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1. Introduction

1.1. Research Objectives

As part of this research program, we proposed to develop a unified stochastic dynamical

systems framework for nonlinear network systems. In particular, we concentrated on con-

trol algorithms to address agent interactions, cooperative and non-cooperative control, task

assignments, resource allocations, and system optimality. To realize these tasks, appropri-

ate sensory and cogitative capabilities such as adaptation, learning, decision-making, and

agreement (or consensus) on the agent and multiagent levels were developed. Application

areas include spacecraft stabilization, cooperative control of unmanned air vehicles, network

systems, and swarms of air and space vehicle formations.

1.2. Overview of Research

Recent technological advances in communications and computation have spurred a broad

interest in control of networks and control over networks. Network systems involve dis-

tributed decision making for coordination of networks of dynamic agents and address a broad

area of applications including cooperative control of unmanned air vehicles, microsatellite

clusters, mobile robotics, battle space management, and congestion control in communica-

tion networks. A key application area of multiagent network coordination within aerospace

systems is cooperative control of unmanned air vehicles for combat, surveillance, and recon-

naissance, and swarms of air and space vehicle formations for command and control between

heterogeneous air and space vehicles.

As part of our research over the last three and a half years [1–43], we developed stochas-

tic stability, dissipativity, and optimality notions for nonlinear stochastic dynamical sys-

tems. Specifically, we developed Lyapunov and converse Lyapunov theorems for stochastic

semistable nonlinear dynamical systems [5]. Semistability is the property whereby the solu-

tions of a stochastic dynamical system almost surely converges to (not necessarily isolated)

Lyapunov stable in probability equilibrium points determined by the system initial condi-

tions. This framework is used to capture communication uncertainty between agents in a

network, wherein the evolution of each link of the random network communication topology

follows a Markov process. Moreover, we developed stochastic dissipativity theory for non-

linear dynamical systems using basic input-output and state properties [9]. Specifically, a

stochastic version of dissipativity using both an input-output as well as a state dissipation

inequality in expectation for controlled Markov diffusion processes is presented. Then, we

1
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used these results to develop connections between stochastic dissipativity and stochastic op-

timal control to address robust stability and robust stabilization problems involving both

stochastic and deterministic uncertainty as well as both averaged and worst-case performance

criteria. In addition, we developed a unified framework to address the problem of optimal

nonlinear analysis and feedback control for partial stability and partial-state stabilization of

stochastic dynamical systems [8,12]. Finally, we developed a new and novel adaptive control

architecture for addressing security and safety in cyber-physical systems [6, 7, 13, 17,20,26].

To address the problem of optimal nonlinear analysis and feedback control for nonlinear

stochastic dynamical systems, we developed a unified framework for stochastic optimal con-

trol that focus on connections between stochastic Lyapunov theory and stochastic Hamilton-

Jacobi-Bellman theory [14]. In particular, we show that asymptotic stability in probability

of the closed-loop nonlinear system is guaranteed by means of a Lyapunov function that

can clearly be seen to be the solution to the steady-state form of the stochastic Hamilton-

Jacobi-Bellman equation and, hence, guaranteeing both stochastic stability and optimality.

In addition, we develop optimal feedback controllers for affine nonlinear systems using an

inverse optimality framework tailored to the stochastic stabilization problem. These results

are then used to provide extensions of the nonlinear feedback controllers obtained in the

literature that minimize general polynomial and multilinear performance criteria.

In addition, we addressed the consensus problem for a group of agent robots with a

connected, undirected, and time-invariant communication graph topology in the face of un-

certain interagent measurement data. Using agent location uncertainty characterized by

norm bounds centered at the neighboring agents’ exact locations, we showed that the agents

reach an approximate consensus state and converge to a set centered at the centroid of the

agents’ initial locations [11].

Moreover, we developed stability margins for optimal and inverse optimal stochastic feed-

back regulators [23]. Specifically, gain, sector, and disk margin guarantees are obtained for

nonlinear stochastic dynamical systems controlled by nonlinear optimal and inverse optimal

Hamilton-Jacobi-Bellman controllers that minimize a nonlinear-nonquadratic performance

criterion with cross-weighting terms. Furthermore, using the newly developed notion of

stochastic dissipativity [9] we derive a return difference inequality to provide connections be-

tween stochastic dissipativity and optimality of nonlinear controllers for stochastic dynamical

systems. In particular, using extended Kalman-Yakubovich-Popov conditions characterizing

stochastic dissipativity we show that our optimal feedback control law satisfies a return dif-

ference inequality predicated on the infinitesimal generator of a controlled Markov diffusion

process if and only if the controller is stochastically dissipative with respect to a specific

2
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quadratic supply rate.

Furthermore, we developed constructive finite time stabilizing feedback controllers for

stochastic dynamical systems driven by Wiener processes based on the existence of a stochas-

tic control Lyapunov function. Necessary and sufficient conditions for such controllers are

developed and a universal inverse optimal feedback control law for nonlinear stochastic dy-

namical systems that possesses guaranteed gain and phase margins is derived. The framework

is applied to the control of thermoacoustic combustion instabilities in jet engines [24].

We also developed distributed state and output feedback adaptive consensus control

protocols for addressing networked multiagent systems subject to exogenous stochastic dis-

turbances and sensor and actuators attacks [20, 26]. Specifically, for a class of linear leader-

follower multiagent systems with an undirected communication topology we develop state

and output feedback adaptive control design protocols for each follower agent to address

malicious attacks on the actuator signals of the follower agents as well as sensor attacks

on the state and output neighborhood synchronization error measurements. The proposed

adaptive controllers guarantee uniform ultimate boundedness of the state tracking error for

each agent in a mean-square sense. Several designs involving multiple aircraft consensus

control problems are presented to demonstrate the efficacy of the proposed adaptive control

architectures.

Moreover, we developed a dynamical systems formulation of stochastic thermodynam-

ics [16]. This research lays down the theoretical foundation necessary for developing a

thermodynamics-based control framework for stochastic consensus problems by addressing

random communication between agents in the network, wherein the evolution of each link

of the random network follows a Markov process. More specifically, this framework is be-

ing used to develop almost sure consensus for multiagent systems with nonlinear stochastic

dynamics under distributed nonlinear consensus protocols. In particular, we are developing

almost sure convergence and stochastic Lyapunov stability properties to address almost sure

semistability requiring the trajectories of a stochastic nonlinear system to converge almost

surely to a set of equilibrium solutions, wherein every equilibrium solution in the set is almost

surely Lyapunov stable. This will allow us to extend the deterministic thermodynamics-

based control framework developed under previous AFOSR support to a stochastic setting

and consequently derive (asymptotic and finite-time) convergence conditions for agreement

problems of multiple agents with nonlinear stochastic dynamics over random networks and

under nonlinear consensus protocols.

Furthermore, we completed a book on thermodynamics titled A Dynamical Systems The-

ory of Thermodynamics [44]. Although this book is written for the mathematical physics

3
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community, its relevance to network control systems is paramount. Specifically, it lays

down the theoretical foundation necessary for developing a thermodynamics-based control

framework for deterministic and stochastic consensus problems by addressing communication

uncertainty between agents in the network.

Finally, we are in the process of completing yet another book on Stochastic Nonlin-

ear Control: Stability, Dissipativity, and Optimality, which will be appearing in Princeton

University Press [45]. This monograph develops stability theory, dissipativity theory, and

optimal feedback control architectures for nonlinear stochastic dynamical systems.

1.3. Goals of this Report

The main goal of this report is to summarize the progress achieved under the program

during the past three and a half years. Since most of the technical results appeared or will

soon appear in over 40 archival journal and conference publications, we shall only summarize

these results and remark on their significance and interrelationship.

2. Description of Work Accomplished

The following partial research accomplishments have been completed over the past three

and a half years.

2.1. Nonlinear-Nonquadratic Optimal and Inverse Optimal Con-
trol for Stochastic Dynamical Systems

Under certain conditions nonlinear controllers offer significant advantages over linear

controllers. In particular, if the plant dynamics and/or system measurements are non-

linear, the plant/measurement disturbances are either nonadditive or non-Gaussian, the

performance measure considered in nonquadratic, the plant model is uncertain , or the con-

trol signals/state amplitudes are constrained, then nonlinear controllers yield better perfor-

mance than the best linear controllers. The current status of deterministic continuous-time,

nonlinear-nonquadratic optimal control problems is presented in [46] in a simplified and tu-

torial manner. The basic underlying ideas of the results in [46] are based on the fact that

the steady-state solution of the Hamilton-Jacobi-Bellman equation is a Lyapunov function

for the nonlinear system and thus guaranteeing both stability and optimality.

Building on the results of [46], in this research [14] we present a framework for analyzing

and designing feedback controllers for nonlinear stochastic dynamical systems. Specifically,

4
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we consider a feedback stochastic optimal control problem over an infinite horizon involving

a nonlinear-nonquadratic performance measure. The performance measure can be evaluated

in closed form as long as the nonlinear-nonquadratic cost functional considered is related

in a specific way to an underlying Lyapunov function that guarantees asymptotic stability

in probability of the nonlinear closed-loop system. This Lyapunov function is shown to be

the solution of the steady-state stochastic Hamilton-Jacobi-Bellman equation. The overall

framework provides the foundation for extending linear-quadratic control for stochastic dy-

namical systems to nonlinear-nonquadratic problems with polynomial and multilinear cost

functionals.

Our approach focuses on the role of the Lyapunov function guaranteeing stochastic sta-

bility of the closed-loop system and its seamless connection to the steady-state solution of the

stochastic Hamilton-Jacobi-Bellman equation characterizing the optimal nonlinear feedback

controller. In order to avoid the complexity in solving the stochastic steady-state, Hamilton-

Jacobi-Bellman equation we do not attempt to minimize a given given cost functional, but

rather, we parameterize a family of stochastically stabilizing controllers that minimizes a

derived cost functional that provides the flexibility in specifying the control law. This cor-

responds to addressing an inverse optimal stochastic control problem.

The inverse optimal control design approach provides a framework for constructing the

Lyapunov function for the closed-loop system that serves as an optimal value function and, as

shown in [23], achieves desired stability margins. Specifically, nonlinear inverse optimal con-

trollers that minimize a meaningful nonlinear-nonquadratic performance criterion involving

a nonlinear-nonquadratic, nonnegative-definite function of the state and a quadratic positive-

definite function of the feedback control are shown to possess sector margin guarantees to

component decoupled input nonlinearities in the conic sector (1
2
,∞).

2.2. Dissipativity Theory for Nonlinear Stochastic Dynamical Sys-
tems

Many physical and engineering systems are open systems, that is, the system behavior

is described by an evolution law that involves the system state and the system input with,

possibly, an output equation wherein past trajectories together with the knowledge of any

inputs define future trajectories (uniquely or nonuniquely) and the system output depends

on the instantaneous (present) values of the system state. Dissipativity theory is a system-

theoretic concept that provides a powerful framework for the analysis and control design of

open dynamical systems based on generalized system energy considerations. In particular,

dissipativity theory exploits the notion that numerous physical dynamical systems have

5
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certain input-output and state properties related to conservation, dissipation, and transport

of mass and energy.

Such conservation laws are prevalent in dynamical systems, in general, and feedback

control systems, in particular. The dissipation hypothesis on dynamical systems results in

a fundamental constraint on the system dynamical behavior, wherein the stored energy of

a dissipative dynamical system is at most equal to sum of the initial energy stored in the

system and the total externally supplied energy to the system. Thus, the energy that can

be extracted from the system through its input-output ports is less than or equal to the

initial energy stored in the system, and hence, there can be no internal creation of energy;

only conservation or dissipation of energy is possible. This results in dissipative systems

providing strong links between physics, system theory, and control design.

In light of the fact that energy notions involving conservation, dissipation, and transport

also arise naturally for dissipative diffusion processes, it seems natural that dissipativity

theory can play a key role in the analysis and control design of stochastic dynamical sys-

tems. Specifically, as in the analysis of deterministic dynamical systems [46], dissipativity

theory for stochastic dynamical systems can involve conditions on drift and diffusion system

parameters that render an input, state, and output system dissipative. In addition, robust

stability for stochastic dynamical systems with stochastic uncertainty can be analyzed by

viewing the uncertain stochastic dynamical system as an interconnection of stochastic dis-

sipative dynamical subsystems. Alternatively, stochastic dissipativity theory can be used

to design feedback controllers that add dissipation and guarantee stability robustness in

probability allowing stochastic stabilization to be understood in physical terms. As for de-

terministic dynamical systems, stochastic dissipativity theory can play a fundamental role

in addressing stochastic robustness, risk-sensitive disturbance rejection, stability in proba-

bility of feedback interconnections, and optimality with averaged performance measurers for

stochastic dynamical systems.

In this research [9], a general theory of stochastic dissipativity and stochastic losslessness

involving connections between input-output and state properties, which include the notable

special cases of stochastic passivity and stochastic finite-gain nonexpansivity using extended

Kalman-Yakubovich-Popov conditions in terms of the drift and diffusion terms in the system

dynamics, and stability in probability of general feedback interconnections is developed.

Specifically, a stochastic version of dissipativity using both an input-output as well as a state

dissipation inequality in expectation for controlled Markov diffusion processes is presented.

Furthermore, we show that the average stored system energy in a dissipative stochastic

dynamical system is a supermartingale with respect to the system filtration and is bounded

6
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from below by the mean energy that can be extracted from the system and bounded from

above by the mean energy that can be delivered to the stochastic dynamical system in order

to transfer it from the origin to an arbitrary nonempty closed or open subset in the state space

over a finite stopping time. Moreover, we develop necessary and sufficient extended Kalman-

Yakubovich-Popov conditions in terms of the drift and diffusion dynamics for characterizing

stochastic dissipativity via two-times continuously differentiable storage functions.

Finally, using the concepts of stochastic dissipativity for stochastic dynamical systems

with appropriate storage functions and supply rates, we construct smooth Lyapunov func-

tions for stochastic feedback systems by appropriately combining the storage functions for

the forward and feedback subsystems. General stability criteria are given for Lyapunov,

asymptotic, and exponential mean square stability in probability for feedback interconnec-

tions of stochastic dynamical systems. These results generalize the feedback interconnection

result appearing in the literature, and in the case where the supply rate involves the net sys-

tem power or weighted input-output energy, these results provide extensions of the classical

positivity and small gain theorems to stochastic dynamical systems.

2.3. Stochastic Finite-Time Partial Stability, Partial-State Stabi-
lization, and Finite-Time Optimal Feedback Control

The notions of asymptotic and exponential stability in dynamical systems theory imply

convergence of the system trajectories to an equilibrium state over the infinite horizon. In

many applications, however, it is desirable that a dynamical system possesses the property

that trajectories that converge to a Lyapunov stable equilibrium state must do so in finite

time rather than merely asymptotically. In order to achieve convergence in finite time for de-

terministic dynamical systems, the closed-loop system dynamics need to be non-Lipschitzian

giving rise to non-uniqueness of solutions in backward time. Uniqueness of solutions in for-

ward time, however, can be preserved in the case of finite-time convergence.

For deterministic dynamical systems, finite-time stabilization, that is, the problem of

finding state-feedback control laws that guarantee finite-time stability of the closed-loop sys-

tem, as well as the problem of partial-state stabilization, wherein stabilization with respect

to a subset of the system state variables is desired has been considered by the Principle

Investigator [2,3]. In this research [8,12], we extend this framework to address the combined

problem of optimal finite-time, partial-state stochastic stabilization. Specifically, we address

these problems by considering a notion of optimality that is directly related to a given Lya-

punov function that is positive definite and decrescent with respect to part of the system

state, and satisfies a differential inequality involving fractional powers. In particular, an

7
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optimal finite-time, partial-state stochastic stabilization control problem is stated and suf-

ficient stochastic Hamilton-Jacobi-Bellman conditions are used to characterize an optimal

feedback controller.

The steady-state solution of the stochastic Hamilton-Jacobi-Bellman equation is clearly

shown to be a Lyapunov function for part of the closed-loop system state that guarantees

both finite-time partial stability in probability and optimality. In addition, we explore con-

nections of our approach with inverse optimal control, wherein we parametrize a family of

finite-time, partial-state stabilizing stochastic feedback controllers that minimize a derived

cost functional. Another important application of deterministic partial stability and partial

stabilization theory is the unification it provides between time-invariant stability theory and

stability theory for time-varying systems [46]. We exploit this unification and specialize

our results to address the problem of optimal finite-time control for nonlinear time-varying

stochastic dynamical systems [12].

2.4. Stochastic Differential Games and Inverse Optimal Control
and Stopper Policies

Differential games have been studied in various contexts in the literature including risk-

sensitive control, mathematical finance, communication networks, and network resource al-

location. The pioneering work on the subject involved a deterministic two-player, zero-sum

differential game problem whose solution is characterized by the Hamilton-Jacobi-Isaacs

equation. This work was extended to a stochastic setting, wherein the lower and the up-

per value functions of this game satisfy the dynamic programming principle. Specifically,

the lower and the upper value functions of this game are the unique viscosity solutions of

the associated stochastic Hamilton-Jacobi-Isaacs equation. Furthermore, it was shown that

these solutions coincide under the Isaacs minimax condition. These results have further been

extended by relaxing the minimax Isaacs condition and considering a saddle point property

that generates approximately optimal control strategies for the maximizing and minimiz-

ing players. In particular, even though both players choose specific strategies, in the upper

game characterized by the upper value function the strategies chosen by the minimizer are

restricted to a subclass of Elliott-Kalton strategies.

Building on our recent research [14], in this research [19] we present a two-player stochas-

tic differential game framework for designing optimal feedback control and stopper policies for

each player. Specifically, we consider feedback stochastic optimal control policies for attain-

ing higher utilities or lower costs over an infinite horizon involving a nonlinear-nonquadratic

performance functional. The performance functional can be evaluated in closed form as

8
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long as the nonlinear-nonquadratic cost functional considered is related in a specific way

to an underlying Lyapunov function that guarantees asymptotic stability in probability of

the nonlinear differential game problem. This Lyapunov function is shown to be the solu-

tion of the steady-state stochastic Hamilton-Jacobi-Isaacs equation. The overall framework

provides the foundation for extending linear-quadratic controller and stopper policies for

stochastic differential games to nonlinear-nonquadratic differential games with polynomial

and multilinear cost functionals.

Our approach focuses on the role of the Lyapunov function guaranteeing stochastic stabil-

ity of the differential game and its connection to the steady-state solution of the stochastic

Hamilton-Jacobi-Isaacs equation characterizing the optimal nonlinear feedback controller

and stopper policies. In order to avoid the complexity in solving the stochastic steady-

state, Hamilton-Jacobi-Isaacs equation we do not attempt to minimize/maximize a given

cost functional, but rather, we parameterize a family of stochastically stabilizing controller

and stopper policies that minimizes/maximizes a derived cost functional and provides the

flexibility in specifying the control and stopper policies. This corresponds to addressing an

inverse optimal stochastic differential game problem.

2.5. Implications of Dissipativity, Inverse Optimal Control, and
Stability Margins for Nonlinear Stochastic Regulators

As discussed in Section 2.1, in recent research [14] we presented a framework for analyz-

ing and designing feedback controllers for nonlinear stochastic dynamical systems. Specifi-

cally, a stochastic feedback control problem over an infinite horizon involving a nonlinear-

nonquadratic performance functional was considered and the performance functional was

evaluated in closed form as long as the nonlinear-nonquadratic cost functional considered

was related in a specific way to an underlying Lyapunov function that guarantees asymptotic

stability in probability of the nonlinear closed-loop system. Furthermore, the Lyapunov func-

tion was shown to be the solution of the steady-state stochastic Hamilton-Jacobi-Bellman

equation. The overall framework provides the foundation for extending stochastic linear-

quadratic control to nonlinear-nonquadratic problems.

Using the framework developed in [14], in this research [23] we derive stability margins for

optimal and inverse optimal nonlinear stochastic feedback regulators. Specifically, sufficient

conditions for gain, sector, and disk margin guarantees are obtained for nonlinear stochastic

dynamical systems controlled by nonlinear optimal and inverse optimal Hamilton-Jacobi-

Bellman controllers that minimize a nonlinear-nonquadratic performance criterion with cross-

weighting terms. In the case where the cross-weighting term in the performance criterion is

9
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deleted our results recover the gain, sector, and disk margins for the deterministic optimal

control problem presented in the literature.

Alternatively, retaining the cross-terms in the performance criterion and specializing the

optimal nonlinear-nonquadratic problem to a stochastic linear-quadratic problem with a

multiplicative noise disturbance, our results recover the analogous gain and phase margins

for the deterministic linear-quadratic optimal control problem. Even though the inclusion

of cross-weighting terms in the performance criterion is shown to degrade gain, sector, and

disk margins, the extra flexibility provided by the cross-weighting terms makes it possible

to guarantee optimal and inverse optimal nonlinear controllers that may be far superior in

terms of transient performance over meaningful inverse optimal controllers.

Finally, using the newly developed notion of stochastic dissipativity for controlled Markov

diffusion processes characterized via extended Kalman-Yakubovich-Popov conditions in terms

of the drift and diffusion dynamics developed in our earlier research [9], we provide explicit

connections between stochastic stability margins, stochastic meaningful inverse optimality,

and stochastic dissipativity with respect to a specific quadratic supply rate. Specifically, we

derive a stochastic counterpart to the classical return difference inequality for continuous-

time systems with continuously differentiable flows for stochastic dynamical systems and

provide connections between stochastic dissipativity and optimality for stochastic nonlin-

ear controllers. In particular, we show an equivalence between stochastic dissipativity and

optimality holds for stochastic dynamical systems. Specifically, we show that an optimal

nonlinear feedback controller φ(x) satisfying a return difference condition predicated on the

infinitesimal generator of a controlled Markov diffusion process is equivalent to the fact

that the stochastic dynamical system with input u and output y = −φ(x) is stochastically

dissipative with respect to a supply rate of the form [u+ y]T[u+ y]− uTu.

2.6. Universal Feedback Controllers and Inverse Optimality for
Nonlinear Stochastic Dynamical Systems

The consideration of Lyapunov functions for proving stability of feedback dynamical sys-

tems is one of the cornerstones of systems and control theory. For dynamical systems with

continuously differentiable flows, the concept of smooth control Lyapunov functions was de-

veloped by Artstein to show the existence of a feedback stabilizing controller. A constructive

feedback control law based on a universal construction of smooth control Lyapunov functions

was given by Sontag. An extended notion of nonsmooth control Lyapunov functions as well

as a universal feedback controller for discontinuous dynamical systems based on the exis-

tence of nonsmooth Lyapunov functions defined in the sense of generalized Clarke gradients
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and set-valued Lie derivatives was developed by the Principal Investigator under previous

AFOSR support.

The aforementioned results on control Lyapunov functions along with the constructive

feedback control laws predicated on these generalized energy functions are developed for

deterministic dynamical systems. In numerous applications where dynamical models are

used to describe the behavior of natural and engineering systems, stochastic components

and random disturbances are often incorporated into the models. The stochastic aspects of

the models are used to quantify system uncertainty as well as the dynamic relationships of

sequences of random events between system-environment interactions. In this research [24],

we provide Lyapunov-like techniques for stochastic stabilization. Specifically, asymptotic

stability in probability of affine in the control stochastic dynamical systems using stochas-

tic control Lyapunov functions leading to the existence of smooth, except possibly at the

equilibrium point of the system, stochastically stabilizing feedback control laws are provided.

Furthermore, we build on the results of [9] as well as on the recent stochastic finite time

stabilization framework of [8] to develop a constructive universal feedback control law for

stochastic finite time stabilization of stochastic dynamical systems. In addition, we present

necessary and sufficient conditions for continuity of such controllers. Finally, we show that

for every nonlinear stochastic dynamical system for which a stochastic control Lyapunov

function can be constructed there exists an inverse optimal feedback control law in the sense

of with guaranteed sector and gain margins of (1
2
,∞).

2.7. Energy-Based Feedback Control for Stochastic Dynamical Sys-
tems

In numerous applications where dynamical system models are used to describe the be-

havior of natural and engineering systems, stochastic components and random disturbances

are typically incorporated into the models. The stochastic aspects of the models are used to

quantify system uncertainty and system disturbances as well as the dynamic relationships of

sequences of random events between system-environment interactions. In recent research [9],

we extend classical deterministic dissipativity theory to nonlinear stochastic dynamical sys-

tems using basic input-output and state properties. Specifically, a stochastic version of

dissipativity theory using both an input-output as well as a state dissipation inequality in

expectation for controlled Markov diffusion processes is presented.

Dissipativity theory and in particular passivity-based control frameworks for determin-

istic port-controlled Hamiltonian systems using energy shaping have been developed in the

literature (see [46] and the numerous references therein). Specifically, researchers have de-
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veloped a control design methodology that achieves stabilization via system passivation. In

light of the fact that energy notions involving conservation, dissipation, and transport of en-

ergy also arise naturally for dissipative diffusion processes, it seems natural that dissipativity

theory can play a key role in the control design of stochastic dynamical systems. Specifi-

cally, stochastic dissipativity and passivity theory can be used to design feedback controllers

that add dissipation and guarantee stability robustness in probability allowing stochastic

stabilization to be understood in physical terms.

In this research [18], we use the stochastic stability and dissipativity framework devel-

oped in [9] to extend the deterministic passivity-based control framework for port-controlled

Hamiltonian systems to nonlinear stochastic port-controlled Hamiltonian systems. Specifi-

cally, an energy-based control framework for stochastic port-controlled Hamiltonian systems

is developed using a stochastic controller design methodology that achieves stabilization

via stochastic system passivation. The interconnection and damping matrix functions of

the stochastic port-controlled Hamiltonian system are shaped so that the physical (Hamilto-

nian) system structure is preserved at the closed-loop level and the closed-loop average energy

function is equal to the difference between the average physical energy of the system and

the average energy supplied by the controller. Since the Hamiltonian structure is preserved

at the closed-loop level, the passivity-based stochastic controller is robust with respect to

unmodeled passive dynamics. Passivity-based control architectures are extremely appealing

since the control action has a clear physical energy interpretation, which can considerably

simplify controller implementation.

Finally, we also consider energy-based dynamic controllers for stochastic port-controlled

Hamiltonian systems, wherein energy shaping is achieved by combining the physical energy of

the plant and the emulated energy of the feedback controller. For deterministic systems, this

approach has been extensively studied by Ortega et al. to design Euler-Lagrange controllers

for potential energy shaping of mechanical systems.

2.8. Lyapunov and Converse Lyapunov Theorems for Stochastic
Semistability

As noted in Section 2.6, in numerous applications where dynamical models are used to

describe the behavior of natural and engineering systems, stochastic components and ran-

dom disturbances are incorporated into the models. The stochastic aspects of the models

are used to quantify system uncertainty as well as the dynamic relationships of sequences of

random events between system-environment interactions. For example, stochastic modeling

can be used to capture communication uncertainty between agents in a network, wherein
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the evolution of each link of the random network communication topology follows a Markov

process. In this case, the development of almost sure consensus of multiagent systems with

nonlinear stochastic dynamics under distributed nonlinear consensus protocols is necessary.

And from a practical viewpoint, it is not sufficient to only guarantee that the network almost

surely converges to a state of consensus since steady-state convergence is not sufficient to

guarantee that small perturbations from the limiting state will lead to only small transient

excursions from a state of consensus. It is also necessary to guarantee that the equilib-

rium states representing consensus are Lyapunov stable in probability, and consequently,

stochastically semistable.

In this research [5], we extend the notion of semistability to nonlinear stochastic systems

involving Markov diffusion processes that have a continuum of equilibrium solutions. In

particular, we develop almost sure convergence and stochastic Lyapunov stability properties

to address almost sure semistability requiring the trajectories of a nonlinear stochastic dy-

namical system to converge almost surely to a set of equilibrium solutions, wherein every

equilibrium solution in the set is almost surely Lyapunov stable. Furthermore, we provide

necessary and sufficient Lyapunov conditions for semistability and show that semistability

implies the existence of a continuous Lyapunov function whose infinitesimal generator de-

creases along the dynamical system trajectories and is such that the Lyapunov function

satisfies inequalities involving the average distance to the set of equilibria.

2.9. A Conservation-Based Distributed Control Architecture for
Network Consensus with Communication Uncertainty

As noted in Section 1, recent technological advances in communications and computation

have spurred a broad interest in control of networks and control over networks. Network sys-

tems involve distributed decision-making for coordination of networks of dynamic agents and

address a broad area of applications including cooperative control of unmanned air vehicles

(UAV’s) and autonomous underwater vehicles (AUV’s) for combat, surveillance, and recon-

naissance, distributed reconfigurable sensor networks for managing power levels of wireless

networks, air and ground transportation systems for air traffic control and payload transport

and traffic management, swarms of air and space vehicle formations for command and con-

trol between heterogeneous air and space vehicles, and congestion control in communication

networks for routing the flow of information through a network.

To enable the applications for these multiagent systems, cooperative control tasks such as

formation control, rendezvous, flocking, cyclic pursuit, cohesion, separation, alignment, and

consensus have been developed in the literature. To realize these tasks, individual agents need
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to share information of the system objectives as well as the dynamical network. In particular,

in many applications involving multiagent systems, groups of agents are required to agree on

certain quantities of interest. Information consensus over static and dynamic information-

exchange topologies guarantees agreement between agents for a given coordination task.

Distributed consensus algorithms involve neighbor-to-neighbor interaction between agents,

wherein agents update their information state based on the information states of the neigh-

boring agents. A unique feature of the closed-loop dynamics under any control algorithm

that achieves consensus in a dynamical network is the existence of a continuum of equilib-

ria representing a state of consensus. Under such dynamics, the limiting consensus state

achieved is not determined completely by the dynamics, but depends on the initial system

state as well.

As noted in Section 2.8, in systems possessing a continuum of equilibria, semistability and

not asymptotic stability is the relevant notion of stability [5]. Semistability is the property

whereby every trajectory that starts in a neighborhood of a Lyapunov stable equilibrium

converges to a (possibly different) Lyapunov stable equilibrium. Semistability thus implies

Lyapunov stability, and is implied by asymptotic stability. As further noted in Section 2.8,

from a practical viewpoint, it is not sufficient to only guarantee that a network converges to

a state of consensus since steady state convergence is not sufficient to guarantee that small

perturbations from the limiting state will lead to only small transient excursions from a

state of consensus. It is also necessary to guarantee that the equilibrium states representing

consensus are Lyapunov stable, and consequently, semistable.

To capture network system uncertainty and communication uncertainty between the

agents in a network, wherein the evolution of each link of the network communication topol-

ogy follows a Markov process, in this research [21] we are developing almost sure consensus

protocols for multiagent systems with nonlinear stochastic dynamics. Specifically, we extend

the notion of semistability to nonlinear stochastic dynamical systems that posses a contin-

uum of equilibrium solutions to develop almost sure convergence and stochastic Lyapunov

stability properties. In particular, we address almost sure semistability requiring that the

sample trajectories of the stochastic nonlinear system almost surely converge to a set of equi-

librium solutions, wherein every equilibrium solution in the set is almost surely Lyapunov

stable. The proposed controller architecture is predicated on the recently developed notion

of dynamical thermodynamics [16, 44] resulting in controller architectures involving the ex-

change of generalized charge or energy between agents that guarantee that the closed-loop

dynamical network is consistent with basic thermodynamic principles.

Furthermore, we address almost sure finite time semistability requiring that the sample

14

DISTRIBUTION A: Distribution approved for public release



trajectories of the stochastic nonlinear system almost surely converge to a set of equilib-

rium solutions in finite time, wherein every equilibrium solution in the set is almost surely

Lyapunov stable. Specifically, we design distributed finite time consensus protocols for co-

operative control over random networks.

2.10. An Adaptive Control Architecture for Mitigating Sensor
and Actuator Attacks in Cyber-Physical Systems

The design and implementation of control law architectures for modeling and controlling

complex dynamical systems is a nontrivial control engineering task involving the consid-

eration and operation of computing and communication components interacting with the

physical system to be controlled. These complex dynamical systems merge the cyber-world

of computing and communications with the physical world, and are known as cyber-physical

systems. Cyber-physical systems are characterized by a large number of highly coupled

heterogeneous dynamic network components and have become ubiquitous in the control of

complex dynamical systems given the recent advances in embedded sensor, computation,

and communication technologies. Such systems include safety-critical aerospace systems,

power systems, communications systems, network systems, transportation systems, large-

scale manufacturing systems, integrative biological systems, economic systems, process con-

trol systems, and health-care systems, to name but a few examples.

In all of the aforementioned applications, reliable system analysis and decentralized con-

trol system design, with integrated verification and validation, are essential for providing high

system performance and reconfigurable system operation in the presence of system uncertain-

ties and system component failures. Even though cyber-physical systems are transforming

the way we are interacting with the physical world, they introduce several grand research

challenges. In particular, the complex, large-scale heterogeneous architectures and compo-

nents that are pervasive in cyber-physical systems demands system robustness, resiliency,

reliability, safety, and security for addressing the constantly changing and reconfiguring dy-

namics of these systems whose computation, information, and control processing is tightly

coupled with the physical process. And given that a wide range of cyber-physical systems

involve the use of open communication and computation platform architectures, they are

vulnerable to adversarial cyber-attacks that can have drastic societal ramifications.

In particular, attackers can gain access to sensing and actuation computing platforms

and manipulate system measurement data and control input commands to severely com-

promise system performance and integrity, and hence, security and safety in cyber-physical

systems is of paramount importance. In contrast to classical estimation and control prob-
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lems, wherein physical system variables cannot be measured directly due to sensor noise and

are typically assumed to fluctuate about their true value, controlled systems with measure-

ment and actuation devices that are hijacked and controlled by an adversarial entity that

actively engages to maximally degrade system information and control require new and novel

control algorithms to recover system performance.

In this research [6, 7, 13], we build on the solid foundation of adaptive control theory

to develop new adaptive control architectures that can foil malicious sensor and actuator

attacks. Specifically, we develop an adaptive controller for mitigating time-varying and

time-invariant, state-dependent sensor and actuator attacks. We show that the proposed

controller guarantees uniform ultimate boundedness of the closed-loop dynamical system

when the adversarial sensor and actuator attacks are time-varying and partial asymptotic

stability when the sensor and actuator attacks are time-invariant. Finally, we discuss the

practicality of the proposed approach and provide a representative model involving the lateral

directional dynamics of an aircraft to illustrate the efficacy of the proposed adaptive control

architecture.

2.11. Cyber-Physical System Security in the Face of Sensor-Actuator
Attacks and Stochastic Disturbances

In this research [17], we build on our previously supported AFOSR research on adaptive

control theory to develop new adaptive control architectures that can foil malicious sensor

and actuator attacks in the face of exogenous stochastic disturbances. Specifically, to address

the dynamic relationships of sequences of random events between system-environment inter-

actions, we extend our recent work on cyber-physical security and safety [6,7,13] to develop

an adaptive controller for mitigating time-invariant, state-dependent sensor and actuator at-

tacks subject to random disturbances modeled as Markov processes. Furthermore, we show

that the proposed controller guarantees uniform ultimate boundedness in probability of the

closed-loop stochastic dynamical system in a mean-square sense.

The proposed controller is composed of two components, namely a nominal controller

and an additive corrective signal. It is assumed that the nominal controller has been already

designed and implemented to achieve a desired closed-loop nominal performance. Using the

nominal controller, an additive adaptive corrective signal is designed and added to the output

of the nominal controller in order to suppress the effects of the sensor and actuator attacks.

Thus, the proposed controller is modular in the sense that there is no need to redesign the

nominal controller in the proposed framework; only the adaptive corrective signal is designed

using the available information from the nominal controller and the system.
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2.12. Adaptive Consensus Control Protocols for Leader-Follower
Air Vehicles subject to Sensor-Actuator Attacks

Leader-follower multiagent systems have a wide range of application in aerospace en-

gineering which includes surveillance, formation control, and search and rescue. In such

systems, the system information of different agents or air vehicles is exchanged through

communication channels represented by a given graph communication topology, and each

vehicle utilizes the information received from its neighbors for the control design protocol.

For multiple vehicle leader-follower consensus problems, most of the results in the literature

assume that at least a subset of the followers have access to the exact leader information as

well as each follower vehicle has exact measurements of all the neighboring follower vehicles.

However, in realistic situations, the leader information measured or received by the follower

vehicles may be corrupted due to an attack on the communication channel. In addition, fol-

lower vehicles may measure or receive erroneous information from the neighboring follower

vehicles.

In this research [26], we extend our recent work in [20] to develop a distributed state

and output feedback adaptive control architecture that can foil malicious sensor and ac-

tuator attacks in the face of exogenous stochastic disturbances and sensor and actuator

attacks. Specifically, for a class of linear multiagent systems with an undirected communica-

tion graph topology we develop a state and output neighborhood synchronization error for

the distributed state and output feedback adaptive control protocol designs of each follower

to account for actuator and sensor attacks on the leader output as well as all of the follower

agent in the network.

Unlike the results in the literature, which assume a state feedback architecture and the

neighborhood synchronization error is accurately available to the agents, in the present re-

search [26] we address information uncertainty between the follower agents as well as the

leader agent and consider a general dynamic output feedback control architecture. The

proposed state and output feedback adaptive controllers guarantee uniform ultimate bound-

edness in probability of the state tracking error for each follower agent in a mean-square

sense. Finally, to show the efficacy of our adaptive control consensus architecture, we pro-

vide several illustrative numerical examples involving the lateral directional dynamics of an

aircraft group of agents subject to state-dependent atmospheric drag disturbances and sensor

and actuator attacks.
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2.13. An Adaptive Learning and Control Architecture for Con-
nected Autonomous Vehicle Platoons

The problem of control design of vehicle platoons has attracted considerable attention

among researchers in the field of control, optimization, and communication. Given the

increasing number of transportation congestion and accidents world-wide, extensive research

efforts have been devoted to increasing the adaptation, autonomy, connectivity, safety, and

reliability of vehicular platoon control systems. Connected networks of vehicles often involve

distributed decision-making for coordination involving information flow enabling enhanced

operational effectiveness via cooperation.

It is evident that as the technology and complexity of autonomous vehicles evolves, several

grand research challenges need to be addressed. These include securing the autonomous

vehicle from malicious cyber attacks that might increase engine revolutions per minute,

disabling a cylinder or even disengaging the engine completely, activating airbags while

driving to obscure vision, tampering with the breaking system causing skidding or preventing

the braking system from being engaged when driving, setting the vehicle data display to

an erroneous speed so that the driver is unaware that they are violating speed limits, or

instigating a malfunction in the vehicle’s position system.

The design and implementation of a secure control framework for connected autonomous

transportation systems is a nontrivial task involving the consideration and operation of com-

puting and communication components interacting with the physical, cyber, and human-

in-the-loop processes. Even though adaptive control can be used to address autonomous

networked systems, the pervasive security and safety challenges underlying connected au-

tonomous transportation systems place additional burdens on standard adaptive control

methods. Specifically, although adaptive control and learning architectures have been used

in numerous applications to achieve stability and improve system performance, their standard

architectures are not designed to address adversarial actuator, sensor, and communication

attacks.

In recent research [6,7,13,17], we have developed new adaptive control architectures that

can foil malicious sensor and actuator attacks for linear systems. The proposed adaptive

control frameworks provide an integrated alternative to traditional methods inspired by

fault detection, isolation, and recovery. More specifically, the proposed architectures utilize

adaptive control theory to effectively address malicious sensor and actuator attacks and

enable adaptive autonomy. Unlike other approaches focusing on fault detection, isolation,

and recovery, our framework is not only computationally inexpensive but also do not require

boundedness of all of the compromised closed-loop system signals. In addition, we can
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account for sensor and actuator attacks that can corrupt all or part of the available sensor

and actuator signals simultaneously; that is, we do not assume that only a subset of the

sensor and actuator channels are corrupted at any given time. Furthermore, we do not

assume that the sensor and actuator attacks are constrained to a particular model, which

does not necessarily capture a realistic behavior of an attacker. Finally, unlike the results in

the literature, which only consider steady-state operation models, our framework can address

transient performance as well as steady-state system stability and performance.

In this research [25, 41], we build on the adaptive control framework of [17] to develop

an adaptive controller for a team of connected vehicles subject to time-invariant, state-

dependent sensor and actuator attacks. The proposed controller guarantees uniform ultimate

boundedness of the closed-loop networked system. The adaptive controller is composed

of two components, namely a nominal controller and an additive corrective signal. It is

assumed that the nominal controller has been already designed and implemented to achieve a

desired closed-loop nominal performance. Using the nominal controller, an additive adaptive

corrective signal is designed and added to the output of the nominal controller in order to

suppress the effects of the sensor and actuator attacks. Thus, the proposed controller is

modular in the sense that there is no need to redesign the nominal controller in the proposed

framework; only the adaptive corrective signal is designed using the available information

from the nominal controller and the system.

To account for variability in the system model parameters for different drivers, we addi-

tionally present an adaptive learning framework for identifying the state space model using

input-output data. Specifically, a concurrent learning algorithm is employed to identify the

model parameters under a relaxed excitation condition rather than the classical presistency

of excitation condition.

3. Research Personnel Supported

Faculty

Wassim M. Haddad, Principal Investigator

Graduate Students

T. Rajpurohit, Ph. D, and X. Jin, Ph. D.

Two Ph. D. dissertations were completed under partial support of this program; namely:
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T. Rajpurohit, Stochastic Nonlinear Control: A Unified Framework for Stability,
Dissipativity, and Optimality, July 2018.

X. Jin, Cyber-Physical System Security, Optimal Control, and Consensus Protocols
for Nonlinear Stochastic Systems, July 2019.

Dr. Rajpurohot has accepted a position with Genpact Inovation as Vice President for

Artificial Intelligent Systems, Palo Alto, CA, and Dr. Jin has accepted a position as an

Assistant Professor with the Department of Mechanical Engineering at the University of

Kentucky, Lexington, KY.

4. Interactions and Transitions

4.1. Participation and Presentations

The following conferences were attended over the past three years.

American Control Conference, Boston, MA, July 2016.

IEEE Conference on Decision and Control, Las Vegas, NV, December 2016.

American Control Conference, Seatle, WA, May 2017.

American Control Conference, Milwaukee, WI, June 2018.

IEEE Conference on Decision and Control, Miami, FL, December 2018.

Furthermore, conference articles [27–43] were presented.

4.2. Transitions

Our work partially supported under this program has resulted in the startup company

Autonomous Healthcare, Inc. with the Principal Investigator serving as chief scientific ad-

visor and Dr. Behnood Gholami (678-886-6400) serving as the chief executive officer and

running the daily affairs of the company. Autonomous Healthcare, Inc. is accelerating the

use of information technology in healthcare. Its innovative solutions help reduce intensive

care unit costs and increase quality of care. Its core technology utilizes mathematical mod-

eling to predict patient outcome and improve quality of care. The technology provides an

efficient method to analyze and interpret patient data already available at the hospitals. For

further details see [47].
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