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The aim of this project has been to develop new tools for analyzing distributed dynamical net-
works and for controlling them. More specifically, our work has focused mainly on three interrelated-
objectives. First, we have sought to develop algorithms for the distributed computation of solutions
to systems of equations of all types across a network of mobile autonomous agents. Second we have
focused on crafting a variety of algorithms for estimating the state of a linear system whose sensed
outputs are distributed across a network. Third we have used graph rigidity theory and nonlinear
system theory to develop techniques for autonomously maintaining the correct relative positions of
mobile autonomous agents in a large agent network.

We have made important advances in the area of distributed computation. In particular we have
invented a distributed algorithm for finding a common fixed point of a family of m suitably defined
nonlinear maps Mi from IRn to IRn [1, 2]. S common fixed point is computed simultaneously
by m agents assuming each agent i knows only its own private map Mi, the current estimates
of a common fixed point generated by its neighbors, and nothing more. Each agent recursively
updates its estimate by utilizing the current estimates generated by each of its neighbors. Neighbor
relations are characterized by a time-dependent directed graph N(t) whose vertices correspond to
agents and whose arcs depict neighbor relations. We have shown that for any family of maps
Mi which are “paracontractions” from IRn to IRn with a common fixed point and any sequence of
“repeatedly jointly strongly connected graphs” N(t), t = 1, 2, . . ., the algorithm causes all m agents’
estimates to converge to a common fixed point of the Mi [1]. These results have been generalized to
asynchronous systems in [3] and necessary and sufficient conditions for convergence to a common
fixed point have been given in [4]. The effects of limited data transmissions have been examined in
[5] and extension of the algorithm to a broader class of maps called “strongly quasi-nonexpansive”
has been carried out in [6]

There are many meaningful examples of paracontractions. For example, the orthogonal projec-
tion x 7 −→ argminy∈C‖x− y‖2 on a given closed convex set C is a paracontraction with respect to
the two-norm. So is the gradient descent map x 7 −→ x− α∇f(x) where f : IRn −→ IR is a convex
and differentiable function, ∇f is Lipschitz continuous with parameter λ > 0, and α is a constant
satisfying 0 < α < 2

λ
. The proximal map x 7 −→ argmin{ y ∈ C}f(y)+ 1

2
‖x−y‖2. associated with a

closed proper convex function f : IRn → (−∞,∞] is another example of a paracontraction. These
types of paracontractions typically arise in optimization algorithms.

Our original motivation for studying the problem of computing a common fixed point of a
family of maps grew out of our efforts to improve on our earlier work in [7]. The work in [7] is con-
cerned with the development of a distributed algorithm for finding a solution to the linear equation
Ax = b assuming the equation has at least one solution and agent i knows a pair of the matri-
ces (Ani×n

i , bni×1

i ) where A = block column{A1, A2, . . . , Am} and b = block column{b1, b2, . . . , bm}.
While the algorithm in [7] solves the problem, one of its limitations is that it requires each agent
to initially compute a solution to its own private equation Aixi = bi, since for large Ai such a com-
putation can be daunting. To circumvent this problem we successfully developed a new algorithm
with the same convergence properties as the one in [7], which consists of m local update rules of
the form xi(t + 1) = A′

iGi(Aixi(t) − bi), i ∈ {1, 2, . . . ,m} where Gi is a suitably defined positive
definite gain matrix [8]. The affine linear maps x 7 −→ x−A′

iGi(Aix− bi) are paracontractions with
respect to the two norm and any common fixed point they have is a solution to Ax = b. Over the
course of this project we’ve pursued other questions related to the algorithms in [7] and [8]. For
example, necessary and sufficient conditions for exponential convergence are derived in [9] and an
asynchronous version of the algorithm in [7] is studied in [10]. A continuous-time gradient-descent
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version of the algorithm in [8] is developed in [11] and a more efficient version of the algorithm in
[7] is proposed in [12]

In the area of estimation, we have developed a number of algorithms for enabling a networked
family of m > 1 agents to estimate the state of the multi-channel, time-invariant, linear system

ẋ = Ax yi = Cix, i ∈ {1, 2, . . . ,m} (1)

in a distributed manner, assuming that for each i, agent i can sense yi and, in addition, receive
the current state-estimates of each of its neighbors . Neighbor relations are characterized by a
directed graph N, which depending on the problem of interest, may be fixed or varying with time.
For the case when N is fixed and strongly connected, we have developed a linear time-invariant
distributed observer whose state-estimation errors are guaranteed to converge to 0 exponentially
fast at any preassigned rate [13, 14]. More recently we have crafted simplified distributed observers
for both discrete and continuous time which are also capable of estimating state exponentially fast
at any given preassigned rates [15, 16]. For the case when N changes with time, we have devised a
hybrid observer with an exponential convergence rate which can function either synchronously or
asynchronously [17, 18]. An alternative hybrid observer based the observer architecture developed
in [15] is currently under development.

A major problem with existing distributed observer techniques is that none can deal with the
situation when instead of (1) the goal is to estimate the state of the multi-channel system with
inputs; i.e.,

ẋ = Ax+

m∑

i=1

Biui yi = Cix, i ∈ {1, 2, . . . ,m} (2)

We have made a major breakthrough along these lines by figuring out how to modify the observer

developed in [14] to handle this situation provided each input ui is a state feedback law of the form

ui = Fix [19]. This has resulted in what we believe is the first distributed feedback control system
capable on stabilizing any jointly controllable, jointly observable multi-channel linear system of the
form (2) with time-invariant distributed feedback control provided the associated communication
graph is strongly connected. This finding contrasts sharply with well-known classical result [20] for
the decentralized control of (2) which states that no matter what linear time-invariant decentralized
controls are applied, the spectrum of the resulting closed loop system will contain a uniquely
determined set of eigenvalues called the system’s “fixed spectrum” [21, 22]. This means that
if the fixed spectrum of such a system contains an unstable eigenvalue, then stabilization with
decentralized control is impossible whereas the introduction of communication between agents
enables stabilization with distributed control.

In the area of formation control we have extended to encompass three dimensional formations,
our earlier discovery in [23] of robustness issues with rigidity based formation control of two di-
mensional systems [24]. We have also extended the results in [23] to formations with more realistic
double integrator dynamic agent models [25]. Finally we have developed a technique for maintaining
a rigidity based undirected formation when there are measurement biases [26].
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