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ROBUST APPROACHES TO LONG-TERM MANEUVERING-TARGET
TRACKING

1. INTRODUCTION

1.1 BACKGROUND AND PREVIEW OF RESULTS

This report is concerned with long-term tracking of a maneuvering targets, where
long-term is meant to imply tens of minutes or more. In this time frame, a contact of interest (or 
target) is expected to occasionally maneuver with varying degrees, depending on the target’s 
objective and the environment. Tracking a maneuvering target from noisy data in the possible 
presence of spurious measurements (or clutter) is challenging because it is difficult to distinguish 
between clutter and measurements from a target that has maneuvered or deviated from its 
assumed motion model. The difficulty is compounded by often low signal-to-noise ratios and 
missed target detections, high false-alarm rates and dense clutter, and nonlinear mappings 
between the measurements (e.g., bearings and ranges) and the target kinematic states.

There is a large body of literature on maneuvering target tracking. The most popular 
approach to date is the interacting multiple model (IMM) filter (reference 1), which augments the 
standard (i.e., fixed motion model) Kalman filter with multiple motion models. In this approach, 
the target is assumed to switch (or jump) between models according to a discrete-time Markov 
chain with known transition probabilities. Several modifications and extensions of the IMM filter 
have been proposed, the most prominent of which is the IMM probabilistic data association
(IMM/PDA) filter (reference 2), which replaces the Kalman filter with the PDA filter (reference 3) 
to handle clutter.

Long-term track estimates can be significantly improved by processing a batch of data 
scans collected over time to produce smoothed track estimates over the batch, rather than 
processing the data sequentially as it arrives from one scan to the next (yielding filtered but 
coarser track estimates over the same batch). Though batch implementations of the IMM/PDA 
filter have been proposed (reference 4), these have a computational cost that grows exponentially 
with batch length and are only practical as fixed-lag smoothers for relatively few scans of data; 
hence the batch IMM/PDA approach is not suitable for long-term tracking applications where the 
best possible track accuracy is required over the entire length of the track using all available data.

Two complementary approaches to long-term maneuvering-target tracking are derived in 
this report, both of which have batch implementations that grow linearly with batch length. Both 
approaches adopt the same system model as the standard Kalman filter with a state equation that 
describes the evolution of the target kinematic state, and a measurement equation that relates the 
target state to a measurement of the target at each scan. In particular, let n denote the scan index, 
let xn denote the target state at time tn, where x is an L × 1 vector of kinematic parameters (such 
as position and velocity), and let zn denote the measurement of target state at tn, where z is an
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M × 1 vector. Then, for the standard Kalman filter the system model is given by

xn = Anxn−1 + wn, (1)
zn = Bnxn + vn, (2)

where An is a known L× L state transition matrix, Bn is a known M × L measurement matrix,
and wn and vn are independent, zero-mean, Gaussian distributed process and measurement noise
terms with known L× L and M ×M covariance matrices Qn and Rn, respectively. The
probability density functions (PDFs) for wn and vn are written as

p(wn) = N (wn|0, Qn), (3)
p(vn) = N (vn|0, Rn), (4)

where N (ξ|µ, P ) denotes the multivariate Gaussian PDF with respect to the realization, ξ, of a
Gaussian random variable with mean µ and covariance matrix P , given by

N (ξ|µ, P ) =
1

|2πP |1/2
exp

[
−1

2
(ξ − µ)TP−1(ξ − µ)

]
. (5)

The additive process noise terms, wn, in the state equation of the standard Kalman filter model are
the only mechanisms for modeling target maneuvers outside of the deterministic motion model
specified by the state transition matrices, An, and the magnitudes of these maneuvers are fixed by
the values of the process noise covariance matrices, Qn. Without knowing the target maneuver
sequence a priori, it is impossible to choose fixed values for Qn to adequately model the
maneuver behavior of the target. To address this problem, IMM approaches assume a fixed, finite
set of K known motion models, {An(k), Qn(k) : k = 1, 2, . . . , K}, and a discrete-time Markov
chain with known transition probabilities to allow switching (or jumping) between models based
on evidence for such maneuvers in the data. However, due to the need to enumerate all possible
model transition sequences for optimal state estimation, these approaches are only
computationally feasible for fixed-lag smoothing of relatively few scans of data.

In the maneuvering-target approaches derived here, and as in reference 5, the process
noise covariance matrices, Qn, are assumed to have known structures but unknown magnitudes,
the latter of which are estimated—either explicitly or implicitly—from all available data. In
particular, it is assumed the process noise covariance matrix Qn has the form

Qn = qnQ̄n, (6)

where Q̄n is a positive-definite matrix with known structure, and qn is the process noise scale
associated with the target state update for scan n. Then, given a batch of N data scans, the
sequence of process noise covariance scales,

Q = {qn : n = 1, 2, . . . , N}, (7)

describes the target maneuver behavior over the entire length of the batch. The first approach to
maneuvering-target tracking, derived in section 2, is based on the theory of hidden Gauss-Markov
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models (HGMMs)∗ developed in references 8 and 9. In this approach, the target states
X = {xn : n = 0, 1, . . . , N} are treated as missing data, and the process noise covariance scales,
Q, are estimated from the batch of data Z = {zn : n = 1, 2, . . . N} using the
expectation-maximization (EM) method (references 10–12). Interestingly, though estimates of the
target states, X , are not the primary outputs of this approach, meaningful estimates of X are
nevertheless available as ancillary outputs of the expectation step (E-step) of the EM procedure
for estimating the process noise covariance scales, Q. The same is true of a similar approach
derived in reference 13, where the target states, X , are treated as missing data, and the EM
method is used to estimate a sequence of target maneuver inputs (accelerations).

The second approach to maneuvering-target tracking, derived in section 3, is based on the
use of continuous Gaussian mixture models (CGMMs) for the PDFs of the process noise terms,
wn, and is similar in approach and derivation to the probabilistic multi-hypothesis tracking
(PMHT) method (references 14 and 15) originally developed for multitarget tracking, and later
applied to maneuvering-target tracking (references 5, 16, 17, and 18). In this approach, the
process noise covariance scales, Q, are treated as missing data, and the target states, X , are
estimated from the batch of data, Z, using the EM method. Though estimates of the target states
are the primary outputs of this approach, estimates of the process noise covariance scales can be
calculated from the missing-data PDF for Q required by the estimation procedure for X .

Both the HGMM and CGMM approaches to long-term maneuvering-target tracking can
be extended to include a clutter model. Even in the case where only one measurement is observed
at each scan, clutter modeling can make the resulting algorithm more robust to outliers. As for the
process noise covariance matrices, Qn, the measurement noise covariance matrices, Rn, in both
approaches are assumed to have known structures but unknown magnitudes, the latter of which
are estimated—either explicitly or implicitly—from all available data. In particular, it is assumed
the measurement noise covariance matrix, Rn, has the form

Rn = rnR̄n, (8)

where R̄n is a positive-definite matrix with known structure, and rn is the measurement noise
scale associated with the measurement for scan n. Then, given a batch of N data scans, the
sequence of measurement noise covariance scales,

R = {rn : n = 1, 2, . . . , N}, (9)

describes the measurement noise characteristics over the entire length of the batch. In the HGMM
approach, the measurement noise covariance scales,R, are estimated from the batch of data along
with the process noise scales, Q, in an iterative procedure after the missing target states, X , are
integrated out of the problem via the E-step of the EM method. In the CGMM approach, the
measurement noise covariance scales,R, are treated as missing data along with the process noise
covariance scales, Q, and the target states, X , are estimated from the batch of data, Z, using EM;
as for estimates of Q, estimates of the measurement noise covariance scales can be calculated
from the missing-data PDF forR required by the estimation procedure for X in this approach.

∗HGMMs are a special case of continuous-state hidden Markov models (HMMs), which extend discrete-state
HMMs (references 6 and 7) to include the continuous-state model in equations (1) and (2).
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The remainder of this section discusses the additional assumptions underlying the
derivations of the HGMM and CGMM approaches presented in sections 2 and 3, respectively.
Specifically, it is assumed the target kinematic states at times {tn : n = 0, 1, . . . , N} are to be
estimated from the measurements Z = {zn : n = 1, 2, . . . , N} of the target taken at times
{tn : n = 1, 2, . . . , N}. While no measurement of the target is assumed at time t0, the target state
at this time, x0, is assumed to be Gaussian distributed with known mean, µ0, and covariance
matrix, P0, so that its prior PDF is given by

p(x0) = N (x0|µ0, P0). (10)

Also, both the target state and measurement equations are assumed to be linear, as in the system
model given by equations (1) and (2). A linear state equation is a practical assumption as it
includes constant-velocity motion—the normal steady-state mode for many targets of interest—in
a Cartesian coordinate system. Forms of the state transition matrices, An, and unscaled process
noise covariance matrices, Q̄n, for both the constant-velocity motion and commonly used Singer
motion models (reference 19) are given in the following subsection. A linear measurement
equation is a somewhat more limiting assumption, as many sensors of practical interest estimate
target kinematic parameters in non-Cartesian coordinates (e.g., range, bearing, and their rates,
etc.). However, measurement conversion procedures such as those described in reference 20,
which eliminate biases in measurements converted to Cartesian coordinates, are available for
effectively circumventing nonlinear measurement equations in Kalman filtering. Extension of
these measurement conversion procedures to the smoothing problem would appear to be
straightforward but are not pursued here.

1.2 MOTION MODELS

The state transition matrices, An, and unscaled process noise covariance matrices, Q̄n, for
the constant-velocity motion model and commonly used Singer motion model are provided in this
subsection. To simplify notation, the discussion will be restricted to two dimensions, though
extension to three dimensions is straightforward. In each case, the time difference between tn and
tn−1 will be denoted by τn = tn − tn−1.

1.2.1 Constant Velocity

Let the target state, x, be defined by its position, (u1, u2), and velocity, (u̇1, u̇2), in a
two-dimensional Cartesian coordinate system as

x =


u1

u̇1

u2

u̇2

 . (11)

For constant-velocity target motion, the state transition matrices, An, are given by

An = I2 ⊗
[
1 τn
0 1

]
, (12)
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where I2 denotes the 2× 2 identity matrix, and ⊗ denotes the Kronecker product. The unscaled
process noise covariance matrices, Q̄n, for this motion model are obtained via discretization of
the continuous-time version of the state equation given by equation (1) (see reference 21, section
6.2.2), and are given by

Q̄n = I2 ⊗

[
τ 3
n/3 τ 2

n/2

τ 2
n/2 τn

]
. (13)

1.2.2 Singer

For the constant-velocity motion model, the additive process noise terms, wn, in the state
equation of the standard Kalman filter model are the only mechanisms for modeling target
maneuvers. The Singer motion model presented in reference 19 provides additional
accommodations for maneuvers by effectively adding acceleration to the target state while
maintaining constant-velocity motion as the normal mode.

Let the target state, x, be defined by its position, (u1, u2), velocity, (u̇1, u̇2), and
acceleration, (ü1, ü2), in a two-dimensional Cartesian coordinate system as

x =


u1

u̇1

ü1

u2

u̇2

ü2

 . (14)

The state transition matrices, An, and process noise covariance matrices, Qn, for the Singer model
are parameterized by two parameters: the magnitude (or variance) and time constant (or duration)
of the target maneuver, denoted σ2 > 0 and 1/α ≥ 0, respectively. In particular, the state
transition matrices are given by equation (13) in reference 19 as

An = I2 ⊗

1 τn (−1 + ατn + e−ατn) /α2

0 1 (1− e−ατn) /α
0 0 e−ατn

 . (15)

The unscaled process noise covariance matrices for the Singer model are given by

Q̄n = I2 ⊗ Q̄∗n, (16)

where Q̄∗n is a symmetric matrix with upper-triangular elements given by equations (19) and (20)
in reference 19; if Q̄∗n(i, j) denotes the element in the ith row and jth column of Q̄∗n, then

Q̄∗n(1, 1) =
(
1− e−2ατn + 2ατn + 2α3τ 3

n/3− 2α2τ 2
n − 4ατne−ατn

)
/α4,

Q̄∗n(1, 2) =
(
e−2ατn + 1− 2e−ατn + 2ατne−ατn − 2ατn + α2τ 2

n

)
/α3,

Q̄∗n(1, 3) =
(
1− e−2ατn − 2ατne−ατn

)
/α2,

Q̄∗n(2, 2) =
(
4e−ατn − 3− e−2ατn + 2ατn

)
/α2,

Q̄∗n(2, 3) =
(
e−2ατn + 1− 2e−ατn

)
/α,

Q̄∗n(3, 3) = 1− e−2ατn .

(17)
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The target maneuver magnitude, σ2, in the Singer model corresponds to the process noise
covariance scales, qn, in equation (6); hence, the process noise covariance matrices for the Singer
model are given by equation (6), with Q̄n given by equation (16), and

qn = σ2 (18)

for n = 1, 2, . . . , N . Thus, when the Singer motion model is used in the HGMM and CGMM
approaches developed in sections 2 and 3, the resulting maneuvering-target tracking algorithms
may be viewed as generalizations of the Kalman-Singer smoother derived in reference 19, in
which the target maneuver magnitude parameter σ2 is automatically adapted over the batch.

1.3 MEASUREMENT MODELS

The forms of the measurement matrices, Bn, and unscaled measurement covariance
matrices, R̄n, in equation (2) depend on the state space and measurement space as defined by the
sensor, as well as the senor measurement characteristics. For example, suppose the sensor is able
to measure the individual components of target position in Cartesian coordinates, and the
measurement components have the same variance but are correlated with correlation coefficient ρ.
Then, for the constant-velocity motion model with target state defined by equation (11), the
measurement matrices, Bn, are given by

Bn = I2 ⊗
[
1 0

]
. (19)

Likewise, for the Singer motion model with target state defined by equation (14), the
measurement matrices are given by

Bn = I2 ⊗
[
1 0 0

]
. (20)

In both cases, the unscaled measurement covariance matrices, R̄n, are interpreted as a correlation
matrices, and take the form

R̄n =

[
1 ρ
ρ 1

]
. (21)

For nonlinear measurement models such as those for sensors that estimate range and bearing to
the target, the measurement conversion procedures discussed in reference 20 produce converted
measurements which are, in general, correlated, and hence corresponding converted measurement
covariance matrices which are, in general, non-diagonal. For use in the HGMM and CGMM
approaches to maneuvering-target tracking derived here, these converted measurement covariance
matrices may be substituted directly for the unscaled measurement covariance matrices, R̄n, in
equation (8).
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2. HGMM APPROACH

HGMM theory is fully developed in reference 8 for the general case where the entire
collection of system parameters in the linear-Gaussian state-space model given by
equations (1) through (4) and equation (10), namely

S = {µ0, P0} ∪ {An, Qn, Bn, Rn : n = 1, 2, . . . , N}, (22)

are to be estimated from K sequences of measurements Z = {Zk : k = 1, 2, . . . , K} of possibly
unequal lengths, with the kth measurement sequence Zk denoted by

Zk = {zkn : n ∈ N k ⊆ {1, 2, . . . , N}}. (23)

In this application of the theory to the long-term maneuvering-target tracking problem, the state
transition and measurement matrices, as well as the mean and covariance of the target state at t0,
are assumed known, and the process and measurement noise covariance matrices, Qn and Rn, are
assumed to take the forms given by equations (6) and (8), respectively, with matrices Q̄n and R̄n

of known form as discussed in sections 1.2 and 1.3. The system parameters to be estimated here
are the process and measurement noise covariance scales, Q andR, respectively; moreover, only
one measurement sequence Z is assumed.

The HGMM-based algorithm for estimating the system parameters of interest is derived
via the EM method, which leads to an iterative procedure for the parameter estimates that
guarantees a monotonic increase in the incomplete-data PDF (likelihood function), p(Z|S), at
each iteration and, under mild regularity conditions, convergence to at least a local maximum of
this function (references 10, 12, and 22). In the sequel, let S ≡ S(Q,R) denote the collection of
system parameters in the maneuvering-target tracking problem formulated here, with

S(Q,R) = {Q,R} ∪ {µ0, P0} ∪ {An, Q̄n, Bn, R̄n : n = 1, 2, . . . , N}, (24)

where all parameters in the collection other than Q andR are assumed known. Let ` = 1, 2, . . .
denote the EM iteration index, and let Q(`) andR(`) denote the process and measurement noise
covariance scale estimates at the `th EM iteration. The EM method consists of two steps at each
iteration: an E-step and a maximization step (M-step). The output of the E-step for the `th
iteration is an auxiliary function of the system parameters, S, denoted Υ(S|S(`)), defined as the
expectation of the logarithm of the complete-data PDF, p(X,Z|S), conditioned on the observed
data, Z, and the estimate of the system parameters at the beginning of the iteration,
S(`) ≡ S(Q(`),R(`)):

Υ(S|S(`)) = E
[
log p(X,Z|S)|Z,S(`)

]
=

∫ [
log p(X,Z|S)|Z,S(`)

]
p(X|Z,S(`)) dX. (25)

The M-step for the `th iteration yields an updated estimate for the unknown system parameters as
the value of S that maximizes the auxiliary function:

S(`+1) = arg max
Q,R

Υ(S(Q,R)|S(`)). (26)
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This updated estimate is used, in turn, as the input to the next (i.e., (`+ 1)th) EM iteration. As
shown for the general case in reference 8, this auxiliary function separates into two auxiliary
functions, one whose unknown parameters include only the process noise covariance scales, Q,
and one whose unknowns include only the measurement noise covariance scales,R:

Υ(S(Q,R)|S(`)) = ΥQ(Q|S(`)) + ΥR(R|S(`)). (27)

Hence, the M-step in equation (26) separates into two independent maximization problems, one
for the updated estimate of Q, and one for the updated estimate ofR:

Q(`+1) = arg max
Q

ΥQ(Q|S(`)), (28)

R(`+1) = arg max
R

ΥR(R|S(`)). (29)

The details of these maximization sub-problems are provided in the following two subsections.

While estimates for the process and measurement noise scales, Q andR, are the primary
outputs of the HGMM algorithm for this problem, meaningful estimates of the target states, X ,
are available as ancillary outputs from the E-step of the final EM iteration. Indeed, as shown in
reference 8, evaluation of the auxiliary function in equation (25) requires evaluation of the
conditional state PDFs γ(xn) ≡ p(xn|Z,S). For the linear-Gaussian case, these PDFs are given
by

γ(xn) = N (xn|µn|N , Pn|N), (30)

where µn|N and Pn|N are the target states estimates and associated covariance matrices,
respectively, obtained from a Kalman smoother with system parameters, S, applied to the data, Z.
In the following two subsections, the notation µ(`)

n|N and P (`)
n|N will be used to denote the state

estimates and associated covariance matrices obtained from the E-step of the `th EM iteration,
conditioned on the system parameters S(Q(`),R(`)).

2.1 ESTIMATION OF PROCESS NOISE SCALES, Q

Following the developments in section 3.4 of reference 8, the auxiliary function for Q
conditioned on S(`) is given by

ΥQ(Q|S(`)) =
N∑
n=1

∫∫
γ(`)(xn, xn−1) log p(xn|xn−1, qn) dxn−1dxn, (31)

where

γ(`)(xn, xn−1) = N (xn|µ(`)
n|N , P

(`)
n|N)N (xn−1|λ(`)

n ,Λ
(`)
n ), (32)

p(xn|xn−1, qn) = N (xn|Anxn−1, qnQ̄n), (33)

with

λ(`)
n = (I −H(`)

n An)µ
(`)
n−1|n−1 +H(`)

n xn, (34)

Λ(`)
n = (I −H(`)

n An)P
(`)
n−1|n−1, (35)

8



and

H(`)
n = P

(`)
n−1|n−1A

T
n (P

(`)
n|n−1)−1. (36)

The filtered state estimates, µ(`)
n−1|n−1, and associated covariance matrices, P (`)

n−1|n−1, as well as the

predicted state covariance matrices, P (`)
n|n−1, in equations (34) through (36) are obtained from the

forward pass of the Kalman smoother for µ(`)
n|N and P (`)

n|N . Substituting equations (32) and (33)
into equation (31), evaluating the logarithm and dropping terms not dependent on qn yields

ΥQ(Q|S(`)) =
N∑
n=1

[
−L

2
log qn −

1

2
q−1
n Ψn(S(`))

]
, (37)

where Ψn(S(`)) is a function independent of Q, given by

Ψn(S(`)) =

∫∫
N (xn|µ(`)

n|N , P
(`)
n|N)N (xn−1|λ(`)

n ,Λ
(`)
n )

× (xn − Anxn−1)T Q̄−1
n (xn − Anxn−1) dxn−1dxn. (38)

The EM update for qn is then easily obtained by setting the derivative of equation (37) with
respect to qn equal to zero, and solving the resulting expression for qn evaluated at q(`+1)

n , yielding

q(`+1)
n =

1

L
Ψn(S(`)). (39)

Evaluating the integrals in the expression for Ψn(S(`)) in equation (38) is simplified by repeated
application of the following identity from reference 8:∫

N (x|µ, P )
(
xTGx+ xTg + c

)
dx = tr

[
G(P + µµT )

]
+ µTg + c, (40)

where G is a matrix and g is vector, each sized according to the dimension of x, and c is a scalar.
Using this identity, equation (38) simplifies to

Ψn(S(`)) = tr
(
Q̄−1
n C(`)

xnxn

)
− 2 tr

(
Q̄−1
n An(C(`)

xnxn−1
)T
)

+ tr
(
ATn Q̄

−1
n AnC

(`)
xn−1xn−1

)
, (41)

with

C(`)
xnxn = P

(`)
n|N + µ

(`)
n|N(µ

(`)
n|N)T , (42)

C(`)
xnxn−1

= P
(`)
n,n−1|N + µ

(`)
n|N(µ

(`)
n−1|N)T , (43)

P
(`)
n,n−1|N = P

(`)
n|N(H(`)

n )T . (44)

2.2 ESTIMATION OF MEASUREMENT NOISE SCALES,R

Following the developments in section 3.4 of reference 8, the auxiliary function forR
conditioned on S(`) is given by

ΥR(R|S(`)) =
N∑
n=1

∫
γ(`)(xn) log p(zn|xn, rn) dxn, (45)

9



where

γ(`)(xn) = N (xn|µ(`)
n|N , P

(`)
n|N), (46)

p(zn|xn, rn) = N (zn|Bnxn, rnR̄n). (47)

Substituting equations (46) and (47) into equation (45), evaluating the logarithm and dropping
terms not dependent on rn yields

ΥR(R|S(`)) =
N∑
n=1

[
−M

2
log rn −

1

2
r−1
n Φn(zn|S(`))

]
, (48)

where Φn(zn|S(`)) is a data-dependent function independent ofR, given by

Φn(zn|S(`)) =

∫
N (xn|µ(`)

n|N , P
(`)
n|N) (zn −Bnxn)T R̄−1

n (zn −Bnxn) dxn. (49)

The EM update for rn is then easily obtained by setting the derivative of equation (48) with
respect to rn equal to zero, and solving the resulting expression for rn evaluated at r(`+1)

n , yielding

r(`+1)
n =

1

M
Φn(zn|S(`)). (50)

Evaluating the integral in the expression for Φn(zn|S(`)) in equation (49) is simplified by repeated
application of the identity in equation (40); using this identity, equation (49) simplifies to

Φn(zn|S(`)) = tr
(
BT
n R̄
−1
n BnC

(`)
xnxn

)
− 2 tr

(
BT
n R̄
−1
n C(`)

znxn

)
+ tr

(
R̄−1
n C(`)

znzn

)
, (51)

with

C(`)
znxn = zn(µ

(`)
n|N)T , (52)

C(`)
znzn = znz

T
n . (53)

2.3 A BAYESIAN HGMM FOR Q ANDR

The unknown system parameters in the HGMM theory developed in reference 8 are
treated as deterministic parameters. For the maneuvering-target tracking application, treating the
unknown process and measurement noise covariance scales, qn and rn, as random variables with
prior PDFs given by f(qn) and f(rn), respectively, is considered. This modeling change leads to a
Bayesian HGMM for Q andR. In the following, the impact of a prior on the estimation of the
process noise scales, qn, is examined; the impact on the measurement noise scales, rn, is similar.

Assuming the process noise covariance scales, qn, are independent and identically
distributed random variables with prior PDF f(qn), it is straightforward to modify the derivations
in sections 2.4 and 3.4 of reference 8 to show the auxiliary function for Q given by equation (37)
becomes

ΥQ(Q|S(`)) =
N∑
n=1

[
−L

2
log qn −

1

2
q−1
n Ψn(S(`)) + log f(qn)

]
. (54)
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As in the deterministic case, the EM update for qn in the Bayesian case is obtained by setting the
derivative of equation (54) with respect to qn equal to zero, and solving the resulting expression
for qn evaluated at q(`+1)

n .

Choice of the prior PDF for qn can reflect actual prior knowledge of the range of values
for qn, or can be used to effectively emphasize certain values of qn over others; for example, a
prior PDF, f(qn), with more mass near zero can be used to emphasize constant-velocity motion
over maneuverability. A uniform prior for qn on the interval [a, b] ⊂ (0,∞), given by

f(qn) =


1

b− a
, qn ∈ [a, b],

0, otherwise,
(55)

provides no prior information on qn beyond its bounding values, and only serves to constrain the
update q(`+1)

n given by equation (39) between these bounds. A useful and more informative
alternative to the uniform prior for qn is the inverse-gamma prior (reference 23), with PDF on the
interval (0,∞) given by

f(qn) =
βα

Γ(α)
q−α−1
n exp

(
− β
qn

)
, qn ∈ (0,∞), (56)

where α > 0 and β > 0 are real-valued shape and scale parameters, respectively, and Γ(·) denotes
the gamma function. Substituting equation (56) into equation (54) and simplifying the resulting
expression, the auxiliary function for Q reduces to

ΥQ(Q|S(`)) =
N∑
n=1

{
−L+ 2(α + 1)

2
log qn −

1

2
q−1
n

[
Ψn(S(`)) + 2β

]}
. (57)

Hence, in the case of an inverse-gamma prior for the process noise covariance scales, qn, the EM
update for qn becomes

q(`+1)
n =

1

L+ 2(α + 1)

[
Ψn(S(`)) + 2β

]
, (58)

a simple modification of the form of the update given by equation (39) for the deterministic case.

The inverse-gamma distribution is a natural choice for the prior distribution on qn in a
Bayesian model for Q, as the inverse-gamma is the conjugate prior distribution for the variance in
a Gaussian likelihood function with known mean—meaning the posterior distribution for the
variance is also inverse-gamma (reference 23). Examples of the inverse-gamma PDF for several
values of shape and scale parameters {α, β} are shown in figure 1. For comparison, examples of
the uniform PDF for several values of the support interval [a, b] are also shown.
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Figure 1. Uniform and Inverse-Gamma Priors for q for Three Values of the Lower/Upper
Bounds [a, b] and Shape/Scale Parameters {α, β}, Respectively

2.4 ALGORITHM CONVERGENCE

The iterative estimation procedure for the process and measurement noise scales, Q and
R, may be terminated when the differences between successive estimates fall below prescribed
thresholds, εq and εr, respectively. With some abuse of notation, these differences can be written
in terms of an arbitrary norm ‖ · ‖, and the sets Q andR can be interpreted as vectors. Then, the
estimation procedure may be terminated at iteration `∗, where

`∗ = min ` : ‖Q(`+1) −Q(`)‖ < εq ∧ ‖R(`+1) −R(`)‖ < εr. (59)

Alternatively, the estimation procedure may be terminated when the difference between
successive values of the likelihood function, p(Z|S), (or, equivalently, the log-likelihood
function) falls below a prescribed threshold, εL, that is, when

`∗ = min ` : log p(Z|S(`+1))− log p(Z|S(`)) < εL. (60)

The likelihood function p(Z|S) is derived in reference 8 and is given in terms of the iterate, S(`),
by

p(Z|S(`)) =
N∏
n=1

N (ν(`)
n |0,Σ(`)

n ), (61)

where the predicted measurement error (or innovation) vectors, ν(`)
n , are given by

ν(`)
n = zn −Bnµ

(`)
n|n−1, (62)

and the predicted measurement error covariance matrices, Σ
(`)
n , by

Σn = r(`)
n R̄n +BnP

(`)
n|n−1B

T
n . (63)
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The predicted state estimates, µ(`)
n|n−1, and associated covariance matrices, P (`)

n|n−1, in
equations (62) and (63) are obtained from the forward pass of the Kalman smoother for the E-step
of the `th iteration of the algorithm. In practice, both equations (59) and (60) may be used in
combination as termination criteria. In any event, because the incomplete-data log-PDF should
increase monotonically, evaluation of the difference in equation (60) at each iteration is a valuable
check against algorithm implementation.
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3. CGMM APPROACH

The CGMM approach to maneuvering-target tracking is dual to the HGMM approach in
that the roles of the target states and process and measurement noise covariance scales are
swapped. In the CGMM approach, the covariance scales, Q andR, are treated as the missing
data, and estimates of the target states, X , are the primary outputs. The CGMM approach and
resulting estimation procedure for the target states are derived in the following subsections.

3.1 PROCESS AND MEASUREMENT NOISE MODELS

Whereas the HGMM approach assumes the process and measurement noise terms, wn and
vn, in equations (1) and (2) are Gaussian distributed with PDFs given by equations (3) and (4)
with unknown covariance scales, qn and rn, respectively, the CGMM approach assumes these
noise terms are distributed according to the marginal PDFs

p(wn) =

∫ ∞
0

π(q)N (wn|0, qQ̄n) dq, (64)

p(vn) =

∫ ∞
0

χ(r)N (vn|0, rR̄n) dr, (65)

where π(q) and χ(r) are the prior PDFs for the process and measurement noise scales,
respectively. The PDFs in equations (64) and (65) are continuous analogs of discrete Gaussian
mixtures formed by weighted sums of the Gaussian PDFs given by equations (3) and (4) for finite
sets of values for qn and rn, respectively. Hence, the PDFs in equations (64) and (65) are referred
to as continuous Gaussian mixtures (CGMs), and the maneuvering-target tracking approach based
on these models for process and measurement noise is referred to as the CGM model (CGMM)
approach.∗ Plots of the CGMM for the measurement noise PDF given by equation (65) for several
choices of the measurement noise scale prior PDF, χ(r), are shown in figure 2 for the case M = 2
and R̄n = I2. Figures 2(a) through 2(b) show results for the Dirac delta prior,

χ(r) = δ(r − r∗), r ∈ (0,∞), (66)

where δ(·) denotes the Dirac delta function and r∗ denotes the value for r at which all of its
probability mass is fixed. It follows that for χ(r) = δ(r − rn), the CGMM for p(vn) reduces to

p(vn) =

∫ ∞
0

δ(r − rn)N (vn|0, rR̄n) dr = N (vn|0, rnR̄n), (67)

the standard Gaussian PDF for p(vn) given by equation (4), with measurement covariance matrix,
Rn, of the form given by equation (8). Figures 2(c) through 2(d) and figures 2(e) through 2(f)

∗A related approach based on PMHT, called mixed-model PMHT, is developed in reference 18. In this approach,
a finite set of J > 1 target motion models is assumed, and the conditional state densities, p(xn|xn−1), are modeled
as discrete mixtures of these models. Loosely speaking, the CGMM approach is a limiting form of the mixed-model
PMHT approach in the limit J →∞ for the linear-Gaussian case where the motion models differ only in the process
noise covariance scales, qn(j), j = 1, 2, . . . , J , with qn(j) ∈ {q(j) : q(j) ∈ (0,∞), j = 1, 2, . . . , J}.
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show results for the uniform and inverse-gamma priors given by equations (55) and (56),
respectively. These priors for r result in measurement noise distributions (figures 2(d) and 2(f))
with heavier tails than the Gaussian distribution (figure 2(b)) associated with the standard Kalman
filter model, making the CGMM approach robust to measurement outliers. The CGMM for the
process noise PDF given by equation (64) shares the same characteristics as equation (65), though
the dimension of wn is typically greater than that of vn (i.e., typically L > M ). In this case, a
uniform or inverse-gamma prior for the process noise scale, q, leads to a CGMM for p(wn) with
heavier tails than the standard Gaussian distribution, making the CGMM approach robust to
outliers in the target maneuver behavior.

3.2 COMPLETE-, INCOMPLETE-, AND MISSING-DATA PDFS

Estimation of the target states, X , from the observed data, Z, for the linear-CGMM model
given by equations (1), (2), (10), (64), and (65) would be straightforward if observations of the
process and measurement noise covariance scales, Q andR, were also available. In this case,
maximizing the complete-data PDF, given by

p(X,Z,Q,R) = p(X,Z|Q,R)p(Q,R)

= p(Z|X,R)p(X|Q)p(Q)p(R), (68)

with respect to X would amount to a Kalman smoothing problem conditioned on Z, Q, andR,
with the likelihood function, p(Z|X,R), given by

p(Z|X,R) =
N∏
n=1

p(zn|xn, rn), (69)

and the target state prior PDF, p(X|Q), given by

p(X|Q) = p(x0)
N∏
n=1

p(xn|xn−1, qn), (70)

with the densities p(x0), p(xn|xn, qn), and p(zn|xn, rn) given by equations (10), (33), and (47),
respectively. In reality, observations of Q andR are unavailable (or missing), and X must be
estimated from the incomplete-data PDF, given by

p(X,Z) =

∫∫
p(X,Z,Q,R) dQdR (71)

=

[∫
p(R)p(Z|X,R) dR

] [∫
p(Q)p(X|Q) dQ

]
. (72)

The CGMM approach estimates the target states, X , from the observed data, Z, by finding the
value of X that maximizes the incomplete-data PDF p(X,Z); however, it does so by using the
EM method to find values of X that maximize a sequence of simpler estimation problems
involving the complete-data PDF, p(X,Z,Q,R), as described in the following subsection.
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Figure 2. CGMs for the Measurement Noise PDF p(vn) for Three Different Priors for the
Covariance Scale, r, in Equation (65), with R̄n = I2
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Before proceeding, it will be useful to derive the distribution of the missing data, Q and
R, conditioned on X and Z, as this distribution is necessary for the E-step of the EM method.
The conditional missing-data PDF is defined in terms of the complete-data and incomplete-data
PDFs by

p(Q,R|X,Z) =
p(X,Z,Q,R)

p(X,Z)
. (73)

Assuming the missing process and measurement noise scales are independent, the prior PDFs for
Q andR are given by the products

p(Q) =
N∏
n=1

π(qn), (74)

p(R) =
N∏
n=1

χ(rn). (75)

Substituting equations (69), (70), (74), and (75) into equation (68) and rearranging terms yields
the following expression for the complete-data PDF:

p(X,Z,Q,R) = p(x0)

[
N∏
n=1

π(qn) p(xn|xn−1, qn)

][
N∏
n=1

χ(rn) p(zn|xn, rn)

]
. (76)

Likewise, substituting equations (69), (70), (74), and (75) into equation (72) and rearranging
terms yields the following expression for the incomplete-data PDF:

p(X,Z) = p(x0)

[
N∏
n=1

∫ ∞
0

π(q) p(xn|xn−1, q) dq

][
N∏
n=1

∫ ∞
0

χ(r) p(zn|xn, r) dr

]
. (77)

Finally, substituting equations (76) and (77) into equation (73) and collecting terms in gives the
conditional missing-data PDF as

p(Q,R|X,Z) = p(Q|X)p(R|X,Z)

=

[
N∏
n=1

φn(qn)

][
N∏
n=1

ψn(rn)

]
, (78)

where φn(qn) ≡ p(qn|xn, xn−1) denotes the conditional PDF of the missing processing noise
covariance scale, qn, given by

φn(qn) =
π(qn) p(xn|xn−1, qn)∫∞

0
π(q) p(xn|xn−1, q) dq

, (79)

and ψn(rn) ≡ p(rn|zn, xn) denotes the conditional PDF of the missing measurement noise
covariance scale, rn, given by

ψn(rn) =
χ(rn) p(zn|xn, rn)∫∞

0
χ(r) p(zn|xn, r) dr

. (80)

18



3.3 STATE ESTIMATION

As for the HGMM approach, the EM method leads to an iterative procedure for the
estimates of interest—in this case, those of the target states, X—that guarantees a monotonic
increase in the incomplete-data PDF, p(X,Z), and, under mild regularity conditions, convergence
to at least a local maximum of p(X,Z) at each iteration. As in section 2, let ` = 1, 2, . . . denote
the EM iteration index, and let X(`) denote the target state estimate at the `th EM iteration. Then
the auxiliary function of the target states, X , at the beginning of the `th iteration, denoted
Θ(X|X(`)), is given by

Θ(X|X(`)) = E
[
log p(X,Z,Q,R)|X(`), Z

]
(81)

=

∫∫
[log p(X,Z,Q,R)] p(Q,R|X(`), Z) dQdR, (82)

and the updated estimate for X at the `th iteration by

X(`+1) = arg max
X

Θ(X|X(`)). (83)

Substituting equations (76) and (78) into equation (82), evaluating the logarithm and simplifying
the resulting expression yields the following general form for the auxiliary function:

Θ(X|X(`)) = log p(x0) +

[
N∑
n=1

∫ ∞
0

φ(`)
n (q) log p(xn|xn−1, q) dq

]

+

[
N∑
n=1

∫ ∞
0

ψ(`)
n (r) log p(zn|xn, r) dr

]
, (84)

with φ(`)
n (q) = p(q|x(`)

n , x
(`)
n−1) and ψ(`)

n (r) = p(r|zn, x(`)
n ). For the complete-data, linear-Gaussian

model, the conditional state and measurement densities in equation (84) are given by
equations (33) and (47), repeated here for convenience:

p(xn|xn−1, q) = N (xn|Anxn−1, qQ̄n), (85)
p(zz|xn, r) = N (zn|Bnxn, rR̄n). (86)

Substituting the Gaussian PDFs given by equations (85) and (86) into equation (84), evaluating
the logarithms, simplifying the resulting expression, and dropping terms not dependent on the
target states, X , gives the auxiliary function at the `th iteration in simplified form:

Θ(X|X(`)) =− 1

2
(x0 − µ0)TP−1

0 (x0 − µ0)

− 1

2

[
N∑
n=1

(xn − Anxn−1)T (Q̃(`)
n )−1(xn − Anxn−1)

]

− 1

2

[
N∑
n=1

(zn −Bnxn)T (R̃(`)
n )−1(zn −Bnxn)

]
, (87)
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where Q̃(`)
n is the effective process noise covariance matrix for the target state estimate at the `th

iteration, given by

Q̃(`)
n = q̃(`)

n Q̄n, (88)

with

q̃(`)
n =

[∫ ∞
0

φ
(`)
n (q)

q
dq

]−1

, (89)

and R̃(`)
n is the effective measurement noise covariance matrix at the `th iteration, given by

R̃(`)
n = r̃(`)

n R̄n, (90)

with

r̃(`)
n =

[∫ ∞
0

ψ
(`)
n (r)

r
dr

]−1

. (91)

The conditional missing-data PDFs φ(`)
n (q) and ψ(`)

n required for evaluating the effective process
and measurement noise covariance scales given by equations (89) and (91) for the linear-Gaussian
model are obtained by substituting equations (85) and (86) into equations (79) and (80), yielding

φ(`)
n (q) =

π(q)N (x
(`)
n |Anx(`)

n−1, qQ̄n)∫∞
0
π(τ)N (x

(`)
n |Anx(`)

n−1, τ Q̄n) dτ
, (92)

and

ψ(`)
n (r) =

χ(r)N (zn|Bnx
(`)
n , rR̄n)∫∞

0
χ(τ)N (zn|Bnx

(`)
n , τ R̄n) dτ

. (93)

The simplified form of the auxiliary function, Θ(X|X(`)), in equation (87) is functionally
equivalent to the posterior log-PDF for the standard Kalman smoothing problem for the
linear-Gaussian system with states X , measurements Z, and system matrices
{An, Q̃(`)

n , Bn, R̃
(`)
n : n = 1, 2, . . . , N}. Hence, the target state estimate at the `th EM iteration,

X(`), may be obtained by standard Kalman smoothing techniques.

Though the integrals required by the calculations of the effective process and
measurement noise covariance scales in equations (89) and (91) look formidable, they are
one-dimensional integrals that may be efficiently evaluated by standard numerical techniques
(reference 24). Moreover in at least two cases of practical interest shown in the appendix, the
integrals required by the CGMM approach may be evaluated in closed-form in terms of
well-known special functions.
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3.4 ALGORITHM CONVERGENCE

As for the HGMM approach, the iterative estimation procedure for the target states may
be terminated when the difference between successive estimates falls below a prescribed
threshold, εX . Specifically, interpreting the set of states, X , as a concatenated vector, the
estimation procedure may be terminated at iteration `∗, where

`∗ = min ` : ‖X(`+1) −X(`)‖ < εX . (94)

Alternatively, the estimation procedure may be terminated when the difference between
successive values of the incomplete-data PDF, p(X,Z), or, equivalently, the incomplete-data
log-PDF, falls below a prescribed threshold, εL, that is, when

`∗ = min ` : log p(X(`+1), Z)− log p(X(`), Z) < εL. (95)

The incomplete-data log-PDF at the `th iteration is obtained by substituting equations (85)
and (86) into equation (77) and evaluating the logarithm of the resulting expression at X = X(`):

log p(X(`), Z) = logN (x
(`)
0 |µ0, P0) +

[
N∑
n=1

log

∫ ∞
0

π(q)N (x(`)
n |Anx

(`)
n−1, qQ̄n) dq

]

+

[
N∑
n=1

log

∫ ∞
0

χ(r)N (zn|Bnx
(`)
n , rR̄n) dr

]
. (96)

In practice, both equations (94) and (95) may be used in combination as termination criteria.
Again, as for the HGMM approach, evaluation of the difference in equation (95) at each iteration
is a valuable check against algorithm implementation because the incomplete-data log-PDF
should increase monotonically with each iteration.
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4. EXAMPLE

This section compares the HGMM and CGMM approaches to maneuvering-target
tracking via a simple simulated example of a target that executes a 90-degree maneuver over 2
minutes in between two constant-velocity legs, each 10 minutes in length. For both approaches,
an inverse-gamma prior and a uniform prior are chosen for the measurement and process noise
covariance scales, respectively. These priors are shown in figure 3.
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Figure 3. Measurement and Process Noise Covariance Scale Priors Used in Example

Figures 4 through 11 are shown at the end of the section to facilitate comparisons. The
true target track is shown by the solid red line in the left-hand plot of figure 4. The target initially
heads due north at 5 knots until maneuvering to starboard at 45-degrees/minute and then
continues due east at the same speed. Independent measurements of target position, shown as red
dots in figure 4, are obtained every 10 seconds, where the error in each component of each
measurement is normally distributed with zero mean and a standard deviation of 10 yards.
Furthermore, 10 measurements are chosen at random as outliers, each uniformly distributed in a
square box with side lengths 200 yards, centered at the true target position; the outlier
measurements are identified with red circles in figure 4.

The outputs of the HGMM approach for several EM iterations are shown in
figures 4 through 10. The right-hand plots of figure 4 show the initial values used for the
measurement and process noise scales, r(0)

n and q(0)
n , respectively, to start the iterations. Values of

r
(0)
n associated with outlier measurements are identified with circles in the top right-hand plot. In

the bottom right-hand plot, two red triangles are placed on the measurement index axis to denote
the beginning and end of the target maneuver. Figure 5 shows the output of the HGMM approach
after the first iteration. While the estimated target track, shown as the solid black line the
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left-hand plot, does a reasonable job of fitting the data during the constant-velocity legs, it does a
poor job of fitting the data during the maneuver. This result is due to the small initial, constant
values of the process noise scales used to estimate this track, shown in the lower right-hand plot in
figure 4. In fact, the track estimate for the first iteration of the HGMM approach is the output of
the standard Kalman smoother for this problem for the fixed measurement and process noise
covariance scales shown in the right-hand plots of figure 4. However, the right-hand plots of
figure 5 show the estimates of the measurement and process noise scales to be used for the track
estimate at the next iteration, shown in the left-hand plot of figure 6. As shown by the top
right-hand plot in figure 5, the HGMM approach is able to identify the outliers via inflated
measurement noise scale estimates after one iteration. Likewise, as shown by the lower right-hand
plot, the approach is is able to identify the target maneuver via inflated process noise scale
estimates. Both sets of noise scale estimates lead to a better track estimate at the next iteration as
shown in the left-hand plot of figure 6. Indeed, the inflated measurement noise scale estimates for
the outliers lead to better constant-velocity leg estimates, while the inflated process noise scale
estimates around the maneuver lead to a better estimate of the constant turn-rate trajectory.

Figures 7 through 10 show the improvements in the HGMM track estimate and the
evolution of the measurement and process noise scale estimates for several additional iterations.
Interestingly, while the track estimate appears to converge after relatively few iterations (around
8), estimates of the noise scales—particularly the process noise scales—continue to noticeably
change over many iterations, though the magnitudes of the changes decrease with each iteration.
This behavior is typical of EM algorithms, which tend to take large steps to toward the nearest
local solution after a few iterations, only to then experience increasingly slower convergence with
each iteration. Methods for accelerating EM convergence are surveyed reference 12.

For comparison, outputs for the final iteration of the CGMM approach are shown in
figure 11. The right-hand plots show the effective measurement and process noise scales used to
establish the track estimate shown by the solid black line in the left-hand plot, given by
equations (89) and (91), respectively. While the CGMM effective measurement noise scales for
the outlier measurements in the top right-hand plot of figure 11 are noticeably larger than the
corresponding HGMM measurement noise scale estimates in the top right-hand plot of figure 10,
the trends in these quantities are nearly identical. However, the changes in the CGMM effective
process noise scales around the maneuver, shown in the bottom right-hand plot of figure 11, are
much more abrupt than the more gradual changes in the corresponding HGMM process noise
scale estimates shown in the bottom right-hand plot of figure 10. Indeed, the CGMM effective
process noise scales are effectively flat for the majority of the scenario, except for two spikes near
the endpoints of the maneuver interval—a behavior reminiscent of bang-bang control. In contrast,
the HGMM process noise scale factors exhibit a more gradual ramp-up/ramp-down around these
two points. A more detailed comparison of the behavioral characteristics of the two approaches,
along with thorough performance evaluations, are left for future work.
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Figure 4. True Track and Measurements (Left), Measurement Noise Scale Initializations (Top
Right), and Process Noise Scale Initializations (Bottom Right) at Iteration ` = 0 for HGMM

Approach—Measurement Outliers are Circled
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Figure 5. True Track and Measurements (Left, Red), HGMM Track Estimate (Left, Black),
Measurement Noise Scale Estimates (Top Right), and Process Noise Scale Estimates (Bottom

Right) at Iteration ` = 1
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Figure 6. True Track and Measurements (Left, Red), HGMM Track Estimate (Left, Black),
Measurement Noise Scale Estimates (Top Right), and Process Noise Scale Estimates (Bottom

Right) at Iteration ` = 2
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Figure 7. True Track and Measurements (Left, Red), HGMM Track Estimate (Left, Black),
Measurement Noise Scale Estimates (Top Right), and Process Noise Scale Estimates (Bottom

Right) at Iteration ` = 4
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Figure 8. True Track and Measurements (Left, Red), HGMM Track Estimate (Left, Black),
Measurement Noise Scale Estimates (Top Right), and Process Noise Scale Estimates (Bottom

Right) at Iteration ` = 8
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Figure 9. True Track and Measurements (Left, Red), HGMM Track Estimate (Left, Black),
Measurement Noise Scale Estimates (Top Right), and Process Noise Scale Estimates (Bottom

Right) at Iteration ` = 16
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Figure 10. True Track and Measurements (Left, Red), HGMM Track Estimate (Left, Black),
Measurement Noise Scale Estimates (Top Right), and Process Noise Scale Estimates (Bottom

Right) at Iteration ` = 256
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Figure 11. True Track and Measurements (Left, Red), CGMM Track Estimate (Left, Black),
Effective Measurement Noise Scales (Top Right), and Effective Process Noise Scales (Bottom

Right) at Iteration ` = 16

32



5. CONCLUDING REMARKS AND FUTURE WORK

Two complementary approaches to the long-term, maneuvering-target tracking problem
are derived in this report. The first approach, based on the theory of hidden Gauss-Markov
models, treats the target states as missing data and estimates the process and measurement noise
scales at each data scan. The second approach treats the process and measurement noise scales as
missing data in the context of continuous Gaussian mixture models for the noise terms, and
estimates the target states at each data scan. Both approaches are robust to changes in target
maneuver behavior and measurement noise characteristics from scan-to-scan by virtue of an
effective continuum of noise models applied at each scan. In the HGMM approach, robustness
comes from the ability of the HGMM to estimate different process and measurement noise scales
within the standard Gaussian noise models at each scan. Robustness in the CGMM approach
comes from the ability of the CGMMs for the process and measurement noises at each scan to
accommodate non-Gaussian (i.e., heavy-tailed) behavior. Both approaches reduce to iterative
Kalman smoothing procedures for the target tracks; batch processing allows for optimal state
estimates at all scans based on all available data.

This report focused on the theory and derivation of the HGMM and CGMM approaches.
Future work will include performance evaluations based on numerical experiments. Performance
in terms of tracking error and consistency will be emphasized, where the consistency of an
approach is a measure of its estimate of track error—as quantified by its estimated state
covariance matrices—versus actual track error. State covariance matrices for the HGMM and
CGMM target state estimates are not derived in this report; these derivations are left for future
work. For the HGMM approach, it is reasonable to expect the state covariance matrices to be
given by the covariance matrices, P (`∗)

n|N , in equation (30) obtained from the E-step of the final
(`∗th) EM iteration, conditioned on the system parameters S(Q(`∗),R(`∗)). However, it remains to
demonstrate that these state covariance estimates are indeed consistent. For the CGMM approach,
state covariance matrices may be obtained in a variety of ways (see reference 12, chapter 4).
Future work will investigate the observed information approach discussed in references 25 and 26,
which forms the covariance matrix from the inverse of the difference between the complete-data
and missing-data information matrices. Based on the results of reference 26, it is reasonable to
anticipate the state covariance matrices obtained from the Kalman smoother for the final iteration
of the CGMM approach are the bases for the complete-data information matrix for this problem.

Future work will also focus on practical implementations of HGMM and CGMM batch
algorithms for long-term maneuvering-target tracking. As derived here, both approaches assume a
fixed batch length with a fixed number (N ) of data scans. This requires N scans of data to
accumulate before the algorithms can produce a track estimates. To eliminate this lag, both
approaches can be implemented as expanding batches, where each new data scan is added to the
leading edge of the batch, and the entire batch is reprocessed to obtain optimally smoothed
estimates at each scan in the batch. Outputs from the previous batch can then be used to help
initialize the estimation procedure for the next batch, and potentially greatly reduce the number of
EM iterations required for convergence. Though the computational complexity of both algorithms
is linear in the number of data scans, expanding the batch indefinitely may be impractical for
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problems with very long time scales, high data rates, or insufficient computational resources. In
these cases, the expanding batch may be switched to a sliding batch, where each new data scan is
added to the leading edge of the batch, while the oldest scan is dropped from the batch. Again,
outputs from the previous batch can then be used to help initialize the estimation procedure for
the current batch, and potentially greatly reduce the number of EM iterations required for
convergence.

Finally, future work will address the application of the converted measurement techniques
developed in reference 20 to the HGMM and CGMM approaches for tracking problems with
nonlinear measurement equations. As presented in reference 20, these techniques are applied to
the sequential filtering problem, though their extension to the batch smoothing problem addressed
here would appear to be straightforward. Converted measurements are correlated, yielding
measurement covariance matrices that are non-diagonal. However, both the HGMM and CGMM
approaches are consistent with the noise model of the converted measurement techniques because
these approaches make no assumptions on the structure of the unscaled measurement covariance
matrices.
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APPENDIX
CLOSED-FORM EXPRESSIONS FOR CGMM INTEGRALS

The integrals required by the CGMM approach are one-dimensional integrals that may be
efficiently evaluated by standard numerical techniques such as those developed in reference 24. A
single, simplified expression for these integrals is derived in this appendix. Furthermore, in at
least two cases of practical interest, it is shown this integral may be evaluated in closed-form in
terms of well-known special functions.

Upon substituting equation (92) into equation (89) and rearranging terms, the integral
required by the calculation of effective process noise scales, q̃n, in equation (89) takes the form∫ ∞

0

φn(q)

q
dq =

1∫∞
0
π(τ)N (xn|Anxn−1, τ Q̄n) dτ

∫ ∞
0

π(q)

q
N (xn|Anxn−1, qQ̄n) dq.

(A-1)

Let ηn be defined as the quadratic form

ηn =
1

2
‖xn − Anxn−1‖2

Q̄−1
n

(A-2)

≡ 1

2
(xn − Anxn−1)T Q̄−1

n (xn − Anxn−1). (A-3)

Then the Gaussian PDF in equation (A-1) may be written in terms of ηn as

N (xn|Anxn−1, qQ̄n) =
cn
qL/2

exp

(
−ηn
q

)
, (A-4)

where cn is an irrelevant constant (independent of q). Substituting equation (A-4) into
equation (A-1) and simplifying terms yields∫ ∞

0

φn(q)

q
dq =

1∫∞
0

π(τ)

τL/2 exp
(
−ηn

τ

)
dτ

∫ ∞
0

π(q)

qL/2+1
exp

(
−ηn
q

)
dq. (A-5)

From this expression, it follows the integrals in equation (A-1) take the following general form:

I(k, ε; f) ≡
∫ ∞

0

f(τ)

τ k
exp
(
− ε
τ

)
dτ, (A-6)

for k ∈ {j/2 : j = 1, 2, . . . }, ε ≥ 0, and f a non-negative function on (0,∞). Using the results of
equations (A-1) through (A-6), the effective process noise covariance scales given by
equation (89) can be written simply as

q̃(`−1)
n =

I
(
L
2
, η

(`−1)
n ; π

)
I
(
L
2

+ 1, η
(`−1)
n ; π

) , (A-7)

A-1



with

η(`−1)
n =

1

2

∥∥x(`−1)
n − Anx(`−1)

n−1

∥∥2

Q̄−1
n
. (A-8)

Likewise, using a similar argument it is straightforward to show the effective measurement noise
covariance scales given by equation (91) can be written simply as

r̃(`−1)
n =

I
(
M
2
, ζ

(`−1)
n ;χ

)
I
(
M
2

+ 1, ζ
(`−1)
n ;χ

) , (A-9)

with

ζ(`−1)
n =

1

2

∥∥zn −Bnx
(`−1)
n

∥∥2

R̄−1
n
. (A-10)

Lastly, the general integral expression given by equation (A-6) can be used to simplify the
expression for the incomplete-data log-PDF in equation (96). Indeed, expanding the expressions
for the Gaussian PDFs in equation (96), using the expressions in equations (A-6), (A-8),
and (A-10), and dropping terms that do not depend on the target state estimates, X(`), yields

log p(X(`), Z) =
1

2

∥∥x(`)
0 − µ0

∥∥2

P−1
0

+

[
N∑
n=1

log I
(
L
2
, η(`)
n ; π

)]

+

[
N∑
n=1

log I
(
M
2
, ζ(`)
n ;χ

)]
. (A-11)

The integral I(k, ε; f) may be evaluated in closed-form in terms of well-known special
functions in at least two cases of practical interest. Specifically, in the case where f is the
inverse-gamma PDF given by equation (56), with shape parameter α > 0 and scale parameter
β > 0, the integral in equation (A-6) is given simply in terms of the gamma function as

I(k, ε; f) =
βα

Γ(α)

∫ ∞
0

1

τ k+α+1
exp

(
−ε+ β

τ

)
dτ,

=
βα

Γ(α)
(ε+ β)−(k+α)Γ(k + α). (A-12)

In the case where f is the uniform PDF given by equation (55), defined on the closed interval
[a, b] ⊂ (0,∞), the closed-form of the integral I(k, ε; f) depends on the value of k. Specifically,
in this case,

I(k, ε; f) =
1

b− a

∫ b

a

1

τ k
exp
(
− ε
τ

)
dτ,

=
Ib(k, ε)− Ia(k, ε)

b− a
, (A-13)
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with

Iτ (k, ε) =


2
√
πε erf(ε/τ) + 2

√
τ exp(−ε/τ), k = 1/2,

Ei(ε/τ), k = 1,

Γ(k − 1, ε/τ)/εk−1, k > 1,

(A-14)

where erf(·) denotes the error function, Ei(·) the exponential integral, and Γ(·, ·) the incomplete
gamma function defined in chapters 7, 5, and 6, respectively, of reference 27. To avoid numerical
instabilities, care must be taken when evaluating the expressions in equation (A-14) at values of ε
near zero. In practice, a linear approximation gives accurate values of the integral for values of ε
in the region 0 < ε < ρ(k)� 1:

Iτ (k, ε) ≈
Iτ (k, ρ(k))− Iτ (k, 0)

ρ(k)
ε+ Iτ (k, 0), (A-15)

with

Iτ (k, 0) ≡

log τ, k = 1,

1
1−kτ

1−k, otherwise.
(A-16)

For particular values of k, which will be problem specific but fixed, the upper bounds ρ(k) may be
determined by comparing plots of equations (A-14) and (A-15) and identifying the values of ε at
which equation (A-14) becomes unstable.
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