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Objectives

This program focused on the synthesis of physical and reduced-order model development, quantifi-
cation of model discrepancies, global sensitivity analysis (SA) and uncertainty quantification (UQ)
to improve robust control designs for AFOSR applications utilizing advanced transductive materi-
als. We initially considered micro-air vehicles, such as Robobee shown in Figure 1, and macro-fiber
composite (MFC) devices that serve as prototypes for aeroelastic systems. Both the Robobee and
MFC-driven devices employ piezoelectric actuators due to their broadband drive capabilities, solid
state nature, and potential for miniaturization. However, these advantages come at the cost of hys-
teretic, rate-dependent, and nonlinear dynamics. Furthermore, the unsteady aerodynamics inherent
to the micro-air vehicles (MAV) must be quantified through full and reduced-order models that are
formulated in terms of influential parameters – determined through global sensitivity and active
subspace analysis – and accommodate uncertainties due to parameters, model discrepancies, and
measurement errors. This yielded response uncertainties that we used to improve robust control
designs.

Figure 1: Schematic of Robobee.

Accomplishments

During the program, we focused on six broad topics: (i) development of a physics-based model
for the lead-zirconate-titanate (PZT)-based drive mechanisms for Robobee, (ii) sensitivity analysis,
parameter subset selection, and active subspace techniques to isolate subsets and subspaces of in-
fluential parameters, (iii) Bayesian inference and uncertainty quantification, (iv) implementation of
a data-driven reduced-order model framework based on dynamic mode decomposions (DMD) and
feedback control design, (v) development of fractional-order models to improve predictive capabilities
for systems with rate-dependent dissipation properties, and (vi) implementation of a Python package
for robust Bayesian inference to compute posterior distributions for model parameters.

1. Homogenized Energy model (HEM) for MAV Actuators

We summarize here the dynamic PDE model, developed during the program, which we use to
quantify the nonlinear, rate-dependent, and hysteretic dynamics of PZT actuators employed as drive
mechanisms for MAV such as Robobee; see Figure 2. As detailed in [9], the actuators are modeled
by the Euler-Bernoulli beam relation

ρ(x)
∂2w(x, t)

∂t2
+ γ

∂w(x, t)

∂t
− ∂2M(x, t)

∂x2
= 0, (1)

1
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(a) (b)

Figure 2: (a) Bimorph schematic and (b) cross-sectional view of the bimorph.

where ρ(x) is a piecewise constant and the moment is

M(x, t) = −Y I(x)
∂2w(x, t)

∂x2
− cI(x)

∂3w(x, t)

∂t∂x2
+ f(x, t).

The piecewise constant terms

Y I(x) = YcfIcf (x) + YsIs(x) + 1
sE
Ipzt(x),

cI(x) = ccfIcf (x) + csIs(x) + cpztIpzt(x),

Icf (x) = 1
12bcf (x)h3cf ,

Is(x) = 2
3b1

[
χs1

(
(hpzt + hs)

3 − h3pzt
)

+ χs2

(
(hcf + 2hs)

3 − h3cf
)]
,

Ipzt(x) = 2
3bpzt(x)χpzt(x)

(
(hpzt + 1

2hcf )3 − 1
8h

3
cf

)
and

f(x, t) = c1
sE
χpzt(x) [−d(E1(t), σ)E1(t) + d(E2(t), σ)E2(t)− εirr(E1(t), σ) + εirr(E2(t), σ)] ,

c1 = 1
2bpzt(x)

((
hpzt + 1

2hcf
)2 − 1

4h
2
cf

)
contain material and geometric constants along with the nonlinear and hysteretic PZT inputs. Fol-
lowing theory in [19], the hysteretic and nonlinear PZT inputs are quantified by the relations

d(E, σ) =

∫ ∞
0

∫ ∞
−∞

d (E(t) + EI , σ; fc) νc(fc)νI(EI)dEIdfc

εirr(E, σ) =

∫ ∞
0

∫ ∞
−∞

εirr (E(t) + EI , σ; fc) νc(fc)νI(EI)dEIdfc

for the piezoelectric coupling coefficient and irreversible strain. Here d̄ and εirr are energy-based
kernels at the grain level and νc(fc) and νI(EI) are densities, which are estimated for a given dataset.

Based on physical constraints, we obtained 18 model parameters that need to be specified or
calibrated through fits to data. Based on data from [20], we employed a simplex-based optimization
method to obtain initial parameter estimates followed by a gradient-based technique to obtain the
point estimates summarized in Table 1. The resulting hysteretic model fit to the data is illustrated
in Figure 3.

Whereas a number of the parameters are physically reasonable, values such as the relaxation time
τ180 = 1.02× 10−19 are not physically feasible. This indicates that the complete parameter set is not
identifiable in the sense that not all the parameters are uniquely determined by the data.

2
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Figure 3: Optimized fit of the model (1) to data from [20].

Table 1: Model parameters and point estimates obtained using data from [20].

γ Air damping coefficient 0.097

ρcf Density of the CF layer (kg/m3) 1.7× 104

ρs Density of the S2 Glass (kg/m3) 2.27× 104

ρpzt Density of the PZT actuators (kg/m3) 1.22× 103

Ycf Elastic modulus of CF (Pa) 5.00× 1011

Ys Elastic modulus of S2 Glass (Pa) 8.04× 1011

ccf Damping coefficient for CF 1.12× 104

cs Damping coefficient for S2 Glass 2.98× 103

cpzt Damping coefficient for PZT 1.37× 103

sE Elastic compliance (1/Pa) 1.14× 10−11

d± Piezoelectric coupling coefficient for α = ± (m/V) 1.07× 10−9

ε±R Remanent strain for α = ± (%) 0.17

ε90R Remanent strain for α = 90 (%) −8.79× 10−13

P±R Remanent polarization for α = ± (C/m2) 0.13

χσ Ferroelectric susceptibility (F/m) 1.66× 10−6

τ90 Relaxation time for 90◦ switching (s) 7.11× 10−6

τ180 Relaxation time for 180◦ switching (s) 1.02× 10−19

γpzt Inverse of relative thermal energy (m3/J) 0.08

3
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2. Parameter Identifiability Analysis

To isolate identifiable subsets of parameters, which can be employed for subsequent Bayesian
inference, we employed the following parameter subset selection (PSS) technique. We formulate the
input-output relation as

Y = f(Θ), (2)

where Θ is a random vector corresponding to the p = 18 parameters in Table 1. Minimization of the
functional

J(θ) =
1

N

N∑
n=1

[Yn − f(θ)]2 ,

for realizations θ of the random vector Θ, yields an optimal parameter vector θ∗.
To relate this to the local sensitivity, we consider the multivariate Taylor expansion

f(θ) ≈ f(θ∗) +∇θf(θ∗) ·∆θ,

where

∇θf(θ∗) =

[
∂f

∂θ1
(θ∗), . . . ,

∂f

∂θp
(θ∗)

]T
(3)

and ∆θ = θ − θ∗. Based on the assumption that Yn ≈ f(θ∗) at the minimum θ∗, the cost functional
can be approximated by

J(θ) ≈ 1

N

N∑
n=1

[∇θf(θ∗) ·∆θ]2 .

If we define the 1× p sensitivity matrix S by

S = [∇θf(θ∗)]T =
[

∂f
∂θ1

(θ∗) · · · ∂f
∂θp

(θ∗)
]
, (4)

we can approximate the cost functional by

J(θ) ≈ 1

N
(S∆θ)T (S∆θ),

or, equivalently,

J(θ∗ + ∆θ) ≈ 1

N
∆θTSTS∆θ.

If we take ∆θ to be an eigenvector of STS, so that STS∆θ = λ∆θ, then

J(θ∗ + ∆θ) ≈ 1

N
λ‖∆θ‖22.

We note that if λ ≈ 0, the cost functional perturbations J(θ∗ + ∆θ) are also approximately 0
and hence the corresponding parameters are locally nonidentifiable. This forms the basis for the
algorithms in [6–8,17].

Using this algorithm we obtained the results in Table 2. We observe that the eigenvalues corre-
sponding to d±, γpzt, P

±
R , and ε±R are significantly larger than those associated with the other param-

eters. This determines that these four parameters are identifiable in the sense that they are uniquely
determined by data. We then performed Bayesian inference and forward uncertainty propagation
using these four parameters.

4
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Table 2: Normalized eigenvalues associated with each parameter. Bold parameters are identifiable
in the sense that they are uniquely determined by the data.

γ Air damping coefficient 6.24e-23

ρcf Density of the CF layer (kg/m3) -4.31e-18

ρs Density of the S2 Glass (kg/m3) 1.35e-20

ρpzt Density of the PZT actuators (kg/m3) 3.82e-13

Ycf Elastic modulus of CF (Pa) 7.75e-08

Ys Elastic modulus of S2 Glass (Pa) 2.26e-13

ccf Damping coefficient for CF 3.43e-18

cs Damping coefficient for S2 Glass 2.32e-23

cpzt Damping coefficient for PZT 2.09e-14

sE Elastic compliance (1/Pa) 3.14e-06

d± Piezoelectric coupling coefficient for α = ± (m/V) 1

ε±R Remanent strain for α = ± (%) 4.82e-4

ε90R Remanent strain for α = 90 (%) 5.94e-23

P±R Remanent polarization for α = ± (C/m2) 0.011

χσ Ferroelectric susceptibility (F/m) -1.62e-22

τ90 Relaxation time for 90◦ switching (s) 8.88e-08

τ180 Relaxation time for 180◦ switching (s) 6.88e-10

γpzt Inverse of relative thermal energy (m3/J) 0.063

3. Bayesian Inference and Uncertainty Quantification

We performed Bayesian inference using the Delayed Rejection Adaptive Metropolis (DRAM)
algorithm [10] to compute posterior distributions for these four parameters. We employed the nominal
values in Table 1 as initial values in the algorithm and fixed non-identifiable parameters at those
values for subsequent analysis. We plot the marginal posterior distributions plotted in Figure 4. We
observe from the pairwise plots in Figure 4(b) that the parameters are correlated but identifiable.

To quantify resulting uncertainty in the predicted tip displacement, we randomly sampled 10,000
values for the posterior parameter distributions for d±, γpzt, P

±
R , and ε±R, along with the inferred

observation error, and propagated these values through the Homogenized Energy Model to compute
95% credible and prediction intervals for the tip displacement. We plot in Figure 5 the predicted
tip displacement, experimental data and intervals over a full cycle and at the peak of the cycle. We
observe that for this operating regime, the intervals are very tight and are consistent with the data.
Additional results are reported in [2, 5].

5
DISTRIBUTION A: Distribution approved for public release



0.08 0.1 0.12 0.14

P
R

±

1 1.5 2 2.5

×10
-3

ǫ
R

±

4 6 8 10 12 14

×10
-10

d
±

0.06 0.08 0.1 0.12

γ
pzt

1.4

1.6

1.8

2

2.2

2.4

ǫ
R±

×10
-3 P

R

±

6

8

10

d
±

×10
-10 ǫ

R

±

0.1 0.11 0.12 0.13

0.08

0.09

0.1

0.11

γ
p
z
t

1.4 1.6 1.8 2 2.2 2.4

×10
-3

6 8 10

×10
-10

d
±

(a) (b)

Figure 4: (a) Marginal posterior densities for identifiable parameters and (b) pairwise plots quanti-
fying correlation.
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Figure 5: 95% credible intervals and prediction intervals for the actuator tip displacement.

4. Surrogate Model Development and Feedback Control Implementation

The HEM model is computationally intensive, which motivates the construction of a surrogate
model for control design. We selected a dynamic mode decomposition (DMD) as a surrogate model.

We developed the DMD in the manner detailed in [11,12] . The dynamics of a nonlinear system
can be represented as a infinite-dimensional linear map,

xk+1 = Axk,

where A is a linear map termed the Koopman Operator. DMD approximates the Koopman Operator
A to approximate the dynamical system. We combine periodic observations in a matrix as columns,

XM−1
1 = [x1, x2, ..., xM−1].

6
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The columns of XM−1
1 are elements of a Krylov subspace

XM−1
1 = [x1, Ax1, ..., A

M−2x1].

We can express the final observation, xM , as a linear combination of the Kyrlov basis and a residual
term, r, that is orthogonal to the Krylov space:

xM =
M−1∑
k=1

skxk + r.

Note that XM
2 = AXM−1

1 . Using the expression for xM , we obtain

XM
2 = XM−1

1 Ã+ re(M−1),

where e(M−1) is the (M−1)th unit vector and Ã is the companion matrix with the si terms in the final

column. We note that Ã, is the finite-dimensional tangential approximation of the Koopman Oper-
ator; i.e., the eigenvectors and eigenvalues of Ã approximate the Koopman modes and eigenvalues.
The approximate Koopman operator can be expressed as

A = XM
2 (XM−1

1 )†,

where † denotes the Moore-Penrose inverse. We utilize the low dimensionality of the data matrix
by taking an SVD of XM−1

1 when constructing the Moore-Penrose Inverse. We truncate XM−1
1 by

retaining the r largest singular values and their corresponding singular vectors. This prohibits the
problem from being ill-conditioned.

As detailed in [18], dynamic mode decomposition with control (DMDc) take similar ideas from
DMD and applies it to a control system. We can express

XM
2 ≈ [A B]

[
XM−1

1

U

]
,

where U = [u1, u2, . . . , um−1] and ui is the control vector at the ith observation. We then observe
that the tangential approximation for the A and B matrix in a control system is

[A B] = XM
2

[
XM−1

1

U

]†
.

Once A and B are determined, we can approximate the nonlinear system by

xk+1 = Axk +Buk,

and use the solution for control design.
We employed the output from the tip of the PZT bimorph actuator, computed using the high-

fidelity homogenized energy model (HEM), as synthetic data for the dynamic mode decomposition
with control (DMDc) algorithm. In Figure 6, we display the data used to create the approximate A
and B matrices used to develop the control algorithm. We note that DMDc accurately approximates
the data. The data was sampled at a rate of 500 equally-spaced samples per second. The control
data matrix is constructed from the voltages that are applied to both patches. When we attempted
to use only one voltage to construct the control matrix, the algorithm failed to produce an accurate
surrogate. This is due to the relation between the two voltages. We truncated the data and control

7
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matrix at r = 3 singular values since there is a drop-off on the order of 10−6 in magnitude of the
singular values. This allows us to have at least two singular values for the control and at least one
for the system.

As detailed in [4], we implemented feedback control based on the voltage vb(t). Figure 7 illustrates
the tracking capabilities of a feedback control design from [1] applied to the surrogate model. Here
y(t) is the tip displacement of the PZT actuator characterized by the surrogate model. We added
5% noise to the control to display the stability of the controller and to analyze the controller’s ability
to acoomodate noise in the system. We observe that the system is able to track the target despite
this added noise.

We then applied the feedback control, designed with the surrogate model, as a closed-loop con-
troller to the high-fidelity homogenized energy model (HEM). Figure 8 displays the results of feedback
control on the high-fidelity model with 5% noise added to the control. We note the capability of the
feedback control to track the discontinuous target function. This demonstrates the robustness of the
model-based design.
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Figure 6: HEM-generated data and DMD approximation used to create the approximate A and B
matrices.
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Figure 7: Performance of the feedback control applied to the DMD surrogate model.
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Figure 8: Performance of the DMDc-computed feedback control when applied to the high-fidelity
homogenized energy model (HEM).

5. Fractional-Order Model Development for Viscoelastic Materials

Many smart materials being considered for AFOSR applications, including dielectric elastomers,
exhibit complex rate-dependent viscoelastic behavior. The development of models that predict ma-
terial behavior across a broad range of operating conditions is critical to achieve the unique actuator
and sensor capabilities of the materials. Whereas the use of a nonlinear viscoelastic framework im-
proves predictive capabilities, it does not provide the comprehensive predictive capabilities required
to significantly improve model-based control design.

To address this, we investigated the use of fractional-order differential operators employed in
conjunction with linear and nonlinear viscoelastic frameworks. Model calibration and validation us-
ing Very High Bond (VHB) 4910 experimental data demonstrated significantly improved predictive
capabilities when using linear and nonlinear fractional order derivatives [13]. We illustrate 95% pre-
diction intervals computed using Bayesian inference followed by uncertainty propagation techniques
in Figure 9. These results demonstrate that by employing the fractional-order models, we are able to
obtain very accurate predictions at both fast and slow stretch rates using a single set of parameters.
This significantly improves the predictive capabilities of models and is expected to provide enhanced
model-based control capabilities for systems exploiting these actuators. We present additional details
about the model development, Bayesian inference, and uncertainty propagation in [15].

Evaluation of the fractional-order calculus operators is typically computationally expensive, which
significantly complicates parameter inference using Bayesian algorithms. To improve efficiency, we

Figure 9: Uncertainty propagation and 95% prediction intervals at slow and fast stretch rates.
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also investigated the development of novel quadrature methods to more accurately and efficiently
approximate the Riemann–Liouville fractional derivatives. We presented results from this research
in [14].

6. Development of a Python Package for Bayesian Inference

The accurate and robust inference of model parameters constitutes a critical first step when
quantifying the uncertainty of model responses and computing robust feedback controls. Bayesian
analysis is natural since it directly provides distributions for model parameters and initial conditions
but it comes at the cost of significant computation overhead associated with sampling the posterior
distribution thousands to millions of times. We employ a Delayed Rejection Adaptive Metropolis
(DRAM) algorithm due to its robustness when inferring highly correlated parameters in nonlinearly
parameterized models [10]. Specifically, delayed rejection (DR) enhances mixing of the chain, which
mitigates stagnation regions. Furthermore, the DR method can be applied recursively for n-stages,
although in practice a single stage of DR is often sufficient. For many problems DRAM decreases
the number of simulations required to reach convergence and overcome bias from initialization.

Whereas there exists a robust MATLAB implementation of the algorithm, we increasingly em-
ploy Python due to its open source nature and facility when coupling production codes in various
languages. This component of the program focused on the development and documentation of the
Python package pymcmcstat, which provides a robust, user-friendly interface for running MCMC
simulations using the DRAM algorithm.

We maintained project updates at project homepage and on the GitHub repository site. Code is
written in a unit-testable manner, with coverage being checked by Coveralls – currently at 98%.
Pipeline testing is done using Travis-CI, and the package is currently supported to run using
Python 3.6. Documentation for the code was built using Sphinx and is hosted by ReadTheDocs.
Tutorial notebooks provide the user with a wide variety of example implementations, and help
demonstrate the various options available within the package.

To provide an example, we included in the tutorial a demonstration of the coupling of the
pymcmcstat package when estimating the parameters for an integer-order linear viscoelastic model.
Details regarding the package are reported in [16].

Project Links:

• Project Homepage: https://prmiles.wordpress.ncsu.edu/codes/python-packages/
pymcmcstat/

• GitHub Repository: https://github.com/prmiles/pymcmcstat

• Build: https://travis-ci.org/prmiles/pymcmcstat

• Online Tutorials: https://nbviewer.jupyter.org/github/prmiles/notebooks/blob/
master/pymcmcstat/index.ipynb

• Code Documentation: http://pymcmcstat.readthedocs.io/
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Transitions/Interactions

Transitions: Bayesian Analysis for Parameter and Model Uncertainty – DOE CASL and NNSA CNEC: We
transitioned aspects of the Bayesian analysis and sampling-based techniques to construct prediction
intervals to the DOE Consortium for Advanced Simulation of Light Water Reactors (CASL) Energy
Innovation Hub and the NNSA Consortium for Nonproliferation Enabling Capabilities (CNEC).

Conference, Colloquia and Workshop Presentations and Short Courses

1. Invited Presentation: INFORMS Summer Roundtable on Uncertainty Quantification, Jackson
Lake Lodge, WY, July 20, 2015.

2. Colloquium: Applied Mathematics and Statistics, Colorado School of Mines, Golden, CO, Oct
4, 2015.

3. CSRI Seminar: CSRI Seminar, Sandia National Laboratories, Albuquerque, NM, Nov 20, 2015.

4. Invited Presentation: NIST Workshop on Uncertainty Quantification in Materials Science,
Gaithersburg, MD, January 14, 2016.

5. Presentation: SPIE Symposium on Smart Structures and Materials, Las Vegas, NV, March 21,
2016.

6. Colloquium: NASA Langley Research Center, June 27, 2016.

7. Invited Presentation: IFAC Symposium on Nonlinear Control Systems, Monterey, CA, August
24, 2016.

8. Short Course on Uncertainty Quantification with W. Oates: ASME 2016 Conference on Smart
Materials, Adaptive Structures and Intelligent Systems (SMASIS), Stowe, VT, September 27,
2016.

9. Keynote Presentation: ASME 2016 Conference on Smart Materials, Adaptive Structures and
Intelligent Systems (SMASIS), Stowe, VT, September 28, 2016.

10. Presentation by N. Bravo: ASME 2016 Conference on Smart Materials, Adaptive Structures
and Intelligent Systems (SMASIS), Stowe, VT, September 29, 2016.
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11. Colloquium: Department of Computer Science and Engineering, University of South Carolina,
October 21, 2016.

12. Keynote Presentation: 36th Annual Mathematics Symposium at Western Kentucky University,
November 11, 2016.

13. Short Course on Uncertainty Quantification with W. Oates: SPIE Symposium on Smart Struc-
tures and Materials, Portland, OR, March 27, 2017.

14. Presentation by N. Bravo, SPIE Symposium on Smart Structures and Materials, Portland, OR,
March 27, 2017.

15. Presentation: SIAM Conference on Computational Science and Engineering, Atlanta, GA,
February 28, 2017.

16. Plenary Presentation: Workshop on Parameter Estimation and Uncertainty Quantification for
Dynamical Systems, University of Pittsburgh, Pittsburgh, PA, March 5, 2017.

17. Invited Presentation: American Control Conference (ACC), Seattle, WA, May 25, 2017.

18. Short Course on Uncertainty Quantification with W. Oates: College of Engineering, Florida
State University, June 23, 2017.

19. Short Course on Sensitivity Analysis and Uncertainty Quantification with W. Oates, Florida
State University, ASME 2017 Conference on Smart Materials, Adaptive Structures and Intel-
ligent Systems (SMASIS), Snowbird, UT, September 17, 2017.

20. Presentation by N. Bravo, ASME 2017 Conference on Smart Materials, Adaptive Structures
and Intelligent Systems (SMASIS), Snowbird, UT, September 18, 2017.

21. Colloquium: Department of Aerospace Engineering Colloquium, Texas A&M University, Col-
lege Station TX, November 2, 2017.

22. Invited Presentation: Workshop on Key UQ Methodologies and Motivating Applications, New-
ton Institute, Cambridge University, UK, January 8, 2018.

23. Invited Presentation: Workshop on Surrogate Models for UQ in Complex Systems, Isaac New-
ton Institute for Mathematical Sciences, Cambridge University, UK, February 5, 2018.

24. Colloquium: Applied Statistics Group, Lawrence Livermore National Laboratory, Livermore,
CA, February 22, 2018.

25. Plenary Presentation: SPIE Smart Structures and Nondestructive Evaluation, Denver, CO,
March 5, 2018.

26. Short Course on Sensitivity Analysis and Uncertainty Quantification with William Oates,
Florida State University, SPIE Symposium on Smart Structures and Materials, Denver, CO,
March 5, 2018.

27. Presentation by P. Miles, SPIE Symposium on Smart Structures and Materials, Denver, CO,
March 5, 2018.

28. Presentation by N. Bravo, SPIE Symposium on Smart Structures and Materials, Denver, CO,
March 6, 2018.
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29. “Uncertainty Quantification,” Short Course given at DATAWorks 2018, Defense and Aerospace
Test and Analysis (DATA) Workshop, Springfield, VA, March 20, 2018.
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Hotel Embassy Suites, Isla Verde, Carolina, Puerto Rico, December 5, 2018.

31. Colloquium: Department of Mechanical and Nuclear Engineering, Penn State University, State
College, PA, February 4, 2019.

32. Keynote Presentation: SCALA 2019: Scientific Computing around Louisiana, Tulane Univer-
sity, New Orleans, LA, Feb 15, 2019.

33. “Uncertainty Quantification,” Short Course given at DATAWorks 2018, Defense and Aerospace
Test and Analysis (DATA) Workshop, Springfield, VA, April 9, 2019.

34. Colloquium: NASA Jet Propulsion Laboratory, Pasadena, CA, June 24, 2019.

Program Websites: To facilitate the dissemination of models, codes, and data to the general commu-
nity, we developed the website https://rsmith.math.ncsu.edu/Smart_Materials_Database.html.
The goal is to establish a repository for students and researchers investigating a broad range of trans-
ductive materials for advanced applications.

To facilitate Bayesian inference using the Delayed Rejection Adaptive Metropolis (DRAM) al-
gorithm, we implemented the Python package pymcmcstat. The package and detailed examples
are maintained at the website https://prmiles.wordpress.ncsu.edu/codes/python-packages/

pymcmcstat/.
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through constitutive model development, modeling and nonlinear control, and uncertainty
analysis; and for modeling research that has been validated across a broad range of smart
materials.”

• Smith was recipient of the SPIE 2017 Smart Structures and Materials Lifetime Achievement
Award “In recognition of his sustained contributions to the advancement of Smart Structures
and Materials Technologies.”

• Smith was elected a SIAM Fellow for the class of 2018 for contributions in uncertainty quan-
tification and materials science.

• Smith was named a Distinguished University Professor of Mathematics for his work on mod-
eling, control and uncertainty quantification for smart material systems and for improving the
quality of NC State and serving its mission through service and involvement in the campus
community.
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None
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