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1. Executive Summary 
Over the past few decades, manufacturers have been faced with an increasing need for the development of 
low cost and scalable intelligent manufacturing machines that are capable of diagnosing the root cause of 
identified defects, predicting their progression, and forecasting maintenance actions proactively to 
minimize unexpected machine down times. Current limitations of manufacturing machines are as follows: 

• Lack of scalable and reliable data acquisition systems that are capable of capturing the health 
condition of machines in real-time; 

• Lack of effective and efficient algorithms and computing capacity that allow fault diagnosis, 
predictive maintenance, and prognosis.  

The advances in cloud computing, Internet of Things (IoT), cyber-physical systems (CPS), and artificial 
intelligence automatic have the potential to enable fault and failure detection, self-diagnosis, and predictive 
maintenance. The overcharging goal of this research is to integrate cloud computing, low-cost sensors, 
machine learning, and signal processing techniques into manufacturing equipment for online machine and 
process monitoring, diagnosis, and prognosis. The specific objectives of this project are as follows: 

• Develop a generic framework for cloud-based online machine and process monitoring, diagnosis, 
and prognosis; 

• Develop a private cloud-based data acquisition system that collects massive data from machines 
and processes using the ICT infrastructure that is solely operated within a corporate firewall; 

• Develop a hybrid cloud platform that integrates the cloud-based data acquisition system with a 
public high-performance cloud computing system; 

• Develop parallel and distributed machine learning algorithms for online diagnosis and prognosis in 
additive and subtractive manufacturing as well as motors and bearings. 

Specifically, an interoperable sensing system consisting of “drop-in” sensor nodes, a gateway device, and 
pre-configured “protocol adapters” for plug-and-play fieldbus communications have been developed to 
address machine connectivity and data collection. A container-based private cloud infrastructure that 
provides a petabyte-scale, high performance, and low latency distributed file system as well as a scalable 
cloud computing environment with real-time stream analytics, data visualization, and parallel machine 
learning tools have been developed for processing high volume and high-speed data streams. A sparse 
representation-based classification method has been developed and implemented in the hybrid cloud system 
to diagnose multiple fault sources. A particle filter-based approach has been developed to predict the system 
performance and remaining useful life of manufacturing machines. The final project deliverables include:  

• An interoperable data acquisition and on-premise cloud computing platform providing scalable 
data collection and processing for hundreds of manufacturing machines on factory floors; 

• A public cloud platform integrated with on-premise private cloud for processing real-time data 
streams, executing parallel machine learning algorithms, generating big data analytics, and 
visualizing data; 

• A set of experimentally tested algorithms enabling data-driven intelligence for online machine fault 
diagnosis and prognosis in various types of manufacturing machines and processes, executable on 
a hybrid cloud computing platform. 

2. Project Review 

2.1 Background 
Manufacturers have been faced with the increasing need for hardware and software tools that efficiently 
collect and process large volumes of data generated from machines and manufacturing processes as well as 
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algorithms that effectively diagnose the root cause of identified defects, predict their progression, and 
forecast maintenance action proactively to minimize unexpected machine down times. From a hardware 
perspective, many manufacturing machines and processes are still insufficiently monitored due to the lack 
of sensors that meet application requirements in terms of space, packaging, cost, functionality, 
environmental effects, etc., for plug and play installation and in-situ data acquisition. From a software 
perspective, databases containing data collected over a large time span from diverse machines and 
processes, ICT infrastructures with sufficient computational capacity and bandwidth for processing high-
speed and high-volume data streams, as well as algorithms for parallel and distributed big data processing 
that are implementable on the factory floors, are urgently needed.  

In light of cloud computing, a new manufacturing paradigm, namely cloud-based manufacturing (CBM), 
has been introduced. CBM refers to a service-oriented digital manufacturing model that enables the 
acquisition and analysis of machine- and process-related data by leveraging cloud computing, IoT, and 
CPS. CBM has the following unique advantages: 

• Ubiquitous and instant remote access to near real-time data without spatial constraints.   
• Secure and high volume data storage. Cloud computing provides manufacturers with reliable, 

secure, scalable, and economical storage of massive static and dynamic data. The advantage of 
cloud storage is that it delivers high performance, low-latency communication for I/O intensive 
workloads such as high-speed data collection and processing.   

• Scalable, high performance computing (HPC). Compared to the traditional manufacturing 
paradigms, CBM can significantly increase computing capacity by providing multiple- and many-
core processors to complement high-volume storage and high-speed I/O interconnects. This allows 
manufacturers to scale up computing capacity rapidly and cost effectively when computing needs 
increase and then scale down as demands decrease.  

• Big data analytics. Enabled by parallel and distributed computing, data mining and machine 
learning algorithms can be developed that enable manufacturers to process and manage massive 
data streams on a cloud-based computing platform. Specifically, CBM employs an open-source 
software framework that supports data-intensive distributed applications. 

2.2 Problem Statement and DMDII Relevance 
Problem Statement: Over the past few decades, one of the primary problems faced by both small- and 
medium-sized manufacturers (SMMs) and large original equipment manufacturers (OEMs) is how to 
develop new machines with intelligence as well as retrofit legacy machines with intelligence so that in-
process, remote monitoring, diagnosis, prognosis, and self-correction can be automatically performed. 
Traditional monitoring systems have limitations in accessing and synchronizing massive data sets acquired 
from multiple machines and processes in a distributed environment as well as processing large volumes and 
high-speed data streams. With the advancement of parallel computing and intelligent sensing systems, cloud 
computing, IoT, and CPS have been increasingly recognized as promising technological solutions to the 
problem. Although both academia and industry are motivated to explore these advanced technologies for 
manufacturing, little work has been reported on integrating cloud computing, smart sensors, and parallel 
data mining and machine learning into online machine and process monitoring, diagnosis, and prognosis. 
Addressing this gap, the proposed research aims to answer the following questions: 

• What structure would be required to implement a generic framework for cloud-based online 
machine and process monitoring, diagnosis, and prognosis?  

• How can massive data in a distributed environment be collected and analyzed by potentially 
unlimited, scalable, cost-effective, high performance computing platforms that provide 
ubiquitously accessible storage and are reliable, while maintaining the ability to control data and 
mitigate risks to the infrastructure? 

• How can data mining and machine learning algorithms be parallelized so that computationally 
intensive methods in diagnosis and prognosis be performed efficiently and remotely? 
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To answer these questions, the specific objectives of this project are as follows: 

• Develop a generic framework for cloud-based online machine and process monitoring, diagnosis, 
and prognosis; 

• Develop a private cloud-based data acquisition system that collects massive data from machines 
and processes using the ICT infrastructure that is solely operated within a corporate firewall; 

• Develop a hybrid cloud platform that integrates the cloud-based data acquisition system with a 
public high-performance cloud computing system; 

• Develop parallel and distributed machine learning algorithms for online diagnosis and prognosis in 
additive and subtractive manufacturing as well as motors and bearings. 

DMDII Relevance: As stated in the project call, the goal of 15-14 is “to implement machine intelligence 
into manufacturing machines as well as promote the adoption of relevant standards for sensing systems, 
sensing system communications and integration into manufacturing machines and systems.” The scope of 
this project call includes “both new machines having built-in sensors and intelligence as well as legacy 
machines and systems that have been retrofitted with sensors and intelligence.” Based on the 
aforementioned objectives and scope of work, the proposed project is highly relevant to the DMDII-15-14 
project call from the following perspectives: 

• The first research objective is aligned with the increasing demand for developing a generic 
framework for online machine and process monitoring, diagnosis, and prognosis. Specifically, 
because of capabilities enabled by cloud computing, the generic framework of our work could help 
manufacturers develop low cost and scalable intelligent systems with plug-and-play 
interoperability; 

• The second research objective is aligned with the integration of sensors and sensor networks into 
legacy machines and general purpose CNC machining centers of a manufacturer so that massive 
online data generated from machines and processes can be collected by the private cloud-based 
data acquisition system.  

• The third and fourth research objectives are aligned with the goal to introduce machine intelligence 
into legacy machines and general purpose CNC machining centers. By integrating a private cloud-
based data acquisition hardware system, with the public HPC cloud infrastructure, computational-
intensive tasks such as training massive datasets and data analytics can be performed on scalable, 
secure, and high performance cloud computing platforms to transform legacy and conventional 
stand-alone machines on the factory floor into cloud-based machines with data-driven intelligence. 

2.3 Methodology 
Fig. 1 illustrates an architecture of a cloud-enabled machine and process monitoring, diagnostics, and 
prognostics system. An interoperable gateway device collects real-time data streams from factory floors 
through sensor networks, protocol and sensor adapters, and I/O connectors. A private cloud platform stores, 
screens, and cleans the data streams. A public HPC cloud performs computationally-intensive operations, 
including executing machine learning algorithms, generating big data analytics, and visualizing data 
analytics, on the pre-processed data streams. Once diagnostic and prognostic models are created using the 
pre-processed training data, these models are executed in an on-premise private cloud platform for online 
diagnosis and prognosis. 

The public cloud performs the following tasks:  

• Predictive model training using machine learning algorithms 
• Cloud streaming analytics using PHM algorithms 
• Cloud predictive model inferencing 

The private cloud performs the following tasks:  

• Machine data collection and preprocessing 
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• On-premise high-volume streaming analytics using PHM algorithms 
• On-premise predictive model inferencing 

 

Figure 1. An architecture of cloud-enabled machine monitoring, diagnostics and prognostics system 

Fig. 2 illustrates a computational framework for data-driven predictive modeling. The framework consists 
of data collection, data processing, and modeling training and validation.  

 

Figure 2. A computational framework 

2.4 Research Tasks 
Fig. 3 shows an overview of the proposed research tasks.  
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Figure 3. An overview of research tasks 

2.4.1 Task A: Developing a standardized sensing system and a private cloud for collecting and 
processing data 

Current problem: Machine and process data are essential to successful on-line monitoring, diagnosis and 
prognosis. In older factories, legacy machines either do not have enough sensors or do not have a way to 
expose sensor data to external applications. On the other hand, machines in a modern factory are equipped 
with rich sensors and are connected to other machines through standard fieldbuses. However, the problem 
lies in the diversity of communication protocols that range from simple RS485, Modbus, to modern OPC-
UA, PROFINET, and to newly adopted MTConnect. Custom built hardware and software are often required 
to interface with each of the machines. Once data are collected and aggregated, there is a lack of computing 
resource on factory floors to process data and make intelligent decisions. Computers associated with 
manufacturing machines are purposely designed for control tasks. Generic on-premise computing platforms 
can be added to the factory floors, but they are not architected to process large volumes of data in real-time. 
It is also expensive and difficult to scale them up to the level required for training highly iterative data-
driven machine learning models and algorithms. Cloud computing platforms are perfectly suited for such 
tasks due to their scalability and elasticity. However, this requires sending large volumes of data to the 
cloud. For example, a typical medium-size GE factory with machines fully instrumented with sensors can 
generate up to 152,000 samples of data per second, or 13 billion samples per day. Even if the network speed 
and bandwidth can withstand this workload, the cost associated with it is often prohibitive. 

Proposed Solution: To address the machine connectivity and data collection problem, an on-premises 
framework has been developed. This framework includes (1) an interoperable data acquisition system 
(DAS) that supports real-time, scalable, and plug-and-play data collection for both legacy and general-
purpose machines and (2) a lightweight on-premises computing platform that can deploy Linux container-
based software for running data-driven diagnostic and prognostic algorithms and visualization. The DAS 
consists of “drop-in” sensor nodes, data aggregation gateway devices, and plug-and-play “protocol 
adapters” for fieldbus communications. A few example sensor nodes and protocol adapters have been 
developed to demonstrate how this framework can be used. Raw sensor data collected from machines is 
streamed to the on-premises cloud platform, where they are pre-processed, analyzed, and visualized. The 
pre-processed data can also be used to train and evaluate models on a public HPC cloud. Once data-driven 
diagnostic and prognostic models are created, these models were executed on the private cloud for online 
machine and process diagnosis and prognosis. In this manner, the amount of data transmitted cross the 
private, public clouds and factory floors has been reduced. Linux container technology has been used as the 
core framework for this system. Linux containers provide a way to virtualization on both embedded and 
server devices. It is a practical solution to enable developers to develop and deploy new algorithms and 
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tools for data acquisition, remote monitoring, diagnosis, prognosis and visualization on many different 
types of devices. 

2.4.2 Task B: Integrating a public HPC cloud with a private cloud for big data analytics and 
visualization 

Current problem: Over the past few decades, in-house supercomputers have been playing an important 
role in a wide range of computational and data intensive fields such as computational fluid dynamics (CFD) 
and finite element analysis (FEA). However, very few organizations have access to in-house 
supercomputers due to extremely high initial and maintenance costs. Since cloud computing has come into 
existence in the late 2000s, there is an increasing need to develop low-cost cloud computing platforms that 
enable manufacturers to accelerate compute- and data-intensive workloads. Specifically, HPC clouds 
enable manufacturers to have on-demand, ubiquitous, and instant access to large volumes of data, advanced 
computing infrastructures, and application software with no upfront costs as well as process high-speed 
data streams and generate data analytics. While cloud computing has been applied into computer-aided 
design, CFD, and FEA, little work has been reported on applying cloud computing for online machine and 
process monitoring and real-time analytics for manufacturing. Currently, cloud computing makes extensive 
use of hypervisor-based virtual machines (VMs) that enable the software implementation of a physical 
computer that executes programs like a physical machine. However, the hypervisor-based virtualization 
technology virtualizes not only an application and the necessary binaries and libraries but also an entire 
guest operating system. The disadvantage of hypervisor-based virtualization is that system performance 
may degrade due to additional storage, memory, and I/O overhead incurred by virtualizing the entire 
operating system. Therefore, traditional hypervisor-based virtual machines have limitations on the ability 
to process high-speed data streams generated by manufacturing machines and processes. In addition, 
another limitation of current cloud computing results from its deployment models or cloud architectures. In 
general, the most commonly implemented cloud architectures include private and public clouds. The 
primary drawback of private clouds is that additional computing resources need to be added periodically to 
scale up existing computing capacity. Although public clouds have potentially unlimited computing 
resources, users have limited control over data because cloud providers own and operate cloud 
infrastructures at data centers. 

Proposed Solution: To address the aforementioned issues, container technology and hybrid cloud 
architecture are proposed. Container-based virtualization is an approach to virtualization in which the 
virtualization layer of cloud computing systems runs as an application within the operating system. In 
container-based virtualization, the kernel of the operating system runs on the hardware node with several 
isolated guest virtual machines installed atop. The isolated guests are called containers. Container-based 
virtualization has the potential to provide a lightweight virtualization layer, which promises a near-native 
system performance. Therefore, container-based virtualization not only simplifies the access and 
deployment of application software, but also reduces overhead and provides better performance. In Task 
B, Microsoft Azure cloud platform provides a petabyte-scale, high performance, and low latency distributed 
file system that support I/O intensive workloads. Docker containers for Linux operating systems on Azure 
offer an enterprise-level container-based cloud for processing large volume and high- speed data streams. 
In addition, Azure real-time stream analytics along with Machine Learning and Power BI services enables 
cloud-based big data analytics and data visualization. 

Moreover, a hybrid cloud that integrates a private cloud with a public HPC cloud (i.e., Microsoft Azure 
Cloud Computing Platform), is developed for online diagnosis and prognosis. The key benefits of the hybrid 
cloud are that it employs the existing on-premise private cloud and combines it with a public cloud so that 
the hybrid cloud enables manufacturers to gain control over their proprietary data and mitigate security 
risks while acquiring access to scalable public clouds for compute- intensive workloads. In the hybrid cloud, 
manufacturers store sensitive data on the private cloud platform while utilizing intelligence and analytics 
applications provided by Microsoft Azure. Azure provides a graphical tool and a large set of supervised 
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and unsupervised machining learning algorithms for managing machine learning processes and performing 
machine learning. 
 

2.4.3 Task C: Diagnosis of machine structural faults based on sparse representation and dictionary 
learning 

Taking advantage of cloud-enabled distributed computing capability for on-line diagnosis of manufacturing 
machines and processes, this project investigates spindles in CNC machines at GE as an example to 
demonstrate cloud-based capability for intelligent machine systems. 

Current Problem: Techniques for spindle diagnosis can be categorized as physics-based and data- driven. 
In physics-based methods, an analytical model is assumed to describe spindle performance under thermal 
affect, preload, centrifugal force and gyroscopic moment. The model is established based on first principles, 
and provides a mathematical representation of system degradation mechanism due to fault initiation and 
propagation. Given the close link to spindle physics and deterministic nature, such models tend to be 
application specific and limited in modeling stochastic phenomena associated with spindle operations. 
Data-driven methods, in comparison, extract fault patterns from the acquired sensor data through statistical 
analysis and machine learning. As a result, they are directly reflective of the temporal progression of spindle 
dynamics that involves the inception and deterioration of defects. Prior research in data-driven methods for 
spindle diagnosis has focused on understanding spindle state through analysis of sensor data, e.g., vibration, 
acoustic emission, force and temperature. Specific algorithms investigated for spindle diagnosis include 
wavelet transform, empirical mode decomposition (EMD), artificial neural network (ANN), support vector 
machine (SVM), adaptive network based fuzzy inference system (ANFIS), etc. While successful for the 
reported studies, each technique has its limitations: 

• Limited adaptability: in wavelet-based diagnosis methods, single basis has been commonly used. 
This limits the effectiveness of these methods in extracting complex fault components embedded 
in spindle signals. Furthermore, they are sensitive to parameters chosen when performing 
computations. The lack of general guidelines limits the process of optimal parameters selection. 

• Limited representation of nonlinear signals: in EMD-based methods, multiple frequency 
components can be included in the intrinsic mode functions. As a result, components in the signals 
reflecting system nonlinearity may not be completely extracted and properly separated. This limits 
the effectiveness of EMD in multi-frequency information representation for spindle diagnosis. 

• Dependence on signal features: intelligent classification methods such as ANN, SVM and ANFIS 
are based on signal features. A common drawback is that features may not be reflective of the 
physical information contained in the signals. As a result, the effectiveness of the extracted features 
in revealing the actual state of the spindle may be limited for accurate diagnosis.  

Developed Solution: To address the above limitations in spindle diagnosis, a diagnosis method based on 
dictionary learning and sparse classifier has been developed in this project (see Fig. 4). The advantage of 
the proposed model is that raw signal from sensors can be expressed sparsely, contributing to data 
dimensional reduction, enhancing efficiency in transmission for massive data in cloud-based diagnosis 
framework and facilitating fault-related pattern recognition. Two steps are involved in the developed 
method: off-line training and on-line diagnosis. For off-line training, historical sensing data obtained from 
q fault categories are first collected and processed using dictionary learning for fault characterization and 
fault-related pattern recognition. Parallel computing is carried out to process the signals from different fault 
categories simultaneously with each being assigned to a processor. Subsequently, the learned dictionaries, 
which contain fault-related information, is used to construct multi-fault sparse classifiers. The on-line 
diagnosis is performed in MapReduce-based parallel framework, data form each sensor are input to the 
corresponding multi-fault classifier to identify spindle fault. Similarly, the computation of each classifier is 
assigned to individual processor. When the results from each classifier are obtained, they’re fused to make 
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the final diagnosis decision on spindle status. 

 

Figure 4. Sparse representation-based model for diagnosis 

2.4.4 Task D: Prognosis of machine performance degradation and prediction of remaining useful life 
(RUL) based on particle filter 

Current Problem: Prognosis, as a complementary task to diagnosis, plays a critical role in spindle system 
performance tracking and remaining useful life (RUL) prediction. Currently, techniques for prognostic 
modelling can be classified into two categories: data-driven and model-based, depending on the availability 
of physical knowledge about the system. Data-driven techniques, which are typically implemented by 
neural networks, support vector machine, or other machine learning techniques, establish black-box models 
to characterize the relationships between system states and measurements. It is assumed in this process that 
the evolution of the system states would exactly follow the pattern inherent to the historical data, which 
however may not be realistic and accurate, due to the nonlinear relationship between the two in many 
dynamic systems. Model-based approach, in comparison, builds grey-box models based on partial physical 
or empirical knowledge. This approach, mostly achieved by Bayesian inference, employs a filtering method 
to account for the stochasticity of the process and noise embedded in the measurement, providing more 
meaningful and comprehensive results as compared to a purely data-driven approach. However, the up-to-
date prognosis technologies still suffer from several constraints: 

• Limited tracking capability: Most prognosis methods are limited in tracking system degradation 
with varying rates or transient changes caused by sudden occurrence of faults. In addition, diagnosis 
results such as the time and severity of fault occurrence, cannot be incorporated into prognosis 
model. 

• Limited adaptability: In general, a prognosis model based upon specified machine and 
measurement data is not guaranteed to be directly applicable to the prognosis of other machines or 
even the same type of machines in a different operation environment. This is because factors such 
as operating conditions and maintenance actions, which affect system performance degradation, 
are typically not accounted for in the prognosis model due to difficulty in the modeling. 

• Incomplete evaluation of uncertainty: Current prognosis methods only quantify uncertainty 
associated with sensor measurements. It is however important to also evaluate uncertainty from 
modelling errors due to: 1) assumptions and simplifications made and/or incomplete training; 2) 
nonlinear relationship between measurements and system states; and 3) randomness associated 
with future degradation because of new failure occurrence and changes in the operational 
conditions. 

Developed Solution: To address the above challenges, a hybrid prognosis model taking advantage of both 
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data-driven and model-based approaches has been developed in this research, with the structure shown in 
Fig. 5. Consider crack growth prediction as an example. When physical knowledge or experiential 
information is available, an analytical model is established using physical information and then updated 
through estimation of unknown material parameters in the model, following a model-based approach such 
as particle filter. A common drawback is that the model based upon physical knowledge (such as Paris’ 
law) doesn’t involve machine settings and maintenance actions as parameters, because it is difficult to 
explicitly describe them in physics or analytically. To compensate for the limitation and construct a more 
comprehensive and robust prognosis model, a data-driven approach is taken to estimate the relationship 
between these factors and the spindle health state. To match prediction results (probability distribution) 
from the model-based approach, the relationships estimated by a data-driven approach are first 
characterized as a certain probability distribution. The parameters are then estimated by machine learning 
methods, such as support vector regression. As a result, spindle system degradation is described by multiple 
probability distributions containing different factors that affect degradation process. Finally, model fusion 
of probability distributions is performed to obtain a comprehensive prognosis model.  

 

Figure 5. Regularized prognostics model 

3. KPI’s & Metrics 
The project provides a generic framework for hybrid cloud-based machine and process monitoring, 
diagnosis, and prognosis and a prototype that can be integrated into legacy machines and general purpose 
CNC machines by both SMEs and large OEMs. The final project deliverables include:  

• An interoperable data acquisition and on-premise cloud computing platform providing scalable 
data collection and processing for hundreds of manufacturing machines on factory floors; 

• A public cloud platform integrated with on-premise private cloud for processing real-time data 
streams, executing parallel machine learning algorithms, generating big data analytics, and 
visualizing data; 

• A set of experimentally tested algorithms enabling data-driven intelligence for online machine fault 
diagnosis and prognosis in various types of manufacturing machines and processes, executable on 
a hybrid cloud computing platform. 

As with any project, a set of monthly, quarterly, and annual reports were provided. At the end of the project, 
a final technical report (this report) was provided. Each report contained high level technical status, project 
risks and opportunities, schedule status and/or schedule modifications, project issues, budget expenditure, 
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and cost share. Briefly these reports were:  
• Monthly technical reports 
• Quarterly technical and financial reports 
• Annual technical report 
• Final technical report 

Metric Baseline Goal Results Validation 
Method 

Data-driven 
methods 

Fuzzy theory, neural 
network, wiener 
process, and gamma 
process 

Parallel machine 
learning and data 
mining approaches 

Cloud-based 
parallel machine 
learning algorithms 
were developed. 

Use case 

Software 
portability 

Lack of portability due 
to incompatibility 
between applications 
and computing systems 

Improved portability 
enabled by container 
technology 

A plug-and-play, 
interoperable data 
acquisition system 
was developed. 

Use case 

Computing 
scalability 

Limited scalability by 
adding or removing 
computing resources 

High scalability enabled 
by cloud computing 

An Azure-based 
high performance 
cloud platform was 
developed. 

Use case 

Data 
accessibility 

Limited access to data 
due to the lack of data 
synchronization 

Ubiquitous access to 
data enabled by 
centralized cloud 
storage 

A container-based 
scalable private 
cloud was 
developed. 

Use case 

Data volume Limited data storage 
Potentially unlimited 
and scalable data 
storage 

A container-based 
scalable private 
cloud was 
developed. 

Use case 

Infrastructure 
flexibility 

In-house ICT 
infrastructure and/or 
private cloud 

Integration of both 
private and public cloud 
in flexible hybrid cloud 
model 

An Azure-based 
high performance 
cloud platform was 
developed. 

Use case 

Security and 
cost- 
effectiveness 

Private clouds are the 
most secure but also 
most expensive; Public 
clouds are the least 
secure but least 
expensive. 

Hybrid clouds offer a 
reasonable level of 
security while 
providing the most 
powerful and least 
expensive computing 
resources. 

Low development 
cost and total cost 
of ownership 

Use case 

4. Technology Outcomes 

4.1 Task A: Developing a standardized sensing system and a private cloud for collecting and 
processing data 
Task A.1: Interoperable data acquisition system. Task A.1 focuses on developing a standardized 
interoperable data acquisition system that can connect hundreds of manufacturing machines on factory 
floors. For legacy machines without sensors, an interoperable and modular “drop-in” sensing system is 
developed for real-time data collection. For general purpose CNC machines with sensors and fieldbuses, a 
selection of protocol adapters is developed. These adapters are pre-installed on a gateway device, 
connecting CNC machines with different fieldbuses.  

Task A.2: Scalable computing platform for machine intelligence. Task A.2 focuses on bringing computing 
power and intelligence to manufacturing machines by introducing light-weight multi-core computing 
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devices and Linux container-based computing software framework to factory floors. The goal is to develop 
an on-premises computing platform capable of executing online diagnostic and prognostic models in the 
form of Linux containers. 

The goals and objectives for this research is to develop (1) an interoperable data acquisition system and (2) 
a scalable computing platform for machine intelligence. Below are some of the key characteristics for the 
system to be successfully adopted: 

• Open and accessible – leverage open-source SW and COTS as much as possible 
• Low Cost – low development cost and total cost of ownership 
• Plug-and-Play – enable “drop-in” for data collection, analytics, and more 
• Fault tolerant – high availability and high assurance 
• Extensible – ease of use for “app” development 
• Scalable – can easily scale up and down for resource management 
• Ease of setup – easy to setup and maintain 

We adopted the modular design approach in designing the entire system. Fig. 6 shows the system 
architecture of such a modular platform that enables data-driven smart manufacturing.  

 
Figure 6. System architecture: a modular platform enabling data-driven smart manufacturing. 

Specifically, the platform includes six modules from machine data connectivity to data analytics and user 
interface. 

• Machine Modules provide protocol adapters between the platform and manufacturing machines. 
The adapters collect data from machines with MTConnect protocols and wireless and wired sensor 
nodes.  

• Gateway Modules are embedded computers that host protocol adapter software that receive data 
from machines. They also provide optional pre-processing and data aggregation functionalities 
before sending the data to on-premises cloud through ingestion module. 

• Ingestion Modules provide the internal distributed data streaming of the platform. Kafka is chosen 
as the vehicle due to its maturity and performance. Data from gateway module is published to the 
Kafka data broker, while Analytics, Storage, and other modules subscribe to specific topics of data 
from the broker and receive the data once it is available.  

• Analytics Modules subscribes to the data streaming bus, and performs respective analytics once 
data is available.  
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• Storage Modules also subscribe to the data streaming bus, and store the data into a time-series 
database.  

• Actions Modules also subscribe to data streaming bus and provide data visualization, scheduling, 
predictive maintenance, and cloud gateway adapter.  

Given the complexity of the operating environment and available infrastructure in a factory floor, coupled 
with the status quo of the computing devices and the variety of programing language the community prefer, 
there are quite a few challenges in designing such a system.  

• Homogeneous architecture – From data acquisition to cloud analytics to user dashboard, we are 
designing this architecture for a variety of device types and use cases. A unified architecture that 
creates homogeneous environment for software development and deployment is critical to the 
success.  

• Constrained hardware resources - Many devices may lack computing and memory resources. Their 
ability to run applications and process data is therefore limited. An architecture that can scale up 
and down easily to fit in the targeted devices is desired. 

• High volume data throughput – Manufacturing data can be overwhelmingly vast. Collecting and 
storing them in a distributed environment is difficult. A high performance, high throughput 
messaging bus that can reliably deal with high volume data is desired.  

• Geographic distribution - In many use cases, machines are spread across a large geographic area in 
a factory or even across sites. Collecting data from and delivering software to them is very 
challenging even with high performance messaging bus. A distributed architecture that can deploy 
processing close to the data is critical to reduce traffic and speed up decision making. 

• Multiple CPU architecture – From sensor to server, devices may have different CPU architecture 
such as ARMv8, ARMhf, AMD64 and i386. Software framework that can easily cross-compile 
and deployable on different CPU architecture is needed. 

• Polymorphism – In order to be truly plug-and-play, the platform needs to be able to host 
applications that is written in different programming languages – Java, Python, C/C++, golang and 
so on. The service API’s needs to be standardized to be language agonistic. 

These challenges drove us to adopt a maturing technology called Linux Containers. Containers technology 
has become the mainstream virtualization framework for the Cloud in the last couple of years. We modified 
it to fit embedded devices in our application. All the modules within the platform leverages Docker 
Container technology, as shown in Fig. 7, enabling the plug-and-play design. Each module lives inside a 
Docker Container Image, which could be written in various programming languages, e.g., Java, Python, 
etc., and can be started or stopped as needed by the end user of the platform. For example, a user could start 
a data analytics once the machine data is available through the Kafka-based data streaming bus, and perform 
analysis accordingly. More details on Docker Container are included in later sections.  
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Figure 7.  Docker container based plug-and-play design. 

Wireless Sensor Nodes 

The Bluetooth low energy (BLE) SensorTag from Texas Instruments (TI) is chosen in this project to 
demonstrate data acquisition via wireless connectivity. There are many wireless protocols available: WiFi, 
ZigBee, Bluetooth, etc. BLE is preferred due to its low-power consumption feature, which is essential for 
long-term sensor deployment and machine monitoring. In addition, BLE also has easy-to-configure feature, 
and is widely adopted in both consumer and industrial applications.  

BLE is sometimes referred to as "Bluetooth Smart", which is a light-weight subset of classic Bluetooth. 
BLE was introduced as part of the Bluetooth 4.0 core specification. Generic Access Profile (GAP) is critical 
for BLE, since it controls connections and advertising in Bluetooth. GAP is what makes BLE device visible 
to the outside world, and determines how two devices can interact with each other. GAP defines various 
roles for devices, but the two key concepts to keep in mind are Central devices and Peripheral devices. 

 
Figure 8.  BLE Central and Peripheral topology 

Peripheral devices are small, low power, resource constrained devices that can connect to a more powerful 
central device. In this project, the Peripheral devices are the SensorTag devices that can be deployed to 
monitor both environmental conditions and machine conditions. Central devices can be the mobile phone 
or tablet that one connects to with far more processing power and memory. We choose to use Intel NUC 
computer as our central device in this project. Note that one central device can be connected with multiple 
peripheral devices. The overall architecture and topology is shown in Fig. 8.  
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Another important concept in BLE connectivity is Generic Attribute Profile (GATT), which defines the 
way that two BLE devices transfer data back and forth using concepts called Services and Characteristics. 
It uses a generic data protocol called the Attribute Protocol (ATT), which is used to store Services, 
Characteristics and related data in a simple lookup table using 16-bit IDs for each entry in the table. GATT 
comes into play once a dedicated connection is established between two devices. Note that BLE connections 
are exclusive. That is, a BLE peripheral can only be connected to one central device at a time. As soon as 
a peripheral connects to a central device, it stops advertising itself and other devices no longer be able to 
see it or connect to it until the existing connection is broken. Establishing a connection is also the only way 
to allow two-way communication, where the central device can send meaningful data to the peripheral and 
vice versa.  

For BLE data acquisition, two important concepts are services and characteristics. Services are used to 
break data up into logic entities, and contain specific chunks of data called characteristics. A service can 
have one or more characteristics, and each service distinguishes itself from other services by means of a 
unique numeric ID called a UUID, which can be either 16-bit (for officially adopted BLE Services) or 128-
bit.  Characteristics are the main point that users interact with their BLE peripherals. They are also used to 
send data back to the BLE peripheral, since users are also able to write to characteristic. In this project, we 
develop software to collect data from various sensors using different characteristics, i.e., UUIDs, which is 
described in detail in next section.  

In addition to the BLE CC2540/2541 SOC chip, the Bluetooth SensorTag has the following sensors: 
Contactless IR temperature sensor (TI TMP006), Humidity Sensor (Sensirion SHT21), Gyroscope 
(Invensense IMU-3000), Accelerometer (Kionix KXTJ9), Magnetometer (Freescale MAG3110), 
Barometric pressure sensor (Epcos T5400), On-chip temperature sensor (Built into the CC2541), 
Battery/voltage sensor (Built into the CC2541). A picture of the SensorTag with various sensors are shown 
in Fig. 9. In this project, we collect data from five sensors: temperature, movement, humidity, barometric 
pressure and optical sensors.  

 
Figure 9.  TI SensorTag 
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Data acquisition software was developed with Golang. The software features discovering, connecting and 
acquiring data from a BLE device. We use Golang and open source BLE GATT library to implement those 
functionalities. The software was developed and deployed as Docker image. 

Wired Sensor Nodes 

To meet one of GE’s business requirements, accelerometers 602D01 and 607A11 from PCB Piezotronics 
are chosen as the sensors to monitor machine vibration. Both sensors have a sensitivity of 100 mV/g, that 
is 10.2 mV/(m/s²). However, the frequency ranges are different: 602D01 has a stable frequency response 
within the range of 0.5 to 8 kHz; while the range for 607A11 is from 0.5 to 10 kHz. In addition, 
accelerometer 607A11 has 30-ft integral cable with swiveled base, while 602D01 has configurable and 
detachable cable.  

A critical aspect of collecting high-quality vibration signal is the sensor mounting method. Magnetic 
mounting provides a convenient way of making portable measurements. It is commonly used for machinery 
monitoring application. Two magnet mounting studs are chosen to work with the accelerometers mentioned 
above. One is flat surface magnet stud and the other is curved surface magnet to provide more flexibility 
for deployment.  

Finally, both sensors require a constant current 18 to 30 VDC power source for proper operation. A signal 
conditioner is used to provide well-regulated DC power in addition to signal conditioning function, which 
is discussed next.  

To guarantee the quality of collected vibration signal, a four-channel sensor signal conditioner 482C16 is 
chosen to work with the accelerometers. The signal conditioner has 12-bit accuracy signal conditioning for 
up to four sensors with BNC connectors. It has programmable gain that can be adjusted incrementally from 
x0.1 to x200. One of National Instrument’s data acquisition card was chosen for sampling and acquiring 
the data. Using the C API released in NI-DAQmx Base 15, the acquisition software was developed and 
deployed as Docker image. 

MTConnect Protocol Adapter 

Based on one of GE’s business requirements, a MTConnect protocol adapter was developed to collect data 
from GE’s manufacturing machines. MTConnect is a standard that defines how manufacturing machines 
can provide structured and contextualized data. Machines equipped with MTConnect means that they can 
provide data in standard XML format with data item definitions that do not vary by manufacturer. The 
protocol adapter has been developed using a Python HTTP client and deployed on the gateway device in 
the form of a Docker image.  

Gateway Device 

 
Figure 10. Gateway software stack 
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Gateway are embedded computers that are physically connected to manufacturing machines (wired or 
wireless) and collect data through protocol adapters or data acquisition software. Since the framework is 
Linux container based so theoretically any modern embedded computer with Linux OS can serve as a 
gateway. In our experiment, we used two types of embedded computers: Raspberry Pi and Intel NUC. Fig. 
10 shows the software stack for an Intel NUC gateway. 

Real-time Data Streaming 

In addition to sensor data acquisition, we use Apache Kafka to implement real-time data streaming. Kafka 
is chosen in this project, since it is well suited for building real-time streaming data pipelines that reliably 
collect data between applications or sub-systems. In addition, a data streaming platform such as Kafka 
makes the on-premises cloud highly scalable, elastic, distributed, and fault-tolerant. Open source data 
analytics package Spark can also be easily integrated with Kafka. Apache Kafka is an open source 
distributed streaming platform with three key capabilities: 

• Users can publish and subscribe to streams of records. It is similar to a message queue system. 
• Users can store streams of records in a fault-tolerant way. 
• Users can process streams of records as they occur. 

 
Figure 11.  Kafka structure 

 Kafka has four core APIs: Producers, Consumers, Connectors and Stream Processors. In this project, we 
mainly use the Producer and Consumer APIs. 

• Kafka producer - The Producer API allows an application or sub-system to publish a stream of 
records to one or more Kafka topics. Topics in Kafka are always multi-subscriber. For each topic, 
the Kafka cluster maintains a partitioned log. Each partition is an ordered, immutable sequence of 
records. The Kafka producer is responsible for choosing which record to assign to which partition 
within the topic.  

• Kafka consumer - The Consumer API allows an application to subscribe to one or more topics and 
process the stream of records. The Kafka consumers label themselves with a consumer group name 
and reach record published to a topic is delivered to one consumer instance within each subscribing 
consumer group.  

Although Kafka itself is written in Scala and Java, Kafka has many language bindings, such as C/C++, 
Golang, Python, etc. In this program, we use Kafka docker image together with Zookeeper to deploy and 
maintain cluster of Kafka brokers in the on-premises cloud. Zookeeper is distributed systems configuration 
management tool that provides features for distributed applications like distributed configuration 
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management, leader election, consensus handling, coordination and lock. The deployment was tested on a 
multi-core server. 

On-premises Cloud Computing Platform  

Traditionally, setting up and managing on-premises cloud platform for data center and stream computing 
was difficult. Virtualization technology such as VMware and Openstack were the only things available. 
Such solutions are expensive and inflexible in nature and can hinder the adoption of the system on a factory 
floor. In this program, we explore the use of Linux container technology, specifically Docker, for the 
foundation of the on-premises cloud. Recent years, with the explosion in popularity of Docker containers, 
running on-premises is becoming more flexible, and cost-effective. 

Docker is a tool to make it easier to create, deploy, and run applications by using Linux containers. 
Containers allow developers to put their software application together with all of its dependencies in one 
package. By doing so, the application can be shipped and deployed easily and run on any other Linux 
machine regardless of any customized settings. Docker is very much like a traditional virtual machine. 
However, rather than creating a whole operating system like traditional virtual machine does, Docker 
containers share same Linux kernel and file system. This gives a significant performance boost and reduces 
the size of the application. 

In addition to Docker engine itself, we also leverage Docker Compose for on-premises cloud management. 
Compose is a tool for defining and running multi-container applications. Using YAML files, one can 
configure the application’s services, and then start all the services from the configuration with a single 
command.  Fig. 12 shows an example of the on-premises cloud setup used in this program. 

 
Figure 12. On-premises cloud server software stack 

Docker engine 17.0.1 was installed on a multi-core server and a multi-container application was deployed 
using Docker Compose. The application hosts a Kafka broker cluster for gateway devices to stream machine 
data, a database writer subscribes to the data stream and store them in InfluxDB database, an exemplary 
analytics container conducts histogram analysis to the data and a dashboard container retrieves data from 
database and visualize them for decision making on the factory floor.   

4.2 Task B: Integrating a public HPC cloud with a private cloud for big data analytics and 
visualization 
Task B includes three subtasks: (1) integrating the private cloud with the Microsoft Azure public cloud, (2) 
implementing cloud-based machine learning, big data analytics, and visualization tools and services 
provided by Microsoft Azure, (3) testing the Microsoft Azure cloud of the hybrid cloud prototype using 
real-time data streams. The relationship in this project between private cloud and public cloud is listed in 
Figure 13. 
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Figure 13. The relationship between private cloud and public cloud 

The input data stream is being collected in private cloud and being transmitted to Microsoft azure public 
cloud. Transmitted data stream are being processed in public cloud for system diagnosis and prognosis. The 
final step is to transmit output results from public cloud to private cloud for output prognosis. The public 
cloud is Microsoft Azure; the function of Microsoft Azure is mainly realized by Azure Stream Analytics. 
Figure 14 shows the function of Azure Stream Analytics. 

 

Figure 14. Several functions of Azure Stream Analytics 

Azure Stream Analytics seamlessly integrates with Azure IoT Hub and Azure IoT Suite to enable powerful 
real-time analytics on data from your IoT devices and applications. Additionally, Azure Stream Analytics 
is available on Azure IoT Edge. Azure Stream Analytics on IoT Edge empowers developers to deploy near-
real-time analytical intelligence closer to IoT devices so that they can unlock the full value of device-
generated data. 
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In this project, Blob storage and Azure machine learning studio are used for cloud-enabled diagnosis and 
prognosis. Blob storage is Microsoft’s object storage solution for the cloud, which could store streaming 
sensor data, store data for analysis by an on-premises or Azure-hosted service. Figures 15-16 show the 
creation of Blob storage and the connection between Blob storage and Azure stream analytics.  

 

Figure 15. An example of Blob storage’s creation 

 

 

Figure 16. Blob storage connects with Azure stream analytics 

After streaming data is uploaded from private cloud to public cloud, sensor data is being processing with 
Machine learning studio in the Azure stream analytics. Microsoft Azure Machine Learning Studio is a 
collaborative, drag-and-drop tool you can use to build, test, and deploy predictive analytics solutions on 
your data. Machine Learning Studio publishes models as web services that can easily be consumed by 
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custom apps or BI tools such as Excel. Figure 17 shows the configuration of machine learning studio in the 
Azure stream analytics. 

 

Figure 17. A configuration of machine learning studio in the azure stream analytics 

To perform data-driven diagnosis and prognosis methods on cloud, training and testing phases are deployed 
on web service. Figure 18 show the training and testing phases on the web service.  

 

Figure 18. Training and testing process on the web service of machine learning studio 

To transmit diagnosis and prognosis output from public cloud to private cloud, Blob storage is utilized. 
The way to setup Blob storage is similar as previous setup procedure. Finally, SQL code is utilized to 
connect all single units. Figure 19 shows the connection all units by using SQL. 
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Figure 19. SQL code for the connection between private cloud and public cloud 

4.3 Task C: Diagnosis of machine structural faults based on sparse representation and 
dictionary learning 
Task C includes two subtasks: 1) dictionary learning for fault characterization and 2) nonlinear sparse multi-
faults classifier. 

Analysis of sensing data provides the technological basis for fault diagnosis of many manufacturing 
equipment. Choosing an effective data model is essential for data pattern recognition and subsequently, 
better fault recognition. Commonly seen sensing signal, such as vibration, is dense in its raw form in time 
domain and is difficult to deal with directly. To address this limitation, signals have been represented by a 
sparse model for the first subtask in this project. The basic concept of the sparse model is to transform a 
signal into a linear combination of atoms of a dictionary for which the number of the atoms used to represent 
the signal is minimized, e.g., a sparse representation. Sparse representation is computed using greedy 
method, which iteratively generates a sorted list of atom indices and weighting coefficients until the 
representation error is minimized for the given signal. The dictionary itself can then be regarded as a 
reflection of the sparse pattern of the original signal, which can then be leveraged for condition-related 
pattern discovery [1]. 

As the signals are subject to noise and variation, a set of signals for a given machine condition is often 
utilized for condition-related pattern discovery to account for these factors. Traditional sparse 
representation uses empirical, fixed dictionary, which limits the capability of the dictionary to adapt to the 
underlying, condition-related pattern of each machine condition, as reflected by the overall uncontrolled 
representation error of the set of signals. To address this limitation, in this project, dictionary learning has 
been integrated to iteratively reduce the overall representation error and obtain the optimal dictionary for 
the given machine health condition. Specifically, sparse representation is alternatively performed along 
with dictionary update. In each update step, the residual error associated with one individual atom is 
computed, indicating the representation error without this specific atom. Then this atom is replaced with a 
new atom that maximizes the residual error reduction. The same update step is carried out over all atoms 
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to ensure the maximization of the residual error reduction associated with the whole dictionary. The next 
iteration of sparse representation and dictionary update then follows, and the process continues until an 
optimal dictionary is obtained, quantified by the minimization of the overall representation error of all 
signals [7].   

A contribution to dictionary learning achieved in this project is that it does not impose constraints on the 
atoms (unlike the discrete Fourier or wavelet transform in which the atoms are required to be orthogonal to 
each other), and therefore providing a greater adaptability in signal modelling and facilitate the capture of 
condition-related signal patterns through the iterative dictionary update steps. For the task of machine multi-
fault diagnosis, individual dictionary is learned for each individual machine health condition as shown in 
the Fig. 20. 

 

Figure 20. Dictionary learning for machine sensing signal representation 

For the second subtask, to better adapt to the non-linearity embedded in the signals, kernel method has been 
investigated and improved. The method maps the signals from low-dimensional input space into high 
dimensional feature space for non-linearity handling. Traditional kernel method applies “kernel trick” at 
algorithm level, which takes advantage of the inner-products within the algorithm to avoid explicit 
computation of the signals in feature space, as these inner-products can be computed explicitly using the 
signals in input space through kernel function, and they are represented by a kernel matrix [1].  

The limitation of the “kernel trick” is two-fold: 1) it is algorithm-dependent. Therefore, ad-hoc method has 
to be developed for each algorithm to re-formulate it into inner-product operations for the kernel method to 
work and 2) it does not apply to the algorithm that does not involve inner-product operations. Dictionary 
learning is one such example. The dictionary update step does not involve inner-product operations, as the 
atoms are updated one-by-one. Therefore, the “kernel trick” does not apply. To overcome this issue, a data-
level kernel method has been developed in this project to address this limitation.  

The basic concept is to construct virtual samples that numerically represent the signals in feature space by 
leveraging the property of the kernel matrix. The semi-definiteness of the kernel matrix means its eigen-
decomposition exists and the matrix can be expressed symmetrically as the inner-product of a set of samples 
with itself. Therefore, this set of samples numerically shares the same property as the corresponding set of 
signals in the feature space and can be utilized as “virtual samples” [7]. The conversion of signals into 
virtual samples occur at data level and it is independent of the algorithm used. Therefore, no ad-hoc re-
formulation is required, and dictionary learning can be directly carried out with the virtual samples without 
any modification, as illustrated in Fig. 21.  
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Figure 21. Comparison of the traditional algorithm-level and developed data-level kernel method 

For multi-fault machine diagnosis, a sparse multi-fault classifier has been constructed with the dictionaries 
learned from sensing signals of different machine condition. For a testing sample from one of the machine 
health conditions, sparse representation is carried out over the main dictionary, which is formed by 
concatenating all dictionaries. The sample representation error is evaluated using each dictionary with the 
corresponding representation coefficients. The final classification of the testing sample is the class whose 
dictionary and corresponding coefficients produce the smallest representation error [1,4,7], as illustrated in 
Fig. 22. The sparse multi-fault classifier has two desired properties: 1) it can be readily expanded to account 
for new machine conditions by simple concatenation of the new dictionaries learned from these new 
conditions and therefore, is suitable for the changing manufacturing settings, and 2) learning of dictionary 
is independent from each other, therefore, it is ideal for the execution in a parallel computing platform 
which can improve the computational efficiency.  

 

Figure 22. Sparse multi-fault classifier 

4.4 Task D: Prognosis of machine performance degradation and prediction of remaining 
useful life (RUL) based on particle filter 
This task includes two subtasks: 1) advanced degradation tracking under varying rates and transient changes 
through advanced particle filter-enabled stochastic modeling; and 2) development of a regularized 
prognosis model for universal application by combining data-driven modeling techniques for 
characterization of system performance and stochastic modeling for tracking the system performance 
degradation and predicting the remaining useful life (RUL). 

For the first subtask on tracking time-varying system performance degradation, improvements on particle 
filter that have been realized through this project include: 1) a local search particle filter (LSPF) has been 
developed through a perturbation analysis, to have the particles dynamically follow the variation of a 
posterior probability density function (PDF) to be estimated (i.e. a degradation with time-varying 
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degradation rates), with the convergence property of the LSPF mathematically proved; 2) a multi-mode 
LSPF has been developed for tracking and predicting a system performance degradation with time-varying 
modes (e.g. from linear degradation mode to exponential degradation mode); and 3) a total variation filter 
has been integrated with the LSPF to detect transient performance changes and improve the accuracy in 
system performance degradation and RUL prognosis [2,10]. 

Specifically, the first improvement is to solve a problem inherent to PF is particle degeneracy, which refers 
to the phenomenon where weights of most particles become negligible after several iterations. This is 
mainly caused by a poor initial guess of the prior PDF, from which the particles being generated are not 
effective in searching the space where the posterior PDF spans. The problem worsens when the posterior 
PDF is time-varying. In this project, a resampling technique was developed to adaptively relocate particles 
according to their performance in the last iteration. This was realized by adding perturbations to the 
particles. The perturbation for each particle is sampled from a normal distribution, which is determined by 
the particle’s estimation accuracy in the previous iteration step. A particle is assigned with a small 
perturbation to tightly explore the area near the peak(s) of the posterior PDF to be estimated, if the particle’s 
estimation is close to the optimal estimation. Otherwise, the particle is assigned with a larger perturbation. 
Relocating particles in such a fashion not only increases the particle diversity, but also enables particles to 
move with the variation of system state and parameters to track time-varying systems. A shrinkage 
coefficient is involved in generating the perturbation to ensure that the resampled particles would gradually 
converge to the optimal location, to narrow down the confidence interval associated with the estimation 
and prediction. In other words, the shrinkage coefficient enables that the variance of the particles gradually 
decreases, if the posterior PDF to be estimated is fixed. Through a mathematically rigorous derivation, a 
proper value of the shrinkage coefficient can be recursively obtained to ensure the convergence of the 
resampled particles [2]. Figure 23 shows the illustration of the adaptive resampling process.  
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Figure 23. Local search particle filter with adaptive resampling strategy 

To track system performance degradation with time-varying degradation modes (governed by different 
degradation functions), a method for tracking jump Markov non-linear system (JMNLS) has been 
investigated.  To track a JMNLS, a set of linear or non-linear degradation modes are predefined according 
to the physical/empirical knowledge or statistical analysis of historical data, with each mode corresponding 
to an individual vibration variation (representing performance degradation) scenario. In this project, a multi-
mode PF has been developed for tracking time-varying system degradation, based on a generalized linear 
degradation mode and a generalized exponential mode. Next, a finite-state Markov chain switches between 
the two modes, reflecting the variation in degradation patterns. The mode switch is automatically performed 
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at each iteration, by calculating the likelihood of sensor measurement given each mode and deciding which 
mode better describes the current degradation scenario [2,10]. Figure 24 illustrates the two-mode PF for 
system estimation and mode transition. 
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Figure 24. Multi-mode particle filter 

During the system performance degradation process, abrupt faults may occur and lead to transient 
performance drops. Particle filter is not able to detect the transient performance drops. To address the 
challenge, a total variation (TV) filter has been investigated and integrated with PF in this project to improve 
the capability of PF for system performance tracking and prediction. In such a framework, performance 
degradation is divided into gradual degradation (estimated by LSPF) and transient performance drops 
(detected by TV). While LSPF performs a step-by-step estimation upon each arrival of new measurement, 
the TV filter is a batch estimation algorithm that requires a data series with certain number L of data points. 
As a result, the TV filter is performed on the estimation results from LSPF. A flowchart of LSPF integrated 
with TV filter is illustrated in Fig. 25.  
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Figure 25. LSPF+TV for degradation tracking and abrupt fault detection 

Besides the improvements on PF for tracking and predicting time-varying system performance degradation, 
another improvement made in this project is to generalize the prognostic modeling with respect to the 
application scenarios (e.g. different operating and environmental conditions) [3]. The contribution is the 
generation of generic health parameters that represent the health status of a system/machine and are 
independent of system/machine operating and environmental conditions. Different from physical health 
parameters, a dimensionless health parameter within the range of [0 1] has been investigated in this project. 
A value of 1 is assigned to the initial stage of the new machine/system, whereas a value of 0 is assigned to 
the end of the machine life.  One advantage of this type of health parameter lies in the simple setting of the 
threshold to determine machine failure. To construct the measurement model [5,6,8,9], mapping that relates 
the measurements to the health parameter is established by data-driven methods, such as termed extreme 
learning machine (ELM), support vector machine (SVM), and artificial neural network (ANN). 
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4.5 Use Cases 
We developed four use cases to demonstrate the techniques presented in Sections 4.1 to 4.4. 

 

Figure 26. Four use cases: (1) monitoring and prediction of tool wear in milling, (2) prediction of surface 
roughness in additive manufacturing, (3) diagnosis of motor defects, and (4) prediction of bearing RUL  

4.5.1 Use case 1: Monitoring and prediction of tool wear in milling 

Experimental Setup 

The experiment was conducted on a Röders Tech RFM 760 3-axis high-speed vertical CNC machine. Seven 
signal channels, including cutting force, vibration, and acoustic emission, were monitored using a Kistler 
piezoelectric dynamometer, three Kistler piezoelectric accelerometers, and a Kistler acoustic emission (AE) 
sensor. The piezoelectric dynamometer was mounted on the table of the CNC to collect cutting force data 
in X, Y, Z dimensions. The piezoelectric accelerometers were mounted on a workpiece to collect vibration 
data in X, Y, Z dimensions. The AE sensor was also mounted on the workpiece to collect AE data during 
the milling experiment. AE occurs when a material undergoes irreversible changes (e.g., crack formation 
or plastic deformation) in its internal structure. Table 1 summarizes the signal channels and measurement 
data.  

Table 1. Signal Channels and Measurement Data 

Signal Channel Measurement Data 
Channel 1 F": Cutting force (N) in the X axis 
Channel 2 F#: Cutting force (N) in the Y axis 
Channel 3 F%: Cutting force (N) in the Z axis 
Channel 4 V": Vibration (g) in the X axis 
Channel 5 V#: Vibration (g) in the Y axis 
Channel 6 V%: Vibration (g) in the Z axis 
Channel 7 𝐴𝐸: Acoustic emission (V) 
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The example cutting force, vibration, and AE signals collected from the dynamometer, accelerometer, and 
AE sensors are shown in Figures 6, 7, and 8, respectively. Figures 6, 7, and 8 show 127399 sampling signals 
collected from one cutting test.  

 
Figure 27. Cutting force in X direction 

 
Figure 28. Vibration in X direction 

 
Figure 29. Acoustic emission 

The material of the workpiece used in the milling experiment was stainless steel. 315 cutting tests were 
conducted by the following two steps:  

• Remove material from the workpiece using a predefined tool path; 
• Measure the amount of tool wear using a LEICA MZ12 high-performance stereomicroscope.  

Table 2 summarizes the operating conditions of the milling experiment. The total size of the condition 
monitoring data collected from 315 cutting tests is 9 GB. 

Table 2. Operating conditions of the milling tests 

Parameter Value 
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Spindle Speed 10400 RPM 
Feed Rate 1555 mm/min 
Y Depth of Cut 0.125 mm 
Z Depth of Cut 0.2 mm 
Sampling Rate 50 KHz/channel 
Material Stainless steel 

 
Results and Discussions 

Feature Generation and Extraction 

In this section, feature generation and extraction are presented. Feature generation involves the process of 
defining statistical features or variables based on raw data collected from sensors. In this study, a set of 
statistical features (28 features), including maximum, median, mean, and standard deviation, was generated 
from the cutting force, vibration, and acoustic emission raw data. The importance of these features for 
predicting tool wear was evaluated using the variable importance metric expressed in Equation 3.6. Figure 
9 shows the variable importance scores for the 14 most important features. The statistical features with 
greater variable importance scores are more significant. For example, the standard deviation of vibration in 
the X direction (vb_x_std) with a feature importance score of 231519.6 is the most significant feature.  

 

Figure 30. Mean decrease in residual sum of squares/variable importance 

Prediction of Tool Wear Based on Random Forests 

After generating the statistical features, these feature data are fed into the RFs algorithm. A predictive model 
for tool wear prediction was trained using 10,000 regression trees. A total of 315 instances in the input data 
set was divided into training and validation data sets, respectively. To train the predictive model, two thirds 
of the 315 instances were used for the development of the predictive model. The remainder of the 315 
instances was used for model validation. The tool wear prediction results are shown in Figure 10. The data 
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points in Figure 10 represent observed (true) and predicted tool wear. If all of the data points fall on the 
straight line in red with a slope of 1, the accuracy of the predictive model is 100%. Figure 10 suggests that 
the predictive model trained by RFs can estimate tool wear with reasonably good prediction accuracy.  

 

Figure 31. Comparison of observed and predicted tool wear 

To measure the performance of the predictive model trained by RFs, several common performance metrics, 
including mean squared error (𝑀𝑆𝐸), coefficient of determination (R-squared), and training time, were used 
in this study. The 𝑀𝑆𝐸  is defined as 𝑀𝑆𝐸 = ,

-
(𝑌0 − 𝑌2)4-

25,   where 𝑌0  is a predicted value, 𝑌2  is an 
observed value, and 𝑛 is the sample size. The MSE measures the average of the squares of the errors. The 
coefficient of determination is defined as 𝑅4 = 1 − 99:

99;
 where 𝑆𝑆𝐸 is the sum of the squares of residuals, 

𝑆𝑆𝑇 is the total sum of squares. The coefficient of determination is interpreted as the proportion of the 
variance in the dependent variable that can be predicted from the independent variable. If the R-squared 
value is equal to 1, all of the data points fall perfectly on the fitted regression line. If the R-squared value is 
equal to 0, the model explains none of the variability of the response data around its mean. The R-squared 
metric provides an indication of the goodness of fit of a set of predictions to the actual values. Table 3 
summarizes the MSE, R-squared values, and training time when randomly sampling 50% to 90% of the 
total data as training data.  

Table 3. MSE and R-squared values on test data and training time 

  Random forests (10,000 Trees) 
Training size (%) MSE R2 Training time (Second) 

50 14.242 0.986 20.876 
60 11.466 0.989 26.562 
70 10.469 0.990 33.230 
80 8.195 0.992 38.995 
90 8.295 0.992 45.224 

 

Performance Evaluation for Cloud-Based Parallel Random Forests 

The MapReduce-based parallel RFs algorithm was implemented on the Amazon Elastic Compute Cloud 
(Amazon EC2). Amazon EC2 is a web service that provides scalable high performance computing capacity 
on the Amazon Web Services (AWS) cloud. In comparison with traditional clusters or supercomputers, 
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Amazon EC2 runs instances on its physical infrastructure using the open-source virtualization middleware 
Xen. Various configurations of CPU cores, memory, storage volumes, and operating systems, also known 
as instance types, are provided on the Amazon EC2 cloud platform. In this study, two instance types were 
selected to evaluate the performance of the MapReduce-based parallel RFs. Table 4 summarizes the detailed 
hardware configurations of the C3.8 and R3.8 instances. The C3.8×large instance type has an Intel Xeon 
E5-2680V2 processor, 32 virtual cores, 60 GB of memory, and 640 GB of solid state drive (SSD) storage. 
C3 instances are optimized for compute-intensive applications. The R3.8×large instance type has an Intel 
Xeon E5-2670V2 processor, 32 virtual cores, 244 GB of memory, and 640 GB of solid state drive (SSD) 
storage. R3 instances are optimized for memory-intensive applications.  

Table 4. Hardware configurations for amazon EC2 instances 

Instance Type C3.8×large R3.8×large 
Operating System Linux Linux 
Processor Intel Xeon E5-2680 v2 (2.80GHz) Intel Xeon E5-2670 v2 (2.50GHz) 
Number of Virtual CPU 32 32 
Memory (GB) 60 244 
Storage (GB) 640  640  

 
To evaluate the performance of the MapReduce-based parallel RFs, two performance metrics, including 
training time and relative speedup ratio, were used. The time to train a predictive model varies depending 
on the amount of training data and computing capacity. Figure 12 shows the average training time with 
different amount of training data and cores. For example, the curve in red represents the average training 
time to train the predictive model with 50% of the total amount of data. Similarly, the curve in pink shows 
the average training time to train the predictive model with 90% of the total amount of data. The training 
times are 21, 28, 34, 40, and 47 seconds using one core, respectively. As expected, the training time 
increases as the training data increase.  

 
Figure 32. Training time for C3 instances 

In addition, to assess the performance of the MapReduce-based PRFs, the predictive model was trained 
with 1, 2, 4, 8, 16, and 32 cores on the different amount of training data. For example, it took 21, 11, 7, 4, 
3, and 2 seconds to train the predictive model with 1, 2, 4, 8, 16, and 32 cores, respectively, when 50% of 
the total amount of data was used for training. It took 47, 25, 13, 8, 5, and 3 seconds to train the predictive 
model with 1, 2, 4, 8, 16, and 32 cores, respectively, when 90% of the total amount of data was used for 
training. Relative speedup ratio measures the relationship between the sequential execution time and the 
parallel execution time solving the same problem. Figure 13 shows the relative speedup ratios when 90% 
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of the total amount of data was used as training data. The results show that the MapReduce-based PRFs 
achieved a near linear speedup for 1 to 8 cores and a sublinear speedup for 16 to 32 cores, respectively.  

Because the C3 instance is optimized for compute-intensive applications, the MapReduce-based RPF was 
also executed on the R3 instance which is optimized for memory-intensive applications. Figure 14 shows 
the training time. For example, it took 21, 11, 7, 4, 3, and 2 seconds to train the predictive model with 1, 2, 
4, 8, 16, and 32 cores, respectively, when 50% of the total amount of data was used for training. It took 44, 
23, 12, 7, 4, and 3 seconds to train the predictive model with 1, 2, 4, 8, 16, and 32 cores, respectively, when 
90% of the total amount of data was used for training. Figure 15 shows the relative speedup ratios when 
90% of the total amount of data was used as training data. The results show that the MapReduce-based 
PRFs achieved a near linear speedup for 1 to 8 cores and a sublinear speedup for 16 to 32 cores, respectively. 
The results show that the training time with the R3 instance is almost the same as that of the C3 instance.  

 

Figure 33. Training time for R3 instances 

Summary 

In this paper, prediction of flank tool wear in high-speed machining was conducted with RFs and 
MapReduce-based PRFs algorithms. The MapReduce-based PRFs algorithm was implemented on the 
Amazon EC2 cloud. The condition monitoring data, including cutting force, vibration, and acoustic 
emission, collected from 315 milling tests were used to evaluate performance of the algorithms. A set of 
statistical features was generated as the input of the machine learning algorithms. The performance metrics 
include MSE, R-squared, and training time. The experimental results have shown that RFs can predict tool 
wear very accurately with the condition monitoring data. The importance of the statistical features can be 
measured using RFs. In addition, the prediction intervals associated with tool wear predictions were 
computed to measure uncertainty in tool wear prediction. Moreover, the MapReduce-based PRFs algorithm 
was developed to increase the efficiency of the original RFs algorithm. The experimental results have shown 
that a significant increase in training time (15 times with 32 cores) has been achieved by parallelizing the 
original RFs with two Amazon EC2 instances. In the future, the MapReduce PRFs is implemented on a 
cloud with multiple computing nodes to evaluate the scalability of the algorithm. Efforts are also focused 
on evaluating the performance of the algorithm on large volumes of streaming data from multiple CNC 
machines.  

4.5.2 Use case 2: Monitoring and prediction of surface roughness in additive manufacturing 

The objective of the second use case is integrate a public HPC cloud with a private cloud for monitoring 
and predicting the surface roughness of additively manufactured parts with multiple sensors and machine 
learning.  
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Experimental Setup 

This section presents the experimental setup and design of experiments for collecting real time sensor data 
in private cloud. As shown in Fig. 2, a commercial desktop 3D printer (MakerBot Replicator Plus) was 
used as the testbed for this study. Some of the features of the printer include a LCD display, an on-board 
camera, Wi-Fi, and Ethernet connectivity. The build material is Polyactic Acid (PLA). To monitor the FDM 
process, five sensors were installed on the printer. Two thermocouples (5TC-GG-K-20-36, Omega) 
measure the temperature of the table and extruder, respectively. Two accelerometers (ADXL335, Analog 
Devices) measure the vibration of the table and extruder. An infrared (IR) non-contact temperature sensor 
(MLX90614ESF-DCI-000-SP, Melexis Technologies) measures the temperature of the deposited material.  

  

 

Figure 34. Experimental setup 

A contact profilometer is used to measure surface roughness. A profilometer measures small surface 
variations in vertical stylus displacement as a function of position. A few roughness parameters, including 
maximum profile peak height, average maximum profile peak height, and maximum roughness depth, can 
be used to quantify roughness. In this study, roughness average (Ra) was used to quantify roughness. Ra is 
the arithmetical average of the absolute values of the profile heights over the evaluation length. As shown 
in Fig. 3 (a), a test part, an engine intake flange, serves as the case study. Fig. 3 (b) shows the engine intake 
flange printed by the FDM process. Fig. 3 (c) shows how the surface roughness of the 3D printed test part 
was measured. As shown in Fig. 4, the engine intake flange consists of support, bottom, middle, and top 
structures with different cross sections.  

 
(a) Engine intake flange 

 

(b) Engine intake flange printed by FDM 
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(c) Measurement of surface roughness 

Figure 35. (a) Engine intake flange; (b) Engine intake flange printed by FDM; (c) Measurement of surface 
roughness 

To validate the proposed approach, a set of experiments was designed. As shown in Table 1, three factors, 
including layer thickness, extruder temperature, and ratio of print speed to extrusion rate, were selected. To 
generate training and validation data, a full factorial design of experiments was conducted. Twenty-seven 
(27) tests were designed. Each test was replicated three times. Eighty-one (81) tests were conducted. Nine 
(9) channels of sensor data were collected during each test. Five (5) statistical features, including maximum, 
median, mean, minimum, and standard deviation, in the time domain were extracted from each signal 
channel. After each test, surface roughness was measured using the contact profilometer.  

Table 5. Design of experiments 

Factor Level 1 Level 2 Level 3 
Layer Thickness (Mm) 0.20 0.25 0.30 
Extruder Temperature (°C)  210 220 230 
Print Speed/Extrusion Rate 0.85 1.00 1.15 

 
Results and Discussions 

After the sensor data are collected, the statistical features extracted from the entire condition monitoring 
data in private cloud, and were fed into the machine learning algorithms as input. Features are transferred 
to public cloud, where multiple machine learning algorithms are trained. After multiple algorithms are 
trained in public cloud, real time sensor data and features are fed into public cloud continuously to predict 
surface roughness of additively manufactured parts. To evaluate the performance of the predictive model 
trained by the algorithms, a 10-fold cross-validation method was used. Cross-validation is a model 
validation technique for estimating how accurately the predictive model performed. In 10-fold cross-
validation, the original dataset was randomly partitioned into ten equal sized subsets. Of the ten subsets, a 
single subset was retained as the validation data for testing the model, and the remaining nine subsets are 
used as training data. The cross-validation process was then repeated ten times (10 folds), with each of 
the ten subsets used exactly once as the validation data. The results from the ten folds were then averaged 
to produce a single estimation.  

Fig. 5 shows the error rates of the predictive models trained on individual sensor measurements using RFs. 
As the amount of condition monitoring data increases, the relative error rates of the predictive models 
trained on individual sensor measurements decrease. In addition, during the first 30% of the build time, the 
3D printer transitions from an unstable operating condition to a stable operating condition. Therefore, the 
relative error rates decrease as the build time increases. During the last 70% of the build time, the relative 
error rates become almost constant. Moreover, the feature-level data fusion method was used to improve 
prediction accuracy. Data fusion is the process of integrating multiple data sources to produce accurate 
predictive models. The expectation was that fused data would be more informative than any individual data 
source. Data fusion techniques generally fall into three categories: data-level, feature-level, and decision-
level fusion. Data-level fusion is a lower level fusion method where multiple sensor data sources are fed 
into a machine learning algorithm directly. Feature-level fusion is an intermediate level fusion method that 
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requires the integration of extracted features. Decision-level fusion is a high level fusion method that 
aggregates sensor information after a response variable has been estimated by each sensor. In this study, 
the feature-level fusion method was used because it has several advantages. First, feature-level fusion is 
more computationally efficient because it processes extracted features that are more informative instead of 
raw signals. Second, while decision-level fusion is a higher level fusion method, decision-level fusion 
requires complex decision rules. As shown in Fig. 5, the predictive model trained by RFs is more accurate 
by integrating multiple sensor sources. The relative error rate of the predictive model trained using the 
feature-level data fusion method ranges between 0.082 and 0.044, whereas the relative error rates of the 
predictive models trained on individual sensor sources range between 0.098 and 0.049. 

 
Figure 36. Relative error rates of predictive models trained on individual data source versus multiple data 

sources  

Because the sample part has different cross-sectional structures, we extracted the statistical features from 
the condition monitoring data collected during the time when different cross-sectional structures were built. 
For example, we trained five predictive models using RFs and the feature-level data fusion method on the 
condition monitoring data collected by the time when 20%, 40%, 60%, 80%, and 100% of the support 
structure was built. As shown in Table 3, the relative error rates of the predictive models are 0.083, 0.082, 
0.081, 0.078, and 0.078, respectively. As expected, the accuracy of the predictive models increases as the 
amount of training data increases. Tables 4, 5, and 6 list the relative error rates of the predictive models 
trained by SVR, RR, and LASSO using the feature-level data fusion method. 

As shown in Fig. 6, the performance of the predictive models trained on varying percentage of build time 
using RFs, SVR, RR, and LASSO is comparable in terms of the relative error rate. For example, the relative 
error rates of the predictive models trained on the condition monitoring data collected by the time when 
25% of the entire sample part was built range between 0.082 and 0.074. The performance of RFs, SVR, 
RR, and LASSO increases significantly in the time interval between 25% and 35% of the built time. The 
relative error rates of the predictive models trained on the condition monitoring data collected by the time 
when 50% of the entire sample part was built range between 0.047 and 0.042. The prediction accuracy of 
RFs, SVR, RR, and LASSO becomes almost constant in the time interval between 55% and 100% of built 
time. The relative error rates of RR and LASSO are slightly less than that of RFs and SVR in the time 
interval between 55% and 100%.  
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Figure 37. Error rates for RF, SVR, RR, and LASSO using 10-fold cross-validation 

Furthermore, LASSO was used to quantify the importance of the statistical features. The regression 
coefficient (𝛽>) in Eq. (9) can be used to measure the importance of the statistical features. If a regression 
coefficient associated with a statistical feature is set equal to zero, then the statistical feature is not used in 
the data fusion method. If a regression coefficient associated with a statistical feature is greater, then the 
statistical feature is more important. Fig. 7 shows top ten statistical features. The most important feature is 
the maximum value of the vibration of the build table in the Z direction, the least important feature is the 
minimum value of the vibration of the extruder arm in the Y direction. 

 
Figure 38. Regression coefficients calculated using LASSO 

Summary 

We integrated a public HPC cloud with a private cloud and developed a predictive modeling approach to 
surface roughness prediction in FDM processes using machine learning algorithms. A real-time monitoring 
system was developed and integrated to a FDM-based 3D printer to monitor the vibration and temperature 
of the extruder and table as well as the melt pool temperature. A set of statistical features was extracted 
from the sensor measurements. RFs, SVR, RR, and LASSO were used to train the predictive models on the 
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individual sensor measurement. In addition, a feature-level data fusion method was used to improve 
prediction performance by integrating multiple sensor sources. The experimental results have shown that 
the predictive models trained by the machine learning algorithms on the condition monitoring data predict 
the surface roughness of additively manufacturing parts with very high accuracy. The performance of these 
algorithms is comparable in terms of relative error rate.  

4.5.3 Use Case 3: Diagnosis of machine structural faults based on sparse representation and 
dictionary learning 

The objective of this section is to demonstrate the effectiveness of the developed diagnosis method using 
induction motor as a representative manufacturing application. In modern manufacturing, induction motors 
are widely used in equipment such as belt conveyors, cranes, lifts, compressors, pumps, fans as the main 
power source. They are one of the most critical parts in manufacturing system, consuming a large portion 
of total electricity (about 40%) and their failure often leads to immediate shutdown of the production itself. 
Therefore, effective and efficient diagnosis of induction motor provides the scientific basis for proper 
maintenance strategy, leading to reduction in unexpected maintenance cost and production downtime, and 
ultimately contributes to the improved operational efficiency, energy usage and overall sustainability in 
manufacturing. Due to the complex electro-magnetic and mechanical interactions occurred inside the motor 
during operation, the sensing signal collected is often noisy, with the relationship to the corresponding 
health condition being highly non-linear and beyond existing physical knowledge. The developed method 
based on dictionary learning provides a data-driven solution for effective fault characterization as it 
adaptively extracts the condition-related patterns from the signal through iterative process, and bypasses 
the limitation in physical knowledge. 

Experimental Setup 

The experimental setup is shown in Fig. 39. In total, six motor health status are selected as classification 
class in this study, as shown in Table 6. The five faulty conditions encompass the most commonly reported 
induction motor failures in bearing, rotor and stator. The statistics have shown that failure in these three 
components takes up 85% of all induction motor failures. The belt/pulley system simulates the equipment 
configuration commonly seen in manufacturing settings. Motors are driven with 50Hz power supply. As 
the structural fault is expected to be manifested through the change in electrical and vibration signals, due 
to the electro-magnetic and mechanical interactions, a tri-axial accelerometer is mounted on motor top for 
vibration sensing, and the electrical current of the motor is measured using a current sensor. The sampling 
rate is 30kHz [1,7]. 
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Figure 39. Experiment setup: 1) Tachometer 2) Tri-axial accelerometer 3) Bearing 4) Shaft 5) Load disc 6) 
Belt 7) Bevel gearbox 8) Reciprocating mechanism 9) Controller 

Table 6. Motors used in experiment 

Health Status Description 
Normal  Healthy condition 
Broken rotor bar 3 broken rotor bars 
Bowed rotor Rotor bent in center 0.01” 
Unbalanced rotor Unbalance created by adding 3 

washers on rotor 
Stator winding defect 3 turns shorted in stator winding 
Defective bearing Inner race defect bearing in shaft 

end 
 
The historical sensing data collected from each motor are sent to Microsoft Azure cloud platform for the 
off-line training stage. The scalability of the public cloud provides a means for effective handling of large 
amount of data from the manufacturing shop floor, often collected from various sensors with high sampling 
rate. In the cloud platform, these sensing data are first converted to virtual samples, before dictionary 
learning is applied for fault characterization and classifier construction. Specifically, each individual 
sensing signal is first split into segments, or samples. The kernel matrix is then computed through the kernel 
function over the corresponding set of samples. Virtual samples are then obtained by eigen-decomposing 
the kernel matrix and rearranging its eigen-values and eigen-vectors in the form of symmetrical inner 
product, as shown in Fig. 21. These virtual samples serve as the input of dictionary learning for the 
corresponding motor health condition.  

As the process of dictionary learning for each motor is independent from the other, parallel computing 
capability of Microsoft Azure is leveraged to improve the efficiency of the training process. Specifically in 
this use case, dictionary learning for 6 different motor conditions are performed with each condition 
utilizing 1 central processing units (CPU). The result is simultaneous learning for all motor health 
conditions. To demonstrate the computational efficiency improvement enabled by parallel computing, other 
CPU assignments for dictionary learning are also tested and the total time for dictionary learning from all 
six conditions is recorded. Once all six dictionaries are obtained, they’re concatenated to construct the 
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sparse classifier for evaluating the diagnosis performance on the testing signals. Motor condition 
classification accuracy is used as the performance indicator. The complete flowchart for induction motor 
fault diagnosis is shown in Fig. 40. 

 
Figure 40. Flowchart: induction motor fault diagnosis 

Results and Discussions 

The comparison of computational efficiency of parallel dictionary learning using different number of CPU’s 
is illustrated in Fig. 41. As the number of processors increases, the decreasing trend in total dictionary 
learning time is observed. A 75% reduction (17.4s vs. 4.1s) is achieved when 6 processors are used with 
each assigned to learn the dictionary of an individual condition, as compared to using just one CPU. It is 
noted that for the tests in which 3, 4 and 5 processors are used, the computational time stays the same. This 
is due to the fact that in these three cases, there’s always at least one dictionary waiting to be learned in the 
queue. Therefore, although some CPU’s are idol after learning one dictionary, the total computational time 
in these cases always reflects the processors that learn two dictionaries. 

 
Figure 41. Computational efficiency comparison with difference number of CPU used for dictionary 

learning 

The developed diagnosis method based on dictionary learning and sparse classifier is further compared to 
other two techniques in terms of induction motor fault classification accuracy, as shown in Fig. 42. The 
first method is kernel support vector machine (SVM). The second method is based on the deep 
convolutional neural network (DCNN). It is shown that the developed kernel dictionary learning-based 
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method outperforms kernel SVM and achieves state-of-the-art classification accuracy while using 
significantly less training time as compared to the more sophisticated DCNN-based method [7]. 

 
Figure 42. Comparison of induction motor fault classification accuracy and training time using different 

techniques. 

Summary 

A machine multi-fault diagnosis method based on dictionary learning and sparse classifier has been 
developed and evaluated using induction motor as representative manufacturing application. Dictionary 
learning is able to analyze the sensing signal for condition-related signal patterns extraction. A virtual 
sample-based kernel method has been developed to improve the capability of the diagnosis method to 
handle data non-linearity. The efficiency of the developed method has been further improved by leveraging 
the parallel computing capability enabled by the cloud computing platform. Sparse classifier, constructed 
using the obtained dictionaries, has been shown to be effective in correctly identifying the structural motor 
faults in the presented use case. 

For the manufacturers, the main benefits of the developed diagnosis method based on dictionary learning 
and sparse classifier are two-fold: 1) the method can be extended to other manufacturing use cases, as the 
dictionary learning algorithm, when analyzing the signal for condition-related pattern recognition, does not 
assume prior knowledge of the manufacturing system and can be adapted to various signals, and 2) the 
developed method is able to fully utilize the parallel computing capability of the cloud platform, allowing 
the dictionaries to be efficiently learned and classifier constructed and therefore, suitable for the increasing 
complexity in modern manufacturing settings. 

 

4.5.4 Use Case 4: Prognosis of machine performance degradation and prediction of remaining useful 
life (RUL) based on particle filter 

The objective of this section is to evaluate the improvement made to particle filter in advancing tracking 
and prediction of the performance degradation in engineering system, using two datasets. The first dataset 
consists of aircraft engine performance data obtained from high-fidelity simulation. The engine degradation 
is often characterized by abrupt performance drop which poses significant challenges for traditional 
tracking method. This dataset allows demonstration of the capability of the developed integrated method of 
particle filter and total variation filter in detecting and adjusting the tracking to the abrupt performance 
drop. The second dataset consists of bearing vibration data obtained through run-to-failure experiment. It 
is used to demonstrate the capability of multi-mode particle filter in detecting and adjusting to the transition 
among different degradation stages, such as fault initiation stage and development stage. 

Aircraft Engine: Simulated Dataset 

To evaluate the performance of the developed PF-based prognostic modeling method, a set of high-fidelity 
system level engine simulation data has been evaluated. The data set was created with a Matlab Simulink 
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tool called C-MAPSS, which was designed to simulate normal and faulty engine degradation over a series 
of flights (cycles). Each flight simulates a representative flight profile. For the normal condition case, the 
engine is given an exponentially degrading flow capacity and efficiency profile, which denotes the 
degradation of system performance. The abrupt fault is manifested by increasing the efficiency and flow 
capacity degradation from the fault time point until the end of the simulation for the remaining flights. After 
a flight is simulated, a snapshot of all engine parameters is taken in the middle of cruise (engine working 
under approximately the same operating conditions) and applied to estimating engine state and predicting 
the degradation trend. Each dataset contains both the simulated measurements and a dimensionless health 
parameter, which is a function of four parameters: 1) fan stall margin, 2) HPC stall margin, 3) LPC stall 
margin, and 4) exhausted gas temperature [5,6]. One dataset from each of the normal and faulty cases is 
utilized as the training dataset to train the ELM network and estimate the relationship between the parameter 
and measurements. The rest of the datasets are subsequently utilized to test the performance of the 
developed methods that first compute the dimensionless health parameter from the measurements through 
the trained ELM network, and then track and predict the propagation of the health parameter through PF. 
An example of computed health parameter for two normal degradation cases are illustrated in Fig. 43. It is 
observed that the deteriorations follow an exponential law. 

Aircraft Engine: Results and Discussions 

  

Figure 43. Propagation of dimensionless engine health parameter 

Figure 44 demonstrates examples of engine performance degradation prediction for two degradation 
scenarios: 1) gradual degradation (left figure in Fig. 44) and 2) gradualt degradation and abrupt fault 
occurences (right figure in Fig. 44). The left figure shows prediction results using measurement data through 
the 100th flight cycle to tracking and determining the degradation modes. The right figure shows the health 
parameter estimation and prediction based on joint PF and TV filter for the combined degradation + fault 
case (i.e. both gradual deterioration and abrupt fault are present).  The abrupt fault is introduced at the 27th 
cycle. The results indicates that the proposed PF+TV filter can reliably track both gradual degradation and 
abrupt changes. It should be mentioned that the median of the estimation and estimation paths are plotted 
based on the last update of the parameters during each stage. During the tracking stage, the update based 
on new measurements reduces the state and parameter estimation uncertainty caused by process noise. 
However, during the prediction stage, the effect of process noise on predicted health parameter would 
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accumulate, since no updated information is available from new measurements, leading to the increased 
prediction uncertainty and confidence limits over time. 

  
Figure 44. Engine performance degradation tracking by PF+TV 

In this project, the performance comparison between the developed PF method and Extended Kalman filter 
(EKF) has been conducted, as EKF has been widely applied to engine performance tracking, for both the 
normal and faulty cases. As can be seen in Fig. 45, tracking and prediction by using the PF technique 
(PF+TV) delivered higher accuracy than that by EKF, in both the normal and faulty cases. Estimation using 
EKF has shown to deviate significantly from the true path when transient change is present, whereas the 
PF technique has stayed on track.  To illustrate the difference quantitatively, Table 7 compares the 
estimation error between the PF and EKF technique, through a Monte Carlo simulation. Monte Carlo 
simulation study is conducted to demonstrate the robustness of the developed method based on PF. Each 
scenario (normal degradation and fault degradation shown in the Fig. 44) has been run for 500 times. The 
results are represented by the root mean square error (RMSE) of median predictions. 

 

Figure 45. Performance comparison between PF and EKF 

Table 7. Performance comparison on estimation error between the PF and EKF technique 
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 Gradual deterioration Gradual deterioration and aburpt 
fault 

PF          0.9% 1.0%  
EKF                3.4% 8.7% 

 

Bearing: Experiment Setup 

To verify the effectiveness of the multi-mode PF, vibration data collected from two run-to-failure bearing 
experiments have been analyzed. The test system used in the experiments is shown in Fig. 46. The 
experiments were conducted under constant rotational speed at 2,000 rpm and a radial load of 6,000 lb. 
Four Rexnord ZA-2115 double row bearings were installed on the shaft and all bearings were force 
lubricated. The shaft is driven through sheave/belt transmission by an AC motor. A magnetic plug was 
placed in the oil feedback pipe to collect debris from the oil recycle process. Test stops when the 
accumulated debris adhered to the magnetic plug exceeds a predefined level and causes a switch to turn off. 
A PCB 353B33 high-sensitivity quartz Integrated Circuits Piezoelectric (ICP) accelerometer was installed 
on each bearing housing to measure the vibration. The vibration data were collected every 10 minutes, with 
20 kHz sampling rate, and used as indicator of bearing health condition for subsequent performance 
tracking and remaining life prediction [2,10]. 

 

(a) Inner race defect in bearing 3 (b) Outer race defect in bearing 1  

 

Figure 46. Machine setting and illustration of bearing defects 

Bearing: Results and Discussions 

Figure 47 illustrates the tracking results of vibration variation due to bearing performance degradation by 
the two-mode PF and an extended Kalman filter (EKF),  for the inner-race and outer-race defect, repectively. 
For the inner-race defect (left figure), as the vibration before 21,000 minutes is maintained at a similar level, 
figure 47 screenshots the tracking result after 19,800 min. The performance tracking by the two-mode PF 
is implemented by 2000 particles. It is noted from the figure that  the bearing performance stage 2 (i.e. 
defect initiation stage) starts from 21000 minutes, and the stage 3 (i.e. accelerated defect growth) starts after 
21330 minutes. For the outer-race defect (right figure), the stage 2 starts from 7040 minutes, and stage 3 
shows an exponential crack growth after 9450 minutes. The tracking by the two-mode PF is demonstrated 
to be robust to the vibration variation caused by the bearing performance degradation and stage transition, 
whereas the EKF is not sensitive to the abrupt performance variation and thereby lose tracking in stages 2 
and 3. The particle distributions provide quantification of uncertainties associated with the performance 
degradation, using a measure of confidence interval. In this paper, the failure threshold for vibration RMS 
is defined as 0.4. 
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Figure 47. Performance tracking by PF 

Figure 48 illustrates the mode transition during the tracking process by the two-mode PF. The onset of stage 
2 is indicated by the first transition from Mode 1 to Mode 2, which means that there is a jump in the 
measured vibration data. Except for the start time of stage 2, the rest data points in stage 2 can still be 
characterized by Mode 1. This means that the variation of vibration caused by the defect initiation is 
relatively slow, compared to the vibration variation caused by accelerated spall propagation, in which the 
fracture of the bearing inner surface and removal of small, discrete particles of material worsen in an 
accelerated speed. The onset of stage 3 is indicated by the time when successive Mode 2 is turned on for 
system tracking [2,10]. 

Onset of Stage 2 
(defect initiation): 

21000 min 

Onset of Stage 3 
(accelerated defect growth): 

21330 min 
Onset of Stage 2 
(defect initiation): 

7040 min 

Onset of Stage 3 
(accelerated defect growth): 

9450 min 

 

Figure 48. Evolution of mode transiton in the two-mode PF 

The RUL prediction by the two-mode PF is shown in Fig. 49. For example, in the inner-race defect case 
(left figure), the RUL obtained at 21,000 min is predicated upon the updated linear degradation model. It 
should be noted that the RUL prediction is made only after the onset of stage 2, namely after 21,000 min.  
90% confidence bounds of the predicted RUL are provided. The true RULs fall in the prediction bounds, 
which proves the effectiveness of the developed two-mode PF in predicting the bearing remaining service 
lives.  
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Figure 49. Bearing RUL prediction by the two-mode PF 

A performance comparison among EKF, standard PF, and the multi-mode PF is shown in Table 8 [2,10]. 

Table 8. Performance comparison among EKF, standard PF, and the two-mode PF 

 Test 1 Test 2 
EKF 12.01 10.77 
Standard PF  1.32 1.52 
Multi-mode PF 0.41 0.61 

 

Summary 

Four improvement has been made to the particle filter in this project: 1) a local search particle filter (LSPF) 
with adaptive resampling strategy, to address the particle degeneracy problem, for improving the estimation 
accuracy and narrowing down the confidence interval of estimation and prediction; 2) a multi-mode 
switching particle filter, to perform time-varying degradation tracking, with the switching between modes 
automatically realized with the Bayesian framework; 3) an integrated particle filter with total variation 
filter, to track the gradual deterioration and at the same time detect abrupt performance changes and 4) 
construction of generic health parameter to generalize the prognostic method with respect to the application 
use cases. In this section, the impact of these improvement in advancing performance tracking and 
remaining useful life prediction has been evaluated, using the data from aircraft engine and bearing, and 
good performance has been demonstrated as compared to the standard particle filter and Kalman filter. 

For the manufacturers, the main benefits of the advancement made to the prognosis method based on 
particle filter are two-fold: 1) the improved system performance tracking capability, especially in the case 
of multi-mode degradation and abrupt performance change, allows a more accurate estimation of the future 
evolvement of the system performance and prediction of remaining useful life, serving as the foundation 
for predictive maintenance and 2) the capability of use case generalization allows the manufacturer to 
effectively extend the method to a broad range of manufacturing applications, without having to develop 
specialized, ad-hoc prognosis methods. 
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5. Accessing the Technology 
The developed research method is generic and can be shared within the DMDII community. These methods 
are pervasive and can be applied to almost all manufacturing machines and processes. It had been designed 
to be system agnostic even though specific tools are used within the program for the purpose of 
demonstration of the concept.  

In Task A, we developed (1) an interoperable data acquisition system and (2) a scalable computing platform 
for collecting and preprocessing large volumes of condition monitoring data. The unique characteristics of 
the interoperable data acquisition system are as follows:  

• Open and accessible – leverage open-source SW and COTS as much as possible 
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• Low Cost – low development cost and total cost of ownership 
• Plug-and-Play – enable “drop-in” for data collection, analytics, and more 
• Fault tolerant – high availability and high assurance 
• Extensible – ease of use for “app” development 
• Scalable – can easily scale up and down for resource management 
• Ease of setup – easy to setup and maintain 

In Task B, we integrated Microsoft Azure cloud with the interoperable data acquisition system and the 
private cloud storage for transforming big data into intelligent decisions with big data analytics. The 
algorithms developed in Task B were demonstrated in two use cases presented in Sections 4.5.1 and 4.5.2. 
The unique characteristics of the cloud-based data processing system are as follows:  

• High performance cloud computing power 
• Real-time data collection 
• Real-time predictive analytics 
• Cloud-based parallel machine learning for large volumes of condition monitoring data 

In Task C, we developed a dictionary learning algorithm for sparse diagnosis and nonlinear sparse multi-
faults classifier. The dictionary learning algorithm was demonstrated in a use case presented in Section 
4.5.3. The unique characteristics of these algorithms are as follows:  

• The proposed method can find a sparse representation of the input data in the form of a linear 
combination of atoms 

• The kernel method maps the signals from low-dimensional input space into high dimensional 
feature space for handling non-linearity 

In Task D, we developed (1) an advanced degradation tracking method under transient changes and (2) a 
regularized prognosis model for tracking system performance degradation and predicting the remaining 
useful life. The method introduced in Task D was demonstrated in a use case presented in Section 4.5.4. 
The unique characteristics of these algorithms are as follows:  

• Track performance degradation under varying operating conditions using the PF+TV filtering 
method 

• Predict the RUL of bearings with better performance 

DMDII members can implement the techniques we developed into their manufacturing systems with similar 
machines or manufacturing process. There is no specific system requirement because it completely depends 
on the scope and the detail level involved in the application. 
 
Innovation: The key technological advance that has been made during this project is that we addressed one 
of the primary challenges in the field of manufacturing which is legacy manufacturing machines and CNC 
machines lack fault and failure detection, self-diagnosis, and predictive maintenance capabilities. We 
developed a generic framework for cloud-based online machine and process monitoring, diagnosis, and 
prognosis. We also developed a private cloud-based data acquisition system that collects massive data from 
machines and processes using the ICT infrastructure that is solely operated within a corporate firewall. In 
addition, we developed a hybrid cloud platform that integrates the cloud-based data acquisition system with 
a public high-performance cloud computing system. Moreover, we developed parallel and distributed 
machine learning algorithms for online diagnosis and prognosis in additive and subtractive manufacturing 
as well as motors and bearings. 
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6. Industry Impact & Potential 
The developed framework is to integrate cloud computing, smart sensor networks, and parallel data mining 
and machine learning into online machine and process monitoring, diagnosis, and prognosis. The specific 
objectives of this project are to 1) develop a generic framework for cloud-based online machine and process 
monitoring, diagnosis, and prognosis, 2) develop a pilot, private cloud environment for acquiring massive 
data collected from machines and processes of a corporation, using the cloud infrastructure that is solely 
operated within a corporate firewall under the control of the corporate ICT department, 3) develop a hybrid 
cloud prototype that integrates the private cloud with public HPC cloud infrastructure so that the private 
cloud conducts data collection, screening and cleaning while the public cloud performs computational-
intensive data training and visualization, and 4) develop parallel and distributed data mining and machine 
learning algorithms for online diagnosis and prognosis of representative manufacturing machines and 
systems. The overall benefit of this developed framework is to perform digital manufacturing more 
effectively and efficiently in the distributed and collaborative environment. 

Any manufacturing systems requiring cloud-enabled machine and process monitoring, diagnosis, and 
prognosis can take advantage of the resulting framework. It not only can be applied to 3D printing, bearing, 
and spindle verified in case demonstrations, it can also be used for performing diagnosis and prognosis on 
many other manufacturing systems. 

7. Tech Transition Plan & Commercialization 
To help management in making decisions concerning the transition of technology and reduce the technical 
and cost risks associated with cloud-enabled machines with data-driven intelligence, a process for 
measuring technology maturity and ensuring that technologies are sufficiently mature before being brought 
into market is required. In this project, the technology readiness levels (TRLs) defined by Department of 
Defense was employed in helping to make effective critical decisions. According to the TRL definitions, 
TRL 4 is referred to as the TRL level on which a system prototype has been validated in a laboratory 
environment. Before this project, the TRL of cloud-enabled machines with data-driven intelligence is on 
Level 4 because it has been demonstrated that the private cloud developed at GE and the public cloud 
developed by Microsoft can collect online real-time data streams and generate big data analytics and data 
visualization, respectively. After this project, the TRL of cloud-enabled machines with data-driven 
intelligence is on Level 6 because the prototype system has been tested in a high-fidelity laboratory 
environment.  

With respect to commercialization, the generic framework and prototype are shared with the broad DMDII 
membership. This project also develops a knowledge base of guidelines and training for future use by 
academia and industry to implement machine intelligence into legacy and general purpose CNC machines 
as well as promote the adoption of relevant sensing systems and cloud computing technologies into 
machines and manufacturing systems.  

8. Workforce Development 
The educational and outreach objective of this proposal is to broaden the participation of undergraduate, 
graduate students, and the DMDII consortium members into cloud-based online machine and process 
monitoring, diagnosis, and prognosis, train future manufacturing engineers to develop a globally 
competitive workforce, and disseminate research results to the broader communities. Specifically, the 
targeted audience of our workforce development and education program include undergraduate and 
graduate students as well as DMDII industry and academia members. We organized a special session on 
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cloud-based smart manufacturing at the International Manufacturing Science and Engineering conference. 
This special session provided students, OEMs, SMEs, and large manufacturers with the foundation needed 
for cloud-based online machine and process monitoring, diagnosis, and prognosis. The special session 
covered the following topics: 

• Cloud-based online machine and process monitoring, diagnosis, and prognosis; 
• IoT-enabled real-time data acquisition software and hardware; 
• Data-driven predictive modeling in smart manufacturing; 
• Data visualization for diagnosis and prognosis; 
• Use cases. 

Moreover, the investigators disseminated leading-edge research through publications in high-quality peer-
reviewed journals such as ASME transactions, SME transactions and present research results at national 
and international forums and conferences (e.g., SME North American Manufacturing Research Conference 
and ASME Manufacturing Science and Engineering Conference).  

9. Conclusions/Recommendations 
The overcharging goal of this research was to integrate cloud computing, low-cost sensors, machine 
learning, and signal processing techniques into manufacturing equipment for online machine and process 
monitoring, diagnosis, and prognosis. The following objectives of this project were achieved: 

• We developed a generic framework for cloud-based online machine and process monitoring, 
diagnosis, and prognosis; 

• We developed a private cloud-based data acquisition system that collects massive data from 
machines and processes using the ICT infrastructure that is solely operated within a corporate 
firewall; 

• We developed a hybrid cloud platform that integrates the cloud-based data acquisition system with 
a public high-performance cloud computing system; 

• We developed parallel and distributed machine learning algorithms for online diagnosis and 
prognosis in additive and subtractive manufacturing as well as motors and bearings. 

Specifically, an interoperable sensing system consisting of “drop-in” sensor nodes, a gateway device, and 
pre-configured “protocol adapters” for plug-and-play fieldbus communications were developed to address 
machine connectivity and data collection. A container-based private cloud infrastructure that provided a 
petabyte-scale, high performance, and low latency distributed file system as well as a scalable cloud 
computing environment with real-time stream analytics, data visualization, and parallel machine learning 
tools were developed for processing high volume and high-speed data streams. A sparse representation-
based classification method was developed and implemented in the hybrid cloud system to diagnose 
multiple fault sources. A particle filter-based approach was developed to predict the system performance 
and remaining useful life of manufacturing machines. Four use cases were also developed to demonstrate 
the cloud-based data acquisition system as well as model-based and data-driven machine learning 
algorithms. The final project deliverables include:  

• An interoperable data acquisition and on-premise cloud computing platform providing scalable 
data collection and processing for hundreds of manufacturing machines on factory floors; 

• A public cloud platform integrated with on-premise private cloud for processing real-time data 
streams, executing parallel machine learning algorithms, generating big data analytics, and 
visualizing data; 

• A set of experimentally tested algorithms enabling data-driven intelligence for online machine fault 
diagnosis and prognosis in various types of manufacturing machines and processes, executable on 
a hybrid cloud computing platform. 
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10. Lessons Learned 
Some of the key lessons learned are described in the following:  

• Computational efficiency consideration for real-time fault diagnosis. The selection of 
mathematical approach for computing sparse representation has direct impact on the computational 
efficiency of the diagnostic method, in particular for real-time applications. Experimental 
evaluation has shown that the computational time required by the greedy approach for evaluating 
a testing signal (<0.1s) is significantly less than the LASSO approach (~3 s), making the it suitable 
for real-time fault diagnosis. It also takes less time than the two other learning techniques evaluated: 
support vector machines and the neural network-based method, such as DCNN. While the greedy 
approach is known as an approximation method to the sparse representation problem, the results 
from the experimental evaluation show that the numerical requirement for exact optimization can 
be relaxed while maintaining the performance, to allow improvement in efficiency for real-time 
applications. 

• Impact of kernel selection on robustness of diagnosis method. The selection of kernel function 
has direct impact on the robustness of the developed diagnostic method. Among commonly 
reported kernels, the radial basis function (RBF) stands out as a good choice. Evaluations conducted 
on a wide range of RBF parameter values has shown that the diagnosis accuracy is insensitive to 
the value selection. The RBF has also shown to be insensitive to the parameter selection as 
compared to other kernels such as the polynomial kernel. This makes it a generally applicable 
choice for the data-driven algorithms. These results can serve as guidance for kernel function 
selection in future research. 

• Use case selection for evaluation of algorithms. The originally planned project use case is CNC 
spindle. Due to significant delay in the launch of the project, access to the CNC spindle at GE was 
lost. As an alternative, three phase induction motors and rolling bearings were chosen for case 
study, given their close association with the structural dynamics of the spindle system (rotor-shaft 
assembly and bearing support). The evaluated structural faults (e.g. bowed rotor, unbalanced rotor, 
bearing inner-race fault etc.) represent the general cases of fault occurrences and degradation in 
rotary machines. The use case studies have allowed the research team to comprehensively evaluate 
the capability of the developed algorithms, in spite of the unexpected challenges due to 
unavailability of industry provided scenarios. 

• Computation time affected by the number of features. The number of features extracted in 
private cloud has a significant impact on the computation time of the diagnostic and prognostic 
method. Empirically, the more features are fed into machine learning algorithms, the more 
computation time it will cost. More specifically, the computation time increase exponentially when 
the number of features increase linearly. In use case 2, the computation time is around 1 second 
using LASSP if only time-domain features are extracted, and the computation time changes to 4 
seconds using LASSO if both time-domain and frequency-domain features are extracted. However, 
the prediction accuracy is also affected by the number of features, the more features the higher 
prediction accuracy. Therefore, we learn a lesson that a tradeoff needs to be found to balance the 
computation time and prediction accuracy even using HPC public cloud. 

• Selection of machine learning algorithms for prognostics. Different machine learning 
algorithms has different prognostics performance. To improve the performance of diagnosis or 
prognosis, we should select the machine learning algorithm properly. For example, random forests 
are used to predict surface roughness in use case 2. However, the computation efficiency should be 
also considered when select machine learning algorithms. For example, random forests’ 
computation time is around 5 seconds with time-domain features, but other machine learning 
algorithms takes around 1 second. Therefore, we learn a lesson that machine learning algorithms 
selection should consider both prediction accuracy and computation efficiency. 
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11. Definitions and Appendices 
What follows are a set of definitions, terms, and acronyms used in this document. These definitions were 
gathered from various sources including the internet, reference papers, standards organizations, and the 
authors of this document.  

• Cloud computing: Cloud computing is the on-demand availability of computer system resources, 
especially data storage and computing power, without direct active management by the user. 

• Public cloud: A cloud is called a "public cloud" when the services are rendered over a network that 
is open for public use. 

• Private cloud: Private cloud is cloud infrastructure operated solely for a single organization, 
whether managed internally or by a third party, and hosted either internally or externally. 

• Machine diagnosis and prognostics: Machine fault diagnostic and prognostic techniques have been 
the considerable subjects of condition-based maintenance system in the recent time due to the 
potential advantages that could be gained from reducing downtime, decreasing maintenance costs, 
and increasing machine availability. 

• Machine learning: Machine learning (ML) is the scientific study of algorithms and statistical 
models that computer systems use in order to perform a specific task effectively without using 
explicit instructions, relying on patterns and inference instead. 

• Random forests: Random forests or random decision forests are an ensemble learning method for 
classification, regression and other tasks that operates by constructing a multitude of decision trees 
at training time and outputting the class that is the mode of the classes (classification) or mean 
prediction (regression) of the individual trees. 

• LASSO: LASSO is a regression analysis method that performs both variable selection and 
regularization in order to enhance the prediction accuracy and interpretability of the statistical 
model it produces. 

• Ridge regression: Ridge Regression is a technique for analyzing multiple regression data that suffer 
from multicollinearity. 

• SVR: Support Vector Machine can also be used as a regression method, maintaining all the main 
features that characterize the algorithm (maximal margin). 

• Sparse dictionary learning: Sparse dictionary learning is a representation learning method which 
aims at finding a sparse representation of the input data (also known as sparse coding) in the form 
of a linear combination of basic elements as well as those basic elements themselves. 

• RUL: Remaining useful life (RUL) is the length of time a machine is likely to operate before it 
requires repair or replacement. 

• Particle filter: Particle filters or Sequential Monte Carlo (SMC) methods are a set of Monte Carlo 
algorithms used to solve filtering problems arising in signal processing and Bayesian statistical 
inference. 

• EKF: In estimation theory, the extended Kalman filter (EKF) is the nonlinear version of the Kalman 
filter which linearizes about an estimate of the current mean and covariance. 

• Kernel methods: Kernel methods owe their name to the use of kernel functions, which enable them 
to operate in a high-dimensional, implicit feature space without ever computing the coordinates of 
the data in that space, but rather by simply computing the inner products between the images of all 
pairs of data in the feature space. 

• Additive manufacturing: The term "additive manufacturing" covers a variety of processes in which 
material is joined or solidified under computer control to create a three-dimensional object, with 
material being added together (such as liquid molecules or powder grains being fused together), 
typically layer by layer. 
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• Thermocouple: A thermocouple is an electrical device consisting of two dissimilar electrical 
conductors forming electrical junctions at differing temperatures. A thermocouple produces a 
temperature-dependent voltage as a result of the thermoelectric effect, and this voltage can be 
interpreted to measure temperature. 

• Accelerometer: An accelerometer is a device that measures proper acceleration. Proper 
acceleration, being the acceleration (or rate of change of velocity) of a body in its own instantaneous 
rest frame, is not the same as coordinate acceleration, being the acceleration in a fixed coordinate 
system. 

• Infrared sensor: An infrared sensor is an electronic instrument that is used to sense certain 
characteristics of its surroundings. It does this by either emitting or detecting infrared radiation. 
Infrared sensors are also capable of measuring the heat being emitted by an object and detecting 
motion. 

• PHM: Prognostics and health management (PHM) is a framework that offers comprehensive yet 
individualized solutions for managing system health. 

• ET: Extruder temperature measured by a thermocouple. 
• BT: Building table temperature measured by a thermocouple. 
• WT: Working temperature measured by a IR temperature sensor. 
• MT: Meltpool temperature measured by a IR temperature sensor. 
• BVX: Building table vibration at x-axis measured by an accelerometer. 
• BVY: Building table vibration at y-axis measured by an accelerometer. 
• BVZ: Building table vibration at z-axis measured by an accelerometer. 
• EVX: Extruder arm vibration at x-axis measured by an accelerometer. 
• EVY: Extruder arm vibration at y-axis measured by an accelerometer. 
• EVZ: Extruder arm vibration at z-axis measured by an accelerometer. 




