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Abstract: Using molecular dynamics (MD) simulations, the frictional properties of the interface
between graphene nanoflake and single crystalline diamond substrate have been investigated.
The equilibrium distance between the graphene nanoflake and the diamond substrate has been
evaluated at different temperatures. This study considered the effects of temperature and relative
sliding angle between graphene and diamond. The equilibrium distance between graphene and the
diamond substrate was between 3.34 Å at 0 K and 3.42 Å at 600 K, and it was close to the interlayer
distance of graphite which was 3.35 Å. The friction force between graphene nanoflakes and the
diamond substrate exhibited periodic stick-slip motion which is similar to the friction force within a
graphene–Au interface. The friction coefficient of the graphene–single crystalline diamond interface
was between 0.0042 and 0.0244, depending on the sliding direction and the temperature. Generally,
the friction coefficient was lowest when a graphene flake was sliding along its armchair direction and
the highest when it was sliding along its zigzag direction. The friction coefficient increased by up to
20% when the temperature rose from 300 K to 600 K, hence a contribution from temperature cannot
be neglected. The findings in this study validate the super-lubricity between graphene and diamond
and will shed light on understanding the mechanical behavior of graphene nanodevices when using
single crystalline diamond as the substrate.

Keywords: molecular dynamics simulation; nanomechanics; graphene nanoflake; diamond substrate;
friction coefficient; interfacial mechanics

1. Introduction

Graphene has received considerable attention during the last decade, and it is considered as
a suitable material for the nanoscale electronic devices mainly because of its excellent mechanical,
thermal, and electronic properties [1–5]. However, performance of electronic devices is significantly
affected by the electrical, thermal, and mechanical properties of the device substrate [6,7]. Diamond,
which is a metastable allotrope of carbon, has the potential to be used as substrate without diminishing
device functions [8]. Both experiments and large-scale density functional theory (DFT) calculations
have shown that when using diamond as the substrate, the most important electronic properties of
graphene will be conserved, which include high current-carrying capacity [9,10]. Apart from that,
another advantage is that the number of defects in the manufactured device will decrease when
growing graphene nanoribbons on diamond surface [11,12]; thus, the use of graphene will benefit the
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quality control of graphene Nano devices. Moreover, issues related to placing graphene on metallic
substrate or silicon oxide, which attenuate the electronic features, are eliminated. Diamond substrate
does not influence the electronic band structure of intrinsic graphene around the Dirac point and
it also improves the possibility of charge doping [13–15]. Considering that thermal conductivity of
underlying substrates is critical for the proper functioning of all transistors [16,17], pure diamond
crystal is an excellent candidate due to its efficient thermal conduction [18]. It has the highest thermal
conductivity of any known material, 24–25 W cm−1 K−1 at 300 K, which is much higher compared
to 1.5 W cm−1 K−1 for silicon and 4 W cm−1 K−1 for copper [18]. On the other hand, fabrication of
electronic devices requires a complete evaluation of the mechanical characteristics of the substrate
material, among which tribological properties are of great importance [19]. Researchers have been
investigating graphite’s high lubricity characteristic and its applicability as solid lubricant [19–21].

For graphene-based electronic devices, it is critical to understand the mechanics of the graphene
nanoflake–diamond interface when lateral frictional forces are present in order to design a stable
nanoelectronic device. Therefore, researchers have been conducting extensive experiments using
atomic force microscopy (AFM) and friction force microscopy (FFM) to explore the frictional behavior of
interfaces between graphene and different types of substrate materials [6,22–26]. In these experiments,
a diamond probing tip was sliding over the graphene surface with a certain level of normal load
applied, and the friction force was measured on the diamond tip.

In order to obtain a more realistic understanding of the interfacial friction behavior, molecular
dynamics (MD) simulations can be used because of the difficulty of performing experiments at such
a small length scale [20,27]. Bonelli, et al. [28] conducted studies using the tight-binding method to
simulate an AFM experiment and concluded that the flake rotation angle would have a critical role in
static friction magnitude. A quasi-static molecular dynamics simulation was accomplished to model
the dragging of graphene nanoflakes on hexagonal boron nitride (h-BN) substrate corresponding to an
FFM experiment. In their study, graphene nanoflake atoms do not have initial velocity in the sliding
direction and are being pulled by the image atoms, which are sliding with a constant velocity and
are connected to the graphene nanoflake via axial springs defined in the model. The authors were
able to show the potential of obtaining super-lubricity at the graphene nanoflake–h-BN interface [28].
In their work, Mandelli, et al. [20] included the effect of external loads on the graphene flake, interlayer
distance, and flake size. Misaligned contacts between graphene flakes and the substrate crystal is
the main source of the super-lubricity. Moreover, Zhu and Li [27] investigated the sliding friction of
graphene nanoflakes on gold substrate using molecular dynamics considering the effect of the size and
shape of the flake and the relative rotation angle between them, known as the chirality angle [27].

Inspired by previous experiments, in this work, a comprehensive evaluation of anisotropic
frictional behavior of graphene nanoflake-diamond interface has been studied by considering the
effects of chirality and temperature. Based on the fact that electronic properties of graphene nanoribbon
changes for different chirality, it is important to consider the entire range from armchair to zigzag
graphene when studying the interface properties. Understanding the graphene flake–diamond interface
properties is essential for the fabrication of graphene-based electronic transistors [29].

2. Molecular Dynamics Simulation Details

In order to obtain the friction coefficient of the interface between the graphene nanoflake and the
diamond substrate, a molecular model of a monolayer graphene nanoflake that is sliding over a single
crystal diamond substrate has been created. Molecular dynamics (MD) simulations were conducted
using LAMMPS [30]. The size of the rectangular graphene nanoflake was 2 nm × 4 nm and the size
of the rectangular diamond substrate was 5 nm × 10 nm, which had four layers of carbon atoms.
There were 4480 atoms in the diamond substrate and 396 atoms in the armchair graphene nanoflake.
In order to slide the graphene nanoflakes, atoms in the graphene nanoflake were forced to move at a
constant speed of 0.1 Å/picosecond along the z direction, as shown in Figure 1. In order to allow for
such sliding motion while keeping the atoms free to move under the interatomic potential, a constant
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velocity was applied only to the atoms in the upper and the lower boundaries. The boundaries were 5 Å
wide and are shown in the green boxes in Figure 1. The graphene nanoflake edges were hydrogenated,
as shown by the blue atoms in Figure 1, which was done in order to maintain the stability of the
graphene and avoid the formation of sigma bonds (sp3-hybridization) with the diamond substrate.
Therefore, van der Waals forces governed the interaction between the graphene nanoflake and the
diamond substrate [31]. The atoms in the graphene nanoflake were restrained in the yz plane to
maintain constant normal force over the graphene surface. The graphene nanoflake atoms between
the boundaries were thermostat atoms moving with velocities that corresponded to the assigned
overall temperature by the velocity scaling method [32]. These atoms did not move out of the yz plane,
thus they only had velocity components in the y and z directions.
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Figure 1. Molecular dynamics model and the loading scheme.

The graphene nanoflake moved over the C(100) surface of the diamond substrate, and the details
of the diamond substrate are shown in Figure 2. The three Miller indices of the plane direction
were 1, 0, and 0, which represent the orientation of the sliding plane with respect to the diamond
face-centered cubic (FCC) lattice. In order to capture the bulk behavior of the diamond substrate,
four layers of carbon atoms were simulated for computational accuracy and efficiency. The bottom
layer of atoms of the diamond substrate was fixed in all three directions to provide enough stiffness for
the substrate, and the top three layers of atoms were kept at a constant temperature by the velocity
scaling method [32]. The simulation was first performed under absolute zero degree temperature (0 K)
and then extended to 300 K, 400 K, 500 K, and 600 K. These temperatures are the most commonly
selected ones for simulations of graphene electronics [17,33,34]. The time step for the MD simulations
was 0.5 femtoseconds, which is less than 10% of the vibration period of a carbon atom [35] and a
shrink-wrapped boundary condition was applied for the simulation box in the x, y, and z directions.

Since graphene’s properties depend significantly on the chiral angle, the graphene nanoflakes with
different chiral angles, as shown in Figure 3, were simulated in order to understand the dependence
of the friction coefficient on chirality. For graphene, the chiral angle between the armchair and
the zigzag direction is 30◦; thus, the·simulations were performed with angles between these two
extreme cases. In this study, graphene nanoflakes with the seven chiral angles shown in Figure 3
have been investigated. Although achiral graphene nanoflakes (zigzag and armchair) are the most
thermodynamically stable orientations, it is still extremely important to simulate all possible chiralities
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in a friction study, because the chirality also represents the direction of the sliding along the diamond
and the graphene nanoflake and not only the geometry of the graphene nanoflake itself.Materials 2019, 12, x FOR PEER REVIEW 4 of 14 
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Molecular dynamics simulations were performed using LAMMPS [30] in the NVT ensemble at
constant temperatures of 0 K, 300 K, 400 K, 500 K, and 600 K. The atomic forces were calculated by the
system, and the interactions between atoms were modeled by the adaptive intermolecular reactive
empirical bond order (AIREBO) potential function given as [36]:
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The definition of each term that appears in Equation (1) can be found in Zhang et al. [7]. The upper
and the lower bounds of the cutoff distance was set to 1.9 Å. For the Lennard-Jones (LJ) potential,
σCC was 3.0, and thus, the cutoff distance was 10.2 Å, thus the initial distance between the graphene
nanoflake and the diamond substrate is within the LJ cutoff distance. Having these cutoff distances,
the strength of graphene matched the experimental results [37] and has been validated in a number of
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previous studies [5,7,38–41]. The interfacial friction coefficient of the graphene nanoflake–diamond
substrate was calculated as the ratio between the friction force and the normal force that is applied on
graphene. For each case with a specific chiral angle and temperature, the graphene nanoflake was first
placed above the center of a square diamond substrate. Then it was allowed to fully relax until the
thermodynamic equilibrium distance was reached, as shown in Figure 4. The initial distance between
the graphene nanoflake and the diamond substrate was 7 Å, which is about twice the interlayer
distance of graphite, 3.35 Å [42]. This distance is considered to be larger than the equilibrium distance.
The graphene layer is considered to be fully relaxed when its distance to the diamond substrate is
stable. According to observations of the behavior of the graphene layer, it stopped getting closer to the
diamond substrate after just a few thousand time steps; thus, after 200,000 time steps of relaxation,
graphene reached its thermodynamic equilibrium distance.

Normal force over the graphene layer was applied by decreasing the distance between graphene
and diamond. After obtaining the thermodynamic equilibrium distance in each case, the normal force
was almost zero, which means the graphene layer and the diamond substrate started to repel each
other when having a distance less than the equilibrium distance. When sliding the graphene nanoflake
along the z direction, the force needed to maintain the sliding motion in the z direction was the friction
force between graphene and diamond. The variations of force in the x and z direction with respect to
time were plotted, and the details of the simulation results are discussed in the following sections.
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3. Thermodynamic Equilibrium Distance between Graphene and Diamond

The equilibrium distance between graphene and diamond was reached so that the net force
on graphene fluctuated around zero. It is necessary to find the equilibrium configuration for each
geometry in order to later apply normal load on the graphene in the MD simulations to then calculate
the interfacial friction force. In order to find the equilibrium distance between the graphene and the
diamond, the graphene nanoflake was first placed 7 Å above the center of a square 4-layer diamond
substrate which was 10.0 nm × 10.0 nm, as shown in Figure 4. The relaxation was performed by fixing
the bottom layer of the diamond substrate and setting all the other atoms in graphene and diamond
free to move in all three directions. The relaxation stage lasted for 200,000 time steps before reaching
the equilibrium configuration. The distance from the graphene layer to the diamond substrate was
calculated for each atom in graphene and the probability distribution of the distance was plotted,
as shown in Figure 5, for the temperature of 0 K. It can be observed that the interlayer distance closely
followed a normal distribution, and the distance with the largest probability is considered as the
equilibrium distance. The equilibrium distance at 0 K was used as the benchmark to be compared with
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other temperatures as shown in Figure 6. From the figure, the equilibrium distance between graphene
and the diamond surface is around 3.35 Å, which is close to the interlayer distance of graphite [42].
The equilibrium distance increases monotonically with temperature, and this is considered to be due
to more intense atomic motion at higher temperatures.Materials 2019, 12, x FOR PEER REVIEW 6 of 14 
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4. Results and Discussions

The MD simulations were performed for the interface of the rectangular graphene nanoflake of
2.0 nm × 4.0 nm sliding over the surface of a rectangular diamond substrate as shown in Figure 1.
Constant normal force on the graphene layer was applied by reducing the interfacial distance from the
equilibrium distance. The closest distance between graphene nanoflake and diamond substrate that
has been simulated was 2.6 Å, and the corresponding total repulsive force on graphene nanoflake was
around 50 nN, which is equivalent to 0.125 nN per graphene atom. Figure 7 shows the force contour
in the model per atom, and it can be observed that the atomic force on graphene was distributed
uniformly along its surface. Furthermore, the force on the bottom layer of the diamond substrate was
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much larger than the other parts of the model. Since all the atoms in the bottom layer of diamond were
fixed, the net forces caused by the interactions between the atoms were eventually accumulated on the
bottom layer of the substrate.

In order to understand the effects of temperature on the interfacial friction coefficient, simulations
were performed at different temperatures. Firstly, simulations at absolute zero degree Kelvin were
performed to serve as a reference to be compared with the results at other temperatures. When the
graphene nanoflake was sliding along its armchair direction, the normal force under the distance of
2.6 Å at 0 K temperature was around 55 nN and exhibited periodicity according to Figure 8.

Friction forces were plotted with respect to the sliding distances over the diamond surface in
Figure 9 for the simulation at 0 K for different chiralities. According Figure 9, the interfacial friction
force between graphene and the diamond substrate exhibited stick-slip motion behavior [27] and had
a periodicity of 3.6 Å. The periodicity in the frictional force is considered to be due to the periodic
lattice arrangement in both graphene and diamond, and it is in agreement with the behavior of the
friction force of graphene nanoflakes on Au substrate [27].

The magnitude of the fluctuation of the frictional force is taken as the frictional force of the
graphene–diamond interface. The friction force versus the corresponding normal force is summarized
in Figure 10. The data points of the same loading direction and simulation temperature are linearly
interpolated, and the slope of the fitted line is the interfacial friction coefficient. It is observed that at
0 K, the friction coefficient varied from 0.0044 to 0.0208 for different chiralities, where the interfacial
friction coefficient is the lowest along the armchair sliding direction and the highest along the zigzag
direction. The interfacial friction coefficients of the graphene–diamond interface are generally lower
than those of the graphene–gold interface [27].
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Figure 7. Atomic force contour of graphene during sliding with 0 degree chirality at 300 K.

As temperature may have a significant influence on the friction coefficient, the MD simulations
were extended to 300 K, 400 K, 500 K, and 600 K. Figure 11 shows the interfacial frictional force against
the sliding distance for different rotation angles at 300 K. Similar to the results at 0 K temperature,
periodicity was observed in the 300 K simulation results. The friction force of each loading direction
was plotted with respect to the corresponding normal force in order to calculate the interfacial friction
coefficient. As shown in Figure 11, the stick-slip motion was more evident when changing the sliding
direction from armchair to zigzag direction. The interfacial frictional force was developed in the stick
step and then dropped during the slip process.



Materials 2019, 12, 1425 8 of 15

Materials 2019, 12, x FOR PEER REVIEW 7 of 14 

 

When the graphene nanoflake was sliding along its armchair direction, the normal force under the 
distance of 2.6 Å at 0 K temperature was around 55 nN and exhibited periodicity according to Figure 8. 

Friction forces were plotted with respect to the sliding distances over the diamond surface in 
Figure 9 for the simulation at 0 K for different chiralities. According Figure 9, the interfacial friction 
force between graphene and the diamond substrate exhibited stick-slip motion behavior [27] and had 
a periodicity of 3.6 Å. The periodicity in the frictional force is considered to be due to the periodic 
lattice arrangement in both graphene and diamond, and it is in agreement with the behavior of the 
friction force of graphene nanoflakes on Au substrate [27]. 

The magnitude of the fluctuation of the frictional force is taken as the frictional force of the 
graphene–diamond interface. The friction force versus the corresponding normal force is 
summarized in Figure 10. The data points of the same loading direction and simulation temperature 
are linearly interpolated, and the slope of the fitted line is the interfacial friction coefficient. It is 
observed that at 0 K, the friction coefficient varied from 0.0044 to 0.0208 for different chiralities, where 
the interfacial friction coefficient is the lowest along the armchair sliding direction and the highest 
along the zigzag direction. The interfacial friction coefficients of the graphene–diamond interface are 
generally lower than those of the graphene–gold interface [27]. 

 
Figure 7. Atomic force contour of graphene during sliding with 0 degree chirality at 300 K. 

 
Figure 8. Normal force versus the sliding distance for armchair chirality under 2.6 Å distance at 0 K 
temperature. 
Figure 8. Normal force versus the sliding distance for armchair chirality under 2.6 Å distance at 0
K temperature.Materials 2019, 12, x FOR PEER REVIEW 8 of 14 

 

 
Figure 9. Friction force versus the sliding distance for different chiralities under 2.6 Å distance at 0 K 
temperature. 

 
Figure 10. Friction force versus normal force for different chiralities at 0 K. 

As temperature may have a significant influence on the friction coefficient, the MD simulations 
were extended to 300 K, 400 K, 500 K, and 600 K. Figure 11 shows the interfacial frictional force against 
the sliding distance for different rotation angles at 300 K. Similar to the results at 0 K temperature, 
periodicity was observed in the 300 K simulation results. The friction force of each loading direction 
was plotted with respect to the corresponding normal force in order to calculate the interfacial friction 
coefficient. As shown in Figure 11, the stick-slip motion was more evident when changing the sliding 
direction from armchair to zigzag direction. The interfacial frictional force was developed in the stick 
step and then dropped during the slip process. 

Figure 9. Friction force versus the sliding distance for different chiralities under 2.6 Å distance at 0 K
temperature.

In Figure 12, the interfacial friction coefficients of different angles of chirality at different
temperatures are compared. The first observation is that the friction coefficients at 0 K always have the
lowest value for all the rotation angles. There was no lattice vibration at 0 K; thus, the contribution
from thermal fluctuations does not exist.

The friction coefficient between graphene and diamond was within the range of ~0.004 to ~0.023 at
300 K depending on chirality. For all the cases that were simulated, the friction coefficients were within
~0.004 to ~0.024. The interfacial friction coefficient always had the smallest value when the angle
between graphene and the diamond was 0 degrees, which is the armchair direction of the graphene
nanoflake. In comparison, the interfacial friction coefficient has the largest value when the sliding
direction is along the zigzag direction of the graphene nanoflake, which has a 30 degrees angle between
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graphene and the diamond. The interfacial friction coefficients of all the simulations accompanied
with the calculated friction angles for each case are summarized in Table 1. It is clearly visible from
the table that increasing the temperature from 300 K to 600 K led to an increase of around 20% in the
friction coefficient for the armchair chirality.
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Contrary to the findings of Dienwiebel and Frenken [43], we found that as the temperature
increases, the friction coefficient increases. To explain the effect of the temperature on the friction
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coefficient, it is important to realize that as the interatomic distance between the diamond substrate
and the graphene nanoflake decreases, the interatomic interaction will increase. Greater force will be
required to overcome this interaction, which leads to a higher friction coefficient. As explained earlier
in the paper, the two layers are brought to a distance from one another that is less than the equilibrium
interatomic distance at the simulated temperature, thus generating a repulsive force. This distance is
the averaged distance of the fluctuation due to the thermal energy. It is expected that as the temperature
increases, the interatomic distances between the atoms within the graphene nanoflake or the diamond
substrate increase, and thus the interlayer distance decreases, leading to the higher friction coefficients
between graphene and diamond at higher temperatures. It is important to note that the temperature
increase will have the same effect on the long-range interaction between the two layers modeled using
the Lennard Jones potential and could thus cancel the effect of temperature on the interaction between
the atoms within the same layer. But this did not happen due to the fact that the forces of the AIREBO
potential were significantly higher than the forces of the Lennard-Jones potential. As a result, the two
competing effects increase the friction coefficient as the temperature increases.
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Table 1. Interfacial friction coefficient of graphene nanoflake on diamond substrate.

Temperature 0 K 300 K 400 K 500 K 600 K

Rotation
Angle

Interfacial
Friction

Coefficient

Friction
Angle

(Degree)

Interfacial
Friction

Coefficient

Friction
Angle

(Degree)

Interfacial
Friction

Coefficient

Friction
Angle

(Degree)

Interfacial
Friction

Coefficient

Friction
Angle

(Degree)

Interfacial
Friction

Coefficient

Friction
Angle

(Degree)
0 0.0044 0.25 0.0042 0.24 0.0051 0.29 0.0051 0.29 0.0052 0.30
5 0.0061 0.35 0.0079 0.45 0.0087 0.50 0.0087 0.50 0.0094 0.54

10 0.0051 0.29 0.0066 0.38 0.0075 0.43 0.0074 0.42 0.0076 0.44
15 0.0083 0.48 0.0094 0.54 0.0099 0.57 0.0101 0.58 0.0101 0.58
20 0.0096 0.55 0.0118 0.68 0.0118 0.68 0.0121 0.69 0.0123 0.70
25 0.0209 1.20 0.0219 1.25 0.0226 1.29 0.0229 1.31 0.0223 1.28
30 0.0208 1.19 0.023 1.32 0.0233 1.33 0.0238 1.36 0.0244 1.40
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The friction coefficients of the graphene–diamond interface were compared with relevant previous
studies, as shown in Figure 13. Berman, et al. [44] studied the lubrication effect of the interface between
diamond-like carbon (DLK) and graphene, nanodiamond, and graphene-wrapped nanodiamond,
respectively. They found the coefficient of friction is the lowest for the interface that is lubricated by
graphene-wrapped nanodiamond, which is ~0.004 ± 0.002. The interface with graphene only has a
friction coefficient of ~0.04 ± 0.01 and of only ~0.07 ± 0.01 with nanodiamond particles. A similar
experiment was performed by Bhowmick, et al. [45], which investigated the friction properties between
multilayer graphene (MLG) and different counterface materials. For example, they compared the
friction coefficient of MLG sliding against the surface of hydrogenated diamond-like carbon (DLC)
and N-based coated steel. The N-based coatings included TiN, TiAlN, TiCN, and CrN. The friction
coefficient of graphene-hydrogenated diamondlike carbon (h-DLC) interface was ~0.08±0.01. For the
interface of graphene-uncoated 52100 steel and graphene–TiCN interface, the friction coefficient was
0.15 ± 0.03 and 0.26 ± 0.03, respectively. Generally, the friction coefficient of graphene sliding along the
armchair direction was the lowest, and it was lower than the graphene–h-DLC, graphene–uncoated
52100 steel, and graphene–TiCN interfaces. The friction coefficient of zigzag graphene–diamond
interface was the highest, and it was comparable with that of the graphene–TiCN interface
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The increasing friction coefficient from armchair direction to zigzag direction is considered to be
due to more intense interactions between graphene and the diamond substrate. In order to verify this
hypothesis, we introduce the term Proximity (P) to describe the intensity of the interaction between
the graphene flake and the diamond substrate as the summation of the reciprocal of the pairwise
distance (P=

∑
i, j

1
li, j

) between atoms of the graphene nanoflake (i) and atoms in the diamond substrate
(j). This represents a quantitative value for the adhesion energy but is easier to calculate as it can be

related to the energy of the standard 12/6 Lennard-Jones potential energy E which is 4ε
[(
σ
r

)12
−

(
σ
r

)6
]
.

This expression is used as the benchmark of the interaction of two groups of atoms. For instance,
when the graphene layer is getting close to the diamond substrate, it is expected to have more atomic
interactions in the system. More atoms will be within the interaction range, and the reciprocal of the
pairwise distance increases; thus, the summation of the reciprocal of the pairwise distance will increase.
On the contrary, when the graphene layer is getting far away from the diamond substrate, it is expected
to have less interaction between graphene and diamond substrate. Both the number of atomic pairs of
atoms within the interaction range and the reciprocal of the distance between the atoms will decrease,
and eventually, the summation of the reciprocal of the pairwise distance decreases.
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A MATLAB code was developed to calculate the Proximity between graphene nanoflake atoms
and the atoms in the diamond substrate, and only the pairs that were within the Lennard-Jones
cutoff distance of 10.2 Å were taken into account. The Proximity was calculated with respect to the
time steps of the relaxation for both armchair and zigzag graphene nanoflake. The results indicate a
decrease from armchair to zigzag graphene nanoflake from 4120 1/Å to 3690 1/Å, which means after
relaxation, the zigzag graphene nanoflake is expelled farther from the diamond substrate compared to
the armchair graphene nanoflake. Thus, it is expected that there is more atomic interaction for the
zigzag graphene nanoflake compared to armchair graphene nanoflake at the same interlayer distance.
The observation complies with the increase in the interfacial friction coefficient from the armchair
direction to the zigzag direction obtained from the MD simulation results summarized in Table 1.
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5. Conclusions

Molecular dynamics simulations have been performed for graphene nanoflake sliding on the
C(100) surface of a single crystalline diamond substrate. Relaxation simulations were first performed
in order to find the equilibrium distance between graphene and diamond at different temperatures.
The equilibrium distance between graphene and diamond was close to 3.35 Å, which is the interlayer
distance of graphite.

The friction forces exhibited periodic stick-slip motion with respect to the sliding distance, and it
was due to the periodic lattice arrangement of both graphene and diamond. The simulation was
first performed under 0 K and then extended to other temperatures—300 K, 400 K, 500 K, and 600 K.
The friction coefficient was the lowest when graphene was sliding along its armchair direction and the
highest when it was sliding along the zigzag direction. Moreover, the interfacial friction coefficient can
increase by 20% with a rise in temperature from 300 K to 600 K. In summary, the friction coefficient
ranged from 0.0042 to 0.0244 depending on the chirality angle and the temperature. Compared to the
graphene–N-coated 52100 steel interface, the friction coefficient of the armchair graphene–diamond
interface was lower, while the friction coefficient of the zigzag graphene–diamond interface was
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comparable. The above findings can help to understand the behavior of graphene-based nanodevices
sitting on single crystalline diamond substrate.
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