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EXECUTIVE SUMMARY 

This report details a technique for deconvolving satellite microwave radiometer brightness 

temperatures into component passive microwave emissions from water and land surfaces. This process 

utilizes high resolution visible and infrared satellite observations from the Aqua and Terra MODIS spectro-

radiometers to generate antenna gain pattern corrected fractional weights for water coverage within each 

radiometer field of view. We then use multiple overlapping brightness temperature observations to 

construct a system of linear equations, which we solve through least squares minimization. Our results 

comparing component brightness temperatures generated from in situ and simulated data to deconvolved 

component and observed brightness temperatures indicate a significant decrease in the bias and root mean 

squared error of land based passive microwave emissions.



This page intentionally left blank.

E-2



1 

DECONVOLUTION OF SATELLITE-BASED PASSIVE MICROWAVE BRIGHTNESS 

TEMPERATURES USING VISIBLE/INFRARE OBSERVATIONS 

1. INTRODUCTION

Remote sensing of soil moisture via satellite radiometers has made great strides in recent years. 

Radiometers designed to measure soil moisture such as those aboard NASA's Soil Moisture and Ocean 

Salinity (SMOS) [1]  and Soil Moisture Active Passive (SMAP) [2] missions as well as general radiometers 

such as AMSR-E, AMSR2 and WindSat [3,4] are now producing accurate global soil moisture retrievals 

with short (1 - 3 day) revisit times. However, these soil moisture products still suffer from significant 

limitations in areas containing large water bodies. A single satellite observation containing significant 

surface water has to be discarded in soil moisture retrievals. This report details a method for utilizing 

satellite-based visible and infrared (Vis/IR) observations to deconvolve the land based passive microwave 

(passive microwave) contributions from those emitted by water in these mixed pixel cases; thus enabling 

soil moisture retrievals in these areas.  

A similar technique was developed by Bellerby et al. [5] to separate land and sea component TB s 

for the 37 GHz channel on the Special Sensor Microwave Imager (SSM/I) on the United States Defense 

Meteorological Satellite Program (DMSP) series of spacecrafts. Their technique used a similar antenna 

pattern and spatial over-sampling based deconvolution process, but they relied on digital coastal maps to 

provide their land-to-water ratio weighting.  By using concurrent Vis/IR observations, we hope that the 

technique presented here proves more extensible into deconvolution of bare soil, vegetation, snow, 

mountainous terrain, etc. Additionally, a version of passive microwave brightness temperature (TB) 

deconvolution has been demonstrated with data from the Passive and Active L and S band radiometer 

(PALS) from the SMEX02 field campaign in Iowa [6], though our approach differs significantly from 

theirs. Our approach is also similar to deconvolution methods used for spatial resolution enhancement [7,8], 

but here we are using oversampling to separate component TBs from different emission sources within a 

radiometer's field of view (FOV) rather than separate TB emissions from spatial subpixels.  

Our technique begins by using Vis/IR data from NASA's Moderate Resolution Imaging 

Spectrometer (MODIS) instruments [9] to produce 1 km spatial resolution maps of fractional water 

coverage within each MODIS grid pixel. We then convolve these fractional coverages according to the 

passive microwave radiometer's antenna gain pattern to determine the relative contribution weights within 

the radiometer's FOV for passive microwave emissions from both water and land surfaces. These weights, 

together with those from adjoining FOVs, create a system of equations with which it is possible to solve 

for the water and land component TBs. Section 2 describes the data and sources that were used in our analysis 

and Section 3 details our deconvolution methodology. Section 4 describes the testing of our deconvolution 

method with simulated data and Section 5 shows validation of our results with in situ data. 

2. DATA SOURCES

A multi-instrument data fusion algorithm such as this deconvolution technique requires numerous 

data sets to function and be properly validated. The water and vegetation fraction maps are derived from 

the Aqua and Terra MODIS observation products, MYD09A1 and MOD09A1 [10] respectively. These 

products consist of multiple, 2400x2400 pixel sinusoidal grid tiles with an approximately 500 m spatial 

resolution [11]. They are processed with the Vis/IR water and vegetation fraction algorithms specified in 

Section 3 then resampled on to a coarser 1 km scale MODIS sinusoidal grid in order to aid computational 

speed. The WindSat TB data used in this paper [12, 13] was native-resolution swath data corrected for 

spillover effects and polarization rotation angles but not collocated between frequency channels. The data 

_____________
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set consisted of both horizontally and vertically polarized TB observations from May 2014 through October 

2017 from the area of interest over the Delmarva Peninsula. Additionally, satellite orbital position and 

pointing data from observations made on 3 June, 2014 was used to generate simulated TBs for testing 

purposes detailed in Sections 4 and 5. 

 

Due to the mixed pixel effects which motivated this report, there has never been a network of long 

term soil moisture observing in situ sensors, designed for satellite retrieval validation, situated in a coastal 

region. Thus, to validate the deconvolved TBs from WindSat, we needed to gather such data. Accordingly, 

the Naval Research Laboratory (NRL) and United States Department of Agriculture Agricultural Research 

Service (USDA-ARS) collaborated to set up a soil moisture experiment in the Choptank region of the 

Delmarva Peninsula [14]. The site of this field campaign was specifically chosen because of the mix of 

open water and well characterized agricultural areas. Local soil types under the cropland are mostly a mix 

of poorly to moderately well-drained low-permeability sand. Land-use in this watershed is 58% agricultural, 

33% forest, and only 9% urban usage. The most common crops are corn, soybean, and winter wheat double-

cropped with soybeans.  

 

Ten permanent sites were chosen within the Choptank watershed to sufficiently sample the area 

within a typical WindSat 10.7 GHz channel FOV. With cooperation from the area's farmers, instrumented 

stations were set up outside the field perimeters where they would not interfere with the crop planting or 

harvest over the course of several years. Each permanent station is equipped with four Stevens Hydra Probes 

[15] to measure soil moisture and soil temperature at depths of 5, 10, 20, and 50 cm, as well as additional 

instrumentation for gathering precipitation, solar radiation, and air temperature measurements. In situ 

measurements were recorded every hour. We used this data, in conjunction with a radiative transfer model 

(RTM), to produce land component brightness temperatures (TB,Lands) with which to validate the results of 

our deconvolution of WindSat TB observations; this is documented in Section 5. 

 

 

3. METHODOLOGY 

 

The passive microwave deconvolution process detailed in this paper is done in three steps. In the 

first step, Vis/IR imagery from the MODIS  spectrometers on board NASA's Aqua and Terra satellites is 

used to produce high resolution (1 km or smaller) maps of the fractional surface area coverage for open 

water (both fresh and saline). We also produce high resolution fractional area maps of the vegetation canopy 

for later use in our validation. In the second step, the antenna pattern for each feed horn, as projected on the 

Earth's surface, is used to apply relative gain weighting to these water coverage factions for each Vis/IR 

map pixel within the radiometer's FOV. This yields the relative mixing ratios for water and land TB 

emissions for each WindSat observation. In the final step, these mixing ratios and the observed TBs from 

several adjacent WindSat observations are used to construct a system of linear equations. These systems of 

equations are then solved via least-squares minimization, yielding the deconvolved component TBs for 

water and land. The following subsections below explain each of these steps in greater detail. 

 

In this report, we will frequently use terms that correspond to fractional area coverages and 

brightness temperatures on several different physical resolution scales and with different physical 

meanings. For clarity, we will consistently use the nomenclature described here. For fractional area 

coverages and brightness temperatures on a Vis/IR scale, 15 m through 1 km, we will use fα and τB,τ 

respectively. For antenna gain weighted fractional area coverages and brightness temperatures describing a 

microwave radiometer's FOV, we will correspondingly use Fα and TB,α. For both resolution scales, α 

specifies a component passive microwave emission source; e.g. Water, Land, Soil, or vegetation (Vegt); or 

the simulated or observed convolved values; e.g. Sim or Obsv. Additionally, when we perform a summation 

of numerous individual Vis/IR pixels we will index those values with the subscripts i or j and when referring 
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to one of a set of passive microwave radiometer FOVs we will designate individual observations with a 

subscript m or n. 

 

3.1 Water Fraction Estimation 

 

Given the spatial footprint size of the WindSat radiometer's 10.7 and 18.7 GHz antenna gain 

patterns, a spatial resolution of 1 km for Vis/IR data was expected to provide sufficient localization for 

water coverage. This assumption was verified using simulated data; the results are detailed in Appendix A. 

Given the sufficiency of 1 km resolution and the need for large area coverage with a short revisit time, we 

chose to utilize 8-day composite surface reflectance (R) data from bands 1 (620-670 nm) and 2 (841-876 

nm) acquired by both Aqua MODIS and Terra MODIS. Some cloud cover mitigation was required; 

therefore, we used a method developed by Miller et al. [16] to identify cloud cover by adding reactance 

values from bands 1 and 2 together and eliminating observations that satisfy R1 + R2 > 0.65. 

 

We used a linear mixing model and decision tree approach from Sun et al. [17] to estimate fractional 

water coverage using MODIS reflectance observations. The difference in reflectance between bands 1 and 

2 for the ith MODIS pixel can be expressed as a function of its water fraction, fWater,i, via 

 

ΔRi = R2,i - R1,i      =  fWater,iΔRWater + (1 – fWater,i) ΔRLand    (1) 

 

Here, ΔRWater = 0.0291 and ΔRLand = 0.0917 are threshold reflectance values for pure water and land pixels. 

Pixels with reflectance values less than or equal to ΔRWater are considered pure water, while pixels where 

ΔRLand is less than or equal to ΔRi are pure land, and those with values in between are mixed pixels. Thus, 

we can calculate the water fraction for the ith MODIS pixel, fWater,i, as a piecewise function 

 

𝑓𝑊𝑎𝑡𝑒𝑟,𝑖 = {
1

 Δ𝑅Land− Δ𝑅i

 Δ𝑅Land− Δ𝑅Water

0

 Δ𝑅i ≤  Δ𝑅Water

         Δ𝑅Water <  Δ𝑅i <  Δ𝑅Land

 Δ𝑅Land ≤  Δ𝑅i

}    (2) 

 
 

  

Sun et al. evaluated this technique to have an error rate of ±4.4% when estimating the water coverage 

fraction for an individual MODIS pixel.  

 

The final step in producing useful water fraction maps is to average the two maps produced from 

Aqua and Terra MODIS data and fill any remaining observation gaps caused by clouds or other anomalies. 

To do this, we construct composite 8-day maps in several steps. For each pixel in our composite maps, we 

first average the corresponding pixel from the Aqua and Terra based 8-day maps. If no data exists for that 

pixel in one map but it does in the other, then the value from the existing pixel is used in the composite. 

Next, we fill in any remaining empty pixels in the composite water map with the value from the previous 

8-day composite water fraction map. Finally, should any pixels remain empty, they are filled with the 

average value of the four 250 m resolution subpixels from the static MODIS land/water mask (MOD44W) 

[18]. Figure 1 shows a sample plot of the composite water fraction map (left) from the Delmarva Peninsula. 

 

3.2 Vegetation Fraction Estimation 

 

In addition to the water fraction, the vegetation coverage fraction will be needed. Therefore, to 

determine the fractional area of the vegetation canopy for the ith MODIS pixel (fVegt,i), we utilize an approach 

by Gitelson [19,20] which uses the Wide Dynamic Range Vegetative Index (WDRVI) [21] which is defined 

as 
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𝑊𝐷𝑅𝑉𝐼𝑖 =
γ𝑅1,𝑖−𝑅2,𝑖
γ𝑅1,𝑖+𝑅2,𝑖

      (3) 

 

 

where γ= 0.3 and R1,i and R2,i are the reflectances from MODIS bands 1 and 2 respectively. As the name 

implies, the WDRVI maintains sensitivity at higher fractional vegetation coverage levels when compared 

to the more standard Normalized Difference Vegetation Index. Finally, we determine the fractional 

vegetation coverage using 

 

fVegt,i = 80.838* WDRVIi + 34.021     (4) 

 

where the linear parameters come from Gitelson [20]. This formula was developed in order to estimate the 

fractional vegetation coverage from MODIS observations for both maize and soybean fields 

simultaneously. 

 

 

 
 

Fig. 1 – These plots show the 8-day composite water (left) and vegetation (right) fractional coverage maps over the Delmarva 

Peninsula on June 5, 2014. 

 

 

Gaps in the resulting 8-day vegetation fraction maps from Aqua or Terra also need to be rectified 

by producing 8-day filled composite vegetation fraction maps. For each MODIS grid pixel in our area of 

interest, the corresponding composite water map is checked to determine if any land is present. If it is, then 

the composite vegetation map pixel is assigned a value that is the average of the Aqua and Terra vegetation 

map pixel values. If no data exists for a given pixel in one map but there is data in the other, the existing 

pixel data is used in the composite. Next, we fill missing pixels in the composite vegetation map by using 

the value from the previous 8-day composite map after adjusting the value by the average difference 

between the current and previous values from the eight surrounding pixels. Thus, 

 

𝑓𝑉𝑒𝑔𝑡,𝑖 = 𝑓𝑉𝑒𝑔𝑡,𝑖
′ (1 + ∑

𝑓𝑉𝑒𝑔𝑡,𝑗−𝑓𝑉𝑒𝑔𝑡,𝑗
′  

𝑓𝑉𝑒𝑔𝑡,𝑗
𝑗 )      (5) 

 

where the summation is over the eight surrounding pixels, if they exist, and a prime denotes a fractional 

value from the previous 8-day composite map. If the previous 8-day composite pixel is also empty, we 

would fill the empty pixel with the average of the current composite values from the eight surrounding 
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pixels, provided more than four of those exist. Finally, should the pixel still be unfilled, we assign a standard 

value of 50% to it. Figure 1 also shows a plot of the composite vegetation fraction map (right) from the 

Delmarva Peninsula. 

 

3.3 Antenna Pattern Weighting and Deconvolution 

 

The radiometer observed brightness temperature (TB,Obsv) can be expressed as a linear combination 

of the brightness temperatures directly emitted from open water bodies (TB,Water) and land (TB,Land). Thus, 

 

TB,Obsv = FLand TB,Land + FWater TB,Water           (6) 

 

where for each type of emitting terrain, α, the weighting factor for that component type is 

 

𝐹𝛼 = ∫ 𝑓𝛼(𝛺)𝐺(𝛺)𝑑𝛺       (7) 

  

Here the spatial coverage function for each terrain type, fα(Ω), is weighted by the radiometer's antenna gain 

function, G(Ω), and integrated over the entire surface area of the radiometer's FOV. The weighting factor 

can be estimated with a simple sum of these weighted fractional coverages, 

 

 𝐹𝛼 = ∑ 𝑓𝛼,𝑖𝐺𝑖𝑖                   (8) 

 

where we approximate the integration of a continuous spatial distribution as a summation over the set of 

fractional coverage estimates from the MODIS 1 km sinusoidal grid pixels within the radiometer 

observation's FOV. Here fα,i is weighted by the antenna gain relative to maximum received power, Gi, as 

computed for the geographic center of the ith pixel and projected on the Earth's surface; additionally, we 

define fLand,i to be the remainder when fWater;i is subtracted from unity. After performing this operation for 

every passive microwave observation, we can proceed with an observation by observation deconvolution 

of the radiometer observed brightness temperatures (TB,Obsvs). For each passive microwave observation, we 

use Eq(6) to compute the residual between TB,Obsv and a linear mixing of the TB,Land and TB,Water component 

brightness temperatures. Thus, 

 

Rm = [TB,Obsv,m - (FLand,mTB,Land+FWater,mTB,Water)]2
     (9) 

 

where Rm is the residual term and Fα,m is the weighting term for terrain type α within the mth radiometer 

observation. Assuming that TB,Land and TB,Water remain constant across the set of residuals computed from 

the mth observation and its most spatially proximate neighbors, we can minimize the sum of these residuals 

and find the best fitting TB,Land for the mth passive microwave observation. 

 

As a qualitative test, we applied our method to an area with a relatively simple coastline. Figure 2 

shows an example of horizontally polarized 18.7 GHz TBs observed over the Florida peninsula by the 

WindSat radiometer before (left) and after (right) application of the deconvolution process. The 

deconvolution process removes the effect of mixed pixels containing both land and water along the 

coastline. Furthermore, Lake Okeechobee is not evident in the TB,Land image, having been replaced with 

nominally correct looking land-based brightness temperature values. It does not, however, correct the TB 

values for the Everglades region where we cannot readily distinguish between land and water due to 

overlying and floating vegetation. These effects are more starkly visible in Figure 3, which shows the bias 

values between the deconvolved TB,Land values and their corresponding original TB,Obsv values.  
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4. SIMULATED DATA TESTING 

 

The first quantitative test of the effectiveness of our deconvolution approach was on artificial data 

simulated under ideal conditions using a Monte Carlo technique. The values in all our simulated maps and 

masks were randomly generated using a Mersenne Twister engine from the C++ standard library. Pixel 

values for topographic features, e.g. water presence, vegetation, surface temperatures, soil moisture, etc., 

were autocorrelated with themselves over a distance of 10 km. All of our simulated maps were square 2D 

arrays which we used as analogs for MODIS sinusoidal grid tiles. Additionally, the topographic features of 

all of these maps were contiguous across the map edges, allowing FOVs that spanned multiple MODIS grid 

tiles to run off the top/right map edges and continue onto the bottom/left edges and vice versa.  
 

 
 

Fig. 2 – These plots show TBs for WindSat's horizontally polarized 18.7 GHz frequency channel over the Florida peninsula. The 

left plot shows TBs as observed, while the right plot shows the land component TBs derived after removing open water emissions 

using our deconvolution approach. 

 

 

  
 

Fig. 3 – These plots show the difference between TB,Land and TB,Obsv for WindSat's horizontally polarized 18.7 GHz frequency 

channel over the Florida peninsula. Pixels without any land are left unfilled. 
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First, we produced twenty-five master land/water masks measuring 76800x76800 pixels which 

cover an area about 1200kmx1200km; this equates to a spatial resolution of approximately 15mx15m. 

These masks are binary, in that each pixel is either land or water; additionally, each mask has a differing 

ratio of total water to total land covered areas. Next, for each individual land/water mask, we also randomly 

generated a binary vegetation coverage for each land covered pixel; either a land pixel is vegetation covered 

or it is not. We then downscaled these master water and vegetation maps to a 1 km scale or 1200x1200 

pixel grid. 

 

The following analysis is the result of comparisons using simulated brightness temperatures for the 

WindSat radiometer's 10.7 GHz channel for both horizontal and vertical polarizations. For each pixel within 

each of the twenty-five maps, we generated physically realistic brightness temperatures (τBs) using both a 

sea-based and a land-based radiative transfer model. We generated τB,Water values using a model, based on 

work by Meissner and Wentz [22,23,24], which produces TBs as a function of sea surface temperature and 

ocean wind speeds. We assumed these wind speeds to be a constant 10 m/s. To generate values for τB,Land, 

we used the same Dobson semi-empirical mixing model [25,26] and coupled τ-ω vegetation canopy model 

[27,28] used in our land surface retrieval algorithm [29,30], which requires inputs for the land surface 

temperature (K), vegetative water content (kg/m2), and soil moisture fraction (g/cm3). We produced a τB,Land 

value for each land pixel by computing both a brightness temperature with (τB,Vegt) and without (τB,Soil) an 

overlying vegetation canopy. Then, for each pixel these two land based component TBs were mixed 

according to 

 

τB,Land,i = fVegt,i τB,Vegt,i + (1 – fVegt,i) τB,Soil,i     (10) 

 

Finally, we produced artificially convolved brightness temperatures to simulate radiometer 

observations from these Vis/IR scale τBs in two steps. First, we obtained realistic orbital look angles and 

geolocation data from actual WindSat observations. To do this, we collected the set of all 10.7 GHz TB 

observations made on 3 June, 2014 with coordinates between a latitude of 33°N and 43°N and a longitude 

of 0°W and 180°W; this resulted in a set of approximately 225,000 observations. Next, for each of these 

observations, we computed a simulated convolved TB,Sim by combining τB,Water and τB,Land values for each 

simulated Vis/IR pixel within the FOV as computed from each respective observation's orbital 

characteristics. Thus, for the mth radiometer observation in our set, 

 

𝑇𝐵,𝑆𝑖𝑚,𝑚 =
∑ (𝑓𝑊𝑎𝑡𝑒𝑟,𝑖𝜏𝐵,𝑊𝑎𝑡𝑒𝑟,𝑖+(1−𝑓𝑊𝑎𝑡𝑒𝑟,𝑖)𝜏𝐵,𝐿𝑎𝑛𝑑,𝑖)𝐺𝑚,𝑖𝑖

∑ 𝐺𝑚,𝑖𝑖
   (11) 

 

where the summation is over all simulated Vis/IR pixels within the mth radiometer FOV characterized by 

the relative antenna gain factor for each Vis/IR pixel (Gm,i).  
 

In performing our deconvolution, we require sufficient signal from both land and water to be 

successful; thus, the deconvolution algorithm is only executed when the observation of interest or at least 

one its neighbors satisfies the condition that 0.10 < FWater,m < 0.90. We generated a TB,Sim value using each 

of the 225,000 WindSat observation FOVs applied to every one of the twenty-five simulated maps. The 

FWater,m threshold condition results in a sample size of approximately 1.25 million TB,Sim values on which we 

could attempt deconvolution. Finally, we used the simulated Vis/IR water fraction maps to execute our 

deconvolution technique and separate the TB,Sim back into their component TB,Water and TB,Land values. This 

entire procedure is diagrammed in Figure 4. 

 

By comparing the differences between the source TB,Land values produced by the RTM and the 

resulting deconvolved TB,Land values, we can ascertain the algorithm's effectiveness and accuracy as well as 

the magnitude of any noise introduced by the deconvolution process. Table 1 shows the number of samples, 

the Pearson correlation coefficient (R), bias, and root mean squared error (RMSE) values for this 
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comparison for both polarizations from WindSat's 10.7 GHz frequency band. We also compared the RTM 

sourced TB,Land values to the convolved TB,Sim values to show the degree of water contamination that was 

removed. These comparisons are made using ten bins based on the computed FWater value for the 

deconvolved TB,Sim; each bin spans a 5% FWater range, yielding a sampling of FOVs with between 0% and 

50% water contamination by signal contribution. The first bin, defined by the condition: 0% < FWater < 5%, 

will be used as a control since it contains almost no water contamination but was still processed by the 

deconvolution algorithm. 

 

 
 

Fig. 4 – This diagram shows the procedure for testing the deconvolution algorithm via Monte Carlo generated data. Randomly 

generated values on a 1200_1200 grid for the sea surface temperature (SST), land surface temperature (LST), water and vegetation 

fractions, soil moisture fraction (SMF), and vegetative water content (VWC) are fed into land and sea based radiative transfer 

models to produce simulated land and water component brightness temperatures which are then artificially convolved into 

simulated radiometer observations, denoted as TB,Sims. These TB,Sims are then deconvolved back into component TB,Land and TB,Water 

values. These deconvolved values are subsequently compared to their corresponding source values from before their convolution. 

 

 

We first note that both the TB,Sim and TB,Land R values are near unity in the control bin for both 

polarizations, indicating that the water present is having a small impact on the convolved TBs. However, 

even with that small amount of water signal, both the biases and RMSEs for both polarizations are smaller 

after the deconvolution process. The RMSE values after deconvolution are 1.8-2.6 K; this suggests that this 

is the noise floor introduced by the deconvolution process itself. While the biases for the TB,Sim values are 

monotonically decreasing by significant values as the amount of water signal increases, the deconvolved 

TB,Land bias values remain nearly constant. This provides clear proof that the deconvolution process is 
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successfully removing the water signal contribution. Furthermore, the RMSE values for the deconvolved 

TB,Land values gain only 2.5-3 K as FWater values approach 50% contamination. This, in combination with the 

near zero bias values, indicates that error rates are both small, in comparison to the magnitude of the signal 

contribution being removed, and evenly distributed about the true land TB values. Thus we can conclude 

that there is no significant systematic bias introduced by the deconvolution process. 

 

 

5.    IN SITU TESTING 

 

We collected in situ soil moisture and related data on the Delmarva Peninsula during the spring, 

summer, and autumn seasons from 2014 through 2017and used it to test our deconvolution algorithm. We 

did this by using this data to produce, via the previously detailed RTM, simulated land component TBs from 

these measurements. First, we applied our deconvolution method to WindSat passive microwave 

observations to produce TB,Land estimates for each observation made over the in situ sites for the 10.7 and 

18.7 GHz frequency bands with both vertical and horizontal polarizations. Next, for each WindSat 

observation's FOV over the in situ network, we computed the averaged soil moisture fraction (SMF), soil 

temperature, and atmospheric temperature. In situ soil moisture data was collected from a depth of 5 cm. 

These averages, denoted by �̂�𝑚, are computed according to 

 

�̂�𝑚 =
∑ 𝑥𝑖𝑖 𝐺𝑚,𝑖

∑ 𝐺𝑚,𝑖𝑖
      (12) 

 

where Gm,i is the antenna gain for the ith in situ site within the mth observation's FOV and xi is the local SMF, 

soil temperature, or atmospheric temperature value at that site. Finally, using these averages for each 

WindSat observation's FOV over the in situ site, we estimated the observable TB,Land value at the top of the 

atmosphere via the land based surface radiative transfer model in the previous section. There were about 

500 samples per analysis bin at 10 GHz and about 600 at 18 GHz. 

 

For each day with a WindSat overflight, we then selected one observation to analyze for each of 

six analysis bins. These bins are divided according to the observations' FWater value, like in the previous 

section, but here the maximum FWater value is 30%. We will once again treat the 0-5% bin as our control. 

Figure 5 shows the locations of the ten in situ network sites and the -3 dB contours of the selected WindSat 

observations for June 5, 2014.  

 

Our RTM modeling differs slightly for this analysis from the one we used with simulated data. 

Here, we used the MODIS derived vegetation fraction estimates detailed in Section 2 to perform the soil 

and vegetation mixing. Additionally, whereas the soil and vegetation canopy had the same physical 

temperature in our simulated data testing, here we used the averaged in situ soil temperature for the TB,Soil 

RTM estimates and the averaged in situ air temperature for the canopy temperature in our τ-ω attenuation 

estimates. Vegetative water content (VWC) values were assumed to be a constant 0.67 kg/m2 this value is 

both physically reasonable for the agricultural products in the region and minimizes the biases between 

RTM predictions and observed TB values. We did not vary this parameter to account for seasonal variations 

in VWC, nor did account for VWC variations for different crop types and their relative weighting within 

our FOVs.  
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Table 1: Pearson correlation coefficient (R), bias, and root mean squared error (RMSE values for deconvolved, TB,Land, and 

convolved, TB,Sim, simulated brightness temperatures compared to simulated land component TB source values. Comparisons were 

made for TBs simulating both vertical and horizontal polarizations in WindSat's 10 GHz frequency band and were binned according 

to each observation's antenna gain pattern weighted water fraction value (FWater). 
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Fig. 5 – This plot shows the Vis/IR water fraction on June 5, 2014. It also shows the geographic locations of all ten in situ network 

sites and the -3 dB contour for WindSat's 10.7 GHz FOV for each of the six analysis bins. Each FOV represents the observation 

from that FWater bin that is geographically closest to the center of the in situ network. 

 

 
 

 

 Figures 6 and 7 show correlation plots of the convolved TB values modeled from in situ observations 

versus the deconvolved TB,Land values and also versus the original observed WindSat TB,Obsv values from the 

10.7 and 18.7 GHz frequency bands respectively. Furthermore, the R, bias, and RMSE values for these 

plots are contained in Table 2. 

 

At this point we wish to address the strengths and weaknesses of comparing RTM TB values 

generated from in situ data to passive microwave radiometer observed TBs TBs. First, regardless of how 

extensive the sampling sites within the in situ network, they are point sources; whereas passive microwave 

radiometers observe an integrated two-dimensional surface area. Looking at the correlation coefficients for 

our control bins for both 10 and 18 GHz we see a very strong correlation between the in situ data derived 

TB values and both radiometer derived TB values. This argues in strongly favor of the reasonableness of this 

comparison. However, it should be noted that we are comparing a fixed network on the ground to radiometer 

FOVs that cover different areas. Indeed, as we look for increasingly water contaminated TB observations, 

the average distance between the geographic center of our in situ network and the center of the radiometer 

FOV increases. Thus, we excluded analysis of FOVs with an FWater value greater than 30%, as this average 

distance exceeded the size of a typical WindSat 10 GHz footprint. This effect unfortunately means that any 

degradation we see in the correlation between the in situ and radiometer derived TBs will be a function of 

both the increased distance and the amount of water contamination. While it is impossible to separate out 

this increased distance effect, the relative performance between the original, water contaminated TB values 

and the deconvolved, land component TB values makes a strong qualitative case for the success of our 

technique. 
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Fig. 6 – Correlation plots for the 10 GHz vertically (top two rows) and horizontally (bottom two rows) polarized in situ modeled 

TB values versus the original observed WindSat TB values (red circles) and the deconvolved land component TB values (blue 

diamonds). Samples are binned according to the antenna pattern weighted water fraction value (FWater) for each observation's FOV. 

 

 

 



Deconvolution of Satellite-Based Passive Microwave Brightness Temperatures Using Visible/Infrared Observations 

13 
 

 
 
Fig. 7 – Correlation plots for the 18 GHz vertically (top two rows) and horizontally (bottom two rows) polarized in situ modeled 

TB values versus the original observed WindSat TB values (red circles) and the deconvolved land component TB values (blue 

diamonds). Samples are binned according to the antenna pattern weighted water fraction value (FWater) for each observation's FOV. 
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Looking at Figures 6 and 7, we see that both deconvolved and observed distributions start tight to 

the 1:1 correlation line in the control bins. However, while the deconvolved distributions stay on the 1:1 

correlation line the observed distribution steadily diverges from it with increasing FWater values. This is 

obvious when looking at the bias values in Table 2, which are monotonically decreasing for observed 

WindSat TB values with increasing FWater. TBs emitted from water are significantly lower than those 

produced by land, even at the same physical temperature; thus, the larger the emission contribution from 

water within the convolved TB observation, the lower the TB value. In contrast to this, the bias values for the 

deconvolved TB values remain virtually constant; strongly indicating the successful removal of the passive 

microwave signal from water. Furthermore, the plots show both distributions in both frequency bands 

expanding in width. However, this increasing magnitude of average error is far more prominent in the 

observed TB distributions. Once again, it is produced by the combination of the degree of water 

contamination in the signal and the average geographic distance between the in situ sites and the WindSat 

FOV. The deconvolved TBs better performance in average error magnitude is borne out by inspecting the 

RMSE values for the two distributions.  

 

Additionally, we have also included a figure σ(Error), in Table 2 intended to directly measure this 

effect. This σ (Error) column is the standard deviation of the difference between the in situ TB values and 

the original and deconvolved TB values. Inspecting these standard deviations we see that for every FWater bin 

in both polarizations and both frequency bands, except the 0-5% bins in the 18 GHz band, the deconvolved 

TB values always have smaller σ (Error) values. Furthermore, while both observed and deconvolved 

distributions have generally increasing σ (Error) values (indicative of increasing physical distance between 

samples) the deconvolved TB,Land σ (Error) values increase far slower with increasing FWater (indicative of 

less error in general). That, once again, indicates that the deconvolution algorithm is removing at least some 

part of the water contamination. These trends are also reflected in the RMSE values, which contain a 

mixture of the bias and σ (Error) signals we have already discussed. 

 

 

6.   DISCUSSION 

 

Both our in situ based and Monte Carlo based analyses provide strong process in removing the 

water component from the observed TBs in cases of mixed land and water passive microwave radiometer 

FOVs. Our best estimates for the additional noise introduced by the technique itself, 1.8-2.6 K, come from 

the control bins of our Monte Carlo analysis. Under the ideal circumstances presented by the Monte Carlo 

simulated data, our deconvolution algorithm removed nearly all water contamination signal from both 10.7 

GHz channels while keeping the RMSE under 5 K for FWater values of up to 30%. This would certainly 

indicate a potential to undertake soil moisture retrievals nearly up to the coastline if this technique is used. 

 

The results provided by our in situ analysis are less promising, but they are also entangled in 

geographic colocation problems that confuse our results. Still, we can confidently say that the in situ 

analysis shows that at least some component of the water signal contamination is being removed 

successfully by the deconvolution process. Additionally, the bias and RMSE values remain high in the in 

situ 10 GHz and 18 GHz control bins. When looking at the slope of the distributions the reason becomes 

apparent. Our RTM TB values display a larger dynamic range than the corresponding radiometer observed 

TBs. Thus, our distributions, which start on the 1:1 correlation line at high TB values stray from the line as 

the observed TB value falls. This trend is also apparent, though less obvious, in every other FWater bin. This 

shortcoming in our RTM modeling unfortunately introduces a systematic error into our analysis which 

raises the bias and RMSE values and partially obscures the results we are seeking. However, despite this 

effect RMSE values remain below 10 K for vertically polarized channels and below 13 K in the horizontally 

polarized channels. We can therefore argue that, absent this effect, the deconvolution algorithm should 

produce deconvolved land component TBs with even better bias and RMSE values. 
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Table 2 –  Pearson correlation coefficient (R), bias, and root mean squared error (RMSE) values for the deconvolved land 

component TB values (TB,Land) and the original observed TB values (TB,Obsv) compared to land component TB values generated from 

in situ data via NRL's land retrieval algorithm forward radiative transfer model. Comparisons were made for TBs simulating both 

vertical and horizontal polarizations in WindSat's 10.7 and 18.7 GHz frequency bands and are broken up into six bins depending 

on each observation's antenna gain pattern weighted water fraction value (FWater). The average distance between the center of the 

samples' FOVs and the geographic center of the in situ network (𝐷) is also displayed. 

 

 
 

 
 

 

 

7.   CONCLUSIONS 

 

This report describes our technique to extend satellite based passive microwave observations into 

geographic regions previously excluded from reliable soil moisture retrievals through the development of 

a deconvolution algorithm for microwave radiometer TB observations. Our approach separates passive 

microwave emissions from land and water based on surface information from Vis/IR data resulting in 

significantly improved agreement between deconvolved WindSat observations and modeled TBs based on 

in situ soil moisture measurements in coastal areas. Although we were not able to provide a direct 
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comparison between our deconvolved land component TBs and directly observed land TBs, e.g. those 

gathered from an airborne passive microwave radiometer, we did present strong evidence that our technique 

could prove useful in future passive microwave satellite radiometer TB retrievals in coastal areas. We hope 

that this provides the impetus for future exploration and further validation of this technique. Indeed, we 

believe that passive microwave component deconvolution could become a powerful tool for enhancing 

satellite based passive microwave environmental retrievals, including extending accurate soil moisture 

retrievals to coastal areas that are not currently reliably observed. 

 

 

8. APPENDIX – SPATIAL RESOLUTION 
 

This appendix details how we determined that 1 km resolution is a sufficient spatial resolution for 

the Vis/IR derived water fraction data used in our deconvolution method. In order to determine the 

necessary resolution for the Vis/IR derived water fraction data used in our deconvolution method, we need 

to investigate two related effects. The first is, “How much does a coarser sampling impact the accuracy of 

the approximation of a continuous integral by a discreet summation that we made in Eq(8)?" The second 

is, “How do errors in the accuracy of our water fraction estimation, introduced via coarsening spatial 

resolution of Vis/IR observation, affect the accuracy of our deconvolution?" 

 

To answer the first question, we started with the twenty-five 15 m resolution binary land/water and 

vegetation masks we discussed in Section 4. For each master mask, we created a corresponding 30, 250, 

500, and 1000 m resolution water fraction map by assigning each 15 m water covered binary pixel a value 

of 100 and each land covered binary pixel a value of 0 then averaging 2x2, 16x16, 32x32, and 64x64 blocks 

of pixels respectively and assigning the average value to the corresponding downscaled pixel. Next, we 

computed convolved TB,Sim values for our 225,000 WindSat observations using each of the 15 m maps and 

Eq(11). In order to eliminate noise from the deconvolution technique itself, we used constant but physically 

realistic values of τB,Water = 93.62 K for each binary water covered pixel and τB,Water = 236.46 K for each land 

covered pixel. We then used each of the corresponding lower resolution maps as the Vis/IR water fraction 

data source in the deconvolution algorithm and attempted to recover the fixed TB,Land and TB,Water values at 

each resolution. A block diagram of this process is illustrated in Figure A.8. The resulting component TBs 

were then compared to the fixed τB,Water and τB,Water values respectively. This resulted in both biases and 

RMSEs of less than 0.10 K for all resolutions. Thus, the summation approximation is valid even at Vis/IR 

spatial scales of 1 km. Given the aforementioned expected error rate for water fraction estimation is 4.4% 

and this analysis, we concluded that using a 1 km spatial resolution scale for our Vis/IR data products was 

the best option, as it reduced our computing resource requirements and would have little effect on the 

deconvolution accuracy. 

 

To answer the second question, we looked to the worst case error scenario for water fraction 

estimation. To simulate the case in which we can only grossly estimate a Vis/IR pixel as all land or all 

water, we again deconvolved the TB,Sims generated using the 15 m master land/water masks. However, this 

time we used binary maps in which, at each resolution, we rounded each pixel either up to a 100% or down 

to a 0% water fraction value depending on whether the average value was greater or less than 50%. Table 

A.3 shows the biases and RMSEs for the resulting TB,Land and TB,Water values when compared to the static 

τB,Water and τB,Water values. Biases for TB,Water and TB,Land raise steadily as spatial resolution gets coarser. The 

same is true for RMSE values, with the exception of the 30 m resolution masks, which produced 

anomalously high RMSE values. This can probably be explained by the fact that at 30 m resolutions there 

are quite a few mixed pixels in any given FOV, while the higher resolution 250 m masks have fewer mixed 

pixels introducing errors. The 1 km masks have the fewest mixed pixels, but the errors from said pixels 

introduce correspondingly larger errors. 
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Fig. 8 –This diagram shows the procedure for testing the spatial resolution required for water fraction data. Master water masks 

(15 m resolution) are used to generate spatially downgraded 30, 250, 500, and 1000 m water masks. The 15 m masks are then used 

to artificially convolve simulated observable TB values (TB,Sims) and the downgraded masks are subsequently used to deconvolve 

them back into land component TB values (TB,Lands). 

 

 

 

 

Table 3 – TB bias and root mean squared error values for different spatial resolutions of binary water masks used in deconvolution 

algorithm when compared to simulated 15 m resolution truth data. 
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