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Abstract: The main objective of the present study is to evaluate the use of Brillouin 
microspectroscopy for differentiation of melanoma and normal tissues based on elasticity 
measurements. Previous studies of malignant melanoma show that the lesion is stiffer than the 
surrounding healthy tissue. We hypothesize that elasticity-specific Brillouin spectroscopy can 
be used to distinguish between healthy and cancerous regions of an excised melanoma from a 
Sinclair miniature swine. Brillouin measurements of non-regressing and regressing 
melanomas and the surrounding healthy tissues were performed. Based on the Brillouin 
measurements, the melanomas and healthy tissues can be successfully differentiated. The 
stiffness of both tumors is found to be significantly greater than the healthy tissues. Notably, 
we found that the elasticity of regressing melanoma is closer to that of the normal tissue. The 
results indicate that Brillouin spectroscopy can be utilized as a tool for elasticity-based 
differentiation between malignant melanoma and surrounding healthy tissue, with potential 
use for melanoma boundary identification, monitoring tumor progression, or response to 
treatment. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

The ability of melanoma to spread throughout the body by reaching lymph or blood vessels 
makes it the deadliest of skin cancers [1]. While not as common as other cutaneous cancers, 
the incidence of malignant melanoma is on the rise, having increased by three times between 
1970s and 2000s in the U.S [2], resulting in an estimated 9,940 fatalities within the last year 
[3]. Melanoma that is detected early can be successfully treated; however, with the 
progression of the disease, the mortality rate rapidly increases, reaching 94% in the distant 
stage [3]. The survival rate, therefore, greatly depends upon early diagnosis of the melanoma. 

The location of the melanoma on the surface of the skin makes it visible and accessible, 
however, the diagnosis of this cancer is not simple. The appearance of malignant melanoma is 
similar to other pigmented skin lesions, both benign and malignant. Morphological features 
form the basis of most approaches to clinical diagnosis of melanoma. If initial evaluation 
suggests a possibility of melanoma, the biopsy of the lesion is taken for a histological 
verification of the diagnosis, which may take several days. The common diagnostic algorithm 
is evaluation of the lesion’s asymmetry, border irregularity, color and diameter (ABCD). 
Most often the evaluation is achieved by naked-eye examination, the sensitivity of which is 
85% [4]. Dermoscopy, or dermatoscopy, a technique with greater sensitivity and specificity 
of the diagnosis, utilizes a microscopic evaluation of the lesion’s morphological features 
[5,6]. 

However, evaluation of morphological features is not the only method to diagnose 
malignant melanoma. A lot of research is conducted on methods that aim to increase the 
accuracy of melanoma diagnosis and aid pre-operative assessment of tumor margins and 
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thickness. Among them are conventional and high-frequency ultrasound [7–10], ultrasound 
elastography [9–11], multispectral imaging [12–14], MRI [15,16], and Raman spectroscopy 
[17–19]. 

Of particular interest is the diagnosis based on the change in the mechanical properties 
between malignant and healthy tissue or cells. The rigidity of many tumor types compared to 
the surrounding normal tissue is well known and is routinely used; a common example is 
palpation during breast cancer screening [20]. This variation in elasticity between the 
malignant mass and the normal tissue can be utilized to achieve a non-invasive diagnosis. 
One available elasticity-specific technique, ultrasound elastography [21], determines the 
elasticity score of the tissue by comparing measurements before and after applied 
compression. This method has been used to successfully discriminate between benign and 
malignant lesions in breast [22,23] and prostate [23], and it displayed potential in diagnosis of 
malignant melanoma [11]. However, ultrasound elastography measures the macroscopic 
elasticity, which often differs from the elasticity on a microscale [24–26]. For example, 
tumors are stiffer than healthy tissue on a macroscopic level, but individual cancerous cells of 
many cancer types are softer [27,28], which is related to their ability to invade and 
metastasize [29,30]. Interestingly, that is not always the case, and AFM elastography study on 
melanocytes has shown that pigmented human melanoma cells are stiffer than both healthy 
melanocytes and non-pigmented melanoma cells from same cell line [31]. Evaluating 
microelasticity instead of macroelasticity can be used to identify the tumor margin with high 
resolution, and can become a valuable tool for research of cancer progression. Brillouin 
spectroscopy can be used to probe the elastic properties of bulk tissue, while also providing 
an adequate spatial resolution to measure elasticity of individual cells. 

Brillouin microspectroscopy is an emerging technique for measuring the viscosity and 
elasticity of a sample. Brillouin spectroscopy is based on the inelastic interaction of the 
incident photons and investigated material’s spontaneous acoustic phonons. The incident 
wave undergoes a small, 1-10 GHz, change in frequency– called the Brillouin shift, which is 
related to the material’s high-frequency elastic modulus. The Brillouin shift is equal to 
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Brillouin spectroscopy is a non-destructive and label-free approach to determining 
viscoelasticity of a wide range of materials. Brillouin spectroscopy has been successfully 
applied in recent years in a number of biological applications [32–40]. Brillouin spectroscopy 
nondestructively measures elasticity with high spatial resolution, making it a feasible method 
to differentiate between healthy tissue and tumors. 

The animal model for malignant melanoma used in this study is Sinclair miniature swine. 
Sinclair miniature swine is an accepted model of human melanoma, first used in a study of 
malignant melanocytic tumors in 1974 [41]. These animals possess melanoma lesions at birth, 
or develop them within a few days after birth. These malignant lesions are histopathologically 
similar to human malignant melanoma, albeit with greater melanin concentration. However, 
the melanoma in Sinclair swine spontaneously regress within weeks, and new lesions do not 
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An average of 3 replicate Brillouin spectra from 8 different locations per tissue type were 
obtained from the central areas of the malignant growths and from the healthy tissue regions 
at a distance of 1 cm from the sample’s edge. In the regressing melanoma sample, the healthy 
region was sampled away from the area of depigmentation. The integration time was 60 s and 
the incident power on the sample did not exceed 20 mW; no thermal damage to the sampled 
area was detected following the data collection. 

Brillouin spectroscopy setup 

Figure 2 shows the schematic diagram of the optical setup for Brillouin microspectroscopy, 
which followed our earlier design [44,45]. More detail on the system’s latest design and 
performance is provided in Coker et al. [46]. 

 

Fig. 2. Schematic diagram of instrumental setup for Brillouin spectroscopy. The heated iodine 
cell served as an ultra-narrow notch filter. Abbreviations: PBS – polarizing beamsplitter, obj. – 
20x objective lens, λ/2 – half-wave plate and λ/4 – quarter-wave plate. 

A 532-nm single- frequency laser (Lasermate Inc.; GMSL-532-100FHA) served as the 
source of the incident light. The incident light passed through a polarizing beamsplitter 
towards the infinity-corrected microscope objective lens (Nikon Inc., CFI Plan Fluor 20x, 
N.A. = 0.5), which both focused the incident light onto the sample, and collected the 
backscattered signal. A quarter-wave plate and the polarizing beamsplitter redirected the 
collected signal towards the VIPA spectrometer, with a pinhole placed before the 
spectrometer serving to reduce the amount of out-of-focus light reaching the detector. The 
VIPA spectrometer consisted of a temperature-tunable iodine absorption cell (Opthos 
Instruments, Inc.) set to 112°C which served as an ultra-narrow notch filter, and 532-nm line 
filter that filtered the undesired laser, Raman and I2 fluorescence frequencies, followed by 
VIPA and the CCD. 

3. Results and discussion 

To illustrate typical raw and processed Brillouin spectra, an example from a single 
measurement of non-regressing and regressing melanomas, and the healthy tissue region is 
presented in Fig. 3(a). Notably, the SNR between the three spectra is different, even though 
the acquisition parameters remained unchanged. The healthy tissue possesses the greatest 
SNR, while the signal from the non-regressing melanoma has the smallest SNR. These 
differences in the signal quality is likely due to the increased absorption of the incident light 
by the melanin, the concentration of which is the greatest in the non-regressing melanoma. 
The Brillouin peaks are fit with the Lorentzian function to obtain their central frequency, as 
shown in Fig. 3(b). Both tumors and healthy tissue possess notably different Brillouin shifts; 
the results of all measurements (N = 8 per tissue type) are displayed as mean ± standard 
deviation in Fig. 4. 
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Fig. 3. Example Brillouin spectra, anti-Stokes Brillouin peaks of healthy tissue, normal non-
regressing and regressing melanoma: (a) typical raw Brillouin spectra and (b) the expanded 
view showing the Lorentzian function fit of the data. 

 

Fig. 4. Brillouin shifts of the healthy tissue, normal non-regressing and regressing melanomas, 
displayed as mean ± standard deviation. The difference between the Brillouin shifts is 
statistically significant (*** p≤0.001, ** p≤0.01). 

One-way ANOVA test was used to compare the means of the Brillouin shift for all 
samples; the results of the statistical analysis show that the Brillouin shift is significantly 
different in both melanomas and the surrounding healthy tissue. The average Brillouin shifts 
are 8.55 ± 0.18 GHz (Normal non-regressing melanoma), 8.11 ± 0.07 GHz (Regressing 
melanoma), and 7.97 ± 0.02 GHz (Healthy tissue). Both melanoma lesions are stiffer than the 
surrounding normal tissue, which possesses the smallest value of the Brillouin shift. These 
results support the literature-based hypothesis that melanoma is stiffer than the healthy tissue. 
In the present study, the samples included both a non-regressing and a regressing melanoma, 
and the Brillouin shift shows variation between the two lesion types. The regressing 
melanoma possesses elasticity closer to that of the surrounding healthy tissue. In Sinclair 
swine, melanoma regression and loss of pigmentation is related to a rise in antibodies to 
antigens primarily expressed on melanocytes [47]. Early stage of regression is characterized 
by a decrease in active melanocytes and predominance of melanophages, while the final stage 
of regression is histologically similar to normal tissue [41]. The sample used in the present 
study was at an intermediate stage of regression, with bluish in color lesion and 
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depigmentation halo surrounding it. The reduction in the number of melanocytes and increase 
in melanin-laden macrophages and T-lymphocytes at the site likely contribute to the decrease 
in stiffness of the regressing melanoma compared to the non-regressing melanoma. 

The use of the 532-nm wavelength in the present study results in heating of the pigmented 
tissue due to absorption by melanin. No thermal damage to the sample was observed, 
however, in order to avoid the damage, the power of the incident radiation was set as low as 
feasible, which affected the signal to noise ratio of most of our Brillouin spectra. The lower 
power lead to a longer signal collection time, which, while acceptable for single-point 
measurements, would be impractical for larger number of data points in point-scanning mode. 
The present study of elasticity-specific Brillouin measurements of malignant melanoma will 
be continued; a future study will use Brillouin microspectroscopy to identify melanoma 
border with high precision by obtaining an elasticity map of the sample. In future studies, 
either a longer incident excitation wavelength, i.e. 780 nm, will be used to reduce the 
acquisition time, because the skin’s absorption and heating generally declines within the 400-
1064 nm range as wavelength increases [48,49], or nonlinear Brillouin microscopy 
measurements [50,51] will be adapted for those tissue measurements. 

4. Conclusion 

The ability of Brillouin spectroscopy to differentiate between malignant melanoma and 
surrounding healthy tissue was successfully demonstrated for the first time. The use of 
Sinclair miniature swine as an animal model of human malignant melanoma allowed for 
Brillouin shifts’ comparison between the normal non-regressing melanoma, regressing 
melanoma and the surrounding healthy tissue. The Brillouin shifts of the samples are 
statistically significantly different, with the healthy tissue being the softest, and the non-
regressing melanoma the stiffest sample. 

In the present study, the Brillouin shift of the regressing melanoma differed from the 
measurements of both the non-regressing melanoma and the heathy tissue. Among the 
potential applications of Brillouin spectroscopy is not only differentiation between the 
cancerous and normal tissue, but also monitoring tumor progression or evaluation of 
treatment efficacy. These potential uses make Brillouin microspectroscopy a valuable tool in 
cancer research. 

Brillouin microspectroscopy is uniquely suitable for distinguishing between different 
tissues or areas of a sample on the basis of differences in their elastic properties. Brillouin 
spectroscopy was successfully applied to distinguish between cancerous, regressing and 
healthy regions of melanoma samples based on their elasticity. This spectroscopic approach 
shows potential for differentiating malignant melanoma from other pigmented skin lesions, 
and for finding the boundaries of the lesion with high precision. 
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