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EXECUTIVE SUMMARY 

Automated visual object detection is an important capability in reducing the burden on human 
operators in many DoD applications. To train modern deep learning algorithms to recognize desired objects, 
the algorithms must be “fed” more than 1000 labeled images (for 55%–85% accuracy according to project 
Maven - Oct 2017 O6, Working Group slide 27) of each particular object. The task of labeling training data 
for use in machine learning algorithms is human intensive, requires special software, and takes a great deal 
of time. Estimates from ImageNet, a widely used and publicly available visual object detection dataset, 
indicate that humans generated four annotations per minute in the overall production of ImageNet 
annotations. DoD’s need is to reduce direct object-by-object human labeling particularly in the video 
domain where data quantity can be significant. The Augmented Annotations System addresses this need by 
leveraging a small amount of human annotation effort to propagate human initiated annotations through 
video to build an initial labeled dataset for training an object detector, and utilizing an automated object 
detector in an iterative loop to assist humans in pre-annotating new datasets.  

Augmented Annotation was divided into four phases: 

1. Bootstrap Augmented Annotation: Quantify annotation efficiency of leveraging a small number 
of human initiated annotations to produce a large number of annotations using visual tracking. 
Sponsor supplied video data containing targets of interest with a requirement of 2000 annotations 
per target class. MIT Lincoln Laboratory (MIT LL) successfully completed this phase in three 
months and demonstrated performance improvements over a purely manual process of 20X to 
25X. Annotations produced in Phase 1 are used in Phase 3 (current phase) to train an initial object 
detector.  

2. Prototype Augmented Annotation bootstrap system. MIT LL completed this phase in six months 
and delivered the prototype in a visual machine. 

3. Iterative Augmented Annotation process (current phase): Evaluate annotation generation 
efficiency improvement using the iterative process of the Augmented Annotation System 
compared to using only the bootstrapping process. Report on performance improvements and 
experiences or “lessons learned.” Use results in design of a full Augmented Annotation System. 

4. Develop and deploy full Augmented Annotation System, including both bootstrapping and 
iterative process, for user evaluation.  

Augmented Annotation Phase 3 includes the following subtasks: 

1. Prototype iterative training and testing process. 

2. Prototype user interface to verify auto-generated annotation initializations. 
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3. Compare human effort level using both the bootstrapping process and with the addition of auto-
generated annotation initializations. 

4. Measure performance improvements with each additional iteration of semi-automated annotation 
initialization in both detector accuracy and reduction in human effort. 

5. Report on learned experiences and quantify reduction in human effort. 

6. Apply experiences in design of a full Augmented Annotation System. 

MIT LL prototyped the iterative training process using YOLO-tiny as a default object detector with 
modifications to improve detection performance on small objects; built a prototype user interface for human 
verification/editing of automated pre-annotations; and measured performance improvements over using the 
bootstrapping process alone. Our experiments using the iterative process with automated pre-annotations 
showed an improvement of up to 3X over using the Augmented Annotation bootstrapping process alone, 
or up to 66X efficiency improvement when compared to a purely manual annotation effort.  

We learned a number of lessons through our experiments using the iterative annotation/training stage 
of Augmented Annotation: 

1. Effectiveness of AA3 iterative training/annotation cycle is dependent on detector performance.  

2. The importance of data selection/balancing in the iterative training process. The iterative training 
process needs to train the object detector using data that is representative of future datasets. 
Training with a highly biased dataset could produce an object detector with significantly worse 
performance on future datasets and thus revert the Augmented Annotation process to 
bootstrapping stage. 

3. Manual verification effort is a bottleneck to increasing annotation efficiency. Human attention is 
limited during the annotation effort to blocks of no more than 20 minutes.  

4. User interface improvements are needed to maximize use of human effort in the annotation 
process.  

The iterative process of Augmented Annotation, which includes training and applying a machine-
learning-based object detector with human in the loop in producing annotations, has shown great potential 
in dramatically increasing the efficiency of human annotators by up to 66X. Based on the outcome of 
Augmented Annotation Phase 3, MIT LL recommends that sponsor proceed with a deployable 
implementation of the full Augmented Annotation System. We recommend that the deployable Augmented 
Annotation system include the following elements: 

1. A bootstrapping component that leverages human initialized annotations and propagates them 
through video using visual tracking. 
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2. An interface for iterative training of a visual object detector, with potential to change the detector 
architecture. 

3. A user interface allowing the user to verify automated pre-annotations generated by a visual 
object detector. 

4. An automated training supervisor (active learner) that pre-processes new datasets and selects 
datasets for human annotators. The active learner takes the role of discovering datasets that 
improve the utilization of human effort and training data balancing to reduce the chance of a 
biased annotation dataset. 

5. To reduce the burden on human annotators to verify all annotations, automated pre-annotations 
could be utilized directly in training through a framework such as Snorkel or CleanLab. 

6. User interface improvements to decouple the time element of video from the annotation 
verification process.
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1. BACKGROUND 

Promising sources of information about potential adversaries or threat actors are video and imagery. 
Historically, this information is analyzed at great cost of time and effort by analysts, whom often lose peak 
performance within the first few minutes of viewing video. To take advantage of current and emerging 
machine learning, deep learning, and active learning techniques, a large amount of labeled training data is 
required. The “training data,” generally, must contain captured images (i.e., a picture or video) that contain 
each specified (target) object on which the training is focused and annotations that outline the targets of 
interest, either in bounding boxes or segmentations. This training must be performed for each object that 
the algorithm is attempting to detect. The resulting outcome of applying a trained object detector on images 
and videos should show a bounding box clearly outlining the object of interest. To train these algorithms to 
recognize desired objects, the algorithms must be “fed” more than 1000 labeled images (for 55%–85% 
accuracy according to project Maven - Oct 2017 O6, Working Group slide 27) of each particular object. 
For this reason and others, the generation of labeled training data at minimal cost (time and effort of the 
analysts) is essential for DoD to leverage advanced computing techniques in the future.  

MIT Lincoln Laboratory developed the Augmented Annotation System which includes a 
bootstrapping process using human guided automation, and an iterative process to increase the quantity of 
annotated data (see figure below). The bootstrapping process, utilizing manual annotations to initialize 
automation (which applies visual tracking to extend the manual annotations) has been evaluated in a 
feasibility study (phase 1) funded by DoD and demonstrated a labeling efficiency increase 20 to 25 times 
higher than a manual process on sponsor supplied data.  

Figure 1. Augmented Annotation consists of a bootstrapping stage (yellow) and an iterative stage (green) that 
leverages computer vision/machine learning (red) and human expertise (blue). 
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Phase 2 of the Augmented Annotation program prototyped the bootstrapping stage for 
demonstration/evaluation by DoD users, which was demonstrated and delivered at the end of Phase 2. 

Phase 3 (focus of this report) of the Augmented Annotation program is to evaluate the efficiency 
increase in the iterative process which utilizes an iterative training automated detector to initialize the visual 
tracker, which also has a human collaborating in the process to verify the automated detection 
initializations. This phase includes the following tasks: 

1. Prototype iterative training and testing process 

2. Prototype user interface to verify auto-generated annotation initializations 

3. Compare human effort-level using both the bootstrapping process, and with the addition of 
auto-generated annotation initializations 

4. Measure performance improvements with each additional iteration of semi-automated 
annotation initialization in both detector accuracy and reduction in human effort 

5. Report on learned experiences and quantify reduction in human effort 

6. Apply experiences in design of a full Augmented Annotation System 

The rest of this report will discuss the Augmented Annotation Process and how it increases efficiency 
in an annotation effort (Section 2), the implementations MIT LL prototyped to evaluate the impact of an 
iterative training and annotation cycle (Section 3), the experiments to measure annotation efficiency 
improvements from iterative cycle (Section 4), the lessons learned from using the iterative cycle of the 
Augmented Annotation System (Section 5), and the design for a deployable Augmented Annotation System 
that integrates the bootstrapping process and the iterative process (Section 6). 
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2. AUGMENTED ANNOTATION 

Visual object detectors require training data containing labelled visual data that appropriated 
describes the conditions under which the detector will be expected to function. To that end, a number of 
steps need to be applied in the effort to produce the training data. The first is the selection of datasets that 
appropriated reflect the conditions under which the detector must function. The second step of annotation 
effort is to locate the target classes of interest in among the datasets. For example, in video domain a human 
user may play a video collection to “seek” targets of interest. The amount of time needed for “seeking” is 
affected by complexity of scenes, the expertise of the user. In image domain this process takes the form of 
an annotator making a decision on each individual image whether a target class is contained in the image. 
The third step of annotation production is to label targets of interests by marking it with a bounding box or 
outline and assigning it with a target class label. The final step is to verify that the correctness of annotations 
with a subject matter expert. The verified annotations can be fully trusted for use in training visual object 
detectors.  

The Augmented Annotation System addresses efficiency improvements in steps 2 through 4 of an 
annotation effort. The selection of an appropriate dataset is not directly addressed in Phase 3 of Augmented 
Annotation, but through our experiments we demonstrate the need for manually selecting appropriate 
datasets for a labeling effort. The visual tracking capability to propagate annotations across video reduces 
time and effort in marking once a target object is found. The application of a visual object detector to pre-
annotate data with targets of interest reduces the annotator’s time to “seek” targets of interest. Once the pre-
annotations produced by a detector have been verified by a human and visually tracked, the final verification 
of tracked annotations operates at the level of tracks instead of individual annotations, which again reduces 
the burden on human annotators. Through our Augmented Annotation Phase 1 study, we demonstrated that 
visual tracking of user initialized annotations increases annotation efficiency by 20X. Through our current 
Phase 3 study, we are able to achieve a 3X improvement over visual tracking by pre-annotating using a 
visual object detector to reduce the “seek” time of finding targets of interest.  
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3. IMPLEMENTATION 

The Augmented Annotation System includes a user interface component which enables a user to 
perform the functions of initializing annotations, verification of pre-annotations, and verifications of 
tracked annotations. It also includes a backend computation component which contains capabilities for 
visual tracking and training/applying an object detector, and a backend data storage component which stores 
all the annotations and their status. 

Figure 2. Augmented Annotation components. 

Augmented Annotation Phase 3 (AA3) study evaluates the efficiency gain from utilizing the iterative 
training/annotation cycle. The process from a user’s point of view appears as:  

1. Apply an object detector that had been trained to new video data.  

2. Verify/edit the detections. Only one verified detection is needed for each consecutive 
appearance of an object instance, though multiple verified detection instances will not 
negatively impact tracking. 

3. Apply tracker to verified detections.  

4. Verify tracked annotations and edit if tracks are imperfect.  

3.1 USER INTERFACE 

The AA3 user interface is implemented in JavaScript. Figure 3 shows a screenshot of the detection 
verification interface. 
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Figure 3. AA3 detection verification interface. Users have the ability to edit an automated pre-annotation for class 
label and bounding box, and verify once satisfied. Users are also presented with detection occurrence information 
through the time bar on the bottom of the display. 

Once a new video is loaded, the user is able to choose an object detector, apply it to the video to 
obtain the automated pre-annotations, and verify the annotations as appropriate, initiate tracking, then verify 
the tracks. During detection verification, a user is able to edit object class, object bounding box, and approve 
a detection as verified. The user is also presented with information on time frames where detections were 
found. This gives the user awareness for where objects are detected. The user is able to initiate visual 
tracking to propagate annotations by starting with only user verified annotations, only high confidence 
detentions, or both types of initializations. Using high confidence (based on detection score) detections 
requires the user to have a high level of confidence in the performance of the detector. A low performing 
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object detector will likely produce a large number of tracks that require editing during the track verification 
phase.  

During the track verification phase, a user is able to watch a display of tracked annotations over 
videos to determine the quality of annotations, delete tracks, remove the ends of tracks, and approve a track 
of annotations when satisfied. The track verification user interface is similar in appearance to the detection 
verification phase. It also contains a timeline indicating the starting point of all annotation tracks. The user 
is able to export verified annotations for training the next iteration of object detector. Except for the step to 
train the object detector, which is managed through an independent process, all other interactions between 
user interface, computational backend, and database are managed under Django web framework.  

3.2 COMPUTATIONAL BACKEND 

The Augmented Annotation System improves annotation efficiency by eliminating most of the time 
needed for labeling objects through visual tracking of a verified annotation, and by reducing the “seek” 
time to find targets of interest through pre-annotation using an object detector.  

3.2.1 Visual Tracking 

In Augmented Annotation Phase 1, MDNet, a 2015 Visual Object Tracking challenge winner was 
chosen as the visual object detector. The detector was computationally very intensive and slow. We chose 
SiameseFC tracker, a 2017 Visual Object Tracking challenge winner, as the tracker for AA3 
implementation because of its computational efficiency and availability of python implementation. One of 
the critical elements of visual tracking is to automatically terminate tracking when the tracker drifts off 
target. We found it necessary to apply a feature match algorithm to tracking results to determine tracker 
failure. ORB feature matching was selected for this application because of its computational efficiency and 
freely available and reliable implementation. The combination of SiameseFC tracker and ORB matching 
enabled reliable automatic track terminations in a majority of tracks. The remaining track errors are 
removed in the track verification step. Visual tracking may be initiated multiple times on one single 
appearance instance for an object, which could lead to multiple tracks associated with the instance. We 
apply a merge step that relies on class label agreement and spatial/temporal overlap to ensure a unique track 
for each object instance. We use GPU-enabled computation in visual track when available. 

3.2.2 Object Detection 

An effective object detector in the context of an iterative training/annotation cycle needs to be 
computationally efficient and fast to train and to inference, in addition to having high accuracy at 
performing the detection task. To that end, we utilized tiny-YOLOv3 as the default detection architecture. 
In its default configuration, tiny-YOLOv3 subsamples images significantly, which degrades object 
detection performance on small pixel-count targets. Instead of the standard image size resolutions widely 
used, we modified tiny-YOLOv3 architecture to use the full image resolution of input data. As a result, 
detection performance from tiny-YOLOv3 on full resolution images matched the performance using full 
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YOLOv3 architecture with downsampled image resolution. In addition, tiny-YOLOv3 is much shallower 
in network depth and hence is faster to train. We use GPU-enabled computations in both training and the 
inferencing process. 

3.3 DATA STORAGE BACKEND 

In our early Phase 1 prototype to demonstrate the Augmented Annotation concept, we used a table 
implemented in Matlab. In the Phase 2 prototype we used SQLite to store database tables on tracks and 
video sequences and annotations. In AA3 we tested SQLite with tiny-YOLOv3 running in realtime and 
found SQLite failing to keep up with detection database write frequency. As a result, PostgreSQL was 
chosen to achieve performance improvement. The collection of tables includes 1, input videos; 2, detectors 
and versions; 3, tracks with associated video and class labels and verification status; and 4, annotations with 
class labels, method of acquisition, and verification status. Annotations are exported from the database to 
xml format along with the associated images for use in training a new iteration of object detector. 
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4. QUANTIFYING EFFICIENCY 

The goal of the Augmented Annotation Phase 3 study is to evaluate and quantify the efficiency gain 
from using the iterative training and annotation cycle. A more fundamental question in iterative training of 
the object detector is the selection of datasets that will optimize object detection performance. To that end, 
a dataset supplied by DoD sponsor was used to perform the evaluations. 

The DoD Hackathon data set is mostly videos collected using a small aerial drone ora ground based 
RC car of outdoor scenes with targets of interest embedded in either an asphalt road surface or on the dirt 
road shoulders. There are thirteen classes of targets included in the dataset, though only eleven of the classes 
were used in training the baseline object detector. The videos can be categorized into the following types: 

1. 360 degree collection. A single target of interest was placed on an asphalt surface and almost 
always in view of the camera. Videos were collected from a drone camera flying around the 
target using various look angles. This is a dataset which we annotated in the Augmented 
Annotation phase 1 study.  

2. Flyby on asphalt. Targets of interest were positioned on an asphalt road surface. Videos were 
collected from a drone flying above and following the road. Speed may vary between 
different video samples and camera look angles also change significantly between video 
sequences.  

3. Driveby on asphalt. Targets of interest were positioned on an asphalt road. A camera was 
mounted to a remote control ground-based vehicle, driven on the road on which targets were 
positioned. These videos have a significant amount of jitter and can induce nausea in the 
viewer.  

4. Flyby on dirt road. Targets were positioned on the dirt shoulder portion of a road. This 
introduced a significant change in the imaging conditions on which a detector is expected to 
function.  

5. Indoor data. Targets were positioned in indoor facilities, and videos were collected from an 
aerial drone. There is insufficient coverage in the number of target classes in this video 
collection. As a result, we excluded indoor data from consideration. 

During the AA1 study, we annotated the 360-degree dataset by presenting the annotator with frames 
sampled at fixed frequency. This eliminates the need to seek frames for annotation. With the use of visual 
tracking to propagate initial annotations, we were able to achieve approximately 120 annotations per minute 
of human effort. In addition to the 360-degree data, we also annotated a number of video sequences where 
targets do not persist through a video. An annotator needs to watch the video data to seek targets before 
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selecting frames for labeling, thus incurring “seek” time. Under this scenario, the average number of 
annotations produced by an annotator is 89 annotations per minute of human effort.  

The use of an object detector to pre-annotate data has the effect of reducing or eliminating seek time 
in searching for a target. To investigate the effectiveness of a detector on annotation efficiency gain, we 
select data that represents each of the video collection categories where there is sufficient coverage of target 
classes. We selected the following videos for experimentation in AA3: 

Table 1. Video Data used in AA3 

Video File Name 

Flyby_asphalt1 D3_29_Sept_1332hrs.mp4 

Flyby_asphalt2 D2_29_Sept_1139hrs.mp4 

Driveby_asphalt GOPRO151.mp4 

Flyby_dirt_road GOPRO166.mp4 

The videos were downsampled to 30 frames/sec and divided into two halves, one of two and two of 
two, for training the object detector and for validating the detector. We trained four object detectors using 
different combinations of training data:  

Table 2. Detector Versions and their Training and Validation Data 

Detector 
Version 

Pre-training Training Data Validation Data 

V0 MS COCO 360 degree video Flyby_asphalt1 subset 

V1 V0 Flyby_asphalt1 (1/2) Flyby_asphalt1 (2/2) 

V2 V0 Flyby_dirt_road (1/2) Flyby_dirt_road (2/2) 

V3 V0 4K images from each of 360 
degree view, Flyby_asphalt 1 of 
2, Flyby_dirt_road 1 of 2, 
Driveby_asphalt 

4K images from each of 360 
degree view, Flyby_asphalt 
2 of 2, Flyby_dirt_road 2 of 
2, Driveby_asphalt 
(excluding training) 

The purpose of training detectors with different combinations of data is to demonstrate the 
significance of training data selection.  

To measure the annotation efficiency gain, we use the number of annotations per minute of human 
effort as one metric. The baseline performance to demonstrate the utility of using the object detector for the 
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purpose of pre-annotation, is the “no-detector-assist” annotation speed  of 89 annotations per minute of 
human effort (AA1 measurement). 

Table 3. Increasing Annotation Efficiency with Augmented Annotation Iterative Cycle 

Video Detector 
Version 

Detection 
Verification 

Duration 
(min) 

Track 
Verification 

Duration 
(min) 

Number of 
Annotations 

Number of 
Annotations 

per min 

Sec. 
per 

Annot. 

Flyby comb. from 
AA1 

No 
detector 

   
89 0.674 

Flyby_asphalt1 V0 75 135 39799 189 0.317 

Driveby_asphalt V0 33 26 10881 184 0.325 

Flyby_asphalt2 V1 45 58 27257 267 0.225 

Detector V0 was trained on 360-degree data which were of targets on an asphalt road. When applied 
to Flyby_asphalt1, detector V0 performed sufficiently well and most of the targets were detected at some 
point during each occurrence of the targets. The only challenging targets were extremely small targets such 
as a key fob or a GoPro camera. Detector V1 was initialized with V0 and additionally trained with 
annotations from Flyby_asphalt1, which were produced with detector V0 pre-annotating the video. Detector 
V1 performed even better at pre-annotating Flyby_asphalt2 than V0 did on Flyby_asphalt 1. Even the small 
targets were detected often. As a result, there was a significant improvement in annotation efficiency. 
Measured in annotations per minute of human effort, detector V0 produced a 2X improvement in annotation 
efficiency gain compared to no detector, and detector V1 produced a 3X improvement in efficiency.  A 
significant amount of time saving is a result of reduced “seek” time.  Specifically, in applying detector V1 
to Flyby_asphalt2 video, a total of 142 verified annotations were used to initialize tracking, of which 22 
(15%) were manually generated and 122 were automatically detected and manually verified; whereas in 
applying detector V0 to Flyby_asphalt1 video, a total of 215 verified annotations were used to initialize 
tracking, of which 53 (24%) were manually generated and 162 were automatically detected and manually 
verified.  Applying detector V1, which is initialized with detector V0 and trained with additional data with 
asphalt background, to a new video of targets in asphalt background reduced the manually initialized tracks 
by 37% and as a result, reduced the average amount of time to produced an annotation by (0.317-
0.225)/0.317 = 29%.   

When we applied detector V1 on Flyby_dirt_road video, the detection performance was very poor, 
at less than 1%. This effectively reverts the Augmented Annotation process to the bootstrapping stage—
with no detector, and thus no reduction in “seek” time. The effectiveness of the iterative cycle is dependent 
on the performance of the detector used in each iteration. We decided to investigate the effect of balancing 
training data during the annotation process. We trained four versions of detectors as listed in Table 2 and 
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tested them on the four videos (Table 1) either singly or in combination to measure the performance of each 
detector, which would give us an indication of the annotation efficiency gain from each detector. Table 4 
shows the detector versions, the test data, and detector performance. Detector V3, which was trained on a 
combination of data, had the most robust performance.  

Table 4. Detector Performance on Single Video and on Combinations of Videos  
Detector V3, which was trained on a combination of data, had the most robust performance. 

Detector Version Validation/Test Data mAP 

V0 Flyby_asphalt1 66.55% 

V1 Flyby_asphalt2 78.27% 

V0 Flyby_dirt_road 6% 

V1 Flyby_dirt_road <1% 

V2 Flyby_dirt_road 43% 

V0 Combo of 4 videos 35.28% 

V1 Combo of 4 videos 43.04% 

V2 Combo of 4 videos 16.93% 

V3 Combo of 4 videos 51% 

We ran out of time to perform experiments on further iterations of the annotation/training cycle. 
However, our exploration into annotation data selection made a more important contribution by determining 
that blind application of iterative annotation and detector training can negatively impact annotation 
efficiency. Expertise and effort is needed in selecting data that are representative of application environment 
in the annotation process, and training needs to be managed to use the training data with distribution of 
characteristics similar to the application data. 
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5. LESSONS LEARNED 

We have shown through our experiments that the iterative cycle of Augmented Annotation can be 
highly effective in increasing annotation efficiency. In the best case scenario where a detector is trained 
with data similar to new data that is to be annotated, by the second iteration annotation efficiency is at three 
times the Augmented Annotation bootstrapping annotation speed, or 66 times the manual annotation speed. 
However, if a detector is iteratively trained with a highly biased dataset, its performance could drop 
significantly. This has the effect of reverting the iterative cycle performance to the bootstrapping 
performance. One way to counter this negative effect is to deploy a subject matter expert to select wide 
varieties of data and group them for use in each iterative cycle to ensure that training data does not become 
overly biased. Another potential method is to use an active learning algorithm which pre-processes all 
incoming data to determine a suitable dataset to request annotation effort from human annotators.  

We learned that human capacity in visual verification of either detections or tracks is limited by either 
human attention span or nature of sensor noise such as excessive camera motion. Ultimately, if only human 
verified data is allowed to continue training the next detector, the ability of a human annotator to approve 
detected or tracked annotation causes a road block when the detector performance becomes sufficiently 
high. One way to overcome human limitations is to reduce the role of a human annotator in the verification 
process. Detector training could utilize both user verified annotations and automated annotations, but with 
different confidence levels.  

In addition to lessons learned about the Augmented Annotation process itself, we also noticed a few 
implementation issues. Synchronization of video streaming play and annotation bounding boxes can be 
challenging. Our current implementation uses video streaming and relies on the web browser to request 
video data. The precise frame shown on screen is not precisely know at all times hence the challenge in 
displaying the correct annotation. The current detection verification process ties detection visualization to 
video timeframe, which forces the user to wait for the next occurrence of a target. Decoupling detection 
verification from time will reduce user wait time.  
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6. AUGMENTED ANNOTATION SYSTEM ARCHITECTURE 

The Augmented Annotation process showed significant reduction in human effort in generating 
annotation datasets for training detectors. In the video domain, the process reduces human effort to through 
two channels: 1, by reducing labeling time through use of visual tracking to propagate annotation labels, 
and 2, by reducing seek time through applying the object detector to localize target objects. Our experiments 
in Augmented Annotation Phase 3 demonstrated upwards of 3X improvement in annotation speed with the 
use of iterative detector training and annotation compared to using visual tracking alone (66X if compared 
to the manual annotation process). The application of iterative detector training will not by default improve 
annotation speed, as the selection of data for annotation and training greatly impacts the detector 
performance. A good detector helps to reduce the seek time in finding video times when an object appears. 
A low performing detector, resulting from training using biased data, could eliminate the advantage of 
applying detection to pre-annotated video data by failing to detect a significant portion of the object 
occurrences. While an expert user can select data to produce an annotation detector that would be 
representative of application environments, we recommend that an active learning agent pre-processes new 
data and selects a subset for annotation. For example, an active learning could sample the pool of video 
collections and apply an existing detector to selected data to start pre-annotating data. The active learning 
can be applied again to the result of object detection to select data for which a human assigned/verified 
label would produce maximal effect on the detector. Figure 4 below presents a process and data flow for 
our recommended Augmented Annotation implementation, including the active learning component.  

 

Figure 4. Augmented Annotation process and data flow. 
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One of the bottlenecks in the Augmented Annotation process is the ability of human users to verify 
detections/tracks. Current AA3 framework for the training detector utilizes only verified detections, 
because we had no way of indicating a lower confidence level for non-verified detections. To remove the 
bottleneck of human verification time, we recommend weakly supervised training, such as the Snorkel 
framework, which could be used on a combination of user annotated/verified data and machine learning 
detected annotations.  

Some of the implementation details that we would recommend for a deployable Augmented 
Annotation are to decouple the detector, the visual tracker, and the active learning components so that they 
may be updated with the latest version of each of these machine learning and computer vision components. 
This practice would allow for future upgrades to any of these algorithm components, particularly since 
fields such as machine learning make huge advances on a regular basis. For example, in AA1 we chose 
MDNet as the default visual tracker, which was replaced with SiameseFC tracker (winner of the 2017 
Visual Object Tracker challenge) in AA3. The prototype AA3 implementation integrated the visual tracker 
tightly, which would make upgrading to the next better performing visual tracker more difficult. Future 
implementation of Augmented Annotation needs to emphasize modular programming to allow for 
replacement of any ML/computer vision algorithms.  

AA3 user interfaces is web-based and written in JavaScript. We recommend that the deployable 
system use a similar framework. One of the occasional issues with the AA3 prototype implementation is 
that synchronization between video and annotations appears to fail occasionally due to the two data sources 
utilizing different visualization interfaces: the video is streamed using the web browser default video player, 
the annotation bounding boxes were managed by JavaScript directly. One way to solve the synchronization 
issues definitively is to convert all videos to image frames and implement a video play that operates on 
image frames. Depending on level of tolerance on annotation quality, the lag in synchronization issue may 
or may not be acceptable. Another recommended user interface improvement is to present detection 
verification in the form of static icon images in addition to the time domain presentation.  
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