeros into the

79

100 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Sample Length

10 2

10 1

100

101

102

103

Se
co

nd
s

Euclidean
Manhattan
lp: p = r = 0.5
lp: p = r = 0.75

Cosine
Mahalanobis
Wasserstein
Entropy

Perplexity
MMD
FID

Figure 32: Wall-clock time (seconds) vs. sample length on Network
Events. We see increasing times as the sample length increases as ex-
pected. The three metrics with the highest runtimes are the O(n2) com-
plexity metrics while the other metrics are O(n) complexity.

80

100 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Sample Length

10 3

10 2

10 1

100

101

102

Se
co

nd
s

Euclidean
Manhattan
lp: p = r = 0.5
lp: p = r = 0.75

Cosine
Mahalanobis
Wasserstein
Entropy

Perplexity
MMD
FID

Figure 33: Wall-clock time (seconds) vs. sample length on Host Events
data. We see increasing times as the sample length increases as expected.
The three metrics with the highest runtimes are the O(n2) complexity
metrics while the other metrics are O(n) complexity.

81

samples. Based on this, it is possible that a sample with larger length could be more

sparse. If this sparsity does occur, it is possible that background optimizations could

occur that make the calculation of the metric faster with more lines.

Based on these wall-clock times, we see that the choice of metrics to use depends

on application needs and sample lengths. If the application requires larger sample

lengths, it may be best to stick with the lower wall-clock time metrics such as the

fractional-lp distances. If efficiency is not as much of a concern, then for smaller

sample lengths, the O(n2) metrics may be suitable for use.

4.2.2 Sample Efficiency - Network Events Data

We received some unexpected results from the sample efficiency experiments. The

expected outcome as detailed in [15] was that the JSD scores for the metrics would

increase as the sample set size increased. What we observed instead, as shown in

Figures 34 to 38, that the JSD score stays relatively constant as the number of

samples increases. We had expected to see an increase in the JSD as the number of

samples increased. However, depending on the transform we see that most of the JSD

scores stay the same or in some cases slightly decrease. Additionally, we see that the

transform applied can have an effect on the variance of the JSD score. The SQRT

data in Figure 35 shows all of the metrics with relatively low variance while the log

data in Figure 36 and PCA data in Figure 37 have much higher variance overall.

What these figures show however, is that the choice of 1,000 samples is an appro-

priate choice for the number of samples in the discriminative experiments. In each

figure the JSD score at 1,000 samples is generally representative of the mean JSD

score. As a reminder, 1,000 samples refers to the number of individual samples. We

are using 1,000 line samples as well but the same number here is just coincidence.

82

100 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Number of Samples

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

JS
D

Sc
or

e

Euclidean
Manhattan

lp: p = r = 0.5
lp: p = r = 0.75

Cosine
Mahalanobis

Wasserstein
Entropy

Perplexity
MMD

Figure 34: JSD scores vs. number of samples for untransformed Network
Events data. The JSD scores stay relatively constant as sample size in-
creases. These scores demonstrate the same ordering as shown in Table 3.
However, due to different random seed, the JSD values may differ slightly
from Table 3.

4.2.3 Sample Efficiency - Host Events Data

The results of the sample efficiency experiments on the Host Events data differ

slightly from the Network Events Data. The results of the sample efficiency experi-

ments are shown in Figures 39 to 43. Here we see mixed results. Some of the metrics

83

100 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Number of Samples

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

JS
D

Sc
or

e

Euclidean
Manhattan

lp: p = r = 0.5
lp: p = r = 0.75

Cosine
Mahalanobis

Wasserstein
Entropy

Perplexity
MMD

Figure 35: JSD scores vs. number of samples for SQRT transformed
Network Events data. JSD score for 1,000 samples is a good representative
sample size for this transform. The overall order is also the same as in
Table 4.

demonstrate the increasing JSD as we expected, for example the lp, p = r = 0.5 met-

ric in Figure 39. However, the JSD scores for the Mahalanobis distance in particular

exhibit a tendency to decrease a large amount as the number of samples increases,

a trend that none of the other metrics exhibit. In Figures 42 to 43 we see the

large variances of the other transforms lessen and exhibit the more constant behavior

84

100 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Number of Samples

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

JS
D

Sc
or

e

Euclidean
Manhattan

lp: p = r = 0.5
lp: p = r = 0.75

Cosine
Mahalanobis

Wasserstein
Entropy

Perplexity
MMD

Figure 36: JSD scores vs. number of samples for log transformed Network
Events data. The scale of the JSD scores reflects the overall poor results
from Table 5.

demonstrated in the Network Events Data.

We also see that these results confirm the choice of 1,000 samples as the represen-

tative number of samples on the Host Events data as well. For most of the metrics

in each of the figures, the 1,000 sample JSD appears to be a good representation of

the JSD score for each metric.

85

100 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Number of Samples

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

JS
D

Sc
or

e

Euclidean
Manhattan
lp: p = r = 0.5

lp: p = r = 0.75
Cosine

Mahalanobis
Wasserstein

Entropy
Perplexity

MMD
FID

Figure 37: JSD scores vs. number of samples for PCA transformed Net-
work Events data. Similar to the other transforms, the scores stay rela-
tively constant as the number of samples increases.

It should be noted that there is an inflection point at sample size 500 or 1,000

on most of the lines in Figures 34 to 38 and Figures 39 to 43. Part of this inflection

and steep increase is to due to a change in the scale, going from 100 to 500 rather

than stepping by 500 as it does for the sample sizes 500 and above. There is also

sometimes a large jump in JSD between 100 and 500. This is most likely due to the

86

100 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Number of Samples

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

JS
D

Sc
or

e

Euclidean
Manhattan

lp: p = r = 0.5
lp: p = r = 0.75

Cosine
Mahalanobis

Wasserstein
Entropy

Perplexity
MMD

Figure 38: JSD scores vs. number of samples for FFT transformed Net-
work Events data. As with the other transforms on the Network Events
data, increasing the number of samples does not greatly affect the JSD
values.

larger number of zero probability bins in the sample size 100, leading to the overall

JSD value to be influenced by these bins with zero probability. Once sample size is

increased to 500 and above we see that there are fewer inflection points in most cases.

Figure 44 and Figure 45 show the JSD scores vs. number of samples for un-

transformed Network Events and Host Events data respectively. Figure 44 appears

87

100 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Number of Samples

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
JS

D
Sc

or
e

Euclidean
Manhattan

lp: p = r = 0.5
lp: p = r = 0.75

Cosine
Mahalanobis

Wasserstein
Entropy

Perplexity
MMD

Figure 39: JSD scores vs. number of samples for untransformed Host
Events data. The JSD scores for some of the metrics exhibit the same
relatively constant behavior. The Mahalanobis distance is less stable as
the number of samples increases, as indicated by its large decrease as
the number of samples increase. Wasserstein stays at a constant 1.0 for
all sample sizes, indicating a complete dissimilarity between the R-R and
R-F distributions at all sample sizes

to be the same as Figure 34 with relatively constant behavior. Figure 45 examines

the smaller sample sizes between 100 and 1,000 in more detail. Here we see that

what appears to be large jumps between 100 and 1,000 samples in Figures 39 to 43

88

100 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Number of Samples

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
JS

D
Sc

or
e

Euclidean
Manhattan

lp: p = r = 0.5
lp: p = r = 0.75

Cosine
Mahalanobis

Wasserstein
Entropy

Perplexity
MMD

Figure 40: JSD scores vs. number of samples for SQRT transformed Host
Events data. Once again, most of the metrics exhibit relatively constant
behavior or slight increases in JSD as the number of samples increases.
Mahalanobis distance again has a large decrease in JSD. Wasserstein stays
at a constant 1.0 for all sample sizes, indicating a complete dissimilarity
between the R-R and R-F distributions at all sample sizes

is less drastic when examined in scale. There is an increase in JSD as the number of

samples increases which is probably due to the R-R and R-F distributions becoming

more unique.

89

100 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Number of Samples

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

JS
D

Sc
or

e

Euclidean
Manhattan

lp: p = r = 0.5
lp: p = r = 0.75

Cosine
Mahalanobis

Wasserstein
Entropy

Perplexity
MMD

Figure 41: JSD scores vs. number of samples for log transformed Host
Events data. Once again, most of the metrics have a relatively constant
JSD as the number of samples increases. Again Mahalanobis distance
JSD decreases quickly as number of samples increases. Wasserstein stays
at a constant 1.0 for all sample sizes, indicating a complete dissimilarity
between the R-R and R-F distributions at all sample sizes

90

100 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Number of Samples

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

JS
D

Sc
or

e

Euclidean
Manhattan
lp: p = r = 0.5

lp: p = r = 0.75
Cosine

Mahalanobis
Wasserstein

Entropy
Perplexity

MMD
FID

Figure 42: JSD scores vs. number of samples for PCA transformed Host
Events data. There are some different behaviors here. The Mahalanobis
and Euclidean distances both experience a drop in JSD as number of
samples increases. Interestingly, with the Wasserstein distance this time,
the Wasserstein distance has a JSD under 1.

91

100 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Number of Samples

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

JS
D

Sc
or

e

Euclidean
Manhattan

lp: p = r = 0.5
lp: p = r = 0.75

Cosine
Mahalanobis

Wasserstein
Entropy

Perplexity
MMD

Figure 43: JSD scores vs. number of samples for FFT transformed Host
Events data. Wasserstein distance again drops below 1.0 while Entropy
and Perplexity have a JSD of 1.0.

92

100 200 300 400 500 600 700 800 900 1000
Number of Samples

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

JS
D

Sc
or

e

Euclidean
Manhattan

lp: p = r = 0.5
lp: p = r = 0.75

Cosine
Mahalanobis

Wasserstein
Entropy

Perplexity
MMD

Figure 44: JSD results vs. number of samples for sample sizes between
100 and 1,000 on untransformed Network Events data. When the sample
size only changes by 100 each time instead of going from 100 to 500 to
1,000, the JSD value forms a more smooth curve.

93

100 200 300 400 500 600 700 800 900 1000
Number of Samples

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

JS
D

Sc
or

e

Euclidean
Manhattan

lp: p = r = 0.5
lp: p = r = 0.75

Cosine
Mahalanobis

Wasserstein
Entropy

Perplexity
MMD

Figure 45: JSD results vs. number of samples for sample sizes between
100 and 1,000 on untransformed Host Events data. When the sample size
only changes by 100 each time instead of going from 100 to 500 to 1,000,
the JSD value forms a more smooth curve.

94

V. Conclusions

This chapter presents a summary of the research conducted and presents lessons

learned and future work recommendations.

5.1 Research Summary

This research sought to answer three research questions (RQs):

RQ 1 What methods exist for measuring the “closeness” of real semi-structured se-

quential data to generated semi-structured sequential data?

Answer Based on literature review we found 11 metrics to be evaluated, detailed

in Section 2.5

RQ 2 What characteristics should a potential metric possess?

Answer Based on the framework from [15], there are 4 characteristics: Discrim-

inative Ability, Efficiency, Generative Failure Detection, and Overfitting

Detection

RQ 3 Given metrics for comparing data and the characteristics we want, what metrics

perform best for temporally ordered, semi-structured sequential data?

Answer There is no one-size-fits-all metric. However, Wasserstein distance, the

fractional lp distances, Entropy, and Perplexity provide good results

Section 2.5 presents many of the possible metrics that could be used while Sec-

tion 3.6 presents the metrics chosen for evaluation. These metrics were chosen based

on general use, network data applications, and prior use as Generative Adversarial

Network (GAN) evaluation metrics. The metrics chosen are the following:

95

• Power distance (Equation (4)): Euclidean (p = r = 2), Manhattan (p = r = 1),

fractional lp distance (p = r = 0.5 and p = r = 0.75)

• Mahalanobis distance (Equation (5))

• Cosine similarity (Equation (14))

• Wasserstein Distance (Equation (11))

• Maximum Mean Discrepancy (MMD) (Equation (15))

• Fréchet Inception Distance (FID) (Equation (3))

• Entropy (Equation (8))

• Perplexity (Equation (10))

The characteristics that are desirable for a metric to possess are detailed in Sec-

tion 3.7. The desired characteristics are the following: discriminative ability, effi-

ciency, generative failure detection, and overfitting detection.

The third research question experimentally seeks to combine the first two research

questions by evaluating each of the metrics chosen on each of the desired characteris-

tics. This research experiments with discriminative ability and efficiency. Experiment

methodology for generative failure detection and overfitting detection are detailed

here and implementation of these experiments is left as future work.

5.1.1 Discriminative Ability

The results of the discriminative ability experiment on both datasets are quite

informative. There are three main outcomes of this experiment:

• The type of data being evaluated impacts the ability to distinguish between

real and generated data as demonstrated by the difference in results between

Network Events and Host Events data

96

• The choice of feature space is vitally important. The overall ability to discrim-

inate between real and generated semi-structured sequential data hinges on the

feature space that the distances are calculated in

• Given a suitable feature space, the choice of metric significantly affects the

sample distance distributions

On both datasets, the choice of feature space is crucial to the overall discriminative

performance. For Jensen-Shannon Distance (JSD) the threshold at which the score

is “discriminative” is based on visual correspondence with the distributions being

visually different with little overlap. For this work, a JSD score of 0.5 seems to

correspond with a visibly noticeable difference in distributions.

On the Network Events dataset, we see a drastic increase in overall JSD score for

all metrics from the untransformed (or any other) space to the Principal Component

Analysis (PCA) space with 3 or less of 11 metrics with a JSD of 0.5 or greater to 8

of 11 metrics with a JSD of 0.5 or greater. Conversely, we see a drastic decrease in

performance from all spaces on the Network Events data to the Fast Fourier Transform

(FFT) feature space with all metrics having less than a 0.4 JSD score.

We also see that the choice of metric can affect the sample distance distributions.

For example, Examining the MMD in most of the feature spaces on the Host Events

data, MMD shows little to no difference in the sample distance distributions (JSD<

0.3). However, in the PCA and FFT space, the JSD score improves drastically (0.5-0.6

range) showing a visible difference in the sample distributions.

As these two outcomes suggest, there is no one-size-fits-all metric that emerges

from this research. However, examining the results we can see that there are a couple

of metrics that perform well in most suitable feature spaces. Wasserstein distance

performs well in the majority of the feature spaces. Entropy, Perplexity, and the

fractional lp-distances also perform well in many of the feature spaces. This suggests

97

that these metrics may generalize well to other feature spaces for future work.

5.1.2 Efficiency

For the efficiency characteristic, time efficiency and sample efficiency are explored.

The results of time efficiency are straightforward. The metrics with higher run-

times at higher sample lengths correspond to metrics that have higher algorithmic

complexity in either calculation or implementation.

The sample efficiency results did not come out as expected following the method-

ology from [15]. Instead of seeing an increase in JSD score as was expected, the JSD

tended to stay relatively constant in most cases, with some positive and negative

changes in others. However, no metric’s JSD went from a low level to a high level

or vice versa. One interesting outcome of the sample efficiency experiment is that

it confirmed the experimental use of 1,000 samples as a good representation of JSD

scores at larger numbers of samples. A number of samples equal to 1,000 samples

produced the best combination of mean JSD score and metric calculation time.

5.2 Future Work

In this section, we detail future work that can be done to improve on this research

moving forward. The list below summarizes items that should be explored in future

research.

• Develop GAN and apply evaluation framework in model feature space

• Parallelize metric computation code and utilize Graphics Processing Unit (GPU)

• Evaluate framework on other datasets such as CICIDS 2017 [2] or Snort Logs

[61]

• Evaluate metrics on generative failure detection and overfitting detection

98

Although generative failure detection and overfitting detection were left as future

work, we lay out an experiment methodology here. The ideas for these experiments

are based on the experiments from [15].

5.2.1 Generative Failure Detection

Generative failure in the form of mode collapsing and mode dropping is a common

problem for generative models and especially GANs. A complete explanation of these

failures is provided in Section 2.2.1. Our approaches for testing for these generative

failures are the same as the ones described in [15].

To detect mode collapsing, we can sample two disjoint sets of real samples Sr

and S ′r. We can then find a certain number of clusters in one of the sets and then

progressively replace each cluster with its center and measure d(Sr, S
′
r) as we replace

more and more clusters. Ideally, as the number of clusters replaced increases, the

scores will increase.

To detect mode dropping, we take Sr as before and construct S ′r by randomly re-

moving clusters. Samples that are removed are then replaced with samples randomly

selected from the remaining clusters. As with mode collapsing, ideally d(Sr, S
′
r) should

increase as more and more clusters are dropped.

5.2.2 Overfitting Detection

Overfitting is a possibility when utilizing a finite training set. Assuming that the

generator is trained on a training set of real data, we can use the validation set ap-

proach typical of other Machine Learning (ML) applications to test for overfitting. To

simulate the overfitting process we use an approach that is the same as the approach

in [15]. This process is the following: We construct a set of samples, S ′r that is a mix

of samples from the training set Strr and a second validation set Svalr with the overlap

99

fraction between Strr and Svalr as a parameter. We then increase the fraction of the

set that is made up of training set examples and track the value of d(S ′r, S
val
r). If we

expect overfitting, we can assume that the maximum score would be achieved when

the overlap fraction of S ′r is 0. Thus we can then normalize the score of each metric

by this value to reflect the increase. Ideally the metric scores should increase as the

second set increasingly overlaps with the training set.

5.3 Contributions

There are three main contributions from this work. First, this work provides the

first known framework for evaluating metrics for semi-structured sequential synthetic

data generation based on a framework for evaluating metrics for image generation.

Second, this work provides a “black box” evaluation framework which is generator

agnostic, meaning that it has broad applicability. Third, this research provides the

first known evaluation of metrics for semi-structured sequential data generation.

5.4 Summary

There is still much work to be done in the area of GAN metric evaluation. Hope-

fully future work will continue to improve the ability of GANs to generate synthetic

semi-structured sequential data.

100

Appendix A. User Guide

This section outlines the steps necessary to reproduce the experiments described

in Chapter III and Chapter IV.

1.1 System Configuration

• Computer with Python installed, preferably through Anaconda

• Jupyter Notebooks or Jupyter Lab (comes with Anaconda)

• Ensure NumPy, SciPy, Pandas, and Matplotlib are installed to your Python or

Anaconda environment

1.2 Dataset Preparation

• Download the dataset from https://csr.lanl.gov/data/2017.html, or ob-

tain from the repository

• Network Events files have the format: netflow day-XX.bz2 where XX is the 2

digit day. This research uses the netflow day-02.bz2 file

• Host Events files have the format wls day-XX.bz2 where XX is the 2 digit day.

This research uses the wls day-02.bz2 file

• Extract the zip file desired. The Network Events file will have the format

netflow day-XX with no extension. The Host Events file will have the format

wls day-XX.json format.

101

1.3 Data Generation

1.3.1 Real Samples

Follow these steps to create real samples for the Host Events and Network Events

dataset

• Using the extracted file, create real samples.py contains the necessary code

for generating the real data samples. This file contains several variables that will

need to be changed based on actual file locations. Set the variable original -

host file to the actual name of the Host Events file that you want to use. Set

the original netflow file to desired Network Events file.

• For Network Events data, run the function create real samples() with speci-

fied arguments for how many samples to create and how many lines the samples

should contain. The created samples will be CSV files that have the format

netflow day-XX sample i.txt

• For Host Events data, run the function create real host samples() with

specified arguments for how many samples to create and how many lines the

samples should contain. The created samples will have the format wls day-

XX.json sample i.txt

• Host Events real samples require an additional processing step using Term Fre-

quency - Inverse Document Frequency (TF-IDF). To perform this, use create -

real tfidf samples.py. Set the appropriate * dir variables to reflect data file

locations.

• To create the processed TF-IDF samples, run the function create host sam-

ples() with the num samples argument set to whatever number of samples is

102

desired. 1,000 line CSV files will be output with the format tf idf sample -

i.txt

1.3.2 Fake Samples

To create fake samples, use the code within random generator sample.py. Real

samples for the desired dataset (Host or Network Events) must have been created to

generate fake samples

• To create real Network Events samples, run the function real data global -

max(). This will iterate through the entire repository of real samples and track

the global minimum and maximum for each feature. This function will output

a CSV file called real data maxes.csv

• To create real Host Events samples, run the function host data global val-

ues(). This will iterate through the entire repository of real Host samples and

track the global minimum, maximum, mean, and standard deviation for each

feature. This function will output a CSV file called real host data maxes.csv

• To generate fake Network Events samples, ensure that real data maxes.csv

has been created. Copy the values from real data maxes.csv into the respec-

tive REAL MAXES or REAL MINS variable. Run the function generate random -

samples() with the desired number of samples and sample length as arguments

to generate the desired fake samples.

• To generate fake Host Events samples, ensure that real host data maxes.csv

has been created. Within generate random host samples() ensure that the

infile variable points to the location of real host data maxes.csv. Run

generate random host samples() with the desired number of samples and

sample length as arguments to create fake Host samples. 2 different datasets

103

will be generated by this function, located in folders with the distribution name.

The first dataset will be samples generated from a Uniform random distribu-

tion based on the global minimum and maximum for each feature. The second

dataset will be samples generated from a Normal random distribution based on

the global mean and standard deviation for each feature.

1.4 Discriminative Ability Experiment - Network Events Dataset

With the real and fake Network Events sample repositories generated, we can run

the discriminative ability experiments. For our work, we created 10,000 samples in

each repository, however, this number can change. 10,000 samples is a good number

since the experiment pulls 1,000 samples 10 times, thus ensuring that if necessary, 10

disjoint sets of samples can be pulled.

• To run the experiments, use disc experiments.py. Modify any of the global

variables to fit the desired values. Default values are the values which this

research used.

• Running the code in disc experiments.py will generate 5 different folders

(one for each transform) labelled untrans, sqrt, log, pca, fft.Each folder

contains 2 files: real data exp.csv and fake data exp.csv

• With the above folders and files generated, run the code in thesis project -

disc v2.ipynb to conduct the analysis and generate plots. Make sure to change

any directory references to fit your directory structure.

• Running all cells of the Jupyter Notebook (.ipynb file) will generate results

files and figures.

– Histogram Figures will be located in figures/ generated in .pdf and .png

104

and have the format hist mat vert 1000 1000 and will be located in a

directory with the appropriate transform (one of the 5 listed above).

– Results will be in 2 different files in the results/ directory. For each

transform, there will be a JSD results TRANSFORM NAME HERE.csv and

JSD results TRANSFORM NAME HERE stats.csv file. The results file con-

tains the raw JSD scores for each of the 10 runs. The stats file contains

the mean, min, max, and range of JSD scores for each metric ordered by

decreasing mean JSD.

– Box-and-Whisker plots of each of the metrics JSD scores in each trans-

form will also be generated and have the format box whisker network -

TRANSFORM NAME HERE.pdf and box whisker network TRANSFORM NAME

HERE zoomed.pdf

1.5 Discriminative Ability Experiment - Host Events Dataset

With the real and fake Host Events sample repositories generated, we can run

the discriminative ability experiments on the Host Events dataset. For our work, we

created 10,000 samples in each repository for each distribution, however, this number

can change. 10,000 samples is a good number since the experiment pulls 1,000 samples

10 times, thus ensuring that if necessary, 10 disjoint sets of samples can be pulled.

• To run the experiments, use disc experiments host.py. Modify any of the

global variables to fit the desired values. Default values are the values which

this research used.

• Running the code in disc experiments host.py will generate 5 different fold-

ers (one for each transform) labelled untrans, sqrt, log, pca, fft.Each

folder contains 4 files: real data exp host uniform.csv, real data exp -

105

host normal.csv, fake data exp host uniform.csv and fake data exp host -

normal.csv

• With the above folders and files generated, run the code in thesis project -

disc v2 host.ipynb to conduct the analysis and generate plots. Make sure to

change any directory references to fit your directory structure.

• Running all cells of the Jupyter Notebook (.ipynb file) will generate results

files and figures

• The default is for all of the results to use the uniform distribution, so all files

will have the uniform extension in the name. To get normal results, change the

input file to have the normal extension instead of uniform and change all figures

and results from uniform to normal. The following instructions use uniform as

the distribution name

– Histogram Figures will be located in figures/ generated in .pdf and .png

and have the format hist mat vert 1000 1000 and will be located in a

directory with the appropriate transform (one of the 5 listed above) and

the sub-directory of the distribution (uniform or normal).

– Results will be in 2 different files in the results/ directory. For each

transform, there will be a JSD results host uniform TRANSFORM NAME

HERE.csv and JSD results host uniform TRANSFORM NAME HERE stats.csv

file. The results file contains the raw JSD scores for each of the 10 runs.

The stats file contains the mean, min, max, and range of JSD scores for

each metric ordered by decreasing mean JSD.

– Box-and-Whisker plots of each of the metrics JSD scores in each transform

will also be generated and have the format box whisker host uniform -

106

TRANSFORM NAME HERE.pdf and box whisker host uniform TRANSFORM NAME

HERE zoomed.pdf

1.6 Efficiency Experiment - Host Events Dataset

With the real and fake Network Events samples generated, the following steps

detail how to re-create the Efficiency experiments.

• Run the code in efficiency experiments.py to generate the results for the ef-

ficiency experiment. Results will be located in 5 folders, one for each transform.

Within each folder, the files will have the format real data exp eff {SAMPLE

SIZE}.csv and fake data exp eff {SAMPLE SIZE}.csv. SAMPLE SIZE will

be 100, 500, 1,000, 1,500,...,5,000. NOTE: This will take a long time (several

days)

• Run the cells in thesis project efficiency.ipynb to generate the figures for

the efficiency experiments. Ensure that the directory with the results file is

pointed to within the code

• The time efficiency experiment will output a figure in the figures/ directory

with the name time efficiency.eps and will output the results in a CSV file

names time efficiency results.csv

• The rest of the efficiency results will be figures named sample efficiency -

TRANSFORM jsd.pdf

1.7 Efficiency Experiment - Host Events Dataset

With the real and fake Host Events samples generated, the following steps detail

how to re-create the Efficiency experiments. These instructions (and this research) use

107

the uniform samples, but normal results can be created/used by replacing “uniform”

with “normal” in all file names or commands.

• Run the code in efficiency experiments host.py to generate the results for

the efficiency experiment. Results will be located in 5 folders, one for each trans-

form. Within each folder, the files will have the format real data exp eff -

host uniform {SAMPLE SIZE}.csv and fake data exp eff host uniform {SAMPLE

SIZE}.csv. SAMPLE SIZE will be 100, 500, 1,000, 1,500,...,5,000. NOTE: This

will take a long time (several days)

• Run the cells in thesis project efficiency host.ipynb to generate the fig-

ures for the efficiency experiments. Ensure that the directory with the results

file is pointed to within the code

• The time efficiency experiment will output a figure in the figures/ directory

with the name time efficiency host.eps and will output the results in a CSV

file names time efficiency host results.csv

• The rest of the efficiency results will be figures named sample efficiency -

host TRANSFORM jsd.pdf

108

Appendix B. Metric Calculation Code

1 #!/usr/bin/env python3

2 # -*- coding: utf -8 -*-

3 """

4 Created on Thu Sep 12 13:03:47 2019

5

6 @author: mnewlin

7 """

8

9 import numpy as np

10 import pandas as pd

11 import scipy

12 from scipy import stats

13 from scipy.linalg import sqrtm

14

15 from scipy.spatial.distance import pdist

16 from scipy.spatial.distance import cosine

17 from scipy.spatial.distance import cdist

18 #from scipy.spatial.distance import jensonshannon as js

19

20 from scipy.stats import wasserstein_distance as wasserstein

21 from scipy.special import rel_entr

22

23 from scipy.stats import norm , entropy

24 from scipy.stats.mstats import gmean

25 import time

26

27

28 """

29 Generates probabilities for matrices X and Y, assuming given

distribution

109

30 distribution defaults to normal (may add other distributions

later)

31

32 """

33 def generate_probs(X,Y, dist=’norm’):

34 X = np.nan_to_num(np.array(X))

35 Y = np.nan_to_num(np.array(Y))

36 num_rows = X.shape [0]

37 num_cols = X.shape [1]

38 norm_x = np.zeros((num_rows , num_cols))

39 norm_y = np.zeros((num_rows , num_cols))

40 if dist == ’norm’:

41 for j in range(num_cols):

42 xj = X[:,j]

43

44 prob_xj = norm.pdf(xj , loc=xj.mean(), scale=xj.var())

45 norm_x[:,j] = prob_xj

46

47 yj = Y[:,j]

48

49 prob_yj = norm.pdf(yj , loc=yj.mean(), scale=yj.var())

50 norm_y[:,j] = prob_yj

51 norm_x = np.nan_to_num(norm_x)

52 norm_y = np.nan_to_num(norm_y)

53 return norm_x , norm_y

54

55 """

56 Calculates the Power distance between two matrices X and Y

57 Defaults to Euclidean Distance unless parameters p and r are

provided

58 """

59 def l_p_distance(X,Y,p=2,r=2):

110

60 X = np.array(X)

61 Y = np.array(Y)

62 if (X.shape != Y.shape):

63 print("Usage: Matrices must be the same shape.")

64 return -1

65 num_cols = X.shape [1]

66 distances = np.zeros ((num_cols ,1))

67 for i in range(num_cols):

68 x = X[:,i]

69 y = Y[:,i]

70 diff = np.abs(x-y)

71 distances[i] = np.power(np.sum(np.power(diff ,p)) ,(1/r))

72

73 return np.mean(np.nan_to_num(distances))

74

75 """

76 Calculates the cosine similarity between two matrices X and Y

77 0 --> X and Y are the same

78 1 --> X and Y are orthogonal

79 """

80 def cosine_similarity(X,Y):

81 X = np.array(X)

82 Y = np.array(Y)

83 num_cols = X.shape [1]

84 cos_sims = np.array ([])

85 for i in range(num_cols):

86 cos_sim = cosine(X[:,i], Y[:,i])

87 cos_sims = np.append(cos_sims , cos_sim)

88 cos_sims = np.nan_to_num(cos_sims)

89 cos_sims = np.where(cos_sims > 1, 1, cos_sims)

90 return np.mean(cos_sims)

91

111

92 """

93 Calculates the Mahalanobis distance between 2 matrices X and Y

94 """

95 def mahalanobis_distance(X,Y):

96 X = np.array(X)

97 Y = np.array(Y)

98 stack = np.vstack ([X, Y])

99 VI = np.linalg.pinv(np.cov(stack , rowvar=False))

100 d_mat = cdist(X,Y, metric=’mahalanobis ’, VI=VI)

101 return np.trace(d_mat)

102

103 def alt_mahalanobis(X,Y):

104 X = np.array(X)

105 Y = np.array(Y)

106 prob_x , prob_y = generate_probs(X,Y)

107 # Generate Positive Definite Matrix

108 #XXT = np.matmul(X.T,X)

109 #YYT = np.matmul(Y.T,Y)

110 #stack = np.vstack ([XXT , YYT])

111 #VI = np.linalg.pinv(np.cov(stack , rowvar=False))

112 #mahalanobis = cdist(XXT , YYT , ’mahalanobis ’, VI=VI)

113 stack = np.vstack ([prob_x , prob_y])

114 VI = np.linalg.pinv(np.cov(stack , rowvar=False))

115 mahalanobis = cdist(prob_x , prob_y , ’mahalanobis ’, VI=VI)

116 return np.mean(np.nan_to_num(mahalanobis))

117

118 """

119 Calculates the chi squared distance between 2 matrices X and Y

120 This function relies on the generate_probs function to generate

121 probabilities for the values of the matrices X and Y in order to

calculate

122 the chi -squared distance.

112

123 """

124 def chi_squared_dist(X,Y):

125 X = np.array(X)

126 Y = np.array(Y)

127 num_cols = X.shape [1]

128 prob_x , prob_y = generate_probs(X,Y)

129 chi_squares = np.array ([])

130 for j in range(num_cols):

131 prob_yj = prob_y[:,j]

132 epsilon = 1e-6

133 prob_yj = np.where(prob_yj == 0, epsilon , prob_yj)

134 chi_squares = np.append(chi_squares , np.sum(np.divide(np.

square(prob_x[:,j]-prob_y[:,j]), prob_yj)))

135 return np.mean(np.nan_to_num(chi_squares))

136 """

137 Calculate the Wasserstein Distance between Matrices X and Y

138 """

139

140 def KL(P,Q, eps=1e-5):

141 """ Epsilon is used here to avoid conditional code for

142 checking that neither P nor Q is equal to 0. """

143 epsilon = eps

144

145 # You may want to instead make copies to avoid changing the np

arrays.

146 P_prime = np.where(P==0, P+epsilon , P)

147 Q_prime = np.where(Q==0, Q+epsilon , Q)

148

149

150 divergence = np.sum(np.multiply(P_prime ,np.log(P_prime/Q_prime))

)

151 return divergence

113

152

153 """

154 Function for scipy jenson shannon divergence

155 https :// scipy.github.io/devdocs/generated/scipy.spatial.distance

.jensenshannon.html

156 As of writing this file , this is still in a dev version of scipy

so

157 this function was copied out of scipy source github at

158 https :// github.com/scipy/scipy/blob /089 e3b2/scipy/spatial/

distance.py#L1235 -L1292

159

160 Original code has base=None but I use base=2 so that JSD bounded

between 0 and 1

161 """

162 def jensenshannon(p, q, base =2):

163 """

164 Compute the Jensen -Shannon distance (metric) between

165 two 1-D probability arrays. This is the square root

166 of the Jensen -Shannon divergence.

167 The Jensen -Shannon distance between two probability

168 vectors ‘p‘ and ‘q‘ is defined as ,

169 .. math::

170 \\sqrt {\\ frac{D(p \\ parallel m) + D(q \\ parallel m)}{2}}

171 where :math:‘m‘ is the pointwise mean of :math:‘p‘ and :math:‘q‘

172 and :math:‘D‘ is the Kullback -Leibler divergence.

173 This routine will normalize ‘p‘ and ‘q‘ if they don’t sum to

1.0.

174 Parameters

175 ----------

176 p : (N,) array_like

177 left probability vector

178 q : (N,) array_like

114

179 right probability vector

180 base : double , optional

181 the base of the logarithm used to compute the output

182 if not given , then the routine uses the default base of

183 scipy.stats.entropy.

184 Returns

185 -------

186 js : double

187 The Jensen -Shannon distance between ‘p‘ and ‘q‘

188 .. versionadded :: 1.2.0

189 Examples

190 --------

191 >>> from scipy.spatial import distance

192 >>> distance.jensenshannon ([1.0, 0.0, 0.0], [0.0, 1.0, 0.0],

2.0)

193 1.0

194 >>> distance.jensenshannon ([1.0, 0.0], [0.5, 0.5])

195 0.46450140402245893

196 >>> distance.jensenshannon ([1.0, 0.0, 0.0], [1.0, 0.0, 0.0])

197 0.0

198 """

199 p = np.asarray(p)

200 q = np.asarray(q)

201 p = p / np.sum(p, axis =0)

202 q = q / np.sum(q, axis =0)

203 m = (p + q) / 2.0

204 left = rel_entr(p, m)

205 right = rel_entr(q, m)

206 js = np.sum(left , axis =0) + np.sum(right , axis =0)

207 if base is not None:

208 js /= np.log(base)

209 return np.sqrt(js / 2.0)

115

210

211

212 def wasserstein_dist(X,Y):

213 X = np.array(X)

214 Y = np.array(Y)

215 #x_prob , y_prob = generate_probs(X,Y)

216 num_cols = X.shape [1]

217 wass_dists = np.array ([])

218 for x in range(num_cols):

219 u = X[:, x]

220 v = Y[:, x]

221 d = wasserstein(u,v)

222 wass_dists = np.append(wass_dists , d)

223 return gmean(np.where(wass_dists ==0,1, wass_dists))

224

225 """

226 Calculates the Difference in standardized entropy between two

matrices X and Y

227 """

228 def calc_entropy(X,Y, sample_length , standardized=True):

229 sample_size = 1

230 if standardized:

231 sample_size = np.log(sample_length)

232 X = np.array(X)

233 Y = np.array(Y)

234 norm_x ,norm_y = generate_probs(X,Y)

235 num_cols = X.shape [1]

236 ents = np.array ([])

237 for j in range(num_cols):

238 ent_x = np.nan_to_num(entropy(norm_x[:,j])/sample_size)

239 ent_y = np.nan_to_num(entropy(norm_y[:,j])/sample_size)

240 diff = np.abs(ent_x - ent_y)

116

241 ents = np.append(ents , diff)

242 return np.mean(np.nan_to_num(ents))

243

244 """

245 Calculates the Difference in perplexity between two matrices X

and Y

246 """

247 def calc_perplexity(X,Y, sample_length , standardized=True):

248 sample_size = 1

249 if standardized:

250 sample_size = np.log(sample_length)

251 X = np.array(X)

252 Y = np.array(Y)

253 norm_x ,norm_y = generate_probs(X,Y)

254 num_cols = X.shape [1]

255 perps = np.array ([])

256 for j in range(num_cols):

257 ent_x = np.nan_to_num(entropy(norm_x[:,j])/sample_size)

258 ent_y = np.nan_to_num(entropy(norm_y[:,j])/sample_size)

259 perp_x = np.power(2,ent_x)

260 perp_y = np.power(2,ent_y)

261 diff = np.abs(perp_x - perp_y)

262 perps = np.append(perps , diff)

263 return np.mean(np.nan_to_num(perps))

264

265 """

266 Calculates the Frechet Inception Distance between matrices X and

Y

267 Implementation details taken from

268 https :// machinelearningmastery.com/how -to-implement -the -frechet -

inception -distance -fid -from -scratch/

269 """

117

270 def fid(X,Y):

271 X = np.array(X)

272 Y = np.array(Y)

273 prob_x , prob_y = generate_probs(X,Y)

274 mu_x = np.mean(prob_x , axis =0)

275 mu_y = np.mean(prob_y , axis =0)

276

277 Cx = np.cov(prob_x ,rowvar=False)

278 Cy = np.cov(prob_y , rowvar=False)

279 ssdiff = np.sum(np.square(mu_x -mu_y))

280 covmean = scipy.linalg.sqrtm(Cx.dot(Cy))

281 score = ssdiff + np.trace(Cx + Cy - 2.0* covmean)

282 return np.abs(score)

283 """

284 Calculates (X-Y)^2 for matrices X and Y

285 Returns distance matrix M

286 """

287 def distance(X,Y, sqrt=False):

288 X = np.array(X)

289 Y = np.array(Y)

290 X2 = np.matmul(X,X.T)

291 Y2 = np.matmul(Y,Y.T)

292 XY = np.matmul(X,Y.T)

293 M = X2+Y2 -2*XY

294 if sqrt:

295 M = np.sqrt(np.abs(M))

296 return M

297

298 """

299 Calculated the Maximum Mean Discrepancy between

300 real and fake distributions using the Gaussian Kernel (RBF)

301 """

118

302 def mmd(Mxx ,Mxy , Myy , sigma):

303 mu = np.mean(Mxx)

304 Mxx = np.nan_to_num(np.exp(np.divide(-Mxx ,mu*2* sigma*sigma)))

305 Mxy = np.nan_to_num(np.exp(np.divide(-Mxy ,mu*2* sigma*sigma)))

306 Myy = np.nan_to_num(np.exp(np.divide(-Myy ,mu*2* sigma*sigma)))

307 a = Mxx.mean() + Myy.mean() - 2*Mxy.mean()

308 mmd = np.sqrt(np.abs(a))

309 return mmd

310

311 """

312 Calculates the Bhattacharyya distance between X and Y

313 """

314 def bhattacharyya(X, Y):

315 X = np.array(X)

316 Y = np.array(Y)

317 num_cols = X.shape [1]

318 prob_x , prob_y = generate_probs(X,Y)

319 dist = np.array ([])

320 for j in range(num_cols):

321 x = prob_x[:,j]

322 y = prob_y[:,j]

323 bc = np.sum(np.sqrt(np.multiply(x,y)))

324 bd = -np.log(bc)

325 dist = np.append(dist , bd)

326 return np.mean(np.nan_to_num(dist))

327

328

329 """

330 Score two sets of samples based on a given metric

331 """

332 def score_set(S1 , S2 , sample_length , num_samples , metric=’lp’, p=2,

r=2, standardized=True , G1=None , G2=None):

119

333 dist_matrix = np.array ([])

334 if metric == ’lp’:

335 for x in range(num_samples):

336 d = l_p_distance(S1[x], S2[x], p=p, r=r)

337 dist_matrix = np.append(dist_matrix , d)

338 elif metric == ’cosine ’:

339 for x in range(num_samples):

340 d = cosine_similarity(S1[x], S2[x])

341 dist_matrix = np.append(dist_matrix , d)

342 elif metric == ’mahalanobis ’:

343 for x in range(num_samples):

344 d = mahalanobis_distance(S1[x], S2[x])

345 dist_matrix = np.append(dist_matrix , d)

346 elif metric == ’chi_squared ’:

347 for x in range(num_samples):

348 d = chi_squared_dist(S1[x], S2[x])

349 dist_matrix = np.append(dist_matrix , d)

350 elif metric == ’wasserstein ’:

351 for x in range(num_samples):

352 d = wasserstein_dist(S1[x], S2[x])

353 dist_matrix = np.append(dist_matrix , d)

354 elif metric == ’fid’:

355 for x in range(num_samples):

356 d = fid(S1[x], S2[x])

357 dist_matrix = np.append(dist_matrix , d)

358 elif metric == ’entropy ’:

359 for x in range(num_samples):

360 d = calc_entropy(S1[x], S2[x], sample_length=

sample_length , standardized=standardized)

361 dist_matrix = np.append(dist_matrix , d)

362 elif metric == ’perplexity ’:

363 for x in range(num_samples):

120

364 d = calc_perplexity(S1[x], S2[x], sample_length=

sample_length , standardized=standardized)

365 dist_matrix = np.append(dist_matrix , d)

366 elif metric == ’bd’:

367 for x in range(num_samples):

368 d = bhattacharyya(S1[x], S2[x])

369 dist_matrix = np.append(dist_matrix , d)

370 elif metric == ’mmd’:

371 for x in range(num_samples):

372 Mxx = distance(S1[x],S2[x], sqrt=True)

373 Myy = distance(G1[x],G2[x], sqrt=True)

374 Mxy = distance(S1[x], G1[x], sqrt=True)

375 d = mmd(Mxx , Mxy , Myy , sigma =1)

376 dist_matrix = np.append(dist_matrix , d)

377 return np.mean(dist_matrix), np.std(dist_matrix), dist_matrix

378

379 """

380 Score two sets of samples based on a given metric

381 """

382 def time_score_set(S1 , S2 , sample_length , num_samples , metric=’lp’,

p=2, r=2, standardized=True , G1=None , G2=None):

383 dist_matrix = np.array ([])

384 t_start = -1.0

385 t_end = -1.0

386 if metric == ’lp’:

387 t_start = time.time()

388 for x in range(num_samples):

389 d = l_p_distance(S1[x], S2[x], p=p, r=r)

390 dist_matrix = np.append(dist_matrix , d)

391 t_end = time.time()

392 elif metric == ’cosine ’:

393 t_start = time.time()

121

394 for x in range(num_samples):

395 d = cosine_similarity(S1[x], S2[x])

396 dist_matrix = np.append(dist_matrix , d)

397 t_end = time.time()

398 elif metric == ’mahalanobis ’:

399 t_start = time.time()

400 for x in range(num_samples):

401 d = mahalanobis_distance(S1[x], S2[x])

402 dist_matrix = np.append(dist_matrix , d)

403 t_end = time.time()

404 elif metric == ’chi_squared ’:

405 t_start = time.time()

406 for x in range(num_samples):

407 d = chi_squared_dist(S1[x], S2[x])

408 dist_matrix = np.append(dist_matrix , d)

409 t_end = time.time()

410 elif metric == ’wasserstein ’:

411 t_start = time.time()

412 for x in range(num_samples):

413 d = wasserstein_dist(S1[x], S2[x])

414 dist_matrix = np.append(dist_matrix , d)

415 t_end = time.time()

416 elif metric == ’fid’:

417 t_start = time.time()

418 for x in range(num_samples):

419 d = fid(S1[x], S2[x])

420 dist_matrix = np.append(dist_matrix , d)

421 t_end = time.time()

422 elif metric == ’entropy ’:

423 t_start = time.time()

424 for x in range(num_samples):

425 d = calc_entropy(S1[x], S2[x], sample_length=

122

sample_length , standardized=standardized)

426 dist_matrix = np.append(dist_matrix , d)

427 t_end = time.time()

428 elif metric == ’perplexity ’:

429 t_start = time.time()

430 for x in range(num_samples):

431 d = calc_perplexity(S1[x], S2[x], sample_length=

sample_length , standardized=standardized)

432 dist_matrix = np.append(dist_matrix , d)

433 t_end = time.time()

434 elif metric == ’bd’:

435 t_start = time.time()

436 for x in range(num_samples):

437 d = bhattacharyya(S1[x], S2[x])

438 dist_matrix = np.append(dist_matrix , d)

439 t_end = time.time()

440 elif metric == ’mmd’:

441 t_start = time.time()

442 for x in range(num_samples):

443 Mxx = distance(S1[x],S2[x], sqrt=True)

444 Myy = distance(G1[x],G2[x], sqrt=True)

445 Mxy = distance(S1[x], G1[x], sqrt=True)

446 d = mmd(Mxx , Mxy , Myy , sigma =1)

447 dist_matrix = np.append(dist_matrix , d)

448 t_end = time.time()

449 t_diff = t_end - t_start

450 return dist_matrix , t_diff

123

Bibliography

1. S. Abt and H. Baier, “A Plea for Utilising Synthetic Data when Performing

Machine Learning Based Cyber-Security Experiments,” in Proceedings of the

2014 Workshop on Artificial Intelligent and Security Workshop - AISec ’14.

New York, New York, USA: ACM Press, 2014, pp. 37–45. [Online]. Available:

http://dl.acm.org/citation.cfm?doid=2666652.2666663

2. I. Sharafaldin, A. Habibi Lashkari, and A. A. Ghorbani, “Toward

Generating a New Intrusion Detection Dataset and Intrusion Traffic

Characterization,” in Proceedings of the 4th International Conference on

Information Systems Security and Privacy, 2018, pp. 108–116. [Online].

Available: https://www.unb.ca/cic/datasets/ids-2017.html

3. M. Ma lowidzki, P. Berezi, and M. Mazur, “Network Intrusion Detection :

Half a Kingdom for a Good Dataset,” in Proceedings of NATO STO SAS-139

Workshop, 2015. [Online]. Available: https://www.wil.waw.pl/art prac/2015/

Network Intrusion Detection.pdf

4. G. Maciá-Fernández, J. Camacho, R. Magán-Carrión, P. Garćıa-Teodoro, and

R. Therón, “UGR’16: A new dataset for the evaluation of cyclostationarity-based

network IDSs,” Computers & Security, vol. 73, pp. 411–424, 2017. [Online].

Available: https://doi.org/10.1016/j.cose.2017.11.004

5. B. Ricks, P. Tague, and B. Thuraisingham, “Large-scale realistic network

data generation on a budget,” in Proceedings - 2018 IEEE 19th International

Conference on Information Reuse and Integration for Data Science, IRI 2018,

2018, pp. 23–30. [Online]. Available: http://mews.sv.cmu.edu/research/emews/

124

http://dl.acm.org/citation.cfm?doid=2666652.2666663
https://www.unb.ca/cic/datasets/ids-2017.html
https://www.wil.waw.pl/art_prac/2015/Network_Intrusion_Detection.pdf
https://www.wil.waw.pl/art_prac/2015/Network_Intrusion_Detection.pdf
https://doi.org/10.1016/j.cose.2017.11.004
http://mews.sv.cmu.edu/research/emews/

6. M. Newlin, M. Reith, and M. Deyoung, “Synthetic Data Generation with Machine

Learning for Network Intrusion Detection Systems,” in European Conference on

Information Warfare and Security, ECCWS, vol. 2019-July, 2019, pp. 785–789.

7. D. Garcia Torres, “Generation of Synthetic Data with Generative Adver-

sarial Networks,” Ph.D. dissertation, KTH Royal Institute of Technology,

School of Electrical Engineering and Computer Science (EECS), 2018.

[Online]. Available: http://www.diva-portal.org/smash/record.jsf?pid=diva2%

3A1331279&dswid=-2834

8. F. Maymı́, S. Lathrop, F. Maymı́, and S. Lathrop, “AI in Cyberspace: Beyond

the Hype,” Cyber Defense Review, vol. Volume 3, pp. 71–81, 2018. [Online].

Available: https://cyberdefensereview.army.mil/CDR-Content/Articles/Article-

View/Article/1716483/ai-in-cyberspace-beyond-the-hype/

9. S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, 3rd ed.

Upper Saddle River, New Jersey: Prentice Hall, 2010.

10. G. James, D. Witten, T. Hastie, and R. Tibshirani, “Statistical Learning,” in

An Introduction to Statistical Learning. New York: Springer Science+Business

Media, 2013, ch. 2, pp. 15–58.

11. ——, “Classification,” in An Introduction to Statistical Learning. New York:

Springer Science+Business Media, 2013, ch. 4, pp. 127–173.

12. I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,

A. Courville, and Y. Bengio, “Generative Adversarial Nets,” ArXiv, 2014.

[Online]. Available: http://www.github.com/goodfeli/adversarial

125

http://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1331279&dswid=-2834
http://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1331279&dswid=-2834
https://cyberdefensereview.army.mil/CDR-Content/Articles/Article-View/Article/1716483/ai-in-cyberspace-beyond-the-hype/
https://cyberdefensereview.army.mil/CDR-Content/Articles/Article-View/Article/1716483/ai-in-cyberspace-beyond-the-hype/
http://www.github.com/goodfeli/adversarial

13. “Generative Adversarial Network Architecture.” [Online]. Avail-

able: https://www.researchgate.net/figure/Generative-Adversarial-Network-

Architecture fig1 321865166

14. S. Arora, R. Ge, Y. Liang, T. Ma, and Y. Zhang, “Generalization and equilib-

rium in generative adversarial nets (GANs),” in 34th International Conference

on Machine Learning, ICML 2017, vol. 1, 2017, pp. 322–349.

15. Q. Xu, G. Huang, Y. Yuan, C. Guo, Y. Sun, F. Wu, and K. Weinberger,

“An empirical study on evaluation metrics of generative adversarial networks,”

ArXiv, 6 2018. [Online]. Available: http://arxiv.org/abs/1806.07755

16. M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein GAN,” arXiv, 1 2017.

[Online]. Available: https://arxiv.org/pdf/1701.07875.pdf

17. I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. Courville,

“Improved Training of Wasserstein GANs,” ArXiv, 2017. [Online]. Available:

http://arxiv.org/abs/1704.00028

18. L. Yu, W. Zhang, J. Wang, and Y. Yu, “SeqGAN: Sequence Generative

Adversarial Nets with Policy Gradient,” in Thirty-First AAAI Conference on

Artificial Intelligence (AAAI-17), 2017, pp. 2852–2858. [Online]. Available:

http://arxiv.org/abs/1609.05473

19. J. Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired Image-to-Image

Translation Using Cycle-Consistent Adversarial Networks,” in Proceedings of the

IEEE International Conference on Computer Vision, vol. 2017-Octob. Berkeley

AI Research Labratory, UC Berkeley, 2017, pp. 2242–2251. [Online]. Available:

https://arxiv.org/pdf/1703.10593.pdf

126

https://www.researchgate.net/figure/Generative-Adversarial-Network-Architecture_fig1_321865166
https://www.researchgate.net/figure/Generative-Adversarial-Network-Architecture_fig1_321865166
http://arxiv.org/abs/1806.07755
https://arxiv.org/pdf/1701.07875.pdf
http://arxiv.org/abs/1704.00028
http://arxiv.org/abs/1609.05473
https://arxiv.org/pdf/1703.10593.pdf

20. X. Liu, X. Kong, L. Liu, and K. Chiang, “TreeGAN: Syntax-Aware Sequence

Generation with Generative Adversarial Networks,” in Proceedings - IEEE

International Conference on Data Mining, ICDM, vol. 2018-Novem, 2018, pp.

1140–1145. [Online]. Available: https://arxiv.org/pdf/1808.07582.pdf

21. C. Wang, C. Xu, X. Yao, and D. Tao, “Evolutionary Generative Adversarial

Networks,” IEEE Transactions on Evolutionary Computation, vol. 23, no. 6, pp.

921–934, 2019.

22. D. P. Kingma and M. Welling, “Auto-Encoding Variational Bayes,” in 2nd Inter-

national Conference on Learning Representations, ICLR 2014 - Conference Track

Proceedings, 2014.

23. P. Bachman and D. Precup, “Data Generation as Sequential Decision Making,”

in Advances in Neural Information Processing Systems, vol. 2015-Janua, 2015,

pp. 3249–3257. [Online]. Available: https://arxiv.org/pdf/1506.03504.pdf

24. S. Lu, Y. Zhu, W. Zhang, J. Wang, and Y. Yu, “Neural Text Generation: Past,

Present and Beyond,” 2018. [Online]. Available: http://arxiv.org/abs/1803.07133

25. V. Hajdik, J. Buys, M. W. Goodman, and E. M. Bender, “Neural Text

Generation from Rich Semantic Representations,” 2019, pp. 2259–2266. [Online].

Available: http://svn.delph-in.net/erg/tags/

26. S. Tulyakov, M. Y. Liu, X. Yang, and J. Kautz, “MoCoGAN: Decomposing Mo-

tion and Content for Video Generation,” in Proceedings of the IEEE Computer

Society Conference on Computer Vision and Pattern Recognition. IEEE Com-

puter Society, 12 2018, pp. 1526–1535.

27. C. Yin, Y. Zhu, S. Liu, J. Fei, and H. Zhang, “An Enhancing Framework for

Botnet Detection Using Generative Adversarial Networks,” in 2018 International

127

https://arxiv.org/pdf/1808.07582.pdf
https://arxiv.org/pdf/1506.03504.pdf
http://arxiv.org/abs/1803.07133
http://svn.delph-in.net/erg/tags/

Conference on Artificial Intelligence and Big Data, ICAIBD 2018, 2018, pp. 228–

234.

28. M. Ring, D. Schlör, D. Landes, and A. Hotho, “Flow-based network traffic

generation using Generative Adversarial Networks,” Computers and Security,

vol. 82, pp. 156–172, 2019. [Online]. Available: https://www.sciencedirect.com/

science/article/pii/S0167404818308393?via%3Dihub

29. L. Theis, A. Van Den Oord, and M. Bethge, “A Note on the Evaluation of Gen-

erative Models,” in 4th International Conference on Learning Representations,

ICLR 2016 - Conference Track Proceedings, 2016.

30. T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen,

“Improved Techniques for Training GANs,” arXiv, 6 2016. [Online]. Available:

http://arxiv.org/abs/1606.03498

31. C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the

Inception Architecture for Computer Vision,” in Proceedings of the IEEE Com-

puter Society Conference on Computer Vision and Pattern Recognition, vol. 2016-

Decem, 2016, pp. 2818–2826.

32. J. Deng, W. Dong, R. Socher, L.-J. Li, Kai Li, and Li Fei-Fei, “ImageNet:

A large-scale hierarchical image database,” in IEEE conference on computer

vision and pattern recognition, 2010, pp. 248–255. [Online]. Available:

https://www.researchgate.net/publication/221361415

33. M. Lucic, K. Kurach, Marcin Michalski, B. O. Bousquet, and S. Gelly, “Are

GANs Created Equal? A Large-Scale Study,” ArXiV, 2018. [Online]. Available:

https://arxiv.org/pdf/1711.10337.pdf

128

https://www.sciencedirect.com/science/article/pii/S0167404818308393?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0167404818308393?via%3Dihub
http://arxiv.org/abs/1606.03498
https://www.researchgate.net/publication/221361415
https://arxiv.org/pdf/1711.10337.pdf

34. M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter, “GANs

trained by a two time-scale update rule converge to a local Nash equilibrium,”

in Advances in Neural Information Processing Systems, vol. 2017-Decem, Long

Beach, CA, 2017, pp. 6627–6638.

35. M. Deza and E. Deza, Encyclopedia of distances. Springer Berlin Heidelberg,

2009. [Online]. Available: http://link.springer.com/content/pdf/10.1007/978-3-

642-00234-2 1.pdf

36. P. C. Mahalanobis, “On the generilised distance in statistics,” Proceedings of the

National Institute of Sciences of India, vol. 2, no. 1, pp. 49–55, 1936.

37. D. J. Weller-Fahy, B. J. Borghetti, and A. A. Sodemann, “A Survey of Distance

and Similarity Measures Used Within Network Intrusion Anomaly Detection,”

IEEE Communications Surveys and Tutorials, vol. 17, no. 1, pp. 70–91, 2015.

38. K. Wang and S. J. Stolfo, “Anomalous Payload-Based Network Intrusion Detec-

tion,” Lecture Notes in Computer Science (including subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 3224, pp. 203–

222, 2004.

39. C. E. Shannon, “A Mathematical Theory of Communication,” The Bell System

Technical Journal, vol. 27, no. 3, pp. 379–423, 1948.

40. Y. Wang, Z. Zhang, L. Guo, and S. Li, “Using entropy to classify traffic more

deeply,” in Proceedings - 6th IEEE International Conference on Networking, Ar-

chitecture, and Storage, NAS 2011, 2011, pp. 45–52.

41. P. Kawthekar, R. Rewari, and S. Bhooshan, “Evaluating Generative

Models for Text Generation,” arXiv, pp. 1–8, 2017. [Online]. Available:

https://web.stanford.edu/class/cs224n/reports/2737434.pdf

129

http://link.springer.com/content/pdf/10.1007/978-3-642-00234-2_1.pdf
http://link.springer.com/content/pdf/10.1007/978-3-642-00234-2_1.pdf
https://web.stanford.edu/class/cs224n/reports/2737434.pdf

42. L. N. Vaserstein, “Markov Processes over Denumerable Products of Spaces,

Describing Large Systems of Automata,” Problemy Peredachi Informatsii, vol. 5,

no. 3, pp. 64–72, 1969. [Online]. Available: https://arxiv.org/pdf/1908.09899.pdf

43. S. Kullback and R. Leibler, “On Information and Sufficiency,” Annals of

Mathematical Statistics, vol. 22, no. 1, pp. 79–86, 1951. [Online]. Available:

https://projecteuclid.org/euclid.aoms/1177729694

44. J. Lin, “Divergence Measures Based on the Shannon Entropy,” IEEE Transac-

tions on Information Theory, vol. 37, no. 1, pp. 145–151, 1991.

45. D. M. Endres and J. E. Schindelin, “A new metric for probability distributions,”

pp. 1858–1860, 2003.

46. A. Singhal, “Modern Information Retrieval: A Brief Overview,” Bulletin of

the IEEE Computer Society Technical Committee on Data Engineering, vol. 24,

no. 4, pp. 35–43, 2001. [Online]. Available: http://trec.nist.gov

47. A. Gretton, K. M. Borgwardt, M. J. Rasch, A. Smola, B. Schölkopf, and

A. Smola GRETTON, “A Kernel Two-Sample Test,” Journal of Machine

Learning Research, vol. 13, no. Mar, pp. 723–773, 2012. [Online]. Available:

http://jmlr.csail.mit.edu/papers/v13/gretton12a.html

48. M. Wurzenberger, F. Skopik, G. Settanni, and W. Scherrer, “Complex log file

synthesis for rapid sandbox-benchmarking of security- and computer network

analysis tools,” Information Systems, vol. 60, no. C, pp. 13–33, 8 2016. [Online].

Available: https://linkinghub.elsevier.com/retrieve/pii/S030643791530212X

49. V. Kulkarni and B. Garbinato, “Generating synthetic mobility traffic using

RNNs,” in Proceedings of the 1st Workshop on Artificial Intelligence and

Deep Learning for Geographic Knowledge Discovery - GeoAI ’17. New

130

https://arxiv.org/pdf/1908.09899.pdf
https://projecteuclid.org/euclid.aoms/1177729694
http://trec.nist.gov
http://jmlr.csail.mit.edu/papers/v13/gretton12a.html
https://linkinghub.elsevier.com/retrieve/pii/S030643791530212X

York, New York, USA: ACM Press, 2017, pp. 1–4. [Online]. Available:

http://dl.acm.org/citation.cfm?doid=3149808.3149809

50. M. Arjovsky and L. Bottou, “Towards principled methods for training generative

adversarial networks,” in 5th International Conference on Learning Representa-

tions, ICLR 2017 - Conference Track Proceedings, 2017.

51. S. Semeniuta, A. Severyn, and S. Gelly, “On Accurate Evaluation

of GANs for Language Generation,” 2018. [Online]. Available: http:

//arxiv.org/abs/1806.04936

52. K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “BLEU: a Method for

Automatic Evaluation of Machine Translation,” in Proceedings of the 40th Annual

Meeting of the Association for Computational Linguistics, Philadelphia, 2002,

pp. 311–318. [Online]. Available: https://www.aclweb.org/anthology/P02-1040

53. R. Wirth, “CRISP-DM : Towards a Standard Process Model for Data Mining,” in

Proceedings of the Fourth International Conference on the Practical Application

of Knowledge Discovery and Data Mining, 2000, pp. 29–39.

54. “CRISP-DM Process Diagram.” [Online]. Available: https://upload.wikimedia.

org/wikipedia/commons/b/b9/CRISP-DM Process Diagram.png

55. M. J. M. Turcotte, A. D. Kent, and C. Hash, “Unified Host and Network

Data Set,” in Data Science for Cyber-Security. World Scientific, 11 2018,

ch. 1, pp. 1–22. [Online]. Available: https://www.worldscientific.com/doi/abs/

10.1142/9781786345646 001

56. P. Buneman, “Semistructured data,” in Proceedings of the ACM SIGACT-

SIGMOD-SIGART Symposium on Principles of Database Systems - PODS, 1997,

pp. 117–121. [Online]. Available: http://www.cis.upenn.edu/∼db.

131

http://dl.acm.org/citation.cfm?doid=3149808.3149809
http://arxiv.org/abs/1806.04936
http://arxiv.org/abs/1806.04936
https://www.aclweb.org/anthology/P02-1040
https://upload.wikimedia.org/wikipedia/commons/b/b9/CRISP-DM_Process_Diagram.png
https://upload.wikimedia.org/wikipedia/commons/b/b9/CRISP-DM_Process_Diagram.png
https://www.worldscientific.com/doi/abs/10.1142/9781786345646_001
https://www.worldscientific.com/doi/abs/10.1142/9781786345646_001
http://www.cis.upenn.edu/~db.

57. Scikit-Learn, “Category Encoders,” 2016. [Online]. Available: http://contrib.

scikit-learn.org/categorical-encoding/index.html

58. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,

D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn:

Machine Learning in Python,” Journal of Machine Learning Research, vol. 12, pp.

2825–2830, 2011. [Online]. Available: https://scikit-learn.org/stable/index.html

59. F. Pedregosa, “Scikit-Learn RobustScaler,” 2016. [Online]. Avail-

able: https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.

RobustScaler.html

60. A. Rajaraman and J. D. Ullman, “Data Mining,” in Mining of

Massive Datasets. Cambridge University Press, 2005, ch. 1, pp. 1–

19. [Online]. Available: https://www.cambridge.org/core/product/identifier/

CBO9781139058452A007/type/book part

61. M. Roesch, “Snort-Lightweight Intrusion Detection for Networks,” in Proceedings

of LISA ’99, 1999, pp. 229–238. [Online]. Available: https://static.usenix.org/

publications/library/proceedings/lisa99/full papers/roesch/roesch.pdf

132

http://contrib.scikit-learn.org/categorical-encoding/index.html
http://contrib.scikit-learn.org/categorical-encoding/index.html
https://scikit-learn.org/stable/index.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.RobustScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.RobustScaler.html
https://www.cambridge.org/core/product/identifier/CBO9781139058452A007/type/book_part
https://www.cambridge.org/core/product/identifier/CBO9781139058452A007/type/book_part
https://static.usenix.org/publications/library/proceedings/lisa99/full_papers/roesch/roesch.pdf
https://static.usenix.org/publications/library/proceedings/lisa99/full_papers/roesch/roesch.pdf

Acronyms

AI Artificial Intelligence. 5

ANN Artificial Neural Network. 5

BLEU Bilingual Language Evaluation Understudy. 11, 20

CFG Context-Free Grammar. 9

CNN Convolutional Neural Network. 5

CRISP-DM Cross-Industry Standard Process for Data Mining. ix, 23

DL Deep Learning. 1, 2, 5, 6, 32

FFT Fast Fourier Transform. ix, x, xi, xii, 32, 42, 43, 60, 61, 63, 82, 85, 97

FID Fréchet Inception Distance. 13, 14, 20, 22, 31, 32, 42, 79, 96

GPU Graphics Processing Unit. 98

IDF Inverse Document Frequency. 29, 30

IDS Intrusion Detection System. 1, 2, 18

JSD Jensen-Shannon Distance. ix, x, xi, xii, 17, 33, 34, 36, 38, 39, 40, 41, 42, 43,

54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 82, 85, 82, 85, 82, 85, 87, 85, 87, 85, 89,

97, 98, 105, 106

JSON JavaScript Object Notation. ix, 25, 27

KLD Kullback-Leibler Divergence. 17, 34

133

MC Monte Carlo. 8

ML Machine Learning. iv, 1, 2, 5, 28, 99

MLE Maximum Likelihood Estimation. 11

MMD Maximum Mean Discrepancy. 18, 20, 22, 31, 32, 58, 59, 60, 63, 79, 96, 97

PCA Principal Component Analysis. ix, x, xi, xii, 32, 41, 42, 43, 58, 60, 63, 82, 85,

97

PMF Probability Mass Function. 33

R-F Real-Fake. 33, 36, 38, 39, 40, 42, 43, 54, 58, 60, 63, 85, 87, 85

R-R Real-Real. 33, 36, 38, 39, 40, 42, 43, 54, 58, 60, 63, 85, 87, 85

RNN Recurrent Neural Network. 5, 11, 19, 20

SeqGAN Sequence GAN. ix, 8, 9

SQRT Square Root. ix, x, xi, xii, 32, 39, 40, 43, 55, 57, 58, 63, 82, 85

TCP Transmission Control Protocol. 11, 12, 25

TF Term Frequency. 29, 30

TF-IDF Term Frequency - Inverse Document Frequency. 29, 30, 79, 102

UDP User Datagram Protocol. 12, 25

UHNDS Unified Host and Network Data Set. ix, xii, 25, 28

VAE Variational Auto-Encoder. 10

134

WGAN Wasserstein GAN. 7, 8, 16, 19, 134

WGAN-GP Wasserstein GAN (WGAN) - Gradient Penalty. 8, 12, 16

XML Extensible Markup Language. 25

135

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

26–03–2020 Master’s Thesis Oct 2018 — Mar 2020

Quantitative Analysis of Evaluation Criteria for Generative Models

Marvin W. Newlin, 2d Lt, USAF

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT-ENG-MS-20-M-048

Air Force Research Lab, Sensors Directorate, Layered Sensing Exploitation
Division
2241 Avionics Cir, Wright-Patterson AFB, OH 45433

AFRL/RYA

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

This work is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

The goal of this research is to provide a framework that can be used to inform and improve the process of generating
synthetic semi-structured sequential data. A series of experiments evaluating a chosen set of metrics on discriminative
ability and efficiency is performed. This research shows that the choice of feature space in which distances are calculated
in is critical. The ability to discriminate between real and generated data hinges on the space that the distances are
calculated in. Additionally, the choice of metric significantly affects the sample distance distributions in a suitable feature
space. There are three main contributions from this work. First, this work provides the first known framework for
evaluating metrics for semi-structured sequential synthetic data generation. Second, this work provides a ”black box”
evaluation framework which is generator agnostic. Third, this research provides the first known evaluation of metrics for
semi-structured sequential data.

Generative Models, Evaluation Metrics, Machine Learning, Generative Adversarial Networks

U U U UU 149

Lt Col Mark E. DeYoung, AFIT/ENG

(937) 255-3636; mark.deyoung@afit.edu

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Problem Background
	Problem Statement and Research Goals
	Research Questions and Hypothesis
	Assumptions
	Research Contributions
	Document Overview

	Background and Literature Review
	Artificial Intelligence and Machine Learning
	Generative Methods
	Generative Adversarial Networks
	Improvements on Generative Adversarial Networks
	Other Generative Methods

	Applications of Generative Adversarial Networks
	Evaluation of Generative Adversarial Networks
	Evaluation Metrics
	Power Distances
	Probability Distribution Measures
	Other Distance Measures

	Related Work
	Synthetic Data Generation
	Quantitative Evaluation of Generative Methods

	Summary

	Methodology
	Methodology Overview
	Research Questions
	Data Understanding
	Network Events
	Host Events

	Data Preparation
	Modeling
	Metrics
	Evaluation
	Data Transformations
	Experiment overview
	Discriminative Behavior
	Efficiency

	Expected Outcomes

	Results and Analysis
	Network Events Data
	Host Events Data
	Time Efficiency
	Sample Efficiency - Network Events Data
	Sample Efficiency - Host Events Data

	Conclusions
	Research Summary
	Discriminative Ability
	Efficiency

	Future Work
	Generative Failure Detection
	Overfitting Detection

	Contributions
	Summary

	User Guide
	System Configuration
	Dataset Preparation
	Data Generation
	Real Samples
	Fake Samples

	Discriminative Ability Experiment - Network Events Dataset
	Discriminative Ability Experiment - Host Events Dataset
	Efficiency Experiment - Host Events Dataset
	Efficiency Experiment - Host Events Dataset

	Metric Calculation Code
	Bibliography
	Acronyms

