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Abstract

The occurrence of uranium (U) and depleted uranium (DU)-contaminated
wastes from anthropogenic activities is an important environmental prob-
lem. Insoluble humic acid derived from leonardite (L-HA) was investi-
gated as a potential adsorbent for immobilizing U in the environment. The
effect of initial pH, contact time, U concentration, and temperature on
U(VI) adsorption onto L-HA was assessed. The U(VI) adsorption was pH-
dependent and achieved equilibrium in 2 h. It could be well described with
pseudo-second- order model, indicating that U(VI) adsorption onto L-HA
involved chemisorption. The U(VI) adsorption mass increased with in-
creasing temperature with maximum adsorption capacities of 91, 112 and
120 mg g at 298, 308 and 318 K, respectively. The adsorption reaction
was spontaneous and endothermic. We explored the processes of U(VI)
desorption from the L-HA-U complex through batch desorption experi-
ments in 1 mM NaNO3 and in artificial seawater. The desorption process
could be well described by pseudo-first-order model and reached equilib-
rium in 3 h. L-HA possessed a high propensity to adsorb U(VI). Once ad-
sorbed, the release of U(VI) from L-HA-U complex was minimal in both 1
mM NaNOs; and artificial seawater (0.06% and 0.40%, respectively). Being
abundant, inexpensive, and safe, LHA has good potential for use as a U ad-
sorbent from aqueous solution or immobilizing U in soils.

DISCLAIMER: The contents of this report are not to be used for advertising, publication, or promotional purposes.
Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.
All product names and trademarks cited are the property of their respective owners. The findings of this report are not to
be construed as an official Department of the Army position unless so designated by other authorized documents.

DESTROY THIS REPORT WHEN NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR.
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Removing uranium (VI) from aqueous solution with insoluble humic acid
derived from leonardite

1. Introduction

Uranium (U) occurs naturally in several minerals as a mixture of
three isotopes, U-238, U-235, and U-234 (Cordfunke, 1970).
Depleted uranium (DU) is a by-product of the production of
enriched uranium containing U-235 and U-234 at lower concen-
trations than natural U (AEPI, 1995). DU is used in kinetic energy
penetrators and armor plating as well as having widespread ap-
plications as aircraft counterweights and radiation shielding in
medical radiation therapy (Betti, 2003; Global Security, 2008).
Leaching of U to water occurs naturally due to interaction with soil
minerals (Choy et al., 2006; Munasinghe et al., 2015). Anthropo-
genic contamination also arises from U ore mining/processing,
medical waste, nuclear power station operation, accidents, and
weapons testing. Acid drainage water from U mine tailings contains
U and other radionuclides at low pH, reported from sites world-
wide, including Australia (Mudd and Patterson, 2010), Germany
(Biehler and Falck, 1999), Canada (Berthelot et al., 1999), and Brazil
(Campos et al., 2011). This has resulted in the release of U-and DU-
containing wastes into soil and groundwater environments, posing
risks to surface water and human health (Lienert et al., 1994;
Krestou et al., 2004; Todorov and Ilieva, 2006; Gavrilescu et al.,
2009; Steinhauser et al., 2014). U usually occurs as U and U%*
oxidation states in soil and water environments and U®* is the main
stable valence under oxidizing conditions. The daily intake of U, as
established by the World Health Organization (WHO), is 0.6 pg kg !
of body weight/day; the maximum U concentration in drinking
water at 15 pg L~! (WHO, 2008) or30 pg/L (U.S. Environmental
Protection Agency, 2012).


http://crossmark.crossref.org/dialog/?doi=10.1016/j.jenvrad.2017.09.019&domain=pdf

A range of technologies have been developed for removing U
from water, including adsorption, membrane processes, chemical
precipitation, and ion-exchange (Dulama et al., 2013). Adsorption
has become a popular choice due to its cost-effectiveness and ease
of operation. Adsorbents used to remove U from water, include
microbial biomass (Kalin et al., 2004), activated carbon (Mellah
et al., 2006), hematite (Xie et al., 2009), sepiolite (Donat, 2009),
clay materials (Campos et al., 2013) and clay-humic complexes
(Anirudhan et al., 2010). Recently, biopolymers, such as insoluble
humic acids (HA), have been extensively used as adsorbents of
heavy metals (Havelcova et al., 2009; Shaker and Albishri, 2014;
Khalili and Al-Banna, 2015; Meng et al., 2016). HAs are naturally
occurring in water and soil environments and play a vital role in
environmental detoxification (Kochany and Smith, 2001; Yuan and
Theng, 2012; Zidtkowska, 2015). They could also be extracted from
leonardite and lignite. With abundant functional groups (e.g.,
quinone, amino, carboxylic, phenolic), leonardite-derived HA (L-
HA) has a good propensity to bind metal cations (Olivella et al.,
2002; Yang et al., 2015).

The objective of this work was to investigate the potential use of
L-HA as a U adsorbent from U waste water such as mining tailing as
well as other U contaminated sites such as army shooting ranges. To
this end, the effects of pH, contact time, temperature, and initial
U(VI) concentrations on U adsorption were assessed through ki-
netics adsorption experiments at 298 K and batch isotherm ex-
periments at 298, 308 and 318 K. Further, the process of U(VI)
desorption from the L-HA-U complex was investigated with batch
kinetics desorption experiments at 298 K. Desorption studies were
performed using diluted NaNO3 as a background electrolyte to
simulate a normal soil solution (Harter and Naidu, 2001) and arti-
ficial seawater as a marine environment simulant to study the
tendency of U(VI) release from L-HA-U complex.

2. Experimental
2.1. Materials, reagents and preparation of solutions

Leonardite was purchased from Xinjiang Uyghur Autonomous
Region, China, which was similar in physical and chemical prop-
erties to leonardite from North Dakota, US. All reagents used in this
study were of analytical grade. Nitric acid and sodium hydroxide,
used for adjusting pH, were purchased from Thermo Fisher. Uranyl
nitrate, 1% aqueous, was purchased from Poly Scientific R&D Corp. A
series of U(VI) solutions were prepared by successively diluting the
uranyl nitrate 1% aqueous with 1 mM NaNOs. A single element
standard for U was obtained from SPEX CertiPrep and used to
prepare standard curves for quantitation. Artificial seawater was
prepared according to the methods of Yu et al. (2011) and consisted
of 26.5 g/L NaCl + 24 g/L MgCl, + 0.73 g/L KCl + 3.3 g/L
MgS0O4 + 0.2 g/L NaHCO3 + 1.1 g/L CaCl, + 0.28 g/L NaBr.

2.2. Preparation and characterization of L-HA

The traditional alkaline-acid procedure was used to obtain HA
from leonardite (Havelcova et al., 2009; Meng et al., 2016). Briefly,
50 g leonardite were added to 500 mL of 0.1 M NaOH solution in a
Teflon-lined container, heated to 40 °C, then sonicated for 30 min.
After standing overnight in the sealed container, the supernatant
liquid was slowly poured off and 0.1 M NaOH was added to the solid
residue. This extraction procedure was repeated six times. The L-HA
was obtained by adding 6 M HCI to the collected supernatant liquid
while stirring to pH 2, centrifuging at 3000 remin~! for 15 min and
washing the precipitate with deionized water, and centrifuging for
three times. The final precipitation with pH 4.02 was freeze-dried
for use.

The L-HA was analyzed for its physical and chemical properties.
Ash content of the L-HA was determined by heating samples in a
muffle furnace at 800 °C for 4 h under air atmosphere. Elemental
contents were determined by an elemental analyzer (Vario micro
cube, Elementar, Germany) for dried sample. The pH was deter-
mined in boiled, distilled water with a pH meter at a solid-liquid
ratio of 1: 10 (Mettler Toledo, Switzerland). Surface morphology
was observed with a Scanning Electron Microscope (SEM, Hitachi S-
4800, Japan, 3 kV). Functional groups were analyzed with Fourier
transform infrared spectroscopy (Thermo Nicolet, 470 FTIR, USA).
Acidic functional groups were quantified according to the method
of International Humic Substances Society (http://www.
humicsubstances.org/acidity.html). Briefly, a solution containing
0.36 +0.01 g L' (base on a dry ash-free) of HA (with pH adjusted to
3.0 with HCl and 0.1 M NaCl as background electrolyte) was titrated
with carbonate-free 0.1 M NaOH at 25 °C to pH 8.0 and 10.0. The
contents of carboxyl and phenolic-OH groups were calculated from
NaOH consumption between pH 3.0 and 8.0 and between 8.0 and
10.0, respectively.

2.3. Batch experiments

2.3.1. Batch adsorption experiments

First, initial U solutions (60 mg/L) were prepared. The pH values
of the U solutions were adjusted to pH 3, 4, 5, 6, 7, 8 with 0.1 M
HNOj3 or NaOH solutions before mixing with L-HA. Dissolved U in
pH adjusted solutions was measured again. Twenty mg (accurate to
0.0001 g) L-HA was added to 50 mL centrifuge tubes containing
30 mL U solution. The tubes were capped and placed on a tem-
perature controlled shaker at 298 K. After 12 h of shaking the tubes
were centrifuged, and the supernatants filtered through 0.45-um
membrane (Whatman, UK). The clear supernatants were diluted
with 1% HNOj3 for U analysis with a Varian 820-ICP-MS, (Varian Inc.,
USA) where the U concentrations should be less than 100 pg/L. The
kinetic study was conducted in the solution with pH 5.0 at 298 K for
0.1, 0.25, 0.5, 0.75, 1, 1.5, 2, 3, and 4 h. The initial U concentrations
are high for most U contaminated sites, however, this research
effort is partially directed toward military shooting ranges, where U
concentrations in soil have been reported as high as 2700 mg/kg
(Larson et al., 2009). To simulate high concentrations of absorbed U
in a solid matrix, a relatively high initial U concentration such as
those used in the present study seemed desirable.

Adsorption thermodynamics were assessed with initial U(VI)
concentrations from 5 to 120 mg L~ at three temperatures (298,
308 and 318 K). Thirty mL of the U(VI) solutions were added into
50 mL centrifuge tubes containing 20 mg L-HA. The initial pH of
U(VI) solution was adjusted to 5 + 0.05 and shaken for 12 h.

2.3.2. Batch desorption experiments

A L-HA-U complex was prepared for the desorption experiments
by adding 1 g L-HA to a PTEE bottle with 250 mL of 120 mg L™ ! of U
solution. The initial pH was adjusted to 5.0 + 0.1 using HNOs3 or
NaOH. After shaking for 12 h at 298 K, the bottle was centrifuged
and the obtained residue (L-HA-U complex) was dried at 105 °C
until constant weight.

Desorption of the U(VI) from the L-HA matrix was studied using
1 mM NaNOs (as a simulated soil solution) (Harter and Naidu, 2001)
or artificial seawater. Twenty mg of the L-HA-U were placed into
50 mL tubes containing 30 mL of a 1 mM NaNOj3 solution with a pH
5.03, or artificial seawater with a pH 6.98. The tubes were capped
and continuously shaken in a temperature controlled shaker at
298 K. The shaking time are 0.25, 0.5, 0.75, 1, 1.5, 2, 3 and 4 h for
artificial seawater, and 0.25, 0.5, 0.75, 1, 1.5, 2, 3, 4, 6 and 8 h for
1 mM NaNOs. The supernatants were filtered and analyzed for U
concentration by ICP-MS.
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All batch adsorption and desorption experiments were per-
formed in duplicates.

The adsorption or desorption mass was calculated by the dif-
ferences of U concentration in solution before and after adsorption
or desorption. Software Origin8.0 (OriginLab. USA) was used for
data processing.

2.4. Models

2.4.1. Adsorption and desorption kinetics models

The pseudo-first-order model and pseudo-second-order model
are often used to describe adsorption or desorption dynamics
processes.

The pseudo-first-order model equation (Eq. (1)) describes
adsorption in solid-liquid system on the basis of adsorption ca-
pacity of solid (Ho, 2004),

ge=a:(1-ehr) (1)

The pseudo-second-order model equation (Eq. (2)) has been
applied for analyzing the mechanism of adsorption processes
involving chemisorption from liquid solution (Ho and McKay, 1999;
Ho, 2006),

q3kat

- 1+ Q2’<2t (2)

qe

where q; and q; are the amount of U(VI) sorbate onto or desorbed
from adsorbent at the equilibrium state (mgeg 1), q; is the amount
of sorbate adsorbed onto or desorbed from adsorbent at time t
(mgeg 1), kq is the pseudo-first-order equilibrium rate constant
(1eh™1), and k; is the pseudo-second-order equilibrium rate con-
stant (ge(mgeh)™1).

2.4.2. Adsorption isotherms models

An adsorption isotherm model can be used to describe the
adsorption between liquid and solid phases at equilibrium state.
The adsorption of U(VI) by L-HA was modelled using the Langmuir
and Freundlich models. The Langmuir model assumes a uniform
monolayer adsorption, while the Freundlich model is based on
heterogeneous adsorption not restricted by monolayer (Yang, 1998;
Mellah et al., 2006). The Langmuir and Freundlich models equa-
tions are as follows.

Langmuir equation,

_ qmkiCe
T 14 ki Ce (3)
Freundlich equation,
1
g = keC/" 4)

where Ce is the equilibrium concentration (mgeL™!), q is the
amount of U(VI) adsorbed onto L-HA at equilibrium state (mgog*l )
qm is the maximum capacity for U(VI) (mgeg™1), k. is a constant
related to the affinity of the binding sites (Lemg™"), k is the equi-
librium adsorption constant related to adsorption capacity
(mg!™eL"eg 1), and 1/n is a constant related to adsorption
intensity.

2.4.3. Thermodynamic parameters

The thermodynamic parameters were determined from the
thermodynamic equilibrium constant, K. The standard Gibbs free
energy AG’ (Kkjemol™!), standard enthalpy change AH°
(kJemol™ "), and standard entropy change AS? (Je(moleK)™!) were

calculated using the following equations,

NG = —RTInK, (5)
S0 HO
InKy = AT - ART (6)

and Ky can be defined as the following equation where:
Ko = Jde 7)

where R is the gas constant (8.314 Je(moleK)™ '), T is the tempera-
ture in K, Ce is the equilibrium concentration (mmoloL*l), and qe is
the amount of U(VI) adsorbed on L-HA at equilibrium state
(mmoleg™1).

3. Results and discussion
3.1. Properties of HA

The L-HA had a pH value of 4.02, an ash content of 7.87%, and
carbon content of 58.7%. The size and shape of the L-HA precipitate
particles may greatly impact adsorption rate and capacity. SEM
graphics of fresh L-HA indicated that its surface was heterogeneous
and fully covered by small spherical particles (Fig. 1). As a sphere
has the largest surface area for a given volume, the small spherical
particles would favor U adsorption onto the L-HA surface. Accord-
ing to Stevenson (1994) and Tan (2014), the spectra of L-HA showed
oxygen-containing functional groups which appear at about
3414 cm™! (O-H stretching of H-bonded hydroxyl group and
partially N-H stretch), 1700 cm~! (C=0 stretch of COOH), 1570 and
1353 cm~! (anti-symmetrical and symmetrical stretching of
C00-), and 1190 cm~' (C-O stretch or phenolic C-OH) (Fig. 2). The
carboxyl and phenolic-OH functional groups of L-HA were 6.18 and
1.82 molL/kg C, respectively. Soler-Rovira et al. (2010) observed a
strong correlation between the carboxyl group content of HA and
its adsorption capacity for heavy metals. Thus, the L-HA used in this
study would have a high adsorption capacity for metal cations.

3.2. Effect of initial pH

Matrix pH is an important factor controlling the adsorption
process of U(VI) onto L-HA because it may influence the surface
charge of L-HA and change the U speciation in solution as well as
solubility of humic substances (Misaelides et al., 1995; Camacho
et al., 2010; Khalili and Al-Banna, 2015). As shown in Fig. 3, U(VI)
adsorption onto L-HA was pH-dependent and the maximum U
adsorption occurred at pH 6.0. At low pH the positive charge arising
from amino groups on the surface of L-HA increases, which in-
creases the competition of H* for U at surface binding sites and
reduces the U adsorption (Wang et al., 2010). At pH < 3.0, UO3™ is
the dominant species for adsorption; at pH 3.0—5.0, (UO;),(OH)3™,
(UO2)3(OH)3™ and (UO,)3(OH)Z are present for adsorption; at
pH > 5.0, intense hydrolysate ((UO,)4(OH)F) occurred and were
adsorbed (Misaelides et al., 1995; Camacho et al., 2010). The ioni-
zation of L-HA increases with pH, resulting in an increase in
negative charge that allows adsorption of more mass of U. The
resolubilization of L-HA below pH 6 was tested and found to be low
(<0.20%), becoming negligible (<0.10%) in the presence of U.
However, resolubilization of L-HA increased above pH 6.0. Some
precipitate in U solution was observed at pH 8 before mixing with
L-HA. Thus, at pH > 6.0, the dissolution of L-HA complexes, as well
as the formation of U(VI) hydroxide species (e.g., UO,(OH)y),
reduced U(VI) adsorption onto the L-HA (Camacho et al., 2010;
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Fig. 1. SEM graphs of fresh L-HA particles.
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Fig. 2. FTIR spectra of L-HA and HA-U.
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Fig. 3. Effect of pH on the adsorption mass of U(VI) by L-HA. The pH values of U so-
lution (initial U 60 mg/L) were adjusted to pH 3, 4, 5, 6, 7, 8 before mixing with L-HA.
Dissolved U in pH adjusted solutions was measured.

Wang et al., 2010; Milja et al., 2011). The mass of U adsorbed at pH
5.0 was 60 mgeg~'and increased to 67 mg g~ at pH 6.0. Since U-
contaminated water, such as uranium mining wastewater, is usu-
ally an acidic condition, we selected pH 5 for kinetics and ther-
modynamic adsorption experiments to better simulate that
environment.

3.3. Adsorption kinetics

Reaction time is another important factor influencing U(VI)
adsorption onto L-HA (Fig. 4). Pseudo-first-and second-order
models are often used to describe adsorption or desorption dy-
namic processes. U adsorption mass increased quickly in the initial
0.25 h and then increased slowly until an equilibrium state was
reached at 2 h. In order to describe the adsorption process and
explore the adsorption mechanism, the adsorption data obtained at
298 K were fitted to pseudo-first-order and pseudo-second-order
models.

The values of adsorption kinetic parameters and coefficients of
determination (R?) from the models were summarized in Table 1.
Both pseudo first and second models gave good R? values. The
pseudo-second-order model yielded a slightly higher R? value
(which was close to 1) and close agreement between adsorption
mass value (q) and the experimental ge. This suggests that U(VI)
adsorption onto L-HA involves chemisorption, such as ion-
exchange, chelation and surface-complexation (Ho and McKay,
1999; Ho, 2006).

3.4. Adsorption isotherm

Fig. 5 demonstrates that U adsorption increased with rising
initial concentrations and temperature. In order to quantify the
potential adsorption capacities of L-HA for U(VI) at different tem-
peratures, the data obtained from batch experiments was fitted
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Fig. 4. Kinetics of U(VI) adsorption onto L-HA.



Table 1
Parameters of kinetic models for U(VI) adsorption onto L-HA.

qe (mgeg™ 1) Pseudo-first-order Pseudo-second-order
Q1 (mgeg ™) ki (1eh™") R? q2 (mgeg™") k; (ge (mgeh)™") R?
51.2 48.2 9.42 0.97 51.2 0.29 0.99
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Fig. 5. Isotherms of U(VI) adsorption onto L-HA. (a) Langmuir model; (b) Freundlich model.

using the Langmuir model (Eq. (3)) and Freundlich model (Eq. (4)).

In general, as temperature increased, the ionization of carbox-
ylic acids also increased, making the surface of adsorbents more
reactive towards adsorption (Ellis, 1963; Uslu and Tanyol, 2006).
The adsorption capacity of U(VI), calculated using the Langmuir
model, increased from 91 mg g~ ! at 298 K to 112 mg g~ ! at 308 K,
and then to 120 mg g~' at 318 K, which were higher than other
organic materials, such as cross-linked chitosan (Wang et al., 2009)
and activated carbon (Kiitahyali and Eral, 2010). The adsorption
data were well fitted to the Freundlich and Langmuir models
(Table 2), however, the Langmuir model seemed more suitable than
Freundlich model (R? > Rg) at experimental temperatures. This may
be a result of surface and collision energy change with temperature
(Van den Boomgaard et al., 1978; Michelsen et al., 1992; Uslu and
Tanyol, 2006). Rising temperature increases surface activity of ad-
sorbents and the kinetic energy of U, thus increasing the potential
for its adsorption. The Langmuir model has been extensively used
to describe the adsorption processes of heavy metals, even re-
actions with low reversibility, indicating a strong affinity and
binding (Lasheen et al., 2012). The k; is the adsorption equilibrium
constant indicating the affinity of binding sites. The ki increased
and then decreased with increasing temperature, implying that the
affinity of binding sites changed with temperature. This might not
necessarily be related to changes in the dominant adsorption
mechanism in a specific temperature range (Uslu and Tanyol,
2006).

3.5. Desorption experiments

The L-HA-U complex for desorption experiments contained
30.84 mg U/g. Desorption experiments were investigated with

Table 2

1 mM NaNOs to simulate a soil-water system and artificial seawater
to simulate a marine environment.

3.5.1. Uranium desorption in 1 mM NaNO3

U desorption from L-HA-U in 1T mM NaNOs, a soil simulant,
increased quickly as time increased from 0.25 to 2 h and then
reached an apparent equilibrium at 3 h (Fig. 6a). Desorption pro-
cesses took a longer time to reach equilibrium than adsorption
processes. At equilibrium, the desorption mass of U(VI) was
19 ug g~ ! (only 0.06% of the adsorbed mass), indicating that the L-
HA had a high retention capacity for U(VI), and thus good potential
use as an inexpensive adsorbent in uranium contaminated soil.

3.5.2. Uranium desorption in artificial seawater

U(VI) desorption in artificial seawater increased quickly as time
increased from 0.25 to 1.5 h and then slowly increased to reach an
equilibrium at 3 h (Fig. 6b). The equilibrium desorption mass (qe) of
U(VI) was 125 pg g~ 1, 0.4% of the adsorbed mass. This was higher
than that in 1 mM NaNOs, which is in agreement with results in
literature (Ladshaw et al., 2015) and could be explained by three
potential mechanisms: 1) seawater with high ionic strength con-
tains cations (e.g., Mg?*, Ca®*) that compete with U(VI) adsorption
onto L-HA (Anagnostopoulos et al., 2017); 2) seawater has a pH > 6,
which partially dissolves the L-HA releasing U back into solution; 3)
CO%~ and HCO3 in seawater (HCO3(aq) + OH (aq) = CO3 (aq) +
H0(;)) may easily form complexes with U (Krestou and Panias,
2004; Santos and Ladeira, 2011), thus competing with L-HA for U.
In most U-contaminated seawater, the U concentration may not be
as high as in this experiment. Meinrath et al. (2003) reported
groundwater concentrations as high as 50 mg L~! up to percent
concentrations. Toque et al. (2014) found corrosion rates of

Parameters of adsorption isotherms for U(VI) adsorption onto L-HA at different temperatures.

Temperature (K) Freundlich model

Langmuir model

1/n kp (mg'~MeLMeg 1) R? qm (mgeg™") ki (Lemg™") R?
298 033 272 097 91 025 0.98
308 028 51.6 0.83 112 1.28 0.99
318 033 498 0.96 120 0.78 0.98
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Fig. 6. Kinetics of U(VI) desorption from L-HA in: (a) 1 mM NaNOs, (b) Artificial seawater.

1.9 g cm~2 y~! from DU kinetic penetrator materials in the open
ocean. Use of DU kinetic penetrators around marine environments
might be expected to result in high uranium concentrations. The
present finding indicates that the high retention capacity of L-HA
for U(VI) could potentially be used to remove U(VI) from contam-
inated seawater.

3.5.3. Desorption kinetics

The U desorption processes could be described by the pseudo-
first-order and pseudo-second-order models (Konvalinka et al.,
1977; Tsai et al., 2008). Fitting parameters are displayed in
Table 3. Although both equations fit the data well (R* > 0.95), q;
was closer to ge than q. This suggests that a pseudo-first-order
model is more suitable than a pseudo-second-order model to
describe the desorption process. This implies that desorption may
be controlled by the abundance of adsorbed U on the surface of
humic substances. Following an instantaneous release of adsorbed
U at initial phase was a slow desorption with decreasing in the
abundance of U on the surface. The initial fast desorption was due
to U release from the external sorption sites of L-HA, whereas the
slow desorption was due to diffusion-limited release of U from the
internal sorption sites (McKinley et al., 2004; Tsai et al., 2008).

3.6. Adsorption thermodynamics

U(VI) adsorption (qm) and InKjp increased with rising tempera-
ture (Tables 2 and 4), suggesting that the adsorption process was
endothermic (Boparai et al., 2011). This relationship implies that an
increase in temperature favor U adsorption capacity with endo-
thermic adsorption process.

Thermodynamic parameters for U(VI) adsorption onto L-HA
were calculated using the measured data in Fig. 7a shows, the
values of InKjy at different temperatures were calculated from the
plot of In (qe/Ce) versus e and supposing qe approach to zero
(Fig. 7a) (Boparai et al., 2011; Khalili and Al-Banna, 2015). The
values of InKy and AG? calculated by equation (5) are summarized
in Table 4. Negative values of AG? indicate that the adsorption
reaction was spontaneous and the extent of spontaneity of
adsorption reaction increased with increasing temperature.

Table 3

Table 4

Thermodynamic parameters for adsorption of U(VI) onto L-HA particles.
Temperature (K) InKy AG? (KJlemol ™)
298 4.72 -11.7
308 491 -12.6
318 5.29 -14.0

According to equation (6), the values of AH? and AS® were
determined by a plot of InKp versus 1/T (Fig. 6b) (Raji and
Anirudhan, 1998; Boparai et al., 2011). The positive value of AS°
(115 Je (moleK)™!) revealed that the adsorption process was
spontaneous and the affinity of L-HA for U(VI) was high for this
system (Khalili and Al-Banna, 2015). The positive value of AH°
(22.5 k] mol~1) observed in this study indicates that the adsorption
of U(VI) onto L-HA is endothermic, which is supported by the
increasing U adsorption mass with increasing temperature. Due to
limited kinetic experimental data at only one temperature, activa-
tion energy of DU adsorption process was not able to calculate.
Thus, the detailed thermodynamic analyses of U adsorption was
limited by current study.

3.7. Adsorption mechanism

L-HA had a complex structure, with high content of functional
groups capable of reacting with metal cations. The FTIR spectra of L-
HA and L-HA-U samples (Fig. 2) revealed the changes in intensity of
vibration after the functional groups of L-HA reacted with U(VI)
(Garczarek and Gerwert, 2006; Solimannejad and Scheiner, 2008;
Mukhopadhyay et al., 2010). The asymmetric COO— stretching
frequency shifted from 1353 to 1346 cm ™! (a red shift), indicating
that U(VI) was adsorbed onto L-HA by COO—. However, the phe-
nolic—OH, —COOH (1700 cm™ ') and —OH (3314 cm™ ') stretching
frequencies had little change, suggesting the lack of reactions of
U(VI) with phenolic—OH, —COOH and —OH. Carboxylic and phe-
nolic—OH groups of HA are viewed as the most important metal
cation carriers in the formation of metal complexation groups
(Bradl, 2014; Tan, 2014). On the basis of the Henderson-Hasselbalch
equation, the ionization constant (pK;) of COOH and phenolic—OH

Parameters of kinetic models for U(VI) desorption from L-HA in 1 mM NaNOs and artificial seawater.

Qe Pseudo-first-order Pseudo-second-order
Q1 (mgeg™") ki (Teh™") R? Q2 (mgeg™) k; (ge (mgeh)™") R?
1 mM NaNOs 18.7 193 0.66 0.97 239 0.027 0.95
Artificial seawater 125 122 2.36 0.99 137 0.024 0.99
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Fig. 7. (a) Plot of In (qe/Ce) versus q. at different temperatures, (b) plot of InKj, versus 1/T.

are 3.0 and 10.0, respectively (Tan, 2014). Under the batch isotherm
adsorption experiment conditions of this study (pH < 5) the phe-
nolic—OH groups were almost non-ionized. Thus, carboxyl would
be the dominant functional groups to adsorb U(VI). Further, a better
fitting of U(VI) adsorption data to a pseudo-second-order model,
rather than to a pseudo-first-order model, indicates the adsorption
process involved chemisorption. Therefore, the main type of
chemisorption may be surface complexation of U with the carboxyl
groups of L-HA.

4. Conclusions

L-HA produced from leonardite with the traditional alkali-acid
method had a high carboxyl ion content and spherical
morphology. U(VI) adsorption onto the L-HA was pH-dependent
and the time to reach equilibrium was 2 h. The calculated
maximum adsorption capacity of L-HA for U(VI) was 91, 112 and
120 mg g~ ! at 298, 308 and 318 K, respectively. Adsorption data
fitted a pseudo-second-order model better than pseudo-first-order
model, suggesting the chemisorption nature of U(VI) binding onto
L-HA. The adsorption was spontaneous and an endothermic based
on thermodynamic data. Desorption of U(VI) from L-HA-U reached
equilibrium in 3 h and the percentages of desorbed U(VI) were only
0.06% in simulated soil solution (1 mM NaNOs3) and 0.40% in arti-
ficial seawater. Addition of L-HA to U-contained wastes may
decrease its risks to ecosystem and human health. Being abundant,
inexpensive, effective and environmentally friendly, L-HA has a
good potential to become a useful adsorbent for use in U- and DU-
contaminated sites.
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