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Abstract 

Humic acid (HA) is well known as an inexpensive and effective adsorbent 
for heavy metal ions. However, the thermodynamics of uranium (U) ad-
sorption onto HA is not fully understood. This study aimed to understand 
the kinetics and isotherms of U(VI) adsorption onto HA under different 
temperatures from acidic water. A leonardite-derived HA was character-
ized for its ash content, elemental compositions, and acidic functional 
groups, and used for the removal of U (VI) from acidic aqueous solutions 
via batch experiments at initial concentrations of 0–100 mgL-1 at 298, 308 
and 318 K. ICP-MS was used to determine the U(VI) concentrations in so-
lutions before and after reacting with the HA. The rate and capacity of HA 
adsorbing U(VI) increased with the temperature. Adsorption kinetic data 
was best fitted to the pseudo second-order model. This, together with 
FTIR spectra, indicated a chemisorption of U(VI) by HA. Equilibrium ad-
sorption data was best fitted to the Langmuir and Temkin models. Ther-
modynamic parameters such as equilibrium constant (K0), standard Gibbs 
free energy (ΔG0), standard enthalpy change (ΔH0), and standard entropy 
change (ΔS0), indicated that U(VI) adsorption onto HA was endothermic 
and spontaneous. The co-existence of cations (Cu2+, Co2+, Cd2+ and Pb2+) 
and anions (HPO42- and SO42-) reduced U(VI) adsorption. The high pro-
pensity and capacity of leonardite-derived HA adsorbing U(VI) suggests 
that it has the potential for cost-effective removal of U(VI) from acidic 
contaminated waters. 

DISCLAIMER: The contents of this report are not to be used for advertising, publication, or promotional purposes. 
Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products. 
All product names and trademarks cited are the property of their respective owners. The findings of this report are not to 
be construed as an official Department of the Army position unless so designated by other authorized documents. 

DESTROY THIS REPORT WHEN NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR. 
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Kinetics and Thermodynamics of Uranium (VI) 
Adsorption onto Humic Acid Derived
from Leonardite

1. Introduction

Uranium (U) is widely but unevenly distributed in soils with an average concentration 
of 2.6 mg·kg−1 [1]. Acid mining drainage is a major source of U release into soil and water 
environments [2,3]. Naturally occurring U consists of three isotopes: U-238 (99.2739–99.2752%), 
U-235 (0.7198–0.7202%) and U-234 (0.0050–0.0059%). In oxidizing environments U is usually found
in hexavalent form. U accumulation moves up the food chain, and eventually, to human organs and
tissues, causing severe damage to kidneys, liver and in extreme cases, death [4]. The World Health
Organization and US EPA have set the maximum concentration for U in drinking water at 15 and
30 µg·L−1, respectively [5,6].
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Adsorption, chemical precipitation, coagulation/flocculation, ultrafiltration and reverse osmosis
are common processes used for removing U from wastewaters [7]. Adsorption of U(VI) onto insoluble
adsorbents, such as clay minerals, activated carbon, biochar and natural biopolymers, has been
investigated [8–12]. Humic acid (HA) is an inexpensive biopolymer with abundant functional groups
(carboxylic and phenolic-hydroxyl), and it has been utilized to adsorb heavy metal ions [13].

U(VI) adsorption onto HA has been described with many models, including the pseudo
second-order equation [8,14]. The thermodynamics of U(VI) adsorption onto HA, however, is not fully
understood. This study aimed to understand the kinetics and isotherms of U(VI) adsorption onto
HA under different temperatures from acidic water to reveal the equilibrium time, the mechanisms,
and the capacities of U adsorption onto HA.

2. Materials and Methods

2.1. Materials and Reagents

A leonardite was purchased from Leonardite Products, LLC, in Williston, ND, USA. All reagents
used in this study were of analytical grade. Copper nitrate (Cu(NO3)2), cadmium nitrate (Cd(NO3)2),
cobalt nitrate (Co(NO3)2), hydrochloric acid (HCl), lead nitrate (Pb(NO3)2), nitric acid (HNO3) and
sodium hydroxide (NaOH) were purchased from Thermo Fisher (Waltham, MA, USA). Uranyl nitrate
(1%) was purchased from Poly Scientific R&D Corp (Bay Shore, NY, USA). U(VI) solutions were
prepared for batch adsorption experiments by successively diluting the aqueous 1% uranyl nitrate
with 1 mM sodium nitrate (NaNO3) as a background electrolyte [15]. HNO3 and NaOH were used for
adjusting solution pH.

2.2. Preparation and Characterization of HA

HA was extracted from the leonardite with traditional alkaline-acid protocol [8]. Briefly, 25 g
leonardite was placed into a Teflon-container with 250 mL 0.1 M NaOH and sonicated for 30 min.
After standing overnight, the supernatant was collected. This process was repeated 2 more times for
a total of 3 extractions. The collected supernatants were combined, and small aliquots of 6 M HCl
was titrated in, while stirring, until the pH was reduced to 2. The suspensions were then centrifuged
at 3000 g for 15 min. The precipitates (HA) were washed three times with distilled water and then
freeze-dried for later use.

The physical and chemical properties of the leonardite and derived HA were analyzed as follows:
Ash content was determined with ignition in a muffle furnace at 800 ◦C for 4 h under atmospheric
condition. Elemental compositions were determined with an elemental analyzer (Vario micro cube,
Elementar, Germany) for dried samples at 80 ◦C. Functional groups were identified with Fourier
transform infrared spectroscopy (Spectrum Two, PerkinElmer, Waltham, MA, USA), and acidic
functional groups were quantified with the titration method of the International Humic Substances
Society [16].

2.3. Adsorption Experiments and Data Processing

All adsorption experiments were conducted in duplicates, including blanks and calibration
controls. Briefly, 20 mg of HA was weighed into 50 mL plastic centrifuge tubes (Corning, Corning, NY,
USA) with 30 mL U solution, and the pH of the suspension was adjusted to 3.0. The tubes were then
shaken for 6 h to achieve equilibrium. Then, the tubes were centrifuged, and the supernatants were
filtered through a 0.45 µm membrane (Whatman, Little Chalfont, Buckinghamshire, UK) for analysis
of U concentration with an ICP-MS (Varian Inc., Palo Alto, CA, USA). The pH at the beginning and
end of adsorption experiment was measured by a pH meter (Oakton, Vernon Hills, IL, USA).

U adsorption on the HA was calculated from the difference in concentrations before and after
the adsorption. MS-Excel and OriginPro 8.0 (OriginLab, Wellesley Hills, MA, USA) were used for
data processing.
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3. Models

3.1. Adsorption Kinetics Models

Parameters obtained from four adsorption models were used to describe the kinetics of U(VI)
adsorption onto HA: pseudo first-order model (Equation (1)) was used to describe the adsorption
process in solid-liquid system at the initial phase, which corresponds to a diffusion-controlled
process [17,18]; pseudo second-order model (Equation (2)) was used to describe whole adsorption
process, involving chemisorption in solid-liquid system [18,19]; the Elovich equation (Equation (3))
was used to describe the chemisorption that occurred on heterogeneous solid surface [20,21]; and the
intraparticle diffusion model (Equation (4)) was used to determine the intraparticle diffusion rate
constant and the boundary resistance [22]. Detailed descriptions on the models and parameters are
available in the literature [17–22].

qt = q1
(
1− e−k1t

)
(1)

qt =
q2

2k2t

1 + q2k2t
(2)

qt =
1
β

ln(αβ) +
1
β

ln(t) (3)

qt = kit0.5 + C (4)

3.2. Adsorption Isotherm Models

Four adsorption isotherm models were used to describe U distribution between solution and HA
at the equilibrium state: the Freundlich model (Equation (5)) describes both monolayer and multilayer
adsorption, which is based on heterogeneous adsorption in solid-liquid system [23,24]; the Langmuir
model (Equation (6)) quantifies the adsorption capacity [8,25,26]; the Temkin model (Equation (7))
takes U-HA interaction into account and links adsorption energy to the adsorbent surface [27]; and the
Dubinin–Radushkevich (D-R) model (Equation (8)) describes adsorption reaction at low concentration
ranges on the homogeneous or heterogeneous surface [28].

qe = kFC1/n
e (5)

qe =
qLkLCe

1 + kLCe
(6)

qe =
RT
b

lnkT +
RT
b

lnCe (7)

qe = qDe−kDRTln(1+ 1
Ce

)
2

(8)

3.3. Thermodynamic Parameters

The thermodynamic parameters are usually used to illustrate adsorption mechanisms and
determine the reaction direction, which can be calculated from the thermodynamic equilibrium
constant, K0. The standard Gibbs free energy ∆G0 (kJ·mol−1), standard enthalpy change ∆H0 (kJ·mol−1),
and standard entropy change ∆S0 (J·mol−1

·K−1) were determined from the equations as follows:

∆G0 = −RTlnK0 (9)

lnK0 =
∆S0

R
−

∆H0

RT
(10)
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 3.99 3 ** 
308 5.17 21.89 0.684 ** 
318 4.24 28.21 0.599 ** 

ki: the intraparticle diffusion rate constant; C: a constant; ** Significant at 0.01 probability level.

4.3. Adsorption Isotherms 

As shown in Figure 4, adsorption capacity increased with U concentrations. The parameters 
from fitting adsorption data into four isotherm models are given in Table 4. 
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increa
adsorption capacities of common adsorbents (kaolin, biochar, activated carbon, hematite, and 
bentonite) at near-neutral pH that would not be observed in acidic effluents (Table 5). The large 
adsorption capacity of HA for U is in agreement with its abundant carboxyl group [13]. The good fit 
of experimental data with Temkin equation (R2 > 0.97) implied that U(VI) adsorption onto HA 
involved chemisorption [33]. This was further supported by the results of pseudo second-order and
Elovich equations. The qD values of D–R model were not consistent with the qL calculated from the 
Langmuir isotherm as show in Figure 4 and Table 4. Fitting of adsorption data into the D–R model 
produced the lowest R2 in Table 4, further suggesting U(VI) adsorption onto HA was not a physical 
process [25,28,34,35]. 

Table 4. Parameters of adsorption isotherm models for U(VI) adsorption onto HA. 

Isotherm Parameters R2

Freundlich model 

Temperature (K) n kF (mg(1−n)·Ln·g−1)  
298 2.99 24.76 0.967 ** 
308 3.44 39.88 0.940 ** 
318 2.62 39.66 0.973 ** 

Langmuir model 
Temperature (K) qL (mg·g−1) kL (L·mg−1) R2

298 68.60 0.46 0.970 ** 



6 of 12



. 7 of 12

Int. J. Environ. Res. Public Health 2019, 16, x FOR PEER REVIEW 9 of 12 

Table 6. Thermodynamic parameters for U(VI) adsorption onto HA particles. 

Temperature (K) lnK0 ΔG0 (kJ·mol−1) 
298 4.46 * −11.1 
308 4.63 ** −12.2 
318 5.05 ** −12.9 

* Significant at 0.05 probability level. ** Significant at 0.01 probability.

4.5. Adsorption Mechanism

FTIR is a useful tool to probe adsorption behavior of cations onto adsorbents [8,23,40]. The 
vibration frequency changes in characteristic peaks of HA before and after adsorption (Figure 1)
include the shifts of the symmetric -COO− stretch frequency from 1601 to 1590 cm−1 (red shift), 
symmetric -COO− stretch frequency from 1426 to 1416 cm−1 (red shift), salts of -COOH stretch 
frequency from 1368 to 1360 cm−1 (red shift), and phenolic C-OH stretch frequency from 1204 to 1219 
cm−1 (blue shift). Thus, U(VI) reacted with HA through functional groups [8,41]. The FTIR analysis 
further elaborated that U(VI) adsorption onto HA was via chemisorption. The adsorption process
could be controlled by surface or intraparticle diffusion, and the intraparticle diffusion model is often 
used to make the judgment [22,42]. The parameters and R2 of data fitting into the intraparticle 
diffusion model are given in Table 3. The low R2 (< 0.7) suggested that the adsorption process was 
not controlled by intraparticle diffusion. In other words, surface diffusion was the dominant process
for U(VI) adsorption onto HA via chemisorption, such as ion-exchange, complexation and chelation
[25,30].
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