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Solving the electronic structure problem with machine learning
Anand Chandrasekaran 1, Deepak Kamal1, Rohit Batra1, Chiho Kim1, Lihua Chen1 and Rampi Ramprasad 1

Simulations based on solving the Kohn-Sham (KS) equation of density functional theory (DFT) have become a vital component of
modern materials and chemical sciences research and development portfolios. Despite its versatility, routine DFT calculations are
usually limited to a few hundred atoms due to the computational bottleneck posed by the KS equation. Here we introduce a
machine-learning-based scheme to efficiently assimilate the function of the KS equation, and by-pass it to directly, rapidly, and
accurately predict the electronic structure of a material or a molecule, given just its atomic configuration. A new rotationally
invariant representation is utilized to map the atomic environment around a grid-point to the electron density and local density of
states at that grid-point. This mapping is learned using a neural network trained on previously generated reference DFT results at
millions of grid-points. The proposed paradigm allows for the high-fidelity emulation of KS DFT, but orders of magnitude faster than
the direct solution. Moreover, the machine learning prediction scheme is strictly linear-scaling with system size.
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INTRODUCTION
Propelled by the algorithmic developments and successes of data-
driven efforts in domains such as artificial intelligence1 and
autonomous systems,2 the materials and chemical sciences
communities have embraced machine learning (ML) methodolo-
gies in the recent past.3 These approaches have led to prediction
frameworks that are “trained" on past data gathered either by
experimental work or by physics-driven computations/simulations
(in which fundamental equations are explicitly solved). Once
trained, the prediction models are powerful surrogates of the
experiments or computations that supplied the original data, and
significantly out-strip them in speed. Thus, ideally, future
predictions for new cases (i.e., new materials or molecules) can
simply proceed using the surrogate models. The training and
prediction processes involve a fingerprinting or featurization step
in which the materials or molecules are represented numerically in
terms of their key attributes (whose choice depends on the
application), followed by a mapping, established via a learning
algorithm, between the fingerprint and the property of interest. A
variety of fingerprints have been developed over the past decade
such as the many-body tensor representation,4 the SOAP
descriptor,5 the Coulomb matrix representation,6 the Behler-
Parrinello symmetry functions7, and others.8,9

The above ideas have been employed in various ways in the last
several years to create surrogate models that can emulate some
aspects of density functional theory10,11 (DFT) computations.12

There is great value in this enterprise for two reasons. First, DFT,
which has served as an invaluable workhorse for materials
discovery,13–17 is still rather slow. And second, the vast streams
of data that DFT computations produce are generally squandered.
At its core, DFT computations involve the solution of the Kohn-
Sham equation, which yields the electronic charge density,
wavefunctions and the corresponding energy levels as the
primary output. These entities are then used to compute the
total potential energy of the system and atomic forces as the
secondary output. Several other properties of interest (we will call

them tertiary output) are then derived from the primary and
secondary outputs, such as binding energies, elastic constants,
dielectric constant, etc. Thus far, ML methodologies have been
effectively used to create surrogate models to predict the
secondary and tertiary outputs of DFT (Fig. 1). The ability to
efficiently predict total potential energies and atomic forces (i.e.,
the secondary outputs of DFT) has led to ML force fields,5,7,8,18–25

which have the potential to overcome several major hurdles
encountered by both the classical26 and quantum molecular
dynamics (MD) simulations.27 Directly and rapidly being able to
predict physical properties (the tertiary output of DFT) can enable
accelerated materials discovery.14,15,28–36

The present effort aims at a direct attack on the principal
bottleneck of DFT computations, namely, the Kohn-Sham
equation11 (the innermost arrow of Fig. 1). Our goal is the
creation of strictly linear-scaling surrogate ML models to predict
the primary output of DFT computations, but several orders of
magnitude faster than DFT; in essence, this is an attempt to
eliminate direct solution of the Kohn-Sham equation by learning
and distilling down its function. Each time the Kohn-Sham
equation is explicitly solved, an immense amount of data is
produced; for instance, the electronic charge density or wavefunc-
tion value at every grid-point. We propose a novel fingerprinting
strategy that elegantly encodes the atomic arrangement around
any grid-point, which is then mapped using neural networks to
the total electronic charge density and the local density of states
(LDOS) at that grid-point. Summing up the LDOS over all grid-
points creates the total density of states (DOS) of the entire
system. Although recent endeavors have shown promise in
machine-learning some aspects of electronic structure,20,37–41

the current work represents the first report on mapping the
charge density and the entire LDOS spectrum to the local atomic
environment.
As tangible demonstrations, we have developed surrogate

models for predicting the electronic structure of aluminum (Al)
and polyethylene (PE). Once trained, the models are shown to
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predict the charge density and DOS for unseen cases with
remarkable verisimilitude. Our material choices (Al and PE) span
metallic and covalent insulating systems containing one or more
atom types. The charge density and DOS models alone open up
two transformative pathways: the first is the integration of the
capability to predict the electronic structure of large ensembles of
atoms with classical MD simulation packages at every (few) time-
steps. The second opportunity is the complete emulation of DFT,
as the secondary and tertiary outputs of DFT can be determined
from the surrogate model predictions of the electronic charge
density and DOS, as explained toward the end of this article.
The first step of any data-driven methodology is the generation

of the reference training data as depicted in Fig. 2. To this end, we
performed MD simulations on the abovementioned two materials
systems (Al and PE). Ten snapshots were randomly selected from
the MD trajectory and DFT calculations were performed to obtain
the charge density and LDOS defined at spatial grid-points. As
detailed in the Methods section, these 10 snapshots exhibited a
rich variety of structural environments capturing configurations
significantly different from their respective equilibrium geome-
tries. Each of the PE snapshots contained 120 atoms and 4.3
million grid-points, whereas each Al snapshot contained 144
atoms and 8.2 million grid-points. We used slab-like systems rather

than bulk systems in order to align the DOS of every snapshot
with the vacuum energy level (considered here as a global/
absolute reference energy).
For each system, the charge density and LDOS data at the grid-

points from eight snapshots were included in the training set. The
data at the grid-points of the ninth snapshot were considered as a
validation set to determine the number of epochs of training the
neural network undergoes and finally all the data of the grid-
points of the tenth randomly selected snapshot were considered
as the test set.
In this work we introduce a novel rotationally invariant, grid-

based representation of local atomic environment that allows the
mapping of the local electronic structure at a point to its
immediate atomic neighborhood. The representation technique
consists of a hierarchy of features, which we refer to as scalar,
vector, and tensor invariants, derived from the corresponding
scalar, vector, and tensor components as described below. The
scalar components capture the radial information of atoms around
a grid-point while the vector and tensor components capture the
angular features of the local atomic environment. We use a
predefined set of Gaussian functions (k) of varying widths (σk)
centered about every grid-point (g) to determine these finger-
prints. The scalar fingerprint (Sk) for a particular grid-point, g, and

Fig. 1 Schematic of the hierarchical-paradigm of applying surrogate models to different outputs of first-principles calculations. The current
work seeks to overcome the primary bottleneck of density functional theory (DFT), i.e. the Kohn-Sham equation, by creating machine learning
models to directly predict the electronic charge density and the density of states

Fig. 2 Overview of the process used to generate surrogate models for the charge density and density of states. The first step entails the
generation of the the training dataset by sampling random snapshots of molecular dynamics trajectories. First-principles calculations were
then performed on these systems (shown in Figure S1) to obtain the training atomic configurations, charge densities, and local density of
states. The scalar (S), vector (V), and tensor (T) fingerprint invariants are mapped to the local electronic structure at every grid-point. For the
charge density, this mapping is achieved using a simple fully connected neural network with one output neuron. The LDOS spectrum, on the
other hand, is learned via a recurrent neural network architecture, wherein the LDOS at every energy window is represented as a single output
neuron (linked via a recurrent layer to other neighboring energy windows). The trained model is then used to predict the electronic structure
(i.e, DOS and charge density) of an unseen configuration
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Gaussian, k, in an N-atom, single-elemental system is defined as

Sk ¼ Ck
Xi¼N

i¼1

exp
�r2gi
2σ2

k

 !
fcðrgiÞ (1)

where, rgi is the distance between the reference grid-point, g, and
the atom, i, and fc(rgi) is a cutoff function, which decays to zero for
atoms that are more than 9 Å from the grid-point. The coefficient
Ck is the normalization constant for the Gaussian k and is given by
1=ð2πÞ3=2σ3

k . Similarly, the components of the vector and tensor
fingerprint are given by,
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where, α and β represent the x, y, or z directions. The vector and
tensor fingerprints can be related to the first and second partial
derivatives (with respect to the x, y, and z directions) of the scalar
fingerprints, respectively. Unlike the scalar fingerprint, however,
the vector Vα

k

� �
and tensor fingerprints ðTαβ

k Þ are not rotationally
invariant. However, as described in the Methods section,
rotationally invariant representations may be constructed from
the individual components of the vector and tensor fingerprints.
In the current work, the resulting five invariants (one scalar
invariant, one vector invariant, and three tensor invariants), are
calculated using a basis of 16 Gaussians resulting in 80 numbers,
which elegantly and efficiently encode the spatial distribution of
atoms around a particular grid-point. For the case of PE, a bi-
elemental system, the fingerprint vector is calculated indepen-
dently for the carbon and hydrogen atoms and subsequently
concatenated resulting in a fingerprint vector of length 160.
These fingerprints function as the “input-layer” of a neural

network, which, as universal function approximators,1 can learn
the complex nonlinear mapping to the charge density and LDOS.
In this work, we utilize a neural network with three hidden layers
each with 300 neurons. The choice of neural network hyperpara-
meters is justified in the Methods section. The output layer for the
charge density model is a single neuron since the charge density
is a scalar quantity. On the other hand, the LDOS spectrum at
every grid-point is a continuous function, which can be discretized
(or binned) into a specific number of energy windows. Hence, the
number of neurons in the output layer of the LDOS neural
network model would correspond to the total number of energy
windows under consideration. More specifically, the Al and PE
LDOS spectra were partitioned into 180 and 260 energy windows,
respectively, each with a window (or bin) size of 0.1 eV.
The LDOS (and DOS) at a particular energy window is strongly

correlated with the LDOS at neighboring energy windows. In order
to capture the correlations across the entire LDOS spectrum, we
utilize a bidirectional recurrent neural network layer as a precursor
to the final output layer. The use of the recurrent neural network
architecture to learn the LDOS spectrum is inspired by their recent
successes in the prediction of correlated sequences, for instance,
in speech recognition.42 The details of the architecture of the
employed recurrent neural network are provided in Figure S3 of
Supplementary material.
Two million grid-points from each of the training snapshots

were selected at random in order to train the charge density and
LDOS models. The two models were then used to predict the local
electronic structure at every grid-point for the unseen test
snapshot of PE and Al. Subsequently, the total DOS for the
system/supercell can then be obtained by summing up the LDOS
at every grid-point. Since the number of electrons for any given
materials system is known a priori, one can easily obtain the Fermi

level of the system through the integration of the predicted DOS
(or directly from the cumulative DOS).

RESULTS
Figure 3 summarizes the results for the prediction of charge
density and DOS. The coefficient of determination (R2) of the
charge density for the test cases of PE and Al were 0.999997 and
0.999955, respectively, as shown in Fig. 3a, b. The root mean
square error of these predictions were approximately 4 × 10−4 e/Å3

and 6 × 10−4 e/Å3 for PE and Al, respectively. The errors metrics for
the train and validation snapshots are detailed in Tables S1 and S2.
The systematic improvement in accuracy on inclusion of the
vector and tensor fingerprints is depicted in the inset of Fig. 3a
and in more detail in Figure S4.
Figure 3c, d shows the prediction of the DOS and corresponding

Fermi levels for the unseen test structures of PE and Al. The R2 for
the predicted DOS spectrum for PE and Al were 0.997 and 0.9992,
respectively. The near-perfect agreement of the ML and DFT
charge densities and LDOS showcase the predictive ability of the
model even when using only a handful of training structures.
In order to examine the transferability of our models to

extremely different atomic environments, we use our PE charge
density model (referred to as Model1), trained only on pure sp3-
bonded carbon configurations, to predict the charge density of PE
structures with double-bond and triple-bond defects. As shown in
Fig. 4a–c, Model1 successfully captures the charge density away
from the defected sites but fails to do so in the immediate vicinity
of the double and triple bonds. Notably, the smaller bond lengths
of the sp2- and sp3-hybridized carbon leads to an overestimation
of the charge density by Model1. However, as soon as we retrain
Model1 on four additional MD snapshots (each) of PE with double
and triple bonds we immediately observe a sharp improvement in
the predictive capabilities of the new model (referred to as
Model2) as depicted in Fig. 4a, b, d. A single model is capable of
capturing vastly different bonding environments highlighting that
although an initial model may not be general enough, the
prediction capability can be systematically improved.
The neural network models were trained and implemented for

prediction in a graphical processing unit (GPU)-based computing
system. As depicted in Fig. 5, the prediction algorithm is linearly
scaling, leading to ultrafast computation times, even for millions of
grid-points. DFT calculations on equivalent materials systems,
performed on 48 cores of a more expensive central processing
unit (CPU) node, are orders of magnitude slower and also scale
quadratically. Moreover, as shown in Table S3, traditional DFT
algorithms are memory intensive and cannot handle more than a
few thousand atoms. There is no such limitation in the grid-based
ML prediction of the electronic structure as the algorithm is highly
parallelizable; for example, batches of a few thousands/millions of
grid-points can be assigned to different GPUs for simultaneous
prediction.

DISCUSSION
As a final comment, we mention that the predicted total DOS and
charge density can be utilized to directly obtain the total energy
(E) of the system.

E ¼ 2
XNe=2

i

εi � EHðρÞ þ ExcðρÞ �
Z

δExcðρðrÞÞ
δρðrÞ dr þ En�n (4)

where, ρ, Ne, EH, Exc, En–n are the charge density, number of
electrons, Hartree energy, exchange-correlation energy, and
nuclear–nuclear interaction energy, respectively. εi is the eigen-

value of the ith Kohn-Sham orbital. In Eq. 4, the first term 2
PNe=2

i εi
can be written in terms of the DOS (2

R εf
�1DOS(ε)εδε) while the
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remaining terms are known functions of the charge density (for a
given level of theory). Hence, the ML-enabled prediction of the
DOS and charge density allows us to directly access the total
energy, circumventing the computationally expensive Kohn-Sham
equation. In Section 2 of the Supplementary material we have
provided preliminary results on how the charge density predicted
using ML can be used to obtain highly accurate total energies
when used as a starting point for a non-self-consistent calculation.
A more comprehensive investigation of obtaining the total energy
from the charge density and DOS (using Eq. 4) will be addressed in
a future work.
In summary, we have developed a ML capability that can learn

the behavior of the Kohn-Sham equation of DFT. Once trained (on
past one-time DFT results), the ML models can predict the
electronic charge density and DOS given just the atomic
configuration information. In contrast to recent works,40 we have
demonstrated a direct grid-based learning and prediction scheme
as opposed to the learning of a certain basis representation of the
local electronic properties. A brief discussion of the merits and
limitations of both methods is provided in Section 1 of the
Supplementary material. We mention here that standard DFT
calculations involve thousands or even millions of grid-points. The
exceptional accuracy obtained using this grid-based approach
thus comes at the cost of greater computational effort. Moreover,
the learning of the grid-based LDOS is memory intensive since it
requires multiple partial charge density files for every for every
energy-window. Nonetheless, by taking advantage of modern

GPU architectures and parallelized batch-wise training and
prediction schemes, our algorithm is linear-scaling and has been
shown to be several orders of magnitude faster than the parent
DFT code that created the training data in the first place. Large
systems, containing several tens of thousands of atoms, inacces-
sible to traditional DFT computations, can be routinely handled;
this capability may thus be interfaced with MD software, which
can then produce electronic structure results along the molecular
trajectory. Other derived properties, such as energy, forces, dipole
moments, etc., can be obtained from the presented models, thus
leading to a practical and efficient DFT emulator, whose accuracy
is purely controlled by the level of theory used to create the
original data, and the size and diversity of the training dataset
(which can be progressively increased and augmented, as
desired). Going forward, we hope to benchmark our method
using large, diverse, and well-curated datasets such as the QM9
dataset.43,44

METHODS
All first-principles calculations were performed using Vienna Ab Initio
Simulation Package (VASP). Slabs are used for data generation rather than
bulk structures so as to obtain energy values with respect to the vacuum
level. A plane wave cutoff of 500 eV and a k-point spacing of 0.2 Å−1 were
utilized to obtain the training charge density and LDOS. The LDOS is
defined as the density of eigenvalues in a particular energy interval at a
given grid-point. The LDOS in the ith energy window εi � δε

2 ; εi þ δε
2

� �
can

Fig. 3 Parity plot for the machine learning vs density functional theory (DFT) charge density prediction for the unseen snapshot of a
polyethylene (PE) and b aluminum (Al). The inset in a depicts the systematic improvement in the accuracy of the model on inclusion of the
vector and tensor fingerprints. The accuracy is also shown to improve on increasing the number of Gaussians used to sample the local
environment. The inset in b shows the reduction in the error of the model upon including more grid-points in the training set. The dashed
blue line in the inset represents converged/lowest test-error obtained. The density of states (DOS) prediction using the recurrent neural
network is shown in c, d for the unseen test snapshots of PE and Al, respectively. The vacuum level has been used as the absolute reference
energy level. The Al (001) slab consisted of 8.2 million grid-points while the PE slab contained 4.4 million grid-points. The total DOS spectrum
for each structure was obtained by summing up the predicted local DOS at each grid-point
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be obtained from the partial charge density as follows,

ρipartialðrÞ ¼
X

n εiþδε
2�εn>εi�δε

2jf g

X
k

ψn;kðrÞ
�� ��2

(5)

LDOSi ¼ ρipartialðrÞ
δε

(6)

where ρipartial is the partial charge density arising from wavefunctions with
eigenenergies in the εi þ δε

2 ; εi � δε
2

� �
energy window, ψn,k(r) is wavefunc-

tion at the nth band and k-point k, and
P

k denotes summation over all
k-points. A 0.1 eV energy window width (δε) was used to sample the LDOS
spectrum, which was further subjected to a Gaussian smearing of 0.2 eV.
With respect to the VASP training data utilized in this study, the grid-based
LDOS was constructed from multiple PARCHG files (one for every energy
window).

PE slab data generation
Four PE polymer chains were constructed with the chain direction along
the z-axis. Each polymer chain consisted of 10 carbon and 20 hydrogen
atoms (120 atoms in the entire supercell). A 10 Å vacuum spacing was
created in the x-direction. Classical MD (NVT) using OPLS-AA potentials was
performed on the slab for 2 ns with a time-step of 1 fs at 300 K. Ten
structures were chosen from the trajectory of the last 1 ns of the run.

Al slab data generation
A six-atomic layer-thick Al (001) slab was constructed with 144 atoms as
depicted in Figure S1(a). A 20 Å vacuum spacing between the two surfaces
was utilized. Ab initio MD at 300 K was performed on the slab for 2000
time-steps with a time-step size of 2 fs. Ten structures were then chosen at
random from the generated trajectory to be included in the dataset.

Fingerprint details
The scalar fingerprint, Sk, is already rotationally invariant. The rotationally
invariant form of the vector fingerprint is,

Vk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðVx

k Þ2 þ ðVy
k Þ2 þ ðVz

k Þ2
q

(7)

The three rotationally invariant forms of the tensor fingerprint are,

Tk ¼ ðTxxk Þ2 þ ðTyyk Þ2 þ ðTzzk Þ2 (8)

T 0k ¼ Txxk Tyyk þ Tyyk Tzzk þ Txxk Tzzk � ðTxyk Þ2 � ðTyzk Þ2 � ðTzxk Þ2 (9)

T 00k ¼ det Tαβk (10)

The width of the narrowest Gaussian utilized was 0.25 Å and the width of
the widest Gaussian was 5 Å. Therefore, 16 Gaussians of widths ranging
from 0.25 to 5 Å (sampled on a logarithmic grid) were utilized to fingerprint
the grid-point. Prior to the training phase, each fingerprint column was
scaled to a mean of zero and variance of one. Our initial convergence tests
indicate (as depicted in the inset of Figure S4) that 16 Gaussians are more
than sufficient to model both Al and PE systems. However, a more in depth
system-dependent analysis of the range and number of Gaussians would
likely reduce the error even further.

Fig. 4 a, b are charge density line plots for polyethylene (PE) with double and triple bond defects, respectively. Model1, trained on eight
molecular dynamics snapshots of pristine PE, is unable to accurately predict the charge density in the vicinity of the defects. Model2, trained
on four additional snapshots each of PE with double and triple bonds is able to accurately capture the charge density for unseen snapshots
containing such defects. c, d Parity plots of just the top-1% error points for the case of PE, PE with double-bond defect, and PE with triple-
bond defect using Model1 and Model2, respectively. The lower errors of Model2 indicate that the neural network can be systematically trained/
re-trained when new environments are encountered

Fig. 5 Computational time and scaling of density functional theory
(DFT) vs machine learning (ML) for electronic structure predictions.
DFT shows near-quadratic scaling, whereas the ML prediction
algorithm shows perfect linear-scaling and is orders of magnitude
faster than DFT. We note, however, that direct comparison between
DFT and ML computing times is difficult as the computations were
performed on different architectures. The DFT calculations were
performed on an Intel Xeon Skylake node with 48 cores and 192GB
of RAM. The ML predictions were performed on a single GP100 GPU
with 16GB RAM. Since modern DFT codes scale (at best)
quadratically, the relative cost and time benefit of the proposed
ML prediction scheme is enhanced tremendously for large system
sizes of tens of thousands of atoms. The details of the scaling tests
are shown in Table S3
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Neural network details
The high-level neural network API, Keras, was utilized to build the models.
We used the mean-squared-error as the loss function and employed the
ADAM stochastic optimization method for gradient descent. The neural
network for learning/predicting the charge density consisted of three
hidden layers (each with 300 neurons). The convergence of the neural
network hyperparameters is indicated in Figure S5. A batch size of 5000
grid-points was used during the training phase. The neural network for the
LDOS training/prediction possessed an additional fourth recurrent layer
preceding the output layer. Ten recurrent neurons were linked to each of
the final energy windows. In all neural networks, the RelU activation
function was utilized. The charge density models took approximately an
hour to train on a single GP100 GPU, whereas the recurrent neural network
model for DOS took approximately 5–6 h for training.

DATA AVAILABILITY
The data used to generate the models (and the train-validation-split details) are
available online at https://khazana.gatech.edu.
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