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A family of exact self-similar solutions of the compressible Euler equations developed for 
hydrocode verification is described. This family generalizes the classic Noh problem, which 
has served as a standard verification test of numerical methods for modeling inviscid 
compressible flows for three decades. This generalization allows finite pressure initial 
conditions, nearly arbitrary equations of state, and describes shocked compression as well 
as isentropic expansion and compression of the gas. In particular, the solutions describe 
a) the propagation of a finite-strength spherical isentropic expansion wave into a moving 
uniform gas, leaving behind either a core of uniform gas at rest or a vacuum/cavitation; 
b) the convergence of a finite-strength isentropic compression wave into a uniform gas 
or a collapse of a cavity in a finite-pressure gas (a compressible analog of the Rayleigh 
problem); and c) the expansion of a finite-strength accretion shock wave into a converging 
isentropic flow of stagnating gas. Our proposed verification test seeks to numerically 
reproduce all three of these stages of gas motion in a single simulation run. The successful 
verification of a high-order Godunov Eulerian hydrodynamics code is presented as an 
example of the expected use of this family of exact solutions.

Published by Elsevier Inc. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The method of exact solutions [1], which compares simulation results with the known solution of an idealized problem, 
remains a valuable tool of code verification. In one-dimensional compressible gas dynamics, there are a number of problems 
that permit exact solutions suitable for code verification. The simplest of them is the planar Riemann problem, the evolution 
of a step-function discontinuity in the initial conditions. For polytropic gases, its solution, first obtained by Kochin [2], is 
described in detail in [3], §100. (In the literature on code verification, one particularly popular Riemann problem is the Sod 
shock-tube problem [4,5].) Exact self-similar solutions of Riemann problems involve constant-intensity shock waves and/or 
centered rarefaction waves and/or a material interface or a tangential discontinuity. For a planar geometry, these solutions 
provide good verification tests.

For spherical and cylindrical geometries, the simplest verification test is provided by the Noh problem [6]: an initially 
uniform gas at zero pressure stagnates against a plane, axis, or center of symmetry. (For a planar geometry, the Noh problem 
obviously reduces to a particular case of a Riemann problem.) Its self-similar solutions contain an expanding accretion shock 
front that propagates at a constant velocity into a non-uniform flow of a converging zero-pressure gas. These solutions 
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have been used for three decades to verify codes designed to model implosion and stagnation. Their main advantage is, 
as described in [7], “the simplicity of the initial and final conditions in three geometries”: all the flow variables have 
uniform profiles initially, and they remain finite at all times. Moreover, their self-similar profiles are given by explicit analytic 
formulas. None of the other classic self-similar solutions of the compressible Euler equations, such as Sedov–Taylor–von 
Neumann blast wave [8,9] or Guderley shock-wave implosion [10], have all these advantages, which makes their use for 
code verification much more difficult, though not impossible [11,12].

Notwithstanding the apparent simplicity of the Noh problem formulation and numerical initialization, this benchmarking 
test “poses a formidable challenge to all hydrodynamics codes since they have to deal with an infinitely strong shock” 
[7], and is able “to dramatically reflect any underlying numerical solver pathologies (e.g., asymmetries and wall-heating 
phenomena)” [13].

As correctly observed in Ref. [1], the main disadvantage of the method of exact solutions for code verification is that 
“there are only a limited number of exact solutions available for complex equations (i.e., those with complex geometries, 
physics, or nonlinearity).” To help address this dearth of exact verification tests, a number of authors have developed new 
exact solutions of the compressible Euler equations that account for more physics and include complex geometries. In 
particular, the original Noh solution, henceforth referred to as “classic,” has been recently generalized in various ways. 
A piston/shock tube problem involving multiple shock reflections from the piston and the plane/center/axis of symmetry 
has been studied in Ref. [7]. The Noh problem for a non-ideal equation of state (EOS), such as Mie–Grüneisen, has been 
solved in Refs. [13,14]. Generalized solutions of the Noh problem for non-uniform velocity, density and pressure profiles are 
presented in Ref. [15]. A magnetohydrodynamic (MHD) modification of the Noh problem for a Z-pinch geometry of magnetic 
field is given in Ref. [16]. A linear perturbation analysis of the classic Noh solutions [17] made it possible to benchmark 
two- and three-dimensional codes describing the evolution of small perturbations on top of an unsteady stagnation flow in 
cylindrical and spherical geometry, respectively.

Here, we derive another generalization of the classic Noh solution. We remove the zero-initial-pressure constraint, find-
ing solutions that describe finite-strength shocks. Reproducing such solutions numerically might be less of a “formidable 
challenge” [7] for code verification than the classic Noh solution, since zero initial pressure can not only be problematic 
for hydrocodes, but can cause difficulty even for particle-in-cell or kinetic codes when used to model hydrodynamic plasma 
flows (see, for example, Refs. [18] and [19]), and such codes would also benefit greatly from verification tests. Self-similar 
solutions of this family include: 1) spherical and cylindrical rarefaction waves analogous to the centered rarefaction waves 
that can appear in planar Riemann problems; 2) isentropic finite-strength compression waves that steepen as they propagate 
to eventually form shock waves; 3) both the convergence/implosion phase and the stagnation/expansion phase described by 
the same solution, similar to the case of the Guderley problem [10,11]. There is also another similarity with the Guderley 
problem: our new solutions are not given by explicit formulas, they are evaluated using numerical integration of the ordi-
nary differential equations determining the self-similar profiles. As far as code verification is concerned, such semi-analytic 
solutions are considered “exact” [11] because their numerical accuracy is typically higher than that of the hydrocodes they 
are used to verify.

Our new solutions are presented for a polytropic ideal gas. They could be further generalized for an ideal fluid with an 
arbitrary EOS, which does not have to satisfy the Lie symmetry constraints outlined in [9,13,14], and for MHD in a cylindrical 
Θ-pinch geometry. Both the solutions described here and their possible generalizations permit linear perturbation analysis 
[17] resulting in explicit analytical dispersion equations. Thus these solutions can be used to generate verification tests for 
compressible gasdynamic and MHD codes in two and three dimensions, by testing not only the ability of such codes to 
reproduce the analytic unperturbed one-dimensional solution, but also to reproduce the proper behavior of small-amplitude 
perturbations applied to that solution in the transverse directions.

This paper is structured as follows. In Section 2, we present a derivation of the new self-similar solutions of the com-
pressible Euler equations. In Section 3, we compare our semi-analytic solutions to the numerical solutions produced by a 
particular one-dimensional, high-order Godunov Eulerian code, in order to demonstrate how these solutions can be used for 
hydrocode verification. In Section 4, we conclude with a discussion.

2. Theory

2.1. Formulation of the Noh problem and governing equations

The Noh problem formulation is illustrated with Fig. 1, the terminology and sub-figures of which we refer to extensively 
in this and the following two paragraphs. Fig. 1(a) schematically shows the initial conditions at t = 0−: uniform gas density 
ρ0, pressure p0, and velocity v0 directed to the center of symmetry everywhere but at r = 0. These initial conditions 
produce an accretion shock front expanding at a constant velocity vs at t > 0, Figs. 1(b) and (c). The gas behind the shock 
front is labeled “Uniform shocked gas at rest.” The shock front expands into the stagnating incident gas flow whose spherical 
convergence increases the gas density in the negative radial direction. If the initial gas pressure p0 = 0, then the adiabatic 
gas compression does not lead to a pressure increase. Hence, the pre-shock gas velocity also stays the same, −v0, as shown 
in Fig. 1(b), which corresponds to the classic Noh solution. On the other hand, if p0 > 0, then the gas compression leads to 
an adiabatic pressure increase in the negative radial direction, which, in turn, slows down the converging pre-shock gas, as 
schematically shown in Fig. 1(c). This situation corresponds to a generalized accretion-shock Noh solution.
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Fig. 1. Schematic of the generalized Noh flows. (a) Converging-flow initial conditions at t = 0− . (b) Stagnation phase for a cold imploding gas, p0 = 0. 
(c) Stagnation phase for a finite-pressure imploding gas, p0 > 0. (d) Diverging-flow initial conditions at t = 0− . (e) Rarefaction wave in a finite-pressure gas, 
p0 > 0, leaving a vacuum behind. (f) Rarefaction wave in a finite-pressure gas leaving a uniform gas core at rest behind. (g) Collapse of a cavity in a cold 
gas. (h) Collapse of a cavity in a finite-pressure gas. (i) Convergence of a finite-strength compression wave onto a uniform gas core at rest.

If the velocity v0 at t = 0− is directed from the center of symmetry everywhere but at r = 0, as shown in Fig. 1(d), 
then a spherically expanding rarefaction wave will emerge at t > 0. When the expansion velocity v0 is sufficiently large 
compared to the initial speed of sound, then the rarefaction wave leaves behind an empty cavity labeled “Vacuum” in 
Fig. 1(e). Its outer boundary, where the gas density and pressure both vanish, is labeled “Free surface.” The velocity profile 
is non-uniform, the velocity of the free surface denoted v f being the lowest radial velocity directed outward. When the 
velocity v0 is not large enough, the rarefaction wave leaves behind a “Uniform gas core at rest,” as shown in Fig. 1(f). It 
is bounded by the trailing edge of the expanding rarefaction wave, a weak discontinuity labeled “Sonic wave front” that 
propagates at the speed of sound cs characteristic of the uniform gas core.

Being isentropic, the solutions illustrated with Figs. 1(e), (f) are reversible. It means that the same solutions considered 
at negative time, from t = −∞ to t = 0− , describe the collapse of a cavity in a cold gas, Fig. 1(g), or in a finite-pressure 
gas, Fig. 1(h), or a spherical convergence of a finite-strength compression wave, Fig. 1(i). The cavity collapse cases are 
compressible analogs of the well-known Rayleigh problem, the collapse of a bubble in an incompressible fluid, described 
in Chapter XII, Section 9 of Ref. [20]. In all cases, the steepening of density and pressure profiles due to the spherical 
convergence results in the formation of the uniform profiles shown in Fig. 1(a) at the instant of collapse when the wave 
front reaches the center, t = 0− . When the collapsing gas is cold, Fig. 1(g), then the velocity of all gas particles, including 
those at the free surface, equals −v0 at all time, and the gas pressure remains zero up to the moment of collapse. This 
case can be regarded as the classic Noh flow at t < 0, prior to the instant illustrated with Fig. 1(a). In the other two cases, 
the gas velocity profiles during the convergence stage are non-uniform, as shown in Figs. 1(h), (i), the velocity of the free 
surface v f being the lowest radial velocity directed inward. The uniform pressure p0 produced at the instant of collapse, 
t = 0− , is positive. These cases can be regarded as generalized Noh flows at the negative time.

We seek self-similar solutions that describe the flows schematically shown in Figs. 1(b), (c), (e)–(i). For this purpose, we 
solve the ideal gas dynamic equations for a spherical geometry:

∂ lnρ

∂t
+ v

∂ lnρ

∂r
+ ∂v

∂r
+ 2v

r
= 0, (1)

∂ ln p

∂t
+ v

∂ ln p

∂r
+ γ

∂v

∂r
+ 2γ

v

r
= 0, (2)

∂v + v
∂v + 1 ∂ p = 0. (3)
∂t ∂r ρ ∂r
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The case of cylindrical geometry is described by the same equations with the geometric factor 2 in Eqs. (1), (2) replaced 
with unity. It is studied in exactly the same way as the case of spherical geometry, and we are not addressing it here.

The problem under consideration is defined by the initial conditions imposed at t = 0−:

v
(
r, t = 0−) =

{
0, r = 0;
±v0, r > 0,

(4)

ρ
(
r, t = 0−) = ρ0, (5)

p
(
r, t = 0−) = p0, (6)

where the constant v0 > 0 is the absolute value of the initial uniform expansion or compression velocity; the constants 
ρ0 > 0 and p0 ≥ 0 are the initial values of the density and pressure. The initial conditions (4)–(6) for the negative and 
positive signs in front of v0 in (4) correspond to the cases illustrated with Figs. 1(a) and (d), respectively. The boundary 
conditions are

v(r = 0, t > 0) =
{

0, if ρ(r = 0, t) > 0,

undefined otherwise;
v(r → ∞, t > 0) = ±v0, ρ(r → ∞, t > 0) = ρ0, p(r → ∞, t > 0) = p0.

(7)

The single dimensionless parameter determining the problem for a given value of gas γ and a specified geometry is the 
Mach number

M0 = v0

cs0
= v0√

γ p0/ρ0
. (8)

To find the self-similar solutions sought for, we use the symmetry of our initial/boundary value problem (1)–(7). Our 
governing equations (1)–(3), as well as the initial and boundary conditions (4)–(7), are invariant under the Abelian group of 
scale (or dilatation) transformations of radius and time

r → λr, t → λt, (9)

which leave the velocity, density, and pressure unchanged. Here, the scale factor λ is an arbitrary positive number. Therefore, 
as explained in many physical and mathematical texts (see, for example, Chapter XII, Section 2 of Ref. [20] and Chapter V, 
Section 19 of Ref. [21]), solutions of our problem are self-similar, depending on the independent variables r and t only via 
their dimensionless combination, which in our case is r/(vst).

Other relevant symmetries of Eqs. (1)–(7) involve transformations of the initial and boundary conditions. For example, 
the simultaneous inversion of time and velocity,

t → −t, v → −v, (10)

which leaves Eqs. (1)–(3), the radius, density, and pressure unchanged, changes the sign in front of v0 in (4) and (7), and 
makes the boundary conditions (7) formulated for the negative time, t < 0. This symmetry transforms the rarefaction-wave 
solutions illustrated with Figs. 1(e) and (f) into the collapsing-cavity and the converging-compression-wave solutions illus-
trated with Figs. 1(h) and (i), respectively. Note that the symmetry transformation (10) cannot be applied to the generalized 
Noh solutions that involve accretion shocks, Figs. 1(b), (c). Shock fronts generate entropy, and non-isentropic flows are not 
reversible.

Similarly, the time translations

t → t − t0, (11)

where t0 is an arbitrary value, do not affect Eqs. (1)–(3) but require appropriate modifications of the initial and boundary 
conditions (4)–(7). In Fig. 1, this corresponds to replacing t = 0, t > 0 and t < 0 with t = t0, t > t0 and t < t0, respectively. In 
particular, for converging-shell and converging-compression-wave flows illustrated with Figs. 1(h), (i), the instant of collapse 
after this transformation will be t−

0 .

2.2. Self-similarity ansatz

Here we describe in detail the family of the self-similar solutions whose existence had been first noted in [9], Chapter 4, 
Section 7 titled “The problem of an implosion and explosion at a point.” Later, solutions of this family were discussed in 
[22] in the context of magnetized target fusion research, as examples of exact solutions that describe both implosion and 
stagnation of a plasma shell, where “the post-stagnation hot core plasma does not expand against the imploding flow.”

We introduce the self-similar variables in the usual way, as done, for example, in [8–11,13–17,20,22–28]. The self-similar 
radial coordinate is defined as
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η = r

vs|t| ≥ 0. (12)

The negative time t < 0 corresponds to the implosion phase of the flow, when its radial length scale vs|t| decreases with 
time to vanish at t = 0. The positive time t > 0 corresponds to the stagnation phase of the flow, when its radial length scale, 
which coincides with the accretion shock radius, increases linearly with time, while the pre-shock gas keeps converging to 
the center. The dimensional velocity, density, and pressure are expressed as

v(r, t) = vs sgn(t)ηU (η), (13)

ρ(r, t) = ρ0N(η), (14)

p(r, t) = ρ0 v2
s P (η), (15)

where U (η), N(η), and P (η) are dimensionless functions determining the self-similar profiles. According to our definitions 
(12), (13), at t > 0, positive and negative values of U (η) correspond to radially diverging and converging flows, whereas at 
t < 0 it is the other way around. Passing into the self-similar variables (13)–(15), we transform Eqs. (1)–(3) into the ordinary 
differential equations:

(U − 1)
d ln N

d lnη
+ dU

d lnη
+ 3U = 0, (16)

(U − 1)
d ln P

d lnη
+ γ

dU

d lnη
+ 3γ U = 0, (17)

(U − 1)

(
dU

d lnη
+ U

)
+ P

η2N

d ln P

d lnη
= 0. (18)

We introduce a new self-similar variable

S = γ P

η2N(1 − U )
. (19)

Most other authors use instead one of the equivalent variables, like Z = S(1 − U ) or C = √
Z [3,8–11,20,22–26]. Our 

choice of the sonic variable S was determined specifically by its convenience for the MHD generalization, see [16,27,28]. 
Obviously, the variables P (η) and N(η) cannot be negative, so the physically meaningful domains of variation of U (η) and 
S(η) are (U ≤ 1, S ≥ 0) and (U ≥ 1, S ≤ 0). In the context of the problem under consideration, only the former domain is of 
interest, see Section 2.3 below.

With the aid of Eqs. (16), (17), we immediately obtain an equation for S(η):

(U − 1)
d ln S

d lnη
+ γ

dU

d lnη
+ (3γ − 1)U − 2 = 0. (20)

Substituting the definition (19) into the Euler equation (18) and expressing d ln P/d lnη from (17), we reduce (18) to

dU

d lnη
= U (U + 3S − 1)

1 − U − S
. (21)

Substituting (21) into (20), we transform this equation to

dS

d lnη
= S[−(2γ − 1)U 2 + U S + (2γ + 1)U + 2S − 2]

(1 − U )(1 − U − S)
. (22)

The original system of three equations (16)–(18) has been thereby reduced to two equations (21), (22), in the same way 
as it is done for the Sedov–Taylor–von Neumann blast-wave problem [8,9] or Guderley shock-wave implosion [10,11,23]. 
Once the equations (21), (22) for U (η) and S(η) have been solved, the self-similar density and pressure profiles, N(η) and 
P (η), are immediately found from the mass conservation and adiabaticity integrals

N = N0
[

S(1 − U )η2] 1
γ −1 , (23)

P = 1

γ
N0

[
S(1 − U )η2] γ

γ −1 = 1

γ Nγ −1
0

· Nγ , (24)

respectively (here, N0 is a positive integration constant). The integral (23) is easily derived from Eqs. (16) and (20). From 
(23) and (19), we obtain (24). From (23)–(24), we find that the entropy per gas particle,

s ∝ ln
p
γ

= ln
P (η)

γ
+ const = const(η), (25)
ρ [N(η)]
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is independent of the self-similar coordinate. In other words, the entropy is not only time-independent in each gas particle, 
which is ensured by our ideal-gas equations, but it is uniform over any part of the flow that does not cross a shock 
front, which our solutions include at t > 0. Post-shock entropy is a constant, too, implying that the shock strength is 
time-independent.

Equations (21), (22) constituting an autonomous dynamical system (their right-hand sides do not include the indepen-
dent variable, lnη, explicitly) can be analyzed and solved directly, as done in Refs. [8–11] and many others. However, their 
right-hand sides become singular when either U = 1 or U + S = 1. The physical origin of these singularities is easy to 
explain. Note that the gas velocity equals ηU (η)vs sgn(t), whereas the velocity of the spherical surface η = const equals 
ηvs sgn(t), see Eqs. (12), (13). Therefore, the relative velocity of the surface η = const with respect to the gas particles 
equals

uη = η(1 − U )vs sgn(t). (26)

The ratio of this velocity to the local speed of sound, cs = √
γ p/ρ = ηvs

√
γ P/N defines the local Mach number:

M2
η = u2

η

c2
s

= 1 − U

S
, (27)

see Eqs. (19) and (26). The singularities in the right-hand sides of Eqs. (21), (22) emerge when the velocity of the “constant 
phase” surface η = const equals one of the characteristic hydrodynamic velocities, either the particle velocity, if U = 1, or 
the speed of sound, if U + S = 1. It is convenient to get rid of these singularities through the introduction of an auxiliary 
dimensionless independent variable τ defined by the equation

d lnη

dτ
= (1 − U )(1 − U − S). (28)

With the aid of (28), we transform Eqs. (21), (22) into a non-singular autonomous dynamical system

dU

dτ
= U (1 − U )(U + 3S − 1), (29)

dS

dτ
= S

[−(2γ − 1)U 2 + U S + (2γ + 1)U + 2S − 2
]
, (30)

whose trajectories can be qualitatively analyzed using the well-known phase-plane technique [29]. The self-similar profiles 
U (η) and S(η) sought for are determined parametrically from the numerical solutions of Eqs. (28)–(30) that yield U , S , and 
η as functions of τ .

2.3. Phase plane analysis

Equations (29), (30) with the initial and boundary conditions corresponding to (4)–(7) have a one-parameter family of 
self-similar solutions, the parameter being the Mach number (8) varying in the range 0 < M0 ≤ ∞. The solutions valid 
for any t > 0 are represented by the trajectories of the dynamical system (29), (30) that approach its singular points at 
τ → ±∞. It is easy enough to integrate the ordinary differential equations (29) and (30) numerically. To perform such a 
numerical integration accurately, we have to make sure that the numerical trajectories match the asymptotic solutions of the 
governing equations near the singular points. For this purpose, we need to understand the phase portrait of the autonomous 
dynamical system (29), (30), same as when the Guderley problem is solved [10,11,23]. The phase portrait shown in Fig. 2 is 
equivalent to those schematically presented in Fig. 48 of Ref. [9] and in Fig. 2 of Ref. [22] but plotted in different variables. 
The arrows show the direction of the increasing radial coordinate η. Below and above the straight line U + S = 1 labeled 
“Sonic line” in Fig. 2, this direction is, respectively, the same or opposite to the direction of the increasing parameter τ .

Physically meaningful solutions of our initial/boundary value problem (1)–(7) are represented on the phase plane (U , S)

by the trajectories of the dynamical system (29), (30) that at τ → ±∞ asymptotically approach one of its singular points. 
These are the points where the right-hand sides of Eqs. (29) and (30) vanish. In Fig. 2 they are labeled P0, P1, P2, P3, and 
P4. Indeed, we describe the gas motion between the center, r = 0, and the infinity, r → ∞, as in the situations illustrated 
with Figs. 1(b), (c), (f), (i), or between a finite value of r = r f corresponding to the free surface and infinity, as in Figs. 1(e), 
(g), (h). The center is represented by the singular point P1 asymptotically approached at τ → −∞ if the pressure at the 
center is zero, and by the singular point at infinity, P4, approached at τ → +∞ if the pressure there is finite. The free 
surface shown in Figs. 1(e), (g), (h) is represented by the singular point P3 approached at τ → −∞. The sonic wave front 
shown in Figs. 1(f), (i) is represented by the singular point P2 approached at τ → −∞. Finally, the infinity in all cases is 
represented by the singular point P0 approached at τ → +∞.

Note that the physically meaningful trajectories cannot cross the straight lines U = 1 and U + S = 1 where the right-hand 
side of (28) changes sign. Such a crossing would make the solution multi-valued, which is obviously unphysical. An exception 
is possible when the crossing occurs at a singular point of the autonomous dynamical system (29), (30), which is the case 
for the Guderley’s converging shock solution [10,11,23], but it does not take place in our case. A phase point representing 
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Fig. 2. The phase plane of the dynamical system (29)–(30) for γ = 5/3. Arrows indicate the direction of increasing radial coordinate η. (a) Thick straight 
line trajectory segments comprise the classic Noh solution; thin curves correspond to the generalized solutions. (b) A zoomed fragment of (a) marked by 
dashed lines shows the trajectories that correspond to the generalized Noh solutions in greater detail.

the state of the gas can jump over the sonic line U + S = 1 from one phase trajectory to another via a shock front, as 
demonstrated below.

By the definition (12), the shock front corresponds to a constant value η = 1 of the self-similar coordinate. It follows 
from (27) that the Mach numbers of the pre-shock and post-shock flows, indicated by the subscripts 1 and 2, respectively, 
are given by

M2
1 = 1 − U1

S1
, M2

2 = 1 − U2

S2
. (31)

The shock density compression for arbitrary shock strength can be expressed via either upstream or downstream Mach 
number [3] as

N2

N1
= 1 − U1

1 − U2
= (γ + 1)M2

1

(γ − 1)M2
1 + 2

= (γ − 1)M2
2 + 2

(γ + 1)M2
2

. (32)

The post-shock parameters (U2, S2) are thereby expressed via the pre-shock parameters (U1, S1) as

U2 = γ − 1

γ + 1
U1 + 2

γ + 1
(1 − S1), (33)

S2 = 2γ

γ + 1
(1 − U1) − γ − 1

γ + 1
S1. (34)

Similarly, one can express (U1, S1) via (U2, S2) either by solving (33)–(34) or simply making the subscript substitution 
1 ↔ 2 in Eqs. (33), (34). From (33)–(34) we also find:

S2 − S1

U2 − U1
= γ , (35)

i.e., the slope of the straight line segment representing a shock transition on the (U , S) phase plane does not depend on 
the shock strength and equals γ .

Fig. 2 and an inspection of Eqs. (29), (30) show that the straight lines U = 0, U = 1, and S = 0 are invariant: segments 
of these lines connecting singular points are trajectories of the system. Physically, they represent a uniform resting gas, a 
free surface of the gas, and an adiabatic motion of a zero-pressure gas, respectively.

The system (29), (30) has four singular points in the finite part of the phase plane. The point P0 (U = 0, S = 0) is a 
node attracting at τ → +∞. All the solutions satisfying both the initial conditions (4)–(6) and the boundary conditions 
(7) at r → ∞ are represented on the phase plane by the trajectories approaching P0 at τ → +∞, which corresponds to 
η → ∞. Indeed, Eq. (12) shows that in the limit t → 0, the self-similar coordinate η corresponding to any finite value of 
the radial coordinate r tends to infinity. Asymptotic solutions of Eqs. (21), (22) in the vicinity of the singular point P0 are 
U ∼= const1 ·η−1, S ∼= const2 ·η−2 at η → ∞, where const2 cannot be negative and const1 can have either sign. Equations 
(13), (23), (24) demonstrate that in this limit, the gas velocity, density, and pressure tend to constant values, which is 
consistent with (4)–(7) and Figs. 1(a), (d). This observation explains why only the part of the phase plane containing the 
trajectories approaching P0 in the limit τ → +∞ from above, that is (U ≤ 1, S ≥ 0), is of interest here.
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The saddle point P1(U = 2
3γ −1 , S = γ −1

3γ −1 ) represents the state of the gas at the center, r = 0, from which an isentropic 
rarefaction wave is propagating, or to which an isentropic compression wave is converging. When this saddle points is 
approached along the separatrix at τ → −∞, η → 0, we find from Eqs. (19), (23), (24) that the pressure and the density 
are zero at the center but finite in its vicinity.

The degenerate node P2(U = 0, S = 1) attracts at τ → −∞. From (28) we find that in this limit η → const, so it corre-
sponds to a finite value of the radial coordinate. According to (28), the Mach number describing the motion of this surface 
η = const with respect to the gas particles is unity, which means that this surface is a sonic wave front. It can be the trailing 
edge of an expanding rarefaction wave, or the front of a converging finite-strength isentropic compression wave, in either 
case labeled “Sonic wave front” in Figs. 1(f) and (i). This front either leaves behind, as in Fig. 1(f), or propagates into, as 
in Fig. 1(i), a uniform resting finite-pressure gas core near the center. In either case, it propagates at the speed of sound 
characteristic of the core.

The degenerate node P3(U = 1, S = 0) attracts at τ → −∞. Similarly, from (28), we find that in this limit η → const, so 
it corresponds to a finite value of the radial coordinate. From (19), (23), and (24) we conclude that both the pressure and 
density of the gas vanish in this limit, implying that this singular point corresponds to a boundary between the gas and 
the vacuum, which is labeled “Free surface” in Figs. 1(e), (g), (h). This free surface can either be the outer boundary of a 
vacuum cavity left behind an expanding rarefaction wave, as in Fig. 1(e), or the inner boundary of a collapsing cavity, as in 
Figs. 1(g), (h).

In addition, there is an important singular point at infinity, the saddle point P4(U = 1, S → +∞), where the right-hand 
side of Eq. (29) vanishes but the right-hand side of Eq. (30) does not. It represents a finite-pressure gas at the center, 
η = 0. The semi-infinite ray of the invariant straight line U = 0 connecting the singular points P4 and P2 represents the 
“Uniform gas core at rest” in Figs. 1(f), (i). Indeed, after substituting U = 0 into Eq. (22), we immediately integrate it to 
obtain S = const ·η−2, where the integration constant must be positive. Substituting this expression into Eqs. (23), (24), we 
find that both the pressure and the density are constant along this segment. A finite segment of this ray represents the 
“Uniform shocked gas at rest” in Figs. 1(b), (c), that is, the locus of post-shock states on our phase plane. To find the locus 
of the corresponding pre-shock states, we note that a shock front is represented with a jump from one trajectory to another, 
with the pre-and post-shock values of U and S satisfying the Hugoniot conditions (33), (34). Substituting U2 = 0 into (33), 
we determine the locus sought for, which also turns out to be a straight-line segment:

S1 = 1 + γ − 1

2
U1, (36)

where

− 2

γ − 1
≤ U1 < 0. (37)

In Fig. 2, the segment (36) is shown as a dotted line labeled “Jump locus.” The range (37) of U1 is bounded from below 
by the requirement that the pre-shock value of S1 ≥ 0; here, the equality corresponds to a strong expanding shock. The 
interval (37) is bounded from above by the requirement that the Mach number of the shock front M1 > 1; as the parameter 
U1 approaches zero, the weak-shock front reduces to a sonic front. The jumps from the “Jump locus” segment to the 
post-shock locus segment are shown in Fig. 2 as straight-line segments labeled “Shock transitions” with arrow indicating 
the direction of increase of the radial coordinate η. The relation (35) explains why all these segments in Fig. 2(b) are parallel 
to each other.

2.4. Solutions

2.4.1. The classic Noh solution
The classic Noh solution is typically considered at t > 0. However, it can be analytically continued to negative time, being 

a branch of a solution valid at −∞ < t < +∞, see Figs. 1(b) and (g). The same can be said about the Guderley shock-wave 
implosion problem but not about the Sedov–Taylor–von Neumann blast-wave problem. Here, we start with the implosion 
phase t < 0, when a cavity in a cold gas collapses onto the center at a constant velocity, as in Fig. 1(g). We describe the 
self-similar solution for the converging flow. On the phase plane, this solution is represented by a segment of the invariant 
straight line S = 0 connecting the singular points P3 and P0. Substituting S = 0 into (21), we immediately obtain

U = U∞
η

, (38)

where U∞ is a positive integration constant to be determined. The solution (38) means that the gas velocity profile is flat, 
as should occur in the absence of a pressure gradient. To obtain the density profile, we cannot use the integral (23) because 
S vanishes. Instead, we integrate the continuity equation (16) together with (38) to obtain

N =
{

(1 − U∞
η )2, η ≥ U∞;

0, 0 < η < U .
(39)
∞
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The integration constant in (39) is chosen to satisfy the initial condition (5): since at t → 0− we have η → ∞ for any r, 
the density profile should satisfy the boundary condition

N(η → ∞) = 1. (40)

The solution (38)–(39) describes a cavity in a zero-pressure gas collapsing at a constant velocity U∞vs onto the center of 
symmetry, Fig. 1(g). With negative t approaching t = 0− , the density gradient near the gas–vacuum boundary steepens due 
to convergence, reproducing at t = 0− the flat profile (4) shown in Fig. 1(a). The same solution considered at t > 0 describes 
an expansion of a zero-pressure gas from the center, leaving a vacuum behind, which corresponds to a positive sign in front 
of v0 in (4). It is similar to that illustrated with Fig. 1(e) but in this case the expansion velocity equals v0 everywhere, just 
as the compression velocity in Fig. 1(g).

Now we describe the flow at t > 0, after the shock reflection from the center, illustrated with Fig. 1(b). It is represented 
by a segment of the invariant straight line S = 0 entering the singular point P0 at τ → +∞. The density profile in front 
of the expanding shock must be given by the same solution (39) with the substitution U∞ → −U∞ because at t > 0 the 
pre-shock mass converging at a constant velocity has a negative self-similar velocity U . Then the pre-shock velocity and 
density profiles are, respectively,

U = − U∞
η

, (41)

N =
(

1 + U∞
η

)2

, η > 1. (42)

In the resting shocked gas U = 0, and the integration of Eq. (22) results in

S = S0

η2
, η ≤ 1, (43)

where S0 is a positive integration constant to be determined. Equations (23), (24) confirm that the density and pressure 
profiles behind the shock front are flat, as should occur. To link the pre- and post-shock branches of the solution, we find 
the intersection of the invariant straight line S = 0 representing the pre-shock flow of the converging gas with the “Jump 
locus” segment (36). It occurs at the left boundary of this segment, where

U1 = −U∞ = − 2

γ − 1
, (44)

and S = S1 = 0. Substituting these values of U1 and S1 into the Hugoniot jump conditions (33), (34), we find the post-shock 
parameters: U2 = 0 and

S2 = S0 = 2γ

γ − 1
. (45)

This jump is shown in Fig. 2(a) as the straight line segment labeled “Shock transition.” The segment of the straight 
line U = 0 connecting the point (U = 0, S = S2) with the singular point P2 represents the locus of the post-shock states 
on the phase plane. From (4), (44), and (45) we find that the initial dimensional inward velocity of the converging gas is 
2vs/(γ − 1) = v0, hence

vs = γ − 1

2
v0. (46)

Using (19), (42), (44), and (45), we find the dimensionless pre- and post-shock densities and the post-shock pressure:

N1 =
(

γ + 1

γ − 1

)2

, N2 =
(

γ + 1

γ − 1

)3

, P2 = 2

γ − 1

(
γ + 1

γ − 1

)3

. (47)

This concludes the re-derivation of the classic Noh solution, which on the phase plane of Fig. 2(a) is represented by two 
straight-line trajectory segments and a shock transition across the sonic line, connecting the singular points P4 (the center, 
r = 0) and P0 (the infinity, r → ∞). The corresponding velocity, density, and pressure profiles for γ = 5/3 shown in Fig. 3
are labeled with M0 = ∞. The vertical dotted straight line in the velocity profile indicates the coordinate η = η f = 2/(γ −1)

of the inner free surface of the converging cold-gas shell; there is no mass at η < η f , hence, the gas velocity is not defined 
there.
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Fig. 3. Self-similar velocity, density, and pressure profiles for the classic Noh solution (M0 = ∞) and generalized Noh solutions with finite M0 = 0.710148
to 1.97201, at γ = 5/3. The profiles on the left, (a) to (c), correspond to the implosion phase of the motion, t < 0, and the profiles on the right, (d) to (f) – 
to the stagnation via an expanding accretion shock wave phase, t > 0.

2.4.2. Collapse of a cavity in a finite-pressure gas
We begin with the simplest generalization of the classic Noh solution, for which the implosion phase t < 0 describes a 

finite-pressure gas collapsing at a constant velocity onto a vacuum cavity, as schematically shown in Fig. 1(h). At t = 0− , 
the gas reaches the center, and the initial conditions (4)–(6) are satisfied. In the phase plane of Fig. 2(b), the trajectories 
corresponding to the solutions of this type fill a curvilinear triangle formed by the separatrices linking the singular points 
P1 and P0, P3 and P1, and the segment of the straight line S = 0 connecting P3 with P0. The implosion phase is described 
by any trajectory connecting the singular points P3 (free surface) and P0 (infinity) outside of the straight line S = 0 that 
represents the cold-gas collapsing-cavity solution given in Section 2.4.1. There is a one-parameter family of such solutions 
defined by M0,cr < M0 < ∞, where the critical Mach number value for γ = 5/3 equals 1.28861, as explained below. Here, 
we present an example of such solution that on the phase plane (U , S) corresponds to the curvilinear trajectory of this type 
shown in Fig. 2(b).

Equations (28)–(30) are numerically solved using the Rosenbrock integration method [30] as appropriate for stiff differ-
ential equations. The numerical integration can be started from any non-singular point in this domain, U = Um , S = Sm , 
assuming additionally ηm = 1 (later we will have to re-scale the self-similar radial coordinate). The first step is the integra-
tion of (28)–(30) from this point to a large negative τ , approaching the singular point P3, although not reaching it. It can be 
shown that all the trajectories outside of the invariant lines U = 1 and S = 0 approach the degenerate node P3 at τ → −∞
with the same slope. Asymptotically, at θ = ln(η/η f ) << 1, we have

U = 1 − 3(γ − 1)

γ + 1
θ + 3(γ − 1)(9γ 2 − 20γ + 7)

2(γ + 1)2(3γ − 5)
θ2 + O

(
θ3);

S = (2 − γ )(γ − 1)

γ + 1
θ − (2 − γ )(γ − 1)(13γ 2 − 20γ + 3)

2(γ + 1)2(3γ − 5)
θ2 + O

(
θ3). (48)

The second- and higher-order terms in the expansions (48) diverge at γ = 5/3. For this special case, we have instead

U = 1 − 3

4
θ + 9

32
θ2 ln θ + O

(
θ2); S = 1

12
θ − 13

96
θ2 ln θ + O

(
θ2). (49)

One can use (48) or (49) to analytically extrapolate the solution from the farthest point reached with the numerical 
integration to the actual position of the free surface where the gas pressure and density vanish, which corresponds to a 
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Fig. 4. (a) Profiles of U and S obtained for γ = 5/3 and M0 = 1.97201. The corresponding solutions describe a collapse of a cavity in a finite-pressure 
gas at t < 0 and an expansion of a rarefaction wave leaving vacuum behind at t > 0. The filled circles mark the starting point of numerical integration, 
the dotted line indicates the position of the free surface that corresponds to the singular point P3 on the phase plane. (b) The numerical profile of the 
self-similar velocity U (solid line) and the asymptotic solution (dotted line labeled Eq. (49)) in the vicinity of the free surface. (c) Deviations (53) of the 
numerical profiles of ηU and η2 S from the asymptotic values, U∞ and S∞ , respectively, shown in units of 10−4: numerical solutions (lines) vs. Eqs. (51), 
(52) (symbols). Insert: the same δS curve zoomed at large values of lnη shows how the numerical noise starts contaminating the solution.

certain finite value of the radial coordinate η = η f indicating the boundary of the empty cavity. Near this boundary, the 
velocity approaches the finite value vsη f , whereas the density and pressure vanish as

N ∝ (η − η f )
2

γ −1 , P ∝ (η − η f )
2γ

γ −1 , (50)

respectively. These formulas are easily obtained by substituting the asymptotic expressions (48), (49) into the integrals (23), 
(24).

Fig. 4(a) presents the results of numerical integration obtained for γ = 5/3 with Um = 1/2 and Sm = 1/12. Solid circles 
mark the starting point of the integration where we have assumed lnη = 0. The left boundary of the profiles, η = η f , 
corresponds to the free surface represented by the singular point P3 in the phase plane. Far to the right, at η → ∞, the 
trajectory asymptotically approaches the singular point P0. Fig. 4(b) shows the profile of U in the vicinity of the free 
surface. The solid box indicates the location where the numerical simulation ended. Beyond this point, the profiles were 
extrapolated with the aid of (49) to the position of the free surface, which in this case is lnη f = −1.25126. The dotted line 
labeled “Eq. (49)” in Fig. 4(b) demonstrates the accuracy of the asymptotic approximation (49).

Now we continue with the second step, integrating Eqs. (28)–(30) from the non-singular starting point defined above to 
a large positive τ , approaching the node P0. The asymptotic form of the solution in the limit η → ∞ is

U (η) = U∞
η

[
1 − 1

η2
S∞ + O

(
1

η3

)]
, (51)

S(η) = S∞
2

[
1 − 2γ − 3

U∞ + (2γ − 3)(γ − 2)

2
U 2∞ + O

(
1
3

)]
, (52)
η η η η
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where U∞ and S∞ are integration constants evaluated from fitting the results of numerical integration to the asymptotic 
formulas (51), (52). The fitting procedure is illustrated with Fig. 4(c), where the deviations of the numerical integration 
results from the first-order asymptotic expressions,

δU = ηU − U∞, δS = η2 S − S∞, (53)

are plotted in units of 10−4 vs. η on a logarithmic scale. Here, the lines show the numerical results, and the symbols are 
plotted with the aid of Eqs. (51), (52). The comparison illustrates the accuracy of the asymptotic formulas over a wide range 
of large values of η. The insert is a zoomed fragment of the same graph for ln η ranging from 6 to 12. We see that at 
lnη > 10, when U and S become less than 10−4 and 10−9, respectively, the solution becomes increasingly contaminated 
by the numerical noise. This is why, in order to control the numerical accuracy of determination of the parameters U∞ and 
S∞ one has to compare the results of numerical integration with the asymptotic formulas over a wide range of η.

From (12)–(15), and (19), we find that the gas velocity and the local speed of sound at η → ∞ tend to vsU∞ and 
vs

√
S∞ , respectively. Therefore, the Mach number (8) is expressed via these constants as

M0 = |U∞|√
S∞

. (54)

Note that construction of the solution described above leaves the scale of the radial coordinate η, and hence, the values of 
U∞ and S∞ , arbitrary. The coordinate η enters Eq. (28) only via d lnη, which means that our equations and the asymptotic 
formulas (51), (52) are invariant under a scale symmetry transformation

η → λη, U∞ → λU∞, S∞ → λ2 S∞, (55)

where λ is an arbitrary positive scaling factor. The asymptotic formula (54) for the Mach number is also invariant under the 
transformation (55).

We remove this arbitrariness in the scale of η by requiring that the expanding shock front coordinate is η = 1, as defined 
by Eq. (12). To do this, we need to construct the solution for the stagnation phase at t > 0 schematically shown in Fig. 1(c). 
For this purpose, we start our numerical integration from the “Jump locus” straight line segment (36), (37). Specifically, we 
choose an arbitrary negative trial value of U = U1 in the range (37), determine the corresponding positive value of S = S1

from (36), and take the initial value of η = 1, as appropriate for the shock front position. We integrate Eqs. (28)–(30) from 
this starting point to a large positive τ , approaching the node P0. Then we evaluate the constants U∞ and S∞ from (51), 
(52), as explained above, and the corresponding value of M0 from (54). If the latter is larger or smaller than the above 
value of M0 found for the trajectory connecting the singular points P3 and P0, then we must chose a different trial value 
of U1, closer to the left or right boundary of the interval (37), which correspond to the limits of M0 → ∞ and M0 → 0, 
respectively. With a simple shooting method that rapidly converges, we find the value of U1 that, within our numerical 
accuracy, corresponds to the same value of M0 that we have determined at the previous step, as well as the accurate values 
of U∞ and S∞ . From (31), (32) we find the Mach number of the expanding shock wave, and the density and pressure 
jumps:

M1 =
√

2(1 − U1)

2 + (γ − 1)U1
,

N2

N1
= 1 − U1,

P2

P1
= 2 − (γ + 1)U1

2 + (γ − 1)U1
. (56)

The analytic continuation of the solution from t < 0 to t > 0 implies that the corresponding trajectories entering the 
singular point P0 at τ → ∞ from the left and right side are characterized by the same value of S∞ and the values of U∞
differing only in sign. Since both branches of the solution yield the same value of M0 , the values of U∞ and S∞ from the 
solution that describes the implosion phase are transformed to the above values by the scaling transformation (55) that 
yields the appropriate value of the scaling factor λ. The same transformation determines the scale of the coordinate η for 
the implosion phase of the solution.

Self-similar profiles of the physical variables are constructed using (13)–(15), (23), (24). In particular, the shock velocity is 

given by vs = v0/|U∞|. The boundary condition (40) implies that in (23), (24) the integration constant equals N0 = S
− 1

γ −1∞ . 
The velocity, density and pressure profiles constructed for this case in Fig. 3 are labeled by the corresponding rounded-up 
value of the Mach number, which in this case is M0 = 1.97201. The vertical dotted straight line in the velocity profile 
indicates the inner coordinate η = η f = 0.654522 of the free surface separating the converging gas from the vacuum inside 
it. Note that during the convergence phase, t < 0, the physical velocity (13) equals vs × (−ηU ), which for the trajectory 
connecting the singular points P3 and P0 is negative, as shown in Fig. 3. At t > 0, the same trajectory corresponds to a 
solution describing the expansion of a strong rarefaction wave, leaving cavitation behind, as schematically shown in Fig. 1(e). 
For such solution, the velocity profiles are the same as in Fig. 3 but with a different sign, whereas the density and pressure 
profiles are exactly the same.
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The right part of Fig. 3 shows the profiles plotted for the stagnation phase, t > 0. Generally, they are similar to those 
characteristic of the classic Noh solution, but there is one important difference. Due to a finite pre-shock pressure, the 
isentropic density increase caused by the convergence of the flow results in a corresponding pressure increase, creating a 
negative pressure gradient in the radial direction. The pressure gradient, in turn, slows down the incident gas. Hence, the 
velocity profile is no longer flat, in contrast with the classic case of M0 = ∞. The shock strength is finite, too: for this 
example, the upstream shock Mach number M1, the density and pressure jumps in the expanding shock front found from 
(56) are 1.59423, 1.83454, and 2.92693, respectively.

2.4.3. The intermediate case and the critical value of M0

The next case we illustrate here corresponds to the intermediate case when, during the implosion phase t < 0, the vac-
uum cavity inside the converging shell shrinks into a point. Therefore, the gas fills the whole space, its density vanishing at 
the center only. The imploding flow is a finite-strength isentropic compression wave that produces the initial conditions (4)
at t = 0− , Fig. 1(a), after which a finite-strength expanding stagnation shock is formed, as in Fig. 1(c). In the phase plane 
of Fig. 2(b), the intermediate-case solution is represented by the separatrix connecting the saddle point P1 and the node 
P0. As demonstrated by Fig. 2(b), this separatrix separates two qualitatively different types of trajectories: those linking 
the singular points P3 and P0, see Section 2.4.2 above, and those linking the singular points P2 and P0, see Section 2.4.4
below. Therefore, the Mach number characteristic of the separatrix linking the singular points P1 and P0 represents the 
critical value of this parameter, M0 = M0,cr. For γ = 5/3 the critical value equals M0,cr = 1.28861, see below. Larger values 
of M0 > M0,cr correspond to the solutions described in Sections 2.4.1 and 2.4.2 above and illustrated with Figs. 1(e) and 
(h). Smaller values of M0 < M0,cr correspond to the solutions described in Section 2.4.4 below and illustrated with Figs. 1(f) 
and (i).

Linearization of Eqs. (29)–(30) in the vicinity of the saddle point P1 yields the eigenvector corresponding to the direction 
of the separatrix that asymptotically approaches this point at τ → −∞ from lower values of U and S . We put the starting 
point of our numerical integration on the separatrix, as close to the singular point P1 as our numerical accuracy permits, 
and extrapolate the separatrix entering the saddle P1 to τ → −∞, η → 0 using the linear approximation. Taking the limit 
η → 0 in the integrals (23), (24), we find that the self-similar density and pressure tend to zero near the center following 
the asymptotic formulas (50) with η f = 0, as should occur. Then we integrate (28)–(30) numerically to large positive values 
of τ , approaching the node P0, and determine the values of U∞ and S∞ from (51), (52). The critical Mach number is 
evaluated as described in Section 2.4.2. For γ = 5/3 it equals M0,cr = 1.28861. Here again, the symmetry (10) transforms 
the implosion solution valid at t < 0 into a solution that describes the expansion an isentropic spherical rarefaction wave 
at t > 0. The corresponding velocity profiles differ from those shown in the left part of Fig. 3 by the sign only, whereas the 
density and pressure profiles are exactly the same.

The generalized expanding-shock Noh solution for the stagnation phase, t > 0, Fig. 1(c). is found exactly in the same way 
as in Section 2.4.2. In particular, the upstream shock Mach number M1, the density and pressure jumps in the expanding 
shock front found from (56) are 1.32892, 1.48218, and 1.95754, respectively. The velocity, density and pressure profiles 
constructed for this case in Fig. 3 are labeled by the corresponding rounded-up value of the Mach number M0.

2.4.4. Convergence of a finite-strength compression wave
Another example of the generalized Noh solution at the implosion phase t < 0 corresponds to a finite-strength compres-

sion wave spherically converging into a uniform resting gas near the center, Fig. 1(i). In the phase plane of Fig. 2(b), the 
trajectories corresponding to the solutions of this type fill the curvilinear triangle formed by the separatrices linking the 
singular points P1 and P0, P2 and P1, and the segment of the straight line U = 0 connecting P2 with P0. The implosion 
phase is described by any trajectory connecting the singular points P2 and P0 outside of the invariant straight-line segment 
(U = 0, 0 < S < 1). There is a one-parameter family of such solutions characterized by 0 < M0 < M0,cr = 1.28861, of which 
we present one example that corresponds to the trajectory of this type shown in Fig. 2(b).

The singular point P2 is located on the sonic line U + S = 1, which means that it physically corresponds to a sonic 
wave front. Solutions approaching the singular point P2 at τ → −∞ describe the fronts either of finite-strength isentropic 
compression wave propagating into a uniform gas core at rest, Fig. 1(h), or of a rarefaction wave leaving a uniform gas 
core at rest behind it [9], Fig. 1(e). Such a front is a weak discontinuity, which means that the density and pressure are 
continuous at the sonic front but their radial derivatives are not. The numerical solution is constructed in the same way 
as above. We choose an arbitrary non-singular starting point inside the curvilinear triangle (to plot the trajectory shown in 
Fig. 2(b), we have chosen Um = 1/4 and Sm = 1/6) and perform a numerical integration to a large negative τ approaching 
the degenerate node P2, and then to a large positive τ approaching P0.

The generalized expanding-shock Noh solution for the stagnation phase, t > 0, Fig. 1(c), is found exactly in the same way 
as in Sections 2.4.2, 2.4.3. The initial expansion velocity for this case is lower than those found for the above two cases, with 
M0 = 0.71048, and the expanding shock is weaker. The upstream shock Mach number M1, the density and pressure jumps 
in the expanding shock front found from (56) for this case are 1.13090, 1.19556, and 1.34866, respectively. The self-similar 
profiles calculated for this case are also shown in Fig. 3.
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Table 1
Parameters of the self-similar solutions illustrated with Figs. 5–7.

Mach number M0 0.710148 1.28861 1.97201
Initial velocity v0, cm/μs 0.916798 1.66359 2.54585
Radius of the free surface at t = 1 ns, μm n/a 0. 13.0622
Radius of the sonic front at t = 1 ns, μm 6.49046 0. n/a
Density behind the sonic front, g/cm3 0.127073 0. n/a
Accretion shock Mach number M1 1.13090 1.32892 1.59423
Accretion shock velocity, cm/μs 1.67763 1.83409 1.99569
Radius of the shock front at t = 3 ns, μm 16.7763 18.3409 19.9569
Pre-shock density, g/cm3 2.59276 3.97829 5.62914
Post-shock density, g/cm3 3.09980 5.89655 10.3269
Pre-shock pressure, Mbar 4.89332 9.98837 17.8130
Post-shock pressure, Mbar 6.59943 19.5526 52.1377

3. Numerical simulations

3.1. Three specific verification tests and sample numerical simulations

In this subsection we propose three specific verification tests that span qualitatively different regimes in Mach num-
ber space described in Section 2.4. Each of these three tests is designed to examine, in a single simulation, a sequence 
of all three different phases within that specific Mach number regime: isentropic expansion, isentropic compression, and 
stagnation via an accretion shock wave.

The first phase, isentropic expansion, begins by initializing the simulation with a uniform positive (outward) velocity, as 
in Fig. 1(d). The symmetry (9) ensures that the exact solutions of our initial/boundary value problem are self-similar, and 
the simulated solutions of our governing equations (1)–(3) should approximate them. The semi-analytic solutions presented 
in Section 2 are self-similar exactly, by construction. Of course, their evaluation involves the use of numerical integrators of 
the ordinary differential equations (28)–(30) and of the asymptotic formulas, such as (48), (49), (51), and (52), hence, the 
evaluated solutions are approximate, not exact. But their accuracy is easily increased by straightforward means to values far 
exceeding the accuracy that we can expect from solving our governing partial differential equations (1)–(3) on a numerical 
grid. Therefore the self-similar solutions of Section 2 are, or can be made, as useful for code verification as the exact (i.e. 
explicit) ones [11].

Having checked our numerical solution during the isentropic expansion phase, we use the symmetries (10), (11) to 
generate the numerical solutions involving convergence. Specifically, we choose a certain value t = t0, stop the numerical 
run at t = t0/2, change the sign of all the velocities (10), and make the time translation (11). The numerical solution provides 
the profiles characteristic of the isentropic expansion at the moment t = t0/2. The symmetries (10), (11) ensure that the 
same profiles of density and pressure, and the velocity profile with a reversed sign, are characteristic of the corresponding 
isentropic-compression solution, Figs. 1(h), (i). We thereby produce the second phase of the flow, an isentropic compression 
back to the initial state, which, after evolving for t0/2 more, should reproduce the Noh initial conditions, same as in Fig. 1(a), 
but at t = t−

0 . At this point, the third and final phase of the flow begins, that of an outwardly-propagating shock wave, 
analogous to that of the classic Noh problem, but of course generalized in the senses that we have discussed here. For our 
numerical examples below, we have chosen t0 = 2 ns. The solutions we have developed here apply to all three of these 
phases, yielding semi-analytic solutions to which numerical simulations can be compared at any time during the evolution 
of the fluid, subject only to the condition that we ensure that the numerical accuracy of the former far exceeds that of the 
latter.

The particular code that we use here for comparison purposes (and later for verification purposes) is Cerberus, an 
internally-developed Eulerian high-order Godunov code. It uses a piecewise-linear reconstruction technique originally de-
veloped by Colella and Glaz [31], which in turn was inspired by the MUSCL code of van Leer [32]. Cerberus is described in 
more detail in [16], where a verification of its MHD version vs. our magnetized Noh solution was demonstrated. The only 
aspect of Cerberus that may distinguish it from other similar codes in the community is that it does not use an approximate 
Riemann solver, but rather one that is commonly referred to as “exact,” meaning that exact analytic formulae for shocks, 
rarefactions, and contact discontinuities are used within the solver, and that the resolved state at a particular flux point 
in computed by iterating until the errors are extremely small. In particular, such “exact” solvers are capable of recognizing 
true cavitation, and assigning zero fluxes to those interfaces for which cavitation occurs. This may bear on the results to be 
presented below for the higher Mach number regime.

We perform our simulations as follows. All the simulations are initiated with the aid of the initial conditions (1)–(3). 
Specifically, we have chosen the dimensional density and pressure scale factors ρ0 = 1 g/cm3 and p0 = 1 Mbar, and gas 
γ = 5/3. The value of the isentropic speed of sound corresponding to our initial conditions is cs0 = 1.29099 cm/μs. The 
Mach number values calculated for the examples of Section 2, M0 = 0.710148, 1.28861 and 1.97201 translate into the 
velocities v0 = 0.916798, 1.66359, and 2.54585 cm/μs, respectively. Table 1 presents the numerical parameters characteristic 
of the three above solutions.
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Fig. 5. Analytical (lines) and numerical (symbols) profiles of velocity, density, and pressure for M0 = 0.710148.

All our simulations are initiated at t = 0, with the plus sign in front of v0 in (1). They describe isentropic finite-strength 
expansion waves that are predicted to leave behind a uniform resting gas for M0 = 0.710148 or a vacuum cavity for 
M0 = 1.97201. Each simulation is run from t = 0 to t = 1 ns, forming the velocity, density, and pressure profiles character-
istic of the corresponding expansion waves. The isentropic flows of an ideal fluid are reversible, permitting the symmetry 
transformation t → −t , v → −v . We restart our simulation at t = 1 ns, using as the initial conditions the numerically 
generated profiles of density and pressure, at the same time reversing the sign of the numerical velocity profile. Ideally, 
at any intermediate time, say, t = 1.5 ns, the simulation should reproduce the profiles of density and pressure previously 
generated at the corresponding moment of the expansion, in this case for t = 0.5 ns. At t = 2 ns, we should reproduce 
the initial conditions (1)–(3), the flat profiles of all variables, with the negative sign in front of v0 in (1). After t = 2 ns, 
the simulation should reproduce the self-similar solutions that describe stagnation. Note that the above formulation of the 
numerical problem does not require the analytical self-similar profiles for the initialization, which is the case, for example, 
for the Guderley problem [11,12]. Here, the initialization is trivial, as is the velocity reversal. We only need the self-similar 
profiles generated in Section 2 and shown in Fig. 3 as verification tools, to compare with our Cerberus simulation results.

Such a comparison is presented in Figs. 5, 6, and 7 for M0 = 0.710148, 1.28861 and 1.97201, respectively. The simulations 
were made on uniform static grid with a grid spacing of 0.1 μm, and a Courant number of 0.5 for all runs. For M0 =
0.710148 and 1.28861 we utilized 800 grid points, which corresponds to the outer boundary of the computational box at 
r = 80 μm. For the case of M0 = 1.97201 the number of grid points was doubled, and the outer boundary was located at 
r = 160 μm. At the outer boundary, we used outflow boundary conditions, i.e., we set the normal derivative of all quantities 
to zero, which of course is not in agreement with the actual solution, and thus will result in errors which will propagate 
into the computational domain at the three hydrodynamic characteristic speeds whenever one or more of these speeds is 
negative.

We see that in all three cases the agreement between our numerical results and the analytic self-similar profiles at the 
expansion wave phase is quite good. After the velocity reversal at t = 1 ns, Figs. 5 and 6 demonstrate a visible difference 
between the simulation results and the theoretical profiles within a finite distance from the outer boundary, whereas the 
agreement is still very good closer to the center. The disagreement is due to the zero-gradient boundary conditions at the 
outer boundary, which do not reproduce the self-similar solution. A sonic wave that starts propagating inward from the 
outer boundary at the instant of the velocity reversal t = 1 ns contaminates the numerical profiles, making them differ from 
the self-similar ones. For M0 = 0.710148 and 1.28861, the sonic wave reaches r ≈ 50 and 60 μm, respectively, at t = 2 ns. 
Consequently, the initial conditions (1) are accurately reproduced at t = 2 ns only for radii smaller than the above values. 
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Fig. 6. Analytical (lines) and numerical (symbols) profiles of velocity, density, and pressure for M0 = 1.28861.

Fig. 7. Analytical (lines) and numerical (symbols) profiles of velocity, density, and pressure for M0 = 1.97201.
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This disagreement is not seen in Fig. 7 because here the outer boundary is set farther from the center, and the sonic wave 
propagating from the boundary does not reach r = 80 μm before t = 2 ns.

During the stagnation phase that starts at t = 2 ns, the sonic wave emitted from the boundary r = 80 μm at t = 1 ns 
comes closer to the expanding accretion shock front, contaminating the pre-shock profiles for M0 = 0.710148 and 1.28861 
at radii greater than 40 and 25 μm, respectively. Still, it does not yet reach the shock front, so its radial position, pre- and 
post-shock parameters are well reproduced by the simulations for M0 = 0.710148 and 1.28861, see Figs. 5, 6. As for the 
case of M0 = 1.97201, the sonic wave emitted from the outer boundary r = 160 μm at t = 1 ns does not reach the plotted 
range r ≤ 80 μm before t = 3 ns, so the self-similar pre-shock profiles for the stagnation phase are also well reproduced in 
the simulation.

We must mention one difficulty encountered by Cerberus for the M0 = 1.97201 case, in which true cavitation is en-
countered over a finite spatial range. Like all finite volume codes that conserve momentum to roundoff, Cerberus computes 
velocities by dividing a momentum density by a mass density in each cell. In the cavitation region, this entails dividing ex-
tremely small momentum densities by extremely small mass densities, yielding potentially wildly varying velocities. These 
“velocities” are of course meaningless since the true velocity is undefined in this region. To address this issue, we have 
imposed a numerical minimum mass density for that case, which we took to be 10−7 g/cm3. This has the effect of giving 
moderately bounded values to the “velocity” within the cavitation region. In Fig. 7 we have drawn vertical dashed lines to 
denote the right boundary of the cavitation region. Our simulation velocities to the left of that line thus clearly have no 
physical meaning. Nonetheless, it is quite heartening to note how closely the discontinuities in those velocities delineate 
the true right boundary of the cavitation region. Again, this may be due to the fact that Cerberus uses an “exact” Riemann 
solver which can identify true cavitation events.

3.2. Code verification example

In this subsection we will try to give the reader an example of the primary use to which we hope that the solutions 
given in this paper will be made, that of code verification. While Figs. 5–7 illustrate the probable correctness of the analytical 
solutions we present here, and that visually good numerical results for these proposed verification tests are possible, they 
nonetheless do not constitute true code verification. Code verification involves more than merely verifying that a given code 
result at a particular resolution looks acceptable when plotted against an analytic solution. Rather it involves an investigation 
of the behavior of the error as the mesh size is reduced toward zero. The code we shall use in the following verification 
example is the internally written code Cerberus described earlier in Section 3.1.

We clearly have a wide choice of verification test parameters: Mach number, physical variable, and solution evaluation 
time. The choice will depend on the use to which a given code is to be put. For example, if one were modeling nearly 
isentropic flows in which physical dissipation mechanisms are small, a good choice might be the 2 ns entropy solution for 
any of the Mach numbers, for the errors would give a good indication of the numerical dissipation of the code. Our own 
interest is in the physics of inertial confinement fusion, in which shocks reflecting off the origin compress and heat plasma, 
and thus we choose to examine the post-shock density field at a time of 3 ns. To avoid any of the numerical issues with 
cavitation during the expansion phase of the simulation, which we address later, we choose the M0 = 0.710148 case of 
Section 2.4.4.

Our verification task will not be as easily performed as for the classic Noh problem. Unlike the classic Noh solutions, 
the present solutions are not given in terms of closed-form expressions, but rather by numerically integrating ordinary dif-
ferential equations, albeit to arbitrary precision, producing semi-analytic solutions that are given in tabular form at given 
solution times. The analytic solution at an arbitrary spatial position thus requires tabular interpolation, which in turn re-
quires an extremely fine tabular mesh to ensure that the interpolation errors are orders of magnitude smaller than the 
errors in any hydrocode output with which the solution is to be compared. Such tables for the three cases described above, 
calculated with the same numerical accuracy as Table 1, and with a radial increment of 0.01 μm, are provided in the online 
supplemental material to this article.

For finite volume codes such as Cerberus, a further numerical step is required, since such codes do not output point 
values of a quantity, but rather cell averages. Thus one must produce analytic cell averages of the required quantities 
by numerically integrating the interpolated values over the cells used by the hydrocode. Again, we must ensure that the 
errors in the analytic cell averages are orders of magnitude smaller than those produced by the hydrocode by utilizing an 
extremely fine tabular mesh. However, in the example given below, such numerical integration is not necessary, since the 
analytic solution in the domain of interest is a constant. This should permit the reader to verify his or her own code using 
the example below, without the need for tabular data of any kind, using only the single density value given in Table 1.

We augmented the M0 = 0.710148 case illustrated with Fig. 5, which used a mesh size of �r = 0.1 μm, with three 
additional calculations using mesh sizes of �r = 0.2, 0.05, and 0.025 μm. The outer boundary was located at r = 160 μm 
for all cases to ensure that our numerical results are not contaminated by the boundary effects, cf. Figs. 5, 6. We then 
computed the cell-average density errors at 3.0 ns for all of the post-shock cells less than a certain radius rmax . The latter 
radius should be, on the one hand, not too small, to avoid the error being dominated by the wall heating phenomenon, 
but on the other hand, not too large, to avoid the numerical errors associated with the modeling of the shock front, which 
at this time has reached r = 16.8 μm. We have chosen rmax = 15 μm. For the range 0 < r < rmax, the self-similar solution 
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Fig. 8. Profiles of relative errors in the simulated post-shock density for M0 = 0.710148, and the corresponding values of the l2 error norm (58).

predicts a constant post-shock density ρ2 = ρ0N2, where the value of N2 is determined from (56), making the calculation 
of the cell average, and hence the error, trivial. In our particular case, ρ2 = 3.09980 g/cm3.

The relative values of those errors, |ρ̄i/ρ2 −1|, where ρ̄i is the computed cell-averaged density in the ith cell, are plotted 
in Fig. 8. Note that the errors are largest in the wall-heated region near the center, and that away from the center the errors 
monotonically decrease with decreasing grid size, as we had hoped. At the center, note that the maximum error does not 
change substantially as the grid is refined, but that the radius over which the error is large does monotonically decrease 
with decreasing grid size. This is consistent with the behavior of high order Godunov codes like Cerberus on the classic Noh 
problem. For a low resolution, the increase of the numerical error in the vicinity of the shock front is clearly seen, too. Also 
shown in the plot are the volume-weighted l2-norms of the error for each of these calculations over this post-shock region, 
which we denote as simply l2 error, defined by the general formula

l2 error = 1

ρ̄a

√√√√ n∑
i=1

(
ρ̄i − ρa

i

)2
V i/

n∑
i=1

V i, ρ̄a =
n∑

i=1

ρa
i V i/

n∑
i=1

V i . (57)

Here, ρa
i is the semi-analytic value of the average density in cell i, V i is the volume of this cell, and n is the minimum 

value of i for which the maximum radius of cell i is greater than or equal to rmax. In our case, because of our chosen grid 
sizes, it will always be equal to rmax = 15 μm, so that n = rmax/�r. For a spherical geometry, a uniform grid, taking into 
account that ρa

i = ρ̄a = ρ2 = const, we reduce Eq. (57) to

l2 error =
√√√√ n∑

i=1

(
ρ̄i

ρ2
− 1

)2 3i2 − 3i + 1

n3
. (58)

As demonstrated by Fig. 8, both the cell-wise errors and the l2 error norm clearly become smaller as the mesh is refined. 
Further inspection of the sequence of the l2 error norms (6.39 × 10−4, 3.20 × 10−4, 1.66 × 10−4, and 8.68 × 10−5) reveals a 
convergence rate that is very close to linear. This is the same convergence rate that is typically seen for codes like Cerberus 
(high-order Godunov codes) on the classic Noh problem, and hence is the convergence rate that we would have anticipated 
for this problem.

Let us close this section with a mention of the tests that involve true cavitation, in particular the M0 = 1.97201 case 
which involves cavitation over a finite region, not at just a single point. At the resolution used in Section 3.1, 0.1 μm, we 
did not encounter any unusual difficulties with that test. Recall that we used an “exact” Riemann solver that recognized 
true cavitation, but that nonetheless we found it necessary to impose a density floor of 10−7 g/cm3 in order to keep 
the time step from becoming excessively small. For that resolution, these two attributes proved more than adequate to 
produce results that looked quite good visually. However, when we tried a convergence series of the kind described for the 
M0 = 0.710148 case above, the results were quite disconcerting. In particular the wall heating actually became worse as 
the resolution was increased. We identified this as probably due to some aspect of our treatment of cavitation, since when 
we initialized the problem with the analytic solution at 2.0 ns, circumventing entirely the cavitation regime and its density 
floor, these problems vanished. Our conclusion is that while the techniques we used here for dealing with cavitation may 
appear to work in some cases, we clearly do not have a technique which is applicable to all cases. Treating true cavitation 
in a hydrodynamic code remains a very difficult problem. It is worth noting that we would have been unaware of this 
weakness in Cerberus’s treatment of cavitation had we not attempted to verify the code using the cavitation solution given 
here. Clearly, we ourselves have benefited from the use of these solutions as a verification tool. It is our hope that others 
will also.



A.L. Velikovich et al. / Journal of Computational Physics 374 (2018) 843–862 861
4. Conclusions

We have constructed a one-parameter family of self-similar solutions of the compressible Euler equations for hydro code 
verification. It is parameterized by the Mach number M0 of the flow at the moment when the profiles of all the flow 
variables are flat; M0 can take an arbitrary positive value. Our solutions generalize the classic Noh solution that has been 
used for verification of practically every code designed to model implosions, explosions, and propagation of shock waves. In 
our parameterization the classic Noh solution corresponds to the upper limit of our parameter range, M0 = ∞. The other 
solutions of this family, which correspond to finite positive values of M0, describe adiabatic compression and expansion of 
the pre-shock gas and stagnation of this pre-compressed gas in a finite-strength expanding shock wave.

The new solutions are quite similar to the classic ones. The only qualitative difference is that the pre-shock isentropic 
compression of the converging gas leads to a pressure increase, which, in turn, slows down the converging pre-shock gas. 
In other words, the pre-shock pressure and velocity profiles shown for these solutions in Figs. 3, 5–7 are no longer flat.

While we have confined ourselves here to an ideal-gas EOS, these one-parameter families of generalized Noh self-similar 
solutions of the compressible Euler equations can be constructed for an arbitrary EOS of an ideal fluid. In particular, the EOS 
need not satisfy the Lie symmetry constraints [9,13,14], which must be satisfied in order to construct self-similar solutions 
of the Sedov–Taylor–von Neumann blast-wave problem [9], and of the Guderley converging-shock problem [10,23]. Formally, 
this possibility is due to the invariance of both density and pressure under the symmetry transformation (9), which makes 
self-similar solutions possible for an arbitrary function p(ρ) determining the isentrope. In particular, the EOS does not need 
to have “normal thermodynamic properties” (as defined in Chapter I, Section 17 of Ref. [20]), which allow the existence of 
rarefaction fans and compression shocks only. In the vicinity of phase transitions, thermodynamic properties of many mate-
rials are “anomalous,” making the compression fans and rarefaction shocks possible. The existence of rarefaction shocks had 
been predicted independently by Bethe [33] and Zel’dovich [34] (see also Chapter I, Section 19 and Chapter XI, Section 20 
of Ref. [20]) and confirmed in many experiments [35,36]. Self-similar solutions of the appropriately modified initial/bound-
ary value problem (1)–(7) with a so-called non-convex EOS manifesting the anomalous thermodynamic properties can be 
obtained in the same way as above. With a non-convex EOS, and a proper choice of parameters, the initial conditions 
of Figs. 1(a) and (d) can produce at t > 0 a self-similar, shockless isentropic stagnation and a self-similar non-isentropic 
expanding flow with a rarefaction shock wave, respectively.

A common feature of both the classic Noh solution and its generalization discussed here is the uniformity of density 
and pressure in the resting shocked plasma. This makes it possible to extend the small-amplitude perturbation analysis 
carried out for the classic Noh case in Ref. [17] to all generalized solutions of this family, including the finite Mach number 
solutions described here, as well as the non-ideal EOS and/or MHD solutions that can be obtained by the same method. 
This opens the door to truly multidimensional verification tests, a rarity in the world of compressible hydrodynamics. 
Specifically, we propose using these perturbed generalized Noh solutions for the verification of two- and three-dimensional 
hydrodynamics codes, by testing not only the ability of such codes to reproduce the analytic unperturbed one-dimensional 
solution, but to also to reproduce the proper behavior of small-amplitude perturbations applied to that solution in the 
transverse directions. In two and three dimensions, the small-amplitude stability analysis should be possible for EOS that 
displays the D’yakov–Kontorovich (DK) instability [3,37,38] of the accretion shock front. As demonstrated in Refs. [39,40], 
the presence of the piston driving a planar shock front can qualitatively change the manifestation of this instability. In the 
generalized Noh problem, the center of symmetry plays the role of the piston. A study of the manifestation of the DK 
instability in a spherical or cylindrical geometry can uncover interesting physics and lead to the development of advanced 
code verification tools.
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