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Final Report for “Discovering the Extent of Estimable Prediction (DEEP) in Science and
Technology”, FA9550-15-1-0162

Abstract

We proposed to establish mathematical and empirical foundations regarding the nature and
extent of quantifiable prediction in science and technology (S&T), the central question of science
policy, a fundamental challenge for complex systems research, with the potential to dramatically
improve the productivity and focus of science. Research based on this program yielded a wave of
relevant discoveries published in Nature, Science, PNAS, Nature subfield journals, every major
sociology outlet, and top venues in research policy, social, computer and information science.
Moreover, we have drafted two forthcoming books from Cambridge University Press and
Princeton University Press, and many more articles that will be published in the coming year.
These works review the state of the art in science and technology prediction, but also probe and
exceed those limits by predicting science & technology success and failure, career and team
productivity and influence, the disruptiveness and popularity of novel idea and technology
combinations, team and community conflict, and a host of indicators that predict future focus and
impact. Moreover, this research generated new public data, and the development and calibration
of new models that allowed us to push the limits of science and technology prediction in
unanticipated ways. Finally, the grant project formed the basis of several other funded projects,
including a Minerva award funded by AFOSR, which builds on these foundations to promote a
flourishing and productive science of science and innovation that will advance the national and
global interest.
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Our proposal promised to explore three levels of foundations of science and technology (S&T)
regularities that could be identified and potentially predicted: 1) the symbolic foundation tracing
the distribution and dynamics of concepts, claims, and described components in the corpus of
published S&T—what becomes important and impactful; 2) the behavioral foundation of
attention, effort, communication and influence beneath the flow of S&T symbols—how does the
behavior of researchers, teams, and institutions shape and reveal the unfolding importance of
discoveries and inventions; and 3) the material foundation of natural and fabricated reality that
scientists and engineers seek to uncover—how existing S&T reveal hints about their own future.
By using and developing tools that spanned network science, machine learning and
computational social science, our proposed program yielded new answers to the following
questions:

. Can we foresee new scientific discoveries and technological inventions? If so,
what are the quantifiable signals of an impending scientific or engineering breakthrough?
. Is the long-term impact of a scientific discovery or technological breakthrough
predictable? If so, to what degree and how soon can we confidently predict impact? What
are the key drivers behind uncovered predictability?

. What is best predicted in the domain of S& T—what represents the optimal
balance of risk and reward in a funded research portfolio? Scientific and technical
discoveries? Successful scientists, engineers, or research teams? Fruitful S&T fields or
research strategies?

We explored and uncovered preliminary answers to these questions along with many other
entailments that push our understanding of prediction in science, technology and related areas,
published across three Nature articles, two Science articles, two PNAS and Nature Physics
articles, four Nature Human Behaviour articles, and one article in the following journals: Nature
Communications, American Sociological Review, American Journal of Sociology, Research
Policy, eLife, Social Science Computer Review, Scientific Data, Journal of the Association for
Information Science and Technology, AISTATS, IEEE Computer Graphics and Information,
Journal of Infometrics. Moreover, our explorations have led us to draft two forthcoming books
from Cambridge University Press and Princeton University Press, and more than ten additional
articles that will be well published, which probe the limits of prediction in science and
technology.

We organize our discussion of these investigations and associated discoveries into the following
groups:

How failure predicts success

DISTRIBUTION A: Distribution approved for public release.



Human achievements are often preceded by repeated attempts that fail, but little is known about

the mechanisms that govern the dynamics of failure. In the following pieces, we develop a

simple but powerful one-parameter model that mimics how successful future attempts build on

past efforts and identifies a phase transition separating the dynamics of failure into regions of

progression or stagnation. Above the critical point, agents exploit incremental refinements to

systematically advance towards success, whereas below it, they explore disjoint opportunities

without a pattern of improvement (see abstracted figure 2 and 3 below).
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Fig.2| The kmodel. a, Wetreat each attempt as a combination of many
independent components (¢)). Forattempty, each componentiis characterized
by anevaluationscore x‘J which fallsbetween Oand 1. The scoreforanew
versionisoften unknownuntil attempted, henceanewversionis assigneda
score, drawn randomly from the range 0-1. b, To formulate anew attempt, one
can either create a new version (with probability p, green arrow) or reuse an
existing version by choosing the best one among past versionsx* (with
probability 1-p, red arrow). P(x =2 x*) =1-x* captures the potential toimprove on
prior versions, prompting us to assume p=(1-x*)*where a>0characterizes the
propensity of an agent to create new versions given the quality of existing ones.
c, Theanalytical solution of the model reveals that the systemisseparated into
three regimes by two critical points k*and k* +1. The solid line shows the
extended solution space of our analytical results. d-i, Simulation results from
themodel (a=0.6) for quality (d-f) and efficiency (g-i) trajectories for different
kparameters, showing distinct dynamical behaviour indifferent regimes. All
results are based on simulations averaged over 10* times. j, k, A phase transition
around k* predicts the coexistence of two groups that fallin the stagnationand
progression regimes, respectively.
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Fig. 3| Testing model predictions.a-¢, Cumulativedistribution function
(CDF) of the number of consecutive failures before thelast attempt for
successful and unsuccessfulgroups. To eliminate the possibility that agents
were simply in the process of formulating their next attempt, we focus on cases
forwhichit has been atleast five years since their last failure. Ineach of our
threedatasets, thetwo distributions are statistically indistinguishable
(Kolmogorov-Smirnov test for samples with at least onefailures). For clarity,
here we show results for less than 21 failures (Supplementary Information 5.2).
Inset, the samplesize of successful and unsuccessful groups, showing their size
is of asimilar order of magnitude. d-f, Early temporal signals separate
successful and unsuccessfulgroups.d, n=43,705 (successful), 15,132
(unsuccessful). e, n=2,455 (successful), 16,656 (unsuccessful). f, n=446
(successful), 321 (unsuccessful). For each group, we measure the average inter-
eventtime between two failures T, =t,./t,as a function of thenumber of
attempts. Dotsand shaded areas aremean £s.e.m. measured from data
(Supplementary Information 5.3). All successful groups manifest power-law
scaling T,~n ¥ (Extended Data Fig. 2). The two groups show distinguishable
temporal dynamics for n=2. Two-sided Welch’s t-test; P=3.02x10™,7.18 x 1073,
9.42 %107 for comparisons of successful and unsuccessful groups in

d, e, frespectively. Thistemporal scaling is absent for unsuccessful groups.
g-i, Performanceat firstattemptappears indistinguishable between
successful and unsuccessful groups that experienced alarge number of
consecutive failures beforethe last attempt (atleast 5 for D, 3 for D,and 2 for Ds,
two-sided Welch's t-test), but becomes distinguishable at the second attempt
(two-sided Welch’s t-test). Whereas performance improves for the successful
group (one-sided Welch'’s t-test), thisimprovementis absent for the
unsuccessful group (one-sided Welch’s t-test). Dataare meants.e.m.g,n =628,
145,571,123 (from left toright). h, n=248,1,332,237,1,312 (fromleft toright).
i,n=231,173,229,174 (fromleft toright).

DISTRIBUTION A: Distribution approved for public release.



The model makes several empirically testable predictions, demonstrating that those who
eventually succeed and those who do not may initially appear similar, but can be characterized
by fundamentally distinct failure dynamics in terms of the efficiency and quality associated with
each subsequent attempt. We collected large-scale data tracing repeated attempts by investigators
to obtain National Institutes of Health (NIH) grants to fund their research. Together, these
findings unveil detectable yet previously unknown early signals that enable us to identify failure
dynamics that will lead to ultimate success or failure. Given the ubiquitous nature of failure and
the paucity of quantitative approaches to understand it, these results represent an initial step
towards the deeper understanding of the complex dynamics underlying failure.

Yin, Yian, Yang Wang, James Evans & Dashun Wang. 2019. “Quantifying dynamics of failure across science,
startups, and security.” Nature 575: 190-194.

We also explored the role of setbacks in a successful scientific career in the context of junior
scientists applying for National Institutes of Health RO1 grants. By focusing on proposals fell
just below and just above the funding threshold, we compare near-miss with narrow-win
applicants, and find that an early-career setback has powerful, opposing effects. On the one hand,
it significantly increases attrition, predicting more than a 10% chance of disappearing
permanently from the NIH system.
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Fig. 1 Pre-treatment comparisons between the narrow-win and near-miss applicants. a Relationship between normalized score and award status. Funding
probability shows a clear transition around the funding threshold. We focus only on junior Pls whose normalized scores lie within the range (-5, 5), the
shaded gray area, which includes 561 narrow-win and 623 near-miss applicants in our sample. b Pre-treatment feature comparisons between the near-miss
and narrow-win group. We compared 11 different demographic and performance characteristics. The features are defined as follows (from top to bottom):
(1) percentage of female applicants; (2) number of years since the first RO1 application; (3) number of years since the first publication; (4) institutional
reputation, measured by the number of RO1 grants awarded to an institution between 1990 to 2005; (5) number of previous RO1 applications; (6) number
of publications prior to treatment; (7) number of prior papers that landed within the top 5% of citations within the same field and year; (8) probability of
publishing a hit paper; (9) average citations papers received within 5 years of publication; (10) citations normalized by field and time;34 and (11) average
team size across prior papers. We see no significant difference between the two groups across any dimension we measured; Error bar represents the 95%
confidence interval. € An illustrative example of the underlying process. Solid color indicates people who remained active, whereas shaded color denotes
the fraction that disappeared from the NIH system. Blue and orange indicate narrow-win and near-miss applicants, respectively
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Fig. 2 Comparing future career outcome between near misses (orange) and narrow wins (blue). a The average number of publications per person. b Near
misses outperformed narrow wins in terms of the probability of producing hit papers in the next 1-5 years, 6-10 years, and 1-10 years. Note that there
appears a slight performance improvement for the narrow-win group in the second five-year period, but the difference is not statistically significant (y2-test
p-value > 0.1, odds ratio =1.05). € Average citations within 5 years of publication. The near-miss applicants again outperformed their narrow-win
counterparts. To ensure all papers have at least 5 years to collect citations, here we used data from 1990 to 2000 to avoid any boundary effect. d Funding
difference between the near-miss and narrow-win group from the NIH (near misses minus narrow wins). ***p< 0.001, **p< 0.05, *p<0.7; Error bars
represent the standard error of the mean

Yet, despite an early setback, individuals with near misses systematically outperform those with
narrow wins in the longer run. Moreover, this performance advantage seems to go beyond a
screening mechanism, suggesting early-career setback appears to cause a performance
improvement among those who persevere. Overall, these findings are consistent with the concept
that “what doesn’t kill me makes me stronger,” which may have broad implications for
identifying, training and nurturing junior scientists.

Yang Wang, Benjamin F. Jones, and Dashun Wang. 2019. Early-Career Setback and
Future Career Impact, Nature Communications.

Finally, we explored the nature of failed innovation and its consequences.

He, Zhongyang, Zhen Lei, Yang Wang, and Dashun Wang. “Diamond in the rough:
Quantifying failed innovation endeavors.” (Pending NIH approval for submission)

The Limits of Prediction
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We also explore the limits of robustness and the degree to which the scientific literature predicts
its own future knowledge at scale for the first time. We identify a large sample of published
drug-gene interaction claims curated in the Comparative Toxicogenomics Database (for
example, benzo(a)pyrene decreases expression of SLC22A3) and evaluate these claims by
connecting them with high-throughput experiments from the LINCS L1000 program. Our sample
included 60,159 supporting findings and 4253 opposing findings about 51,292 drug-gene
interaction claims in 3363 scientific articles. We show that claims reported in a single paper
replicate 19.0% more frequently than expected, while claims reported in multiple papers
replicate 45.5% more frequently than expected. We also analyze the subsample of interactions
with two or more published findings, and show that centralized scientific communities, which
use similar methods and involve shared authors who contribute to many articles, propagate less
replicable claims than decentralized communities, which use more diverse methods and contain
more independent teams. Our findings suggest how policies that foster decentralized
collaboration will increase the robustness of scientific findings in biomedical research.

Danchev, Valentin, Andrey Rzhetsky & James Evans. 2019. “Centralized communities more likely generate
non-replicable results.” eLife 8:¢43094 DOI: 10.7554/eLife.43094
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Estimates of claim replication as a function of the probability of support in the literature and
generalizability across high-throughput experiments.

(A) Posterior distributions of probability of support in the biomedical literature for a sample of seven
DGI claims for which there are at least two findings (supporting and/or opposing). Note that the top
three claims receive only supporting findings in the literature, whereas the fourth and fifth claims are
opposites (so papers that support the fourth claim oppose the fifth claim, and vice versa), and likewise
for the sixth and seventh claims. We obtained model estimates for each claim by perferming 10,000
Markov chain Monte Carlo (MCMC) sampling iterations (see Materials and methods). For each claim, we
summarize the probability of support (dashed vertical line) using the lower bound on the one-sided 95%
posterior credible interval: this value ranges from 0.84 for a claim that is supported by 16 findings and
opposed by no findings, to 0.03 for a claim that is supported by one finding and opposed by 10 findings.
(B) DGI claims in the literature can be categorized into one of five classes of support (Very High; High;
Moderate; Low; Not Supported) on the basis of distributions like those in panel A; the number of claims
included in each class is shown in brackets. (C) Number of DGI claims that are significant (second row)
and not significant (third row) at the 0.05 level in the LINCS L1000 dataset for the whole corpus (second
column) and for each of the five classes of support in the literature (columns 3-7). (D) Observed
replication rates (RR,ps) and expected replication rates (RR5ng) for claims that are significant and non-

significant in the LINCS L1000 dataset for the whole corpus (left) and for each of the five classes of

R—Robs = RRIand

support in the literature. (E) The relative replication increase rate (RRI = 100 x ) for

rand

claims that are significant in the LINCS L1000 dataset (left) and for each of the five classes of support in
the literature. (F) Variability (coefficient of variation) in the LINCS L1000 dataset across cell lines,
durations and dosages for claims that are significant in this dataset (left) and for each of the five classes
of support in the literature. Statistical significance and error bars were determined by bootstrapping
(see Materials and methods). All error bars represent 95% CI.

We also explored how breakthrough discoveries and inventions involve unexpected
combinations of contents including problems, methods, and natural entities, and also diverse
contexts such as journals, subfields, and conferences. Drawing on data from tens of millions of
research papers, patents, and researchers, we construct models that predict more than 95% of
next year’s content and context combinations with embeddings constructed from
high-dimensional stochastic block models, where the improbability of new combinations itself
predicts up to half of the likelihood that they will gain outsized citations and major awards. Most
of these breakthroughs occur when problems in one field are unexpectedly solved by researchers
from a distant other. These findings demonstrate the critical role of surprise in advance, and
enable evaluation of scientific institutions ranging from education and peer review to awards in
supporting it.

Shi, Feng and James Evans. “Science and Technology Advance through Surprise”
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Figure 1. (A) Illustration of the manifold inscribing all topics 6 and an evaluation of three articles or patents (hyperedges #, ;) in
terms of their novel combinations. Articles/patents 4, and /&, represent projects that combine scientific or technical components
near one another in 0 , making each of high probability and low (€ ) novelty—similar to many related papers from the past. By
contrast, paper /,draws a novel combination of components unlike any paper from the past, making it of low probability and high
(> ¢) novelty. (B) Actual three dimensional projection of the manifold best inscribing all MeSH codes from MEDLINE articles
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in our analysis. Also included are MeSH terms in the most novel article (blue), the least novel article (orange), and a random

article in between (green) among all articles including four MeSH terms.

B

>

L 70% 70% 4
=y o @ Biology Prizes ‘/,./g >
g | al® o e0x% Wolf 807 [ P - @
o) o Lasker "' 8 g/‘ o)
e | @ . : )
Z 88— ® g & DN 0% 1 8 L rd
4!_:: A/_/""’" [=V% Grand Prix : ;/ o
a| o Louisa Gross > o 6
P} @ ] d
c | 40% Gairdner 449, | '/ E)
(o] Nobel Prize = o
O @ AllAwards / @)
b 30 oo fiotil 30% 1
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% [00% 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Citation Decile Citation Decile
=
I Los 4
e i
g Context Lo.4 )
o
= Fon
0 0.3 3 =
I 8 =
5 .3
e 0.2 0
o]
o <
H ELL a
Content
Lo.o
0% 20% 40% 60% 80% 100%

Novelty Percentile

Figure 2: Average content and context novelty for each decile of citations, tracing a monotonic rise; Including average for Nobel
prizes in Physiology or Medicine, Chemistry (first row). Probability of being a hit paper as a function of content and context
novelty separately (row 3-5, left) and jointly (row 3-5, right). Third row shows results for MEDLINE data, fourth row for APS
data, and bottom row for the USPTO data. For each, bivariate distribution of content and context novelty across articles or

patents on the left.
Predictability in Scientific Careers and Teams

One of the most universal trends in science and technology today is the growth of large teams in
all areas, as solitary researchers and small teams diminish in prevalence. Increases in team size
have been attributed to the specialization of scientific activities, improvements in communication
technology, or the complexity of modern problems that require interdisciplinary solutions. This
shift in team size raises the question of whether and how the character of the science and
technology produced by large teams differs from that of small teams. Here we analyse more than
65 million papers, patents and software products that span the period 1954-2014, and
demonstrate that across this period smaller teams have tended to disrupt science and technology
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with new ideas and opportunities, whereas larger teams have tended to develop existing ones.
Work from larger teams builds on more-recent and popular developments, and attention to their
work comes immediately. By contrast, contributions by smaller teams search more deeply into
the past, are viewed as disruptive to science and technology and succeed further into the
future—if at all. Observed differences between small and large teams are magnified for
higher-impact work, with small teams known for disruptive work and large teams for developing
work. Differences in topic and research design account for a small part of the relationship
between team size and disruption; most of the effect occurs at the level of the individual, as
people move between smaller and larger teams. These results demonstrate that both small and
large teams are essential to a flourishing ecology of science and technology, and suggest that, to
achieve this, science policies should aim to support a diversity of team sizes.

Wu, Lingfei, Dashun Wang & James A. Evans. 2019. “Large Teams Develop Science and Technology, Small
Teams Disrupt It.” Nature 566: 378-382. [Cover Article]
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a, Simplified illustration of disruption. Three citation networks comprising focal papers (blue diamonds), references (grey
circles) and subsequent work (rectangles). Subsequent work may cite the focal work (i, green), both the focal work and its
references (j, red) or just its references (k, black). Disruption, D, of the focal paper is defined by the difference between the
proportion of type i andj papers p; - p;, which equals the difference between the observed number of these papers n; - n;
divided by the number of all subsequent works r; + nj + n. A paper may be disrupting (D=1), neutral (D=0) or developing
(D=-1).b, The distribution of disruption across 25,988,101 WOS journal articles published between 1900 and 2014. On this
distribution, we mark the BTW-model (D = 0.86, top 1%) and Bose-Einstein condensation articles (D =—0.58, bottom 3%)
along with several samples used to validate D (Methods, Supplementary Tables 1-3). This includes (1) 104 ‘disruptive’
articles (disruption mean E(D) =0.215, top 2%) and 86 ‘developing’ articles (E(D) =—0.011, bottom 13%) nominated by a
surveyed panel of 20 scholars across fields; (2) 877 Nobel-prize-winning papers published between 1902 and 2009

(E(D) =0.10, top 2%); (3) 22,672 review articles (E(D) =-0.0009, bottom 46%) and 1,338,808 original research articles that
they review (E(D) = 0.0008, top 23%); and (4) 148,303 articles that headline prominent prior work by mentioning one or
more cited authors in the title (E(D) = -0.0049, bottom 24%). ¢, We select titles from 24,174,022 articles published between
1954 and 2014 and assign them to one of two groups, disrupting (D > 0) or developing (D < 0) articles. For the 1,033,879
words observed in both groups, we calculate the ratio of frequency in disrupting versus developing articles, r. We visualize
differences in the content and writing style between these two groups in terms of verbs, nouns, and adverbs and
prepositions (from left to right). To facilitate comparison, we visualize ringreenif r>1, and 1/rin red otherwise.
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a-c, Forresearch articles (24,174,022 WOS articles published between 1954 and 2014), patents (2,548,038 US patents
assigned between 2002 and 2014) and software (26,900 GitHub repositories uploaded between 2011 and 2014), median
citations (red curves, indexed by right y axis) increase with team size whereas the average disruption percentile (green
curves, indexed by left y axis) decreases with team size. For all datasets, we present work with one or more citations. Teams
of between 1and 10 authors account for 98% of articles, 99% of patents and 99% of code repositories. Bootstrapped 95%
confidence intervals are shown as grey zones. Extended Data Figure 3a shows that observed relationships hold for two
orders of magnitude of team size. d—f, As in a-c but for extreme cases rather than for average behaviour. Relative ratios
compare the observed proportion of teamwork being extremely (top 5%) disruptive or impactful (measured with citations)
against a constant baseline (grey line y = 1), which indicates a situation in which the most disruptive and impactful work is
distributed equally across team sizes. We find that the probability of observing papers, patents and products of highest
impact increases with team size (Kolmogorov-Smirnov statistics and probabilities for all team sizes plotted in Extended
Data Fig. 2f), whereas the probability of observing the most disruptive work decreases with team size (¢-statistics and
probabilities for all team sizes plotted in Extended Data Fig. 2c). For example, d shows that the percentage of top 5%
disruptive papers depends on team size, with 8.6% contributed by single authors and only 1.4% contributed by teams of ten
authors. This posts relative ratios of 8.6/5=1.72 and 1.4/5 = 0.28, respectively. For software, 69% of the codebases have
disruption values that equal 1; we therefore use this maximum value instead of the top 5%.

We also explored hot streaks in science—periods during which an individual’s performance is
substantially better than his or her typical performance. Little was previously known about
whether they apply to individual careers. Here, building on rich literature on the lifecycle of
creativity, we collected large-scale career histories of individual scientists, tracing the scientific
publications they produced. We find that hit works within a career show a high degree of
temporal regularity, with each career being characterized by bursts of high-impact works
occurring in sequence. We demonstrate that these observations can be explained by a simple
hot-streak model, allowing us to probe quantitatively the hot streak phenomenon governing
individual careers. We find this phenomemon to be remarkably universal. The hot streak
emerges randomly within an individual’s sequence of works, is temporally localized, and is not
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associated with any detectable change in productivity. We show that, because works produced
during hot streaks garner substantially more impact, the uncovered hot streaks fundamentally
drive the collective impact of an individual, and ignoring this leads us to systematically
overestimate or underestimate the future impact of a career. These results not only deepen our
quantitative understanding of patterns that govern individual ingenuity and success, but also may
have implications for identifying and nurturing individuals whose work will have lasting impact.

Lu Liu, Yang Wang, Roberta Sinatra, C. Lee Giles, Chaoming Song, and Dashun
Wang. 2018. “Hot Streaks in Artistic, Cultural, and Scientific Careers”. Nature.
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a-c, p(N*, N**), colour coded, measures the joint probability of the two highest-impact works within a career for artists (a),
directors (b), and scientists (¢). ¢ > 1indicates that two hits are more likely to colocate than would be expected at random.
d-f, R(A—I\?’ ) measures the temporal distance between highest-impact works relative to the null model’s prediction. Real
careers show a clear peak around 0 (red dots), which is well captured by the hot-streak model (solid lines). Different shades
of red correspond to different pairs of hit works. Blue dots denote the same measurement but on shuffled careers, and blue
lines are predictions from shuffled careers generated by our model. g-i, The distribution of the length of streaks P(L) for
real careers and P(L;) for shuffled careers. The hot-streak model (red lines) and its shuffled version (blue lines) closely
reproduce P(L) observed in real (red dots) and shuffled careers (blue dots).
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Despite the frequent use of numerous quantitative indicators to gauge the professional impact of
a scientist, little was previously known about how scientific impact emerges and evolves in time.
In this paper, we quantify the changes in impact and productivity throughout a career in science,
finding that impact, as measured by influential publications, is distributed randomly within a
scientist’s sequence of publications. This random-impact rule allows us to formulate a stochastic
model that uncouples the effects of productivity, individual ability, and luck and unveils the
existence of universal patterns governing the emergence of scientific success. The model assigns
a unique individual parameter Q to each scientist, which is stable during a career, and it
accurately predicts the evolution of a scientist’s impact, from the h-index to cumulative citations,
and independent recognitions, such as prizes.

Roberta Sinatra, Dashun Wang, Pierre Deville, Chaoming Song, and Albert-Laszlo
Barabasi. 2016. “Quantifying the evolution of individual scientific impact”, Science, 354:
6312.

Wang, Dashun. “The Science of Career: When Do You Do Your Best Work. Scientific
American (With the editor. Accepted by the editorial board).

(A) Publication history of Kenneth G. Wilson (Nobel Prize in Physics,
1982). Horizontal axis indicates the number of years after the

A 400 . . . B 02 scientist's first publication, and each vertical line corresponds to a
research paper. The height of each line corresponds to ¢4, that is, the
300+ ’ Kenneth G. Wilson | number of citations the paper received after 10 years (sections S1.3
° 10 and S1.6). The highest-impact paper of Wilson was published in 1974,
o, 9 years after his first publication, and it is the 17th of his 48 papers;
200 s hence, t* =9, N* = 17, and N = 48. (B) Distribution of the highest-impact
100 ¢ * ) paper P(¢lo) across all scientists. We highlight in blue the bottom 20%
[ ° \ o o ° \ of the area, corresponding to low maximum impact scientists
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% 10'L i Q‘_; # \ g 2p ',' _ productivity exponents y (18). The productivity of high-impact
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10” : = , ) AT R > . W 0 L L L scientists. t = 0 corresponds to the year of a scientist's first
10 10 10° 0 1 2 3 4 5 6 0 10 20 30 40 T
t in years 0% ¢ in years publication.

We also sought to understand quantitatively how scientists choose and shift their research focus
over time, because it affects the ways in which scientists are trained, science is funded,
knowledge is organized and discovered, and excellence is recognized and rewarded. Despite
extensive investigation into various factors that influence a scientist’s choice of research topics,
quantitative assessments of mechanisms that give rise to macroscopic patterns characterizing
research-interest evolution of individual scientists remain limited. Here we perform a large-scale
analysis of publication records, and we show that changes in research interests follow a
reproducible pattern characterized by an exponential distribution. We identify three fundamental
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features responsible for the observed exponential distribution, which arise from a subtle interplay
between exploitation and exploration in research-interest evolution. We developed a
random-walk-based model, allowing us to accurately reproduce the empirical observations. This
work uncovers and quantitatively analyses macroscopic patterns that govern changes in research
interests, thereby showing that there is a high degree of regularity underlying scientific research
and individual careers.

Tao Jiaz, Dashun Wang, and Boleslaw K. Szymanskiz. 2017. “Quantifying patterns of
research-interest evolution”. Nature Human Behaviour 1: 0078.

Yian Yin, and Dashun Wang. 2017. “The time dimension of science: Connecting the
past to the future”. Journal of Informetrics 11.2: 608-621.

We also published several other papers on how conflict in crowds could lead to higher
performance if the diversity is correlated with the nature of relevant content.

Shi, Feng, Misha Teplitskiy, Eamon Duede, James A. Evans. 2019. “The Wisdom of Polarized Crowds.” Nature
Human Behaviour, Mar 4: 1.

Predictability from Components

We also have pieces published or under review that explore the ways in which the components of
science and technological systems predict the future, whether the systems are best characterized
by component substitutions, as in technological platforms, or complex combinations, as in
science.

Ching Jin, Chaoming Song, Johannes Bjelland, Geoffrey Canright, Dashun Wang,
“Emergence of Scaling in Complex Substitutive Systems”. Nature Human Behaviour,
2019. [Cover Article]
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Fig. 2 | Empirical substitution network. We used the backbone extraction method* to construct a substitution network, capturing substitution patterns
among handsets aggregated within a 6-month period (January-June 2014). Each node corresponds to one type of handset released before 2014 by one of
the six major manufacturers. The node size captures its popularity, measured by the number of users of the particular handset at the time. Handsets are
coloured based on their manufacturers (node colouring), which fade with the age of the handsets. If users substituted handset i with j, we add a weighted
arrow pointing from i to j. The link weight captures the total substitution volumes between two handsets within the 6-month period. As the full network is
too dense to visualize, here we only show the statistically significant links as identified by the method proposed in ref. + for a P value of 0.05. We colour
the links based on the colour of the substituting handset. The network vividly captures the widespread transitions from feature handsets to smartphones.
Indeed, most cross-manufacturer substitution links are either yellow or green, indicating their substitutions by iPhones or Android handsets. Substitution
patterns are also highly heterogeneous. A few pairs of handsets have high substitution volumes, for example, between the successive generations of iPhones,
but most substitutions are characterized by rather limited volumes. The structural complexity shown is further coupled with a high degree of temporal
variability. Indeed, the system turns into a widely different configuration every year, even for the most dominant handsets (Supplementary Fig. 18b-e).

Shi, Feng and James Evans. “Science and Technology Advance through Surprise”

Scientific Success

We published several pieces that explore extreme scientific success in the context of major

scientific awards, revealing that Nobel laureates reveal some patterns that are the same as the rest

of scientists in some ways, but they work and achieve in contexts that are become quite different.

Jichao Li, Yian Yin, Santo Fortunato, and Dashun Wang, “Nobel laureates are

almost the same as us”. Nature Reviews Physics, 2019.

Jichao Li, Yian Yin, Santo Fortunato, and Dashun Wang, “A dataset of publication
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records for Nobel laureates™. Scientific Data, 2019

Li, Jichao, Yian Yin, Santo Fortunato, and Dashun Wang. “Scientific Elite revisited:
Patterns of productivity, collaboration, authorship, and impact.” (submitted
to Nature Human Behaviour)

Surveys of the Science of Science and New Scientific Directions

We published several reviews of the science of science, and others that drew on emerging
science of science tools and approaches to review other critical scientific and technological
fields, including physics and artificial intelligence.

Fortunato, Santo, Carl T. Bergstrom, Katy Borner, James A. Evans, Dirk Helbing, Stasa Milojevi¢, Alexander M.
Petersen, Filippo Radicchi, Roberta Sinatra, Brian Uzzi, Alessandro Vespignani, Ludo Waltman, Dashun Wang,
Albert-Laszl6 Barabasi. 2018. “Science of science.” Science 359(6379): eaao0185, doi: 10.1126/science.aao0185.

(=}
o
o
-
(=3
(=}
~
i
(=3
(=4
O
=

Science can be seen as an expanding and evolving network of ideas, scholars, and papers. SciSci searches for
universal and domain-specific laws underlying the structure and dynamics of science.

Federico Battiston, Federico Musciotto, Dashun Wang, Albert-Laszlo Barabasi,
Michael Szell, Roberta Sinatra. 2019. “Taking census of physics”, Nature Reviews Physics,
1, 89-97.

Foster, Jacob G., and James A. Evans. 2019 “Promiscuous Inventions: Modeling Cultural Evolution with Multiple

Inheritance.” Beyond the Meme. Ed. William C. Wimsatt and Alan Love. Minneapolis: University of Minnesota
Press.
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Sinatra, Roberta, Pierre Deville, Michael Szell, Dashun Wang, and Albert-Laszlo Barabasi. 2015. “A Century of
Physics”, Nature Physics, 11.10:791-796. [Cover
Atrticle].

Wang, Dashun and Albert-Laszlo Barabasi, The Science of Science. (Cambridge
University Press, Forthcoming, 2020).

Foster, Jacob and James Evans, Knowing. (Princeton University Press, Forthcoming, 2021)

Improving the Scientific Method through Prediction

We published several papers that proposed improvements to the scientific method through
improved prediction. For example, we explored how we could use the scientific literature to
better predict what are the most fruitful areas for future experimentation.

Rzhetsky, Andrey, Jacob Foster, Ian Foster and James Evans. 2015. “Choosing Experiments to Accelerate
Discovery.” Issue cover: “Engineering of Biology and Medicine”. Proceedings of the National Academy of Sciences
112(47):14569-14574, doi:10.1073/pnas. 1509757112

Efficiency in discovering lllustrated on example network
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Choosing experiments to accelerate collective discovery.

(A) The average efficiency rate for global strategies to discover new, publishable chemical relationships, estimated
from all MEDLINE-indexed articles published in 2010. This model does not take into account differences in the
difficulty or expense of particular experiments. The efficiency of a global scientific strategy is expressed by the
average number of experiments performed (vertical axis) relative to the number of new, published biochemical
relationships (horizontal axis), which correspond to new connections in the published network of biochemicals
co-occurring in MEDLINE-indexed articles. Compared strategies include randomly choosing pairs of biochemicals,
the global (“actual”) strategy inferred from all scientists publishing MEDLINE articles, and optimal strategies for
discovering 50 and 100% of the network. Lower values on the vertical axis indicate more efficient strategies,
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showing that the actual strategy of science is suboptimal for discovering what has been published. The actual
strategy is best for uncovering 13% of the chemical network, and the 50% optimal strategy is most efficient for
discovering 50% of it, but neither are as good as the 100% optimal strategy for revealing the whole network. (B)
The actual, estimated search process illustrated on a hypothetical network of chemical relationships, averaged from
500 simulated runs of that strategy. The strategy swarms around a few “important,” highly connected chemicals,
whereas optimal strategies are much more even and less likely to “follow the crowd” in their search across the space
of scientific possibilities. [Adapted from (15)]

We also explored how we could use prediction to improve the social sciences, but designing
better surveys that would anticipate and focus on only the things that are not already known.

Sengupta, Nandana, Nathan Srebro & James A. Evans. 2019. “Simple Surveys: Response Retrieval Inspired by
Recommendation Systems. Social Science Computer Review.

Katariya, Sumeet, Lalit Jain, Nandana Sengupta, James A. Evans, Robert Nowak. 2018. “Adaptive Sampling for
Coarse Ranking.” AISTATS.

Sengupta, Nandana, Madeleine Udell, Nathan Srebro and James Evans. “Matrix Factorization for Missing Value
Imputation.”

Predictive Signals in Text & Citations

We produced a number of investigations that explored how signals within the text and citations
of science could be used to trace and predict future influence in science, with striking results. We
found that more ambiguous works were more likely to generate debate that integrated new fields,
that text could allow us to diagnose the biases embedded in citations, and that we could use these
signals to predict not only typical but also atypical scientific publications.

McMahan, Peter & James A. Evans. 2018. “Ambiguity and Engagement”. American Journal of Sociology 124(3):
860-912.

Gerow, Aaron, Yuening Hu, Jordan Boyd-Graber, David M. Blei, James A. Evans. 2018. “Measuring Discursive
Influence across Scholarship.” Proceedings of the National Academy of Sciences, doi: 10.1073/pnas.1719792115.

Zhongyang He, Zhen Lei, and Dashun Wang. 2018. “Modeling citation dynamics of
‘atypical’ articles”. Journal of the Association for Information Science and Technology.

Improving Review through Prediction

A newer stream of research is focused on using prediction to better understand and improve the
review process associated with publishing, grant allocation and promotion.
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Teplitskiy, Misha, Daniel Acuna, Aida Elamrani-Raoult, Konrad Kording, and James A. Evans. 2018. “The
Sociology of Scientific Validity: How Professional Networks Shape Judgement in Peer Review”. Research Policy
47(9): 1825-1841.

Wang, Yang, Travis Hoppe, B. lan Hutchins, George M. Santangelo, James Evans

and Dashun Wang. “New Ideas & Approaches Discussed for NIH Funding Only

If Scientists’ Old Ideas Succeed”. (Pending NIH approval for submission)
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Improving Prediction in Social Science

Finally, we applied insights from science to improve prediction in the social sciences, which
have allowed us to refine cutting edge methods that allow us to “predict the past”—turning text
and implicit references into indicators of deep cultural quantities like opinions and associations
that social and cultural analysts have never been able to identify before. We believe that these
can be extended to gather critical information in time and security constrained settings where it
cannot be elicted..
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The Future

This grant enabled other successful applications, including a Minerva program that will fund
science of science community activities as well as research that builds on these foundations in
the years to come. We credit this grant with major advances in the science of science that have
formed the backbone of a new field of science with vast and direct implications for all fields of
science.
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