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1. Introduction 

The US Army Combat Capabilities Development Command (CCDC) Army 
Research Laboratory (ARL) has decades of experience using telemetry (TM) 
systems to transmit sensor data during flight tests for postprocessing and 
performance analysis. Unfortunately, much of CCDC Army Research Laboratory’s 
TM equipment is now antiquated and cumbersome to use in an age of ubiquitous 
network connectivity and low-cost embedded high-performance computing 
systems. This problem led ARL to develop new software-defined radio (SDR) 
solutions to old communication tasks that traditionally required expensive, 
standalone, application-specific hardware. An SDR TM receiver suitable for 
frequency-shift keying (FSK) pulse-code modulated (PCM) S-band transmitters 
was developed for laboratory use, including support for Advanced Encryption 
Standard (AES) encryption and layered protocol.1,2 This report extends previous 
TM receiver research to support a scalable, multireceiver networked and remotely 
monitored SDR framework for field deployment. 

In the first section of the report, we review the preexisting receiver architecture; the 
remainder of the report documents the field-programmable gate array (FPGA) 
modifications and host software used to enable reliable TM frame decoding in a 
multireceiver distributed network framework, the remote monitoring and data-
logging front-end software development, the hardware infrastructure used to 
construct the network backbone for the flight test, and the results of the TM data 
collection. 

2. SDR TM Receiver Overview 

ARL’s SDR TM receiver is based on the Ettus Research’s Universal Software 
Radio Peripheral (USRP) B200.3 This is a single-board SDR, using the Analog 
Devices (Cambridge, Massachusetts) RF integrated circuit (IC) that combines an 
RF front-end, in-phase/quadrature demodulator and analog-to-digital converters 
into a single IC that covers a range of center frequencies from 70 MHz to 6 GHz. 
There is an optional GPS-disciplined oscillator that can be installed on the B200 to 
enable global timing alignment to within 50 ns. Figure 1 shows the B200 SDR 
receiver architecture. Demodulation, bit synchronization, and frame 
synchronization modules were developed in Verilog and added to the FPGA 
firmware. The decimating half-band filters, which are normally required to reduce 
the data rate to speeds slow enough for the host computer to process, were replaced 
by nondecimating low-pass filters (LPFs) due to the enhanced processing 
capabilities of the FPGA. This allowed an increased baseband sampling resolution 
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equal to the 32 MHz master clock rate of the FPGA. A LabVIEW TM display 
program was designed for the host computer to visualize the processed frames. A 
separate C++ program was written using the USRP hardware driver (UHD) to 
configure the USRP and route data to a user datagram protocol (UDP) port. The 
LabVIEW program reads the UDP port to access data from the USRP, performs 
frame synchronization, extracts the frame data, and displays the results. Frame 
synchronization is performed on the FPGA as well so that extra data, such as time 
and received signal strength indicator (RSSI) data, can be added to the end of each 
frame. 

 

Fig. 1 TM receiver B200 block diagram 

3. Software Modifications 

3.1 Original Accumulator Design 

Referring back to Fig. 1, after the signal is demodulated and the bits are identified 
through bit synchronization, the frames are identified through a frame 
synchronization module. This frame synchronization module outputs 16-bit words 
and a strobe signal to an accumulator module, which converts the 16-bit words into 
a 32-bit format for transmission to the PC. Additionally, the accumulator module 
adds eight extra words to the end of each frame as specified in Table 1. The original 
Verilog code for the accumulator module is included as decom_acc in 
Appendix A, which operates according to the state diagram in Fig. 2. The state 
diagram uses the shorthand names for the RSSI and TIME signals specified in 
Table 1, along with D_in for data_in, D2 for data_out[31:16], and D1 for 
data_out[15:0]. The states are represented as circles, black text indicates the 
condition for state transition, and red text indicates a value change in a state, or 
during a state transition. The main caveat in the operation of decom_acc1 is that 
since there can be a total odd number of words per frame, and since the 16-bit input 
words are loaded into a 32-bit output register, a given input word will not always 
line up with the same 16 bits of the output register. To handle this problem, the state 
machine keeps track of the proper section of the output register to load, either D1 
or D2. 
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Table 1 Extra TM words 

Index  Name Shorthand Description 

1 RSSI [31:16] RSSI2 RSSI word 1 

2 RSSI [15:0] RSSI1 RSSI word 0 

3 TIME [63:48] TIME4 Timestamp word 3 

4 TIME [47:32] TIME3 Timestamp word 2 

5 TIME [31:16] TIME2 Timestamp word 1 

6 TIME [15:0] TIME1 Timestamp word 0 

7 AVE  AVE Average value of demodulated data 

8 DIN  DIN Digital inputs (lower byte) 

 

Starting in state reset (RST), the state machine automatically transitions to the LD1 
state. When the input strobe ld_in is asserted, D2 is loaded with D_in, and the 
state machine transitions to the WAIT1 state. A counter delays the state machine in 
WAIT1 for clk_div+1 clock cycles before transitioning to LD2, which is a 
sufficient period of time for ld_in to be deasserted. clk_div is set to the number 
of clock cycles per PCM bit. When ld_in is asserted again, D1 is set to D_in and 
the strobe out signal, ld_out, is asserted, sending the full 32 bit data_out signal 
to the PC. ld_in also triggers a state transition to WAIT2, which serves a similar 
function to WAIT1. The state machine returns to LD1 from WAIT2 where the 
process is repeated. This process continues until a full frame of words has been 
processed. The assertion of lastw indicates that the current input word is the last 
word of the frame. If lastw is asserted in the LD1 state, the state machine 
transitions to RSSI10. If it is asserted in LD2, the state machine transitions to 
RSSI20. In both of these branches of the state machine, extra words are loaded into 
the output register for transmission to the PC. The branch starting with RSSI10 
loads D2, since D1 was just loaded; whereas, the branch starting with RSSI20 loads 
D1, since D2 was just loaded. Each branch then continues, alternating between 
loading D1 and D2 before returning to the initial branch of the state machine. In 
state TIME22, data_out is fully loaded; therefore, the state machine returns to 
WAIT2, which will transition to LD1 and begin by loading D2 once again. In state 
TIME13, D2 has been loaded but not D1; therefore, the state machine returns to 
WAIT1 where it will transition to LD2 for D1 to be loaded. 
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Fig. 2 decom_acc1 state diagram, modified to accommodate wired inputs 
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3.2 Continuous TM Output 

In its normal operating mode, the receiver is designed to output TM frames as they 
are received. When frames are not being detected, no data are output. This results 
in two main problems. First, no RSSI information is sent to the computer, making 
it impossible to perform any kind of automatic gain control (AGC) to improve 
detection accuracy. Second, the timestamping of wired signals is unreliable. Any 
dropped TM frames will also result in a loss of DIN data. For the computer to 
receive these extra words without frame detection, the receiver must be used in a 
simulator mode, where the SDR continually outputs simulated TM frames 
irrespective of the received RF signal. This is clearly impractical for implementing 
an AGC and also undesirable for timestamping wired signals. To fix these 
problems, the accumulator was modified to output data even when TM frames are 
not detected in its normal operation mode. Figure 3 shows a block diagram of the 
new accumulator, decom_acc2. The ld_in signal was modified so that it is only 
asserted one clock cycle, and is used to load a first-in, first-out (FIFO) buffer with 
the incoming TM words. When there is a full frame of words available in the FIFO, 
they are unloaded and sent to the computer. When there are not enough words 
available, a dummy frame is output. In either case, the extra words, including DIN, 
are output with the frames. 

 

Fig. 3 decom_acc2 block diagram 

Figure 4 shows a state diagram of decom_acc2. The main words of the frame are 
handled in the MAKE_FRAME state, whose operation is briefly outlined in the 
diagram. Count registers cnt, bcnt, and wcnt are used to count cycles per bit, 
bits per word, and words per frame. high_bits is used to determine if the current 
word is loaded into the lower or higher bits of the 32-bit output signal and is 
inverted after each word. do_dummy determines if the current frame source is 
generated dummy frame data or real TM data from the FIFO. The FIFO is of the 
“first-word fall-through” variety, allowing the FIFO word to be available 
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immediately. The rd signal is asserted every time the FIFO output is used, allowing 
the next FIFO word to be available when needed. fifo_cnt is the number of 
words in the FIFO. At the end of each frame, fifo_cnt is used to determine the 
value of do_dummy. If there are sufficient words in the FIFO, do_dummy is 
deasserted. If not, do_dummy is asserted. The internal count registers are used now 
to determine transition to the extra word states instead of the external lastw 
signal. This transition occurs slightly before the end of a full frame, so that the total 
data rate is slightly higher than the TM data rate. This was done to ensure that the 
FIFO does not overflow in the case where the transmitter data rate might be slightly 
higher than the receiver’s expected data rate due to a mismatch between transmitter 
and receiver clocks. Thus, even when TM data are consistently received, a dummy 
frame will be occasionally output. The states for the extra words have remained 
generally the same, only now high_bits determines if the extra words begin in 
the higher bits of data_out (RSSI20) or the lower bits of data_out (RSSI10). 
high_bits must also be set correctly when transitioning back to the 
MAKE_FRAME state. The dummy frame format is specified in Table 2. The third 
word the dummy frame is set as is the subframe ID (SFID), with the upper byte 
specified by a configurable dummy_SFID parameter and the lower byte set to zero. 
The second-to-last word is a 16-bit frame counter while the last word is a checksum 
placeholder set to 1.  
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Fig. 4 decom_acc2 state diagram, modified for continuous output 
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3.3 Accumulator Design Simulation 

Due to the long compile times of FPGA images, simulation is a key part of FPGA 
design. dcc_chain_tb_din, a test bench for SDR receiver modifications, is 
also included in Appendix A. The test bench simulates at the digital down converter 
(DDC) level, which contains the accumulator described previously. A full 
explanation of the DDC is outside the scope of this report, although some aspects 
of the higher-level design are explained briefly. Parameters of the B200 are stored 
in setting registers in the FPGA and are set using the UHD. Adding additional 
setting registers would typically require modification and recompilation of the 
UHD. To avoid this, the timekeeper module was modified to allow for additional 
setting registers. When the 32-bit timekeeper register is loaded with x01234560, 
the next 32-bit load to the timekeeper, set_data[31:0], will be interpreted as 
a custom register load. set_data[31:28] and set_data[3:0] are ignored, 
set_data[27:22] is interpreted as a custom register index, and 
set_data[21:4] is the custom register data.  The important parameters for the 
DDC simulation are listed in Table 3, and are loaded into custom setting registers 
at the beginning of the test bench using the method described. By setting 
sim_pcm_en, the receiver generates simulated TM frames for transmission to the 
PC. For our purposes, these simulated frames can take the place of frames received 
from the demodulator and should not be confused with the dummy frames 
generated in the accumulator in Fig. 4. 

Table 3 Simulation parameters 

Parameter Value Description 

sync1 xFE6B First synchronization word 

sync0 x2840 Second synchronization word 

clk_div 8 Clock cycles per bit 

nbits 16 Bits per word 

nwords 11 Number of words per frame - 1 

sim_pcm_en 1 Output simulated frames 

dummy_sfid xFF High byte of the third word of a dummy frame 

 

Figure 5 shows a simulation of a dummy frame in decom_acc2. The state 
machine stays in the MAKE_FRAME state most of the time, which has a value of 
15. Words are loaded into the FIFO using ld_in. Observe fifo_cnt increasing 
as the FIFO fills. Since this is a dummy frame, no words are read from the FIFO. 
Instead, generated dummy words are loaded into data_out. high_bits 
alternates as words are loaded into the high or low bits of data_out, and ld_out 
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is asserted as a strobe output. Note that for the PC to receive the data in big-endian 
format, each word is transmitted as little-endian. Also, the higher bits of 
data_out are received first, and the lower bits are received last. Thus, a data_out 
value of x6BFE4028 is received at the PC as xFE6B2840. 

 

Fig. 5 Simulation of a dummy frame in decom_acc2 

Figure 6 shows a close-up view of the extra words at the end of the frame. 
Transitioning from MAKE_FRAME with high_bits = 1, the state machine enters 
RSSI20 (state = 7). The RSSI, TIME, AVE, and DIN registers are inserted into 
data_out, and strobed out with ld_out. The state machine returns to the 
MAKE_FRAME state with high_bits active, ready to load the next word into 
the higher bits of data_out. 

 

Fig. 6 Simulation of a dummy frame in decom_acc2; close-up view of extra words 

Figure 7 shows the simulation of a real frame in decom_acc2. fifo_cnt 
shows that there is more than a full frame of words in the FIFO, which causes 
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do_dummy to become inactive. The FIFO is unloaded using the rd signal, and 
data_out is loaded with the FIFO output, fifo_dout. 

 

Fig. 7 Simulation of a real frame in decom_acc2 

4. Networked SDR Architecture 

Since the USRP B200 device used in the original TM receiver communicates to the 
host device using USB3, a new SDR is needed to enable networked TM monitoring 
over Ethernet for proper field deployment. The device chosen for this task is the 
USRP E312 embedded series SDR.4 The E312 contains a Xilinx ZYNQ 7020 SoC, 
which integrates an FPGA and a dual-core ARM CPU onto a single package. The 
functional block diagram of the USRP E312 can be seen in Fig. 8. This allows any 
additional processing that may have been done on a connected host device such as 
additional frame synchronization or AGC to be self-contained on the SDR 
hardware. Additionally, the decoded TM frames can be broadcasted over the 
E312’s Ethernet port for remote monitoring and logging. 
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Fig. 8 Functional block diagram of the USRP E312 embedded SDR 

4.1 Porting the FPGA Firmware 

Because the TM receiver is implemented in the FPGA of the B200 for the increased 
processing power, implementing the baseband processing on the E312 is more 
difficult than simply recompiling a C++ code repository and running it on the 
embedded ARM processor. Since the FPGA image for each USRP is device 
specific, the firmware source code for the E312 FPGA needed to be downloaded 
and compiled separately from the B200 code used previously. Once basic 
functionality of the source-build E312 FPGA image was verified as identical to the 
manufacturer-supplied image, the modified accumulator code with continuous 
output was then integrated into the DDC functionality of the E312. The same 
simulation test bench seen in Figs. 5–7 was used to verify accumulator behavior 
before implementation on the physical device. Since the FPGA source on the E312 
used a newer Xilinx Vivado license, the included LPF implementation used in place 
of the half-band decimating filters had been deprecated and had to be redesigned. 
The new filter implemented in the FPGA is a fixed point direct form II, flat phase, 
finite impulse response (FIR) LPF.5 The filter sample rate is 32 MHz, which 
matches the master clock rate of the FPGA. However, since the FPGA master clock 
rate is programmable, new filter coefficients would need to be chosen if this value 
changes. The end of the pass band is 2.2 MHz and the start of the stop band is 
3.6 MHz with 20 dB stop band attenuation using 21 real taps and an overall filter 
gain of 2. This puts the –3 dB point of the magnitude response at 2.7 MHz. This 
filter response was chosen to maintain the baseband signal bandwidth of 4 MHz 
while removing as much out-of-band noise energy as possible. The input data 
resolution of the input baseband signal is 24 bits. The magnitude response, phase 
delay, and filter taps for the filter can be seen in Figs. 9–11, respectively.  
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Fig. 9 FPGA LPF magnitude response vs. baseband frequency 

 

Fig. 10 FPGA LPF phase delay vs. baseband frequency 
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Fig. 11 FPGA LPF real taps vs. baseband frequency 

4.2 ZeroMQ Frame Distribution in GNU Radio 

Because the E312 TM receiver is meant to be field deployed and remotely 
monitored, a new host program needs to be used to distribute the TM frame data. 
This host program is run on the embedded ARM processor and implements a 
distributed messaging protocol called ZeroMQ. A GNU Radio flow graph was 
developed to take the 16-bit words from the radio module and stream them over 
Ethernet using ZeroMQ.6 The flow graph in Fig. 12 first initializes the radio using 
a UHD USRP source block and then sends two words (32 bits) at a time over 
transmission control protocol (TCP) port 9999 using the ZMQ PUSH sink block. 
The Python source code for the E312 initialization program can be seen in 
Appendix B. 

 

Fig. 12 ZeroMQ TM frame distribution flow graph using GNU Radio 

4.3 Software AGC for Reliable Frame Detection 

For the TM receiver to properly decode frames, the RSSI in the radio needs to be 
kept within a 25-dB window. Additionally, the radio needs to quickly respond to 
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the large spike in signal strength after projectile launch and the logarithmic decay 
of the signal power as the projectile travels downrange. A proportional-integral-
derivative (PID) AGC system is developed in software to meet these requirements. 
The continuous time PID equation7 can be written as 

𝑢𝑢(𝑡𝑡) = 𝐾𝐾𝑝𝑝𝑒𝑒(𝑡𝑡) + 𝐾𝐾𝑖𝑖 � 𝑒𝑒(𝜏𝜏)𝑑𝑑𝜏𝜏 + 𝐾𝐾𝑑𝑑
𝑑𝑑𝑒𝑒(𝑡𝑡)
𝑑𝑑𝑡𝑡

𝑡𝑡

0
, (1) 

where the control variable is 𝑢𝑢(𝑡𝑡), the proportional gain is 𝐾𝐾𝑝𝑝, the integral gain is 
𝐾𝐾𝑖𝑖, and the derivative gain is 𝐾𝐾𝑑𝑑. The error value 𝑒𝑒(𝑡𝑡) is calculated by  
𝑒𝑒(𝑡𝑡) = 𝑟𝑟(𝑡𝑡) − 𝑦𝑦(𝑡𝑡) where the set point is 𝑟𝑟(𝑡𝑡) and the process variable is 𝑦𝑦(𝑡𝑡). To 
implement the PID control in software, Eq. 1 needs to be discretized into the form 

𝑢𝑢[𝑛𝑛] =  𝐾𝐾𝑝𝑝𝑒𝑒[𝑛𝑛] + 𝐾𝐾𝑖𝑖  �𝑒𝑒[𝑘𝑘] ∆t
𝑁𝑁

𝑘𝑘=0

+ 𝐾𝐾𝑑𝑑
𝑒𝑒[𝑛𝑛] − 𝑒𝑒[𝑛𝑛 − 1]

∆t
 , (2) 

where the sampling time between error measurements in seconds is ∆t and the 
current measurement index is 𝑛𝑛. For the AGC system, the RSSI error in decibels 
is𝑒𝑒[𝑛𝑛], which makes 𝑟𝑟[𝑛𝑛] the target RSSI and 𝑦𝑦[𝑛𝑛] is the current RSSI value. The 
radio gain is changed by 𝑢𝑢[𝑛𝑛] after each PID iteration to complete the closed-loop 
first-order control. The PID AGC block added to the flow graph in Fig. 12 can be 
seen in Fig. 13. 

 

Fig. 13 Software AGC control flow graph using GNU Radio message passing 

The block first serializes the incoming words and then checks for the sync word of 
the TM frame. Once a frame is found, the RSSI information is extracted and 
averaged over a specified number of frames. Changing the number of averaged 
frames will change the PID sampling time ∆t. The gain values for the PID system 
are 𝐾𝐾𝑝𝑝 = 0.6 and 𝐾𝐾𝑖𝑖 = 0.0 and 𝐾𝐾𝑑𝑑 = 0.0067, which are manually tuned to minimize 
rise time and overshoot7 to begin receiving valid frames quickly and to drop as few 
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frames as possible after launch, respectively. The integral gain is ignored entirely 
to avoid large error buildup between round loading and gun launch. Simply clipping 
the integral component would also work but reduce setting time at the expense of 
rise time. The sampling interval ∆t is around 20 ms for 100 averaged frames to give 
a fast control rate without losing stability. 

4.4 Remote TM Monitoring and Logging Front End 

The remote monitoring and logging of the TM frames is handled using the ZeroMQ 
distributed messaging protocol in a visual basic GUI front end. The front end is 
capable of saving large amounts of frame data from any number of networked SDR 
receivers as well as plotting RSSI and frame counter information in real time. The 
frame data are saved in .mat files for easy postprocessing in MATLAB. An example 
of the monitoring front-end functionality can be seen in Fig. 14. 

 

Fig. 14 Visual basic/MATLAB remote monitoring front-end example 

5. Highly Maneuverable Airframe Flight Experiment  

The highly maneuverable airframe (HMA) flight experiments were conducted by 
ARL from July 15–26, 2019, at the trench warfare test facility located at Aberdeen 
Proving Ground (APG). The experiment consisted of eight flight tests using eight 
airframes developed by the Guidance Technology Branch (GTB). The TM field 
deployment equipment used in these tests consists of the field network switch and 
field TM receiver. 

5.1 Ruggedized Field Network Switch8 

In support of the multiple prescribed flight experiments, an urgent requirement for 
field-expedient network connectivity was identified. The switch design needed to 
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be versatile enough to support Wi-Fi access points, TM radios, and assured power 
at experimental facilities that lack existing communication infrastructure. Field 
network switches are capable of transmitting and receiving power and data over 
long ranges from different locations where smart projectiles are tested. With the 
addition of this capability, the GTB would be able to acquire all data necessary in 
support of flight experiments in a uniform and timely fashion. All items used in this 
configuration were bought commercially except for the mounting brackets that 
were rapid prototyped using a 3-D printer. The full parts list of the field network 
switch is included in Appendix C. 

A durable Pelican 1430 Protector Top Loader Case (Pelican Products, Inc., 
Torrance, California) was chosen for its polypropylene exterior, O-ring seal, and 
double-throw latches. This particular case proved useful in keeping the internal 
network switch and other electrical components safe from any particulates or 
unexpected weather hazards encountered during the flight experiments. For the 
internals, an Ubiquiti Networks (New York, New York) EdgeSwitch 8, 8-port 
gigabit switch was chosen for its power over Ethernet capability and support for 
high-speed fiber connectivity. The field network switch can be powered one of 
three different ways: via an external generator, a 65-W 5-A solar-charge controller, 
or internal batteries. The battery interface consists of three lithium 12.8-V, 6.6-Ah 
battery packs routed through a 48V 100W DC/DC converter. A 3.0-A, 12.8-V 
Smart Charger was incorporated to keep the batteries fully charged in case of 
generator or solar power failure.  

The computer-aided design (CAD) drawings pictured in Figs. 15 and 16 show the 
internal electronic components mounted to two aluminum plates that fit 
comfortably inside the external enclosure. The top aluminum plate seen in Fig. 17 
is fitted with two weather-tight Ethernet ports and a digital voltmeter controlled 
with a panel-mounted push-button switch to verify the charge state of the batteries. 
The external Ethernet, fiber optics, and power ports seen in Fig. 18 all use the RJ45 
waterproof connection for enhanced durability. 
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Fig. 15 CAD model rendering of top-side internals of field network switch 

 

 

Fig. 16 CAD model rendering of bottom-side internals of field network switch 
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Fig. 17 Picture of the top aluminum plate of the assembled field network switch 

 

 

Fig. 18 Picture of the exterior connectivity of the assembled field network switch 

The field fiber box was designed to have three distinct operating modes controlled 
by a three-position rotary knob: on, off/charge, and storage. Once the field network 
switches and corresponding cables were fabricated, functionality was verified via a 
series of electrical tests. All single and multimode fiber-optic cables and ports were 
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tested with a fiber scope and connectivity was verified using the network switch 
and an SDR. Ethernet cables and ports were tested with a cable tester and 
connectivity was again verified with the network switch. The battery charging 
circuitry was tested by plugging the switch into a 110-VAC outlet while monitoring 
the battery voltage and charging current with a multimeter. The internal batteries 
were further tested by performing several charge/discharge cycles using the internal 
electronics. 

5.2 Ruggedized Field TM Receiver 

The field TM box was used to house the networked SDR receiver and supporting 
RF components in conjunction with the field fiber box that supplied connectivity. 
Figure 19 shows a block diagram of the full configuration.  

 

Fig. 19 Field TM box block diagram 

The box was built using a Pelican 1400 series weatherproof case, which can be seen 
in Fig. 20.  
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Fig. 20 Pelican ruggedized field TM receiver enclosure exterior 

The Pelican case internal components were fixed to a piece of 1/8-inch aluminum 
plate mounted to a panel frame inside the box (Fig. 21). 

 

Fig. 21 Ruggedized field TM receiver aluminum mounting plate 

An RG405 0.086-inch RF coaxial semi-rigid cable was used to connect the internal 
components. This cable was chosen because it had an impedance of 50 ohms, a max 
frequency of 40 GHz, a solid center conductor, and a maximum operating 
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temperature of 125 °F. The surface-mounted RF input connector we used was a 
Belden (St Louis, Missouri) TBCF81 RF/coaxial connector with an impedance of 
75 ohms and maximum frequency of 3 GHz. The other internal RF connectors used 
were SMA male to SMA male right-angle connectors with an impedance of  
50 ohms. The active RF components consisted of a PE15A63007 low-noise 
amplifier (LNA) and ZFSWA2-63DR+ SPST RF switch connected to a BW-
S15W2 15-dB 50-ohm attenuator. The 12V out surface-mounted HD-BNC to HD-
BNC RG58 connector was chosen for this application. Lastly, we went with a 
modular plug connector 8p8c (RJ45, Ethernet) position-shielded Cat5e insulation 
displacement connector. This TM box was powered over Ethernet by the field 
network box feeding a PT-POE-171S power-over-Ethernet switch. These 
components, including the USRP SDR, are mounted on the back of the aluminum 
plate and can be seen in Fig. 22. The full parts list of the field TM receiver is 
included in Appendix D. 

 

Fig. 22 Ruggedized field TM receiver internal component layout 

5.3 Flight Test TM Deployment 

A total of three networked TM receivers were deployed during the HMA flight 
experiment at the trench warfare test site at APG. The installation locations of the 
three receivers relative to the flight experiment can be seen in Fig. 23. The deployed 
receivers are referenced as gun, impact, and mid-range (right side) throughout the 
report. The planned mid-range left-side receiver was not used for this flight 
experiment. 
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Fig. 23 Satellite view of the HMA flight experiment installation at the trench warfare test 
site 

6. Experimental Results 

The estimated RF link budget for the HMA flight experiment TM link can be seen 
in Table 4. The good RX sensitivity of –80 dBm and a calculated minimum received 
power of –18.8 dB means the receiver should have sufficient signal-to-noise ratio 
(SNR) throughout the flight. 

Table 4 HMA flight experiment TM link budget 

Parameter Value Description 

Frequency 2255.5 MHz TM RF center frequency 

TX power 27 dBm Measured power output of the HMA TX radio 

TX antenna gain –10 dB Average far-field gain of the HMA TX antenna 

FSPL (min) 53 dB Minimum free space path loss for flight experiments 

FSPL (max) 98.8 dB Maximum free space path loss for flight experiments 

LNA gain (max) 30 dB Gain of the PE15A630007 LNA 

Cable loss 25 dB Loss from wired connections 

RX gain range 0–55 dB Possible gain value of the AD9361 RFIC (clipped) 

RX antenna gain +3–13 dB Far-field gain range of the 6H2223 RX antenna 

RX sensitivity –80 dBm Lowest receivable signal power 
Note: TM = telemetry; RF = radio frequency; TX = transmit; HMA = highly maneuverable airframe; FSPL = free 
space path loss; LNA = low-noise amplifier; RX = receive; RFIC = radio-frequency integrated circuit. 
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The RSSI values from the HMA 3 launch test can be seen in Figs. 24–26 for TM 
receivers at the gun, mid-range (right side), and at impact, respectively. We can see 
that the PID RSSI control at the gun had the best performance locking to the target 
77-dB RSSI in under 250 ms and only losing lock briefly at 4 s, and at terminal 
when the gain value was clipped due to the high path loss and poor line of sight to 
the projectile. The mid-range receiver exhibited oscillation behavior because the 
receiver was facing the side of the round for the duration of the experiment. The 
oscillation rate closely matches the 10-Hz rotation rate of the projectile, which was 
launched without deployable canards. The PID will need to be tuned further to deal 
with this rotation if another HMA launch is conducted without deployable canards. 
The impact receiver likely experienced problems for the first half of the launch 
thanks to the overly conservative maximum gain value set in the PID feedback. 
This conservative max gain of 55 was chosen to prevent damaging the radio during 
gun launch, which quickly spikes the signal power by 30 dB. A higher max gain in 
the feedback will need to be chosen to solve this problem. If this value is also made 
tunable in software, we can set different values per receiver at runtime, which will 
avoid damaging the receiver at the gun, which is most likely to experience high-
input power at the time of launch. The frame drop graphs for the three receivers can 
be seen in Figs. 24–29. Frame counter deltas greater than 1 indicate 𝑁𝑁 − 1 dropped 
frames. 

 

Fig. 24 Graph of RSSI vs. time for HMA 3 gun location TM receiver 
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Fig. 25 Graph of RSSI vs. time for HMA 3 mid-range TM receiver 

 

 

Fig. 26 Graph of RSSI vs. time for HMA 3 impact location TM receiver 
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Fig. 27 Graph of frame counter delta vs. time for HMA 3 gun location TM receiver 

 

 

Fig. 28 Graph of frame counter delta vs. time for HMA 3 mid-range location TM receiver 
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Fig. 29 Graph of frame counter delta vs. time for HMA 3 impact location TM receiver 

By aggregating all of the received frames from the three receivers and finding any 
missing frame numbers we can find the frame error rate (FER) in percent by 
computing �𝑁𝑁𝑒𝑒

𝑁𝑁𝐹𝐹
� × 100 where the number of missed frames is 𝑁𝑁𝑒𝑒 and the total 

number of frames is 𝑁𝑁𝐹𝐹. Using this method, the FER is found to be around 2% with 
most of the errors occurring at the very end of flight. 

7. Conclusion 

In summary, this report has discussed the successful development, integration, and 
deployment of a networked SDR receiver for FSK S-band TM signals. The field 
experiment of the receivers, conducted during the GTB flight test of the HMA, was 
very successful with an overall FER of 2.15% from three receivers.  

Further research and development to be conducted to improve the performance of 
the TM receiver design includes the following: 

1) Increasing the FPGA digital baseband dynamic range to take full 
advantage of the RF front-end sensitivity, which will also relax the AGC 
rise-time requirements and leading to better steady-state error 
performance. 
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2) Implementing a more robust AGC algorithm, specifically a clipped 
integral error component, will allow for improved steady-state response. 

3) Implementing a digital frequency-locked loop will remove any 
frequency offset due to clock mismatch and drift between the transmitter 
and receiver. 

4) Implementing forward error correction coding and exploiting the 
multiple-input multiple-output (MIMO) capabilities of the E312 to 
provide diversity gain at the receiver, which will lead to a reduced error 
rate at low SNR and provide mitigation from channel fading effects.  

  



 

28 

8. References 

1. Don ML. A low-cost software-defined telemetry receiver. Proceedings of the 
51st International Telemetering Conference; 2015 Oct 26–29; Las Vegas, NV. 
San Diego (CA): International Foundation for Telemetering; 2015. 

2. Don M, Ilg M. Advances in a low-cost software-defined telemetry system. 
Proceedings of the 53rd International Telemetering Conference; 2017  
Oct 23–26; Las Vegas, NV. San Diego (CA): International Foundation for 
Telemetering; 2017. 

3. USRP bus series B200/B210/B200mini/B205mini. Mountain View (CA): 
Ettus Research LLC; 2019 Oct 29 [accessed 2019 Sep 11]. 
https://kb.ettus.com/B200/B210/B200mini/B205mini. 

4. USRP E310/E312. Mountain View (CA): Ettus Research LLC; 2017 June 25 
[accessed 2019 Sep 11]. https://kb.ettus.com/E310/E312. 

5. Pardo D. filtro_FIR: VHDL parametrizable FIR filter. Amsterdam (the 
Netherlands): OpenCores; 2015 Aug [accessed 2019 Sep 11]. 
https://opencores.org/projects/fir_filter. 

6. ZeroMQ distributed messaging. [accessed 2019 Sep 11]. 
http://wiki.zeromq.org/. 

7. Kiam HA, Chong G, Li Y. PID control system analysis, design, and 
technology. IEEE T Contr Syst T. 2005;13(4):559–576. 

8. Zajicek JM. Ruggedized field network switch. Aberdeen Proving Ground 
(MD): CCDC Army Research Laboratory (US); 2019 Nov. Report No.: ARL-
TN-0997. 



 

29 

Appendix A. Software-Defined Radio Field-Programmable Gate 
Array Verilog Code 
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This appendix includes the following Verilog files: 

1) decom_acc1: the extra digital inputs (DIN) word added 

2) decom_acc2: continuous output added 

3) dcc_chain_tb_din: the test bench 

 

//take 16 bit words, and load into 32 samples to output to PC 

//add on extra words at end of each frame, including din 

module decom_acc1( 

clk, 

reset, 

data_in, 

ld_in, 

data_out, 

ld_out, 

clk_div, 

rssi, 

lastw, 

time_in, 

ave_in, 

din 

); 

 

input clk; 

input reset; 

input [15:0] data_in; 

input ld_in; 

output [31:0] data_out; 

output ld_out; 

input [5:0] clk_div; 

input [31:0] rssi; 

input lastw; 

input [63:0] time_in; 

input [15:0] ave_in; 

input [7:0] din; 
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wire clk; 

wire [15:0] data_in; 

wire ld_in; 

wire reset; 

reg [31:0] data_out; 

reg ld_out; 

wire [5:0] clk_div; 

wire [31:0] rssi; 

reg [31:0] rssi_reg; 

wire lastw; 

wire [63:0] time_in; 

wire [15:0] ave_in; 

 

reg [15:0] ave_reg; 

reg [63:0] time_reg; 

reg from_LD1; 

 

integer cnt; 

 

parameter [3:0] 

  RST = 0, 

  LD1 = 1, 

  LD2 = 2, 

  WAIT1 = 3, 

  WAIT2 = 4, 

  DO_RSSI10 = 5, 

  DO_RSSI11 = 6, 

  DO_RSSI20 = 7, 

  DO_RSSI21 = 8, 

  DO_TIME10 = 9, 

  DO_TIME11 = 10, 

  DO_TIME12 = 11, 

  DO_TIME20 = 12, 

  DO_TIME21 = 13, 

  DO_TIME22 = 14, 
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  DO_TIME13 = 15; 

   

reg [3:0] state; 

 

  always @(posedge clk) begin : P1 

 

    if((reset == 1'b 1)) begin 

      state <= RST; 

    end 

    else begin 

 

      case(state) 

      RST : begin 

   cnt <= 0; 

        data_out <= 0; 

        state <= LD1; 

    time_reg <=64'd0; 

    ave_reg <=16'd0; 

    from_LD1 <= 0; 

      end 

      LD1 : begin  //load one 16 bit word 

   rssi_reg<=rssi; 

   ld_out <= 1'b0; 

   if(ld_in == 1'b1) begin 

    data_out[31:16] <= {data_in[7:0],data_in[15:8]}; 

    if (lastw == 1'b0) 

     state <= WAIT1; 

    else begin 

     time_reg<=time_in; 

     ave_reg<=ave_in; 

     state <= DO_RSSI10; 

    end 

   end 

      end 

      WAIT1 : begin  //wait for load signal to go low 

   if(cnt == clk_div) begin 
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    cnt <= 0; 

    state <= LD2; 

   end else begin 

    cnt <= cnt+1; 

   end 

      end 

      LD2 : begin 

   rssi_reg<=rssi;  // assert load out to load out 32 bit value 

   if(ld_in == 1'b1) begin 

    data_out[15:0] <= {data_in[7:0],data_in[15:8]}; 

    ld_out <= 1'b1; 

    if (lastw == 1'b0) 

     state <= WAIT2; 

    else begin 

     time_reg<=time_in; 

     state <= DO_RSSI20; 

    end 

   end 

      end 

      WAIT2: begin 

   ld_out <= 1'b0; 

   if(cnt == clk_div) begin 

    cnt <= 0; 

    state <= LD1; 

   end else begin 

    cnt <= cnt+1; 

   end 

      end 

   

      DO_RSSI10: begin  // now do next 2cd with ld out 

   data_out[15:0] <= {rssi_reg[23:16],rssi_reg[31:24]}; 

   ld_out <= 1'b1; 

   state <= DO_RSSI11; 

      end 

      DO_RSSI11: begin // now do time, start with 2cd slot 

   data_out[31:16] <= {rssi_reg[7:0],rssi_reg[15:8]}; 
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   ld_out <= 1'b0; 

   state <= DO_TIME10; 

      end 

      DO_RSSI20: begin //This is 1st slot 

   data_out[31:16] <= {rssi_reg[23:16],rssi_reg[31:24]}; 

   ld_out <= 1'b0; 

   state <= DO_RSSI21; 

      end 

      DO_RSSI21: begin // now do time, start with 1st slot 

   data_out[15:0] <= {rssi_reg[7:0],rssi_reg[15:8]}; 

   ld_out <= 1'b1; 

   state <= DO_TIME20; 

      end 

   

      DO_TIME10: begin  // now do next 2cd with ld out 

   data_out[15:0] <= {time_reg[55:48],time_reg[63:56]}; 

   ld_out <= 1'b1; 

   state <= DO_TIME11; 

      end 

      DO_TIME11: begin //Do whole 32 bit value and ld out 

   data_out[31:16] <= {time_reg[39:32],time_reg[47:40]}; 

   data_out[15:0] <= {time_reg[23:16],time_reg[31:24]}; 

   ld_out <= 1'b1; 

   state <= DO_TIME12; 

      end 

      DO_TIME12: begin  //32 bit value 

   data_out[31:16] <= {time_reg[7:0],time_reg[15:8]}; 

   data_out[15:0] <= {ave_reg[7:0],ave_reg[15:8]}; 

   ld_out <= 1'b1; 

   state <= DO_TIME13; 

      end 

      DO_TIME13: begin  //This is 1st value, do back to words in 2cd slot 

   data_out[31:16] <= {din[7:0],8'b00000000}; 

   ld_out <= 1'b0; 

   state <= WAIT1; 

      end 
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  DO_TIME20: begin  // now do next 2cd with ld out 

   data_out[31:16] <= {time_reg[55:48],time_reg[63:56]}; 

   data_out[15:0] <= {time_reg[39:32],time_reg[47:40]}; 

   ld_out <= 1'b1; 

   state <= DO_TIME21; 

      end 

      DO_TIME21: begin //Do 32 bit value 

   data_out[31:16] <= {time_reg[23:16],time_reg[31:24]}; 

   data_out[15:0] <= {time_reg[7:0],time_reg[15:8]}; 

   ld_out <= 1'b1; 

   state <= DO_TIME22; 

      end 

      DO_TIME22: begin  //32 bits, go back to words in 1st slot 

   data_out[31:16] <= {ave_reg[7:0],ave_reg[15:8]}; 

   data_out[15:0] <= {din[7:0],8'b00000000}; 

   ld_out <= 1'b1; 

   state <= WAIT2; 

      end 

   

      default : begin 

        state <= RST; 

      end 

      endcase 

    end 

  end 

endmodule 

 

//take 16 bit words, and load into 32 samples to output to PC 

//add on extra words at end of each frame, including din 

//continuous data output 

module decom_acc2( 

clk, 

reset, 

data_in, 
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ld_in, 

data_out, 

ld_out, 

clk_div, 

rssi, 

lastw, 

time_in, 

ave_in, 

din, 

nbits, 

nwords, 

sync, 

dummy_sfid 

); 

 

input clk; 

input reset; 

input [15:0] data_in; 

input ld_in; 

output [31:0] data_out; 

output ld_out; 

input [5:0] clk_div; //clock cycles per bit 

input [31:0] rssi; 

input lastw; 

input [63:0] time_in; 

input [15:0] ave_in; 

input [7:0] din; 

input [4:0] nbits; //bits per word 

input [8:0] nwords; //words per frame - 1 

input [31:0] sync; 

input [7:0] dummy_sfid; 

 

wire clk; 

wire [15:0] data_in; 

wire ld_in; 

wire reset; 



 

37 

reg [31:0] data_out; 

reg ld_out; 

wire [5:0] clk_div;  

wire [31:0] rssi; 

reg [31:0] rssi_reg; 

wire lastw; 

wire [63:0] time_in; 

wire [15:0] ave_in; 

wire [4:0] nbits; 

wire [8:0] nwords; 

wire [31:0] sync; 

wire [7:0] dummy_sfid; 

 

reg [15:0] ave_reg; 

reg [63:0] time_reg; 

reg from_LD1; 

reg high_bits; 

reg do_dummy; 

 

reg [15:0] dummy; 

 

integer cnt; //cnt clk cycles for 1 bit 

integer bcnt; //cnt bits in a word 

integer wcnt; //cnt words in frame 

integer fcnt; //cnt frames 

 

parameter [4:0] 

  RST = 0, 

  LD1 = 1, 

  LD2 = 2, 

  WAIT1 = 3, 

  WAIT2 = 4, 

  DO_RSSI10 = 5, 

  DO_RSSI11 = 6, 

  DO_RSSI20 = 7, 

  DO_RSSI21 = 8, 
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  DO_TIME10 = 9, 

  DO_TIME11 = 10, 

  DO_TIME12 = 11, 

  DO_TIME20 = 12, 

  DO_TIME21 = 13, 

  DO_TIME22 = 14, 

  MAKE_FRAME = 15, 

  DO_TIME13 = 16; 

   

   

  wire [7:0] fifo_cnt; 

  wire [15:0] fifo_dout; 

  reg rd; 

 

//incoming frame fifo   

ddc_output_fifo ddc_output_fifo1 

 (.clk(clk), .rst(reset), .din(data_in), .wr_en(ld_in), .rd_en(rd), 

 .dout(fifo_dout), .full(), .empty(), .data_count(fifo_cnt)); 

   

reg [3:0] state; 

 

  always @(posedge clk) begin : P1 

 

    if((reset == 1'b 1)) begin 

      state <= RST; 

    end 

    else begin 

 

      case(state) 

      RST : begin 

   fcnt<=0; 

   do_dummy<=1; 

   cnt <= 0; 

   bcnt<=0; 

   wcnt<=0; 

   data_out <= 0; 
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   state <= MAKE_FRAME; 

   time_reg <=64'd0; 

   ave_reg <=16'd0; 

   from_LD1 <= 0; 

   rssi_reg <=32'd0; 

   high_bits<=1; //first data load will be high bits 

      end 

       

       

      //cnt - counts clks; bcnt - counts bits; wcnt - counts words 

      //each increments when one below reaches max value 

      //dummy word set with wct - will change 1 cycle after wcnt changes 

      MAKE_FRAME : begin 

         //run clock counter 

   if(cnt == clk_div-1)  //clk_div is cycles per bit 

    cnt <= 0; 

   else  

    cnt <= cnt+1; 

 

     //run bit counter 

   if (cnt  == clk_div-1) 

     if (bcnt == nbits-1) //nbits is bits per word 

     bcnt <= 0; 

     else 

     bcnt <= bcnt+1; 

          

   //run word counter 

   if (bcnt == nbits-1 && cnt  == clk_div-1) 

        if (wcnt == nwords)  //nwords is words per frame - 1 

            wcnt <= 0; 

        else 

            wcnt <= wcnt+1;            

                    

   case(wcnt) 

     0 : dummy<=sync[31:16];    

     1 : dummy<=sync[15:0]; 
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     2 : dummy<={dummy_sfid,8'd0}; 

     (nwords-1) : dummy<=fcnt; 

     nwords : dummy<=1; 

     default :   dummy<=wcnt; 

   endcase 

                        

   //make frame counter 

   if (cnt == 0 && bcnt == 0 && wcnt == 0) 

     if (fcnt == 65535) 

       fcnt<=0; 

     else 

       if (do_dummy == 1) 

       fcnt<=fcnt+1; 

             

   //output data 

   if (cnt == 0 && bcnt == 1) begin 

     if (high_bits == 1) begin 

       if (do_dummy == 1) begin 

       data_out[31:16]<={dummy[7:0],dummy[15:8]}; 

       ld_out <= 1'b0; 

       end else begin 

       data_out[31:16]<={fifo_dout[7:0],fifo_dout[15:8]}; 

       ld_out <= 1'b0; 

       rd<=1; 

       end            

     end else begin 

       if (do_dummy == 1) begin 

       data_out[15:0]<={dummy[7:0],dummy[15:8]}; 

       ld_out <= 1'b1; 

       end else begin 

       data_out[15:0]<={fifo_dout[7:0],fifo_dout[15:8]}; 

       ld_out <= 1'b1; 

       rd<=1; 

       end       

     end 

     high_bits<=~high_bits; 



 

41 

   end else begin    

       ld_out <= 1'b0;   

       rd<=  1'b0;  

   end 

                   

   //state transition 

   //there will be at most 5 cycles to do extra words 

   //want full frame period to be slight less than full period 

   //so have some dummy frames even when getting data 

   //make sure the FIFO is kept empty 

   //state change at nbits-4 will slowly empty fifo 

   if ((cnt == clk_div-1) && (bcnt == nbits-4) && (wcnt == nwords) ) 
begin 

    time_reg<=time_in; 

    rssi_reg<=rssi; 

    ave_reg<=ave_in; 

     if (high_bits==1) //this means that just did low 

      state <= DO_RSSI20; 

     else 

      state <= DO_RSSI10; 

   end 

     end 

   

      DO_RSSI10: begin  // now do next 2cd with ld out 

   data_out[15:0] <= {rssi_reg[23:16],rssi_reg[31:24]}; 

   ld_out <= 1'b1; 

   state <= DO_RSSI11; 

      end 

      DO_RSSI11: begin // now do time, start with 2cd slot 

   data_out[31:16] <= {rssi_reg[7:0],rssi_reg[15:8]}; 

   ld_out <= 1'b0; 

   state <= DO_TIME10;  

      end 

      DO_RSSI20: begin //This is 1st slot 

   data_out[31:16] <= {rssi_reg[23:16],rssi_reg[31:24]}; 

   ld_out <= 1'b0; 
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   state <= DO_RSSI21;    

      end 

      DO_RSSI21: begin //now do time, start with 1st slot 

   data_out[15:0] <= {rssi_reg[7:0],rssi_reg[15:8]}; 

   ld_out <= 1'b1; 

   state <= DO_TIME20;   

      end 

   

      DO_TIME10: begin  // now do next 2cd with ld out 

   data_out[15:0] <= {time_reg[55:48],time_reg[63:56]}; 

   ld_out <= 1'b1; 

   state <= DO_TIME11; 

      end 

      DO_TIME11: begin //Do whole 32 bit value and ld out 

   data_out[31:16] <= {time_reg[39:32],time_reg[47:40]}; 

   data_out[15:0] <= {time_reg[23:16],time_reg[31:24]}; 

   ld_out <= 1'b1; 

   state <= DO_TIME12; 

      end 

      DO_TIME12: begin  //This is 1st value 

   data_out[31:16] <= {time_reg[7:0],time_reg[15:8]}; 

   data_out[15:0] <= {ave_reg[7:0],ave_reg[15:8]}; 

   ld_out <= 1'b1; 

   state <= DO_TIME13;  

  

      end 

   

  DO_TIME13: begin  //This is 1st value, do back to words in 2cd slot 

   data_out[31:16] <= {din[7:0],8'b00000000}; 

   ld_out <= 1'b0; 

   state <= MAKE_FRAME; 

   high_bits<=0; 

  if (fifo_cnt > nwords) begin 

    do_dummy<=0; 

    cnt <= 0; 

    bcnt<=0; 
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    wcnt<=0; 

   end else 

    do_dummy<=1;  

      end 

   

  DO_TIME20: begin  // now do next 2cd with ld out 

   data_out[31:16] <= {time_reg[55:48],time_reg[63:56]}; 

   data_out[15:0] <= {time_reg[39:32],time_reg[47:40]}; 

   ld_out <= 1'b1; 

   state <= DO_TIME21;    

      end 

      DO_TIME21: begin  //Do 32 bit value and ld out 

   data_out[31:16] <= {time_reg[23:16],time_reg[31:24]}; 

   data_out[15:0] <= {time_reg[7:0],time_reg[15:8]}; 

   ld_out <= 1'b1; 

   state <= DO_TIME22;   

      end 

      DO_TIME22: begin  //32 bit value, go back to MAKE_FRAME in 2cd slot 

   data_out[31:16] <= {ave_reg[7:0],ave_reg[15:8]}; 

   data_out[15:0] <= {din[7:0],8'b00000000}; 

   ld_out <= 1'b1; 

         high_bits<=1;  

   state <= MAKE_FRAME; 

   if (fifo_cnt > nwords) begin 

     do_dummy<=0; 

     cnt <= 0; 

     bcnt<=0; 

     wcnt<=0; 

   end else 

     do_dummy<=1;    

      end 

   

      default : begin 

        state <= RST; 

      end 

      endcase 
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    end 

  end 

 

endmodule 

 

 

//Testbench to test the DIN function and cont. output of the dcc 

`timescale 1ns / 1ps 

module dcc_chain_tb_din; 

 

localparam SR_RX_DSP    = 8'd144; 

localparam SR_TIME    = 8'd100; 

 

reg clk    = 0; 

reg reset  = 1; 

reg run = 0; 

wire strobe; 

reg [23:0] rx_fe_i, rx_fe_q,debug_reg; 

integer i,i2; 

reg [1:0] pcm_in = 2'b00; 

wire [2:0] scale_rx,scale_rx2; 

wire [3:0] half_clk_div; 

wire [8:0] nwords; 

wire external_pcm_en,sim_pcm_en,randomized,use_filt_10; 

wire sync_select,swap_bytes,en_crc; 

wire [1:0] sync_size; 

wire [4:0] nbits; 

wire [7:0] dummy_sfid; 

wire [15:0] sync0,sync1; 

 

//Telemetry parameters: 

assign sync0 = 16'hfe6b; 

assign sync1 = 16'h2840; 

assign half_clk_div = 4'd4; 

assign nwords = 9'd11;  //nwords is really nwords-1, nwords=47 gives 48 
words 
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assign external_pcm_en = 1'b0; 

assign sim_pcm_en = 1'b1; 

assign randomized = 1'b0; 

assign use_filt_10= 1'b0; 

assign sync_select = 1'b0; 

assign scale_rx = 3'd1; 

assign swap_bytes = 1'b0; 

assign scale_rx2 = 3'd1; 

assign en_crc = 1'b0; 

assign decrypt = 1'b0; 

assign sync_size = 2'd3; //3 = 32, 2=24 

assign nbits = 5'd16; 

assign dummy_sfid = 8'hFF; 

 

always #10 clk = ~clk; 

 

   initial 

     begin 

 rx_fe_i <= 24'b001000000000000000000000; 

 rx_fe_q <= 24'b001000000000000000000000; 

 #1000 reset = 0; 

 @(posedge clk); 

 set_addr <= 8'd144; set_data <= 32'd8434349; set_stb <= 1; 

  @(posedge clk); // CORDIC 

 set_addr <= 8'd145; set_data <= 18'd19800; set_stb <= 1; 

  @(posedge clk); // Scale factor 

 set_addr <= 8'd146; set_data <= {1'b1, 1'b1, 1'b1, 1'b0, 6'd47}; 
 set_stb <= 1; 

  @(posedge clk); // {enable_hb1_real, enable_hb2_real, 
cic_decim_rate_real} 

 set_addr <= 8'd147; set_data <= 0; set_stb <= 1; 

  @(posedge clk); // Swap iq 

 set_addr <= 8'd148; set_data <= 0; set_stb <= 1; 

  @(posedge clk); // filter taps 

 set_addr <= 8'd186; set_data <= {1'b1, 1'b1, 4'd0, 4'd4}; 

  set_stb <= 1; @(posedge clk); // {enable_hb1, enable_hb2, 
interp_rate_duc} 
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 set_addr <= 8'd128; set_data <= 32'hF001F002; set_stb <= 1; 

 @(posedge clk); 

  

 //Set config regs using timekeeper: 

 //4 upper blank, next 6 address, next 18 data, next 4 blank 

 

 //sync0 

 set_addr <= 8'd101; set_data <= 32'h01234560; 

 set_stb <= 1; @(posedge clk); set_stb <= 0; @(posedge clk); 

 set_addr <= 8'd101; set_data <= {4'd0,6'd0,2'b0,sync0,4'd0}; 

 set_stb <= 1; @(posedge clk); set_stb <= 0; @(posedge clk); 

 

 //sync1 

 set_addr <= 8'd101; set_data <= 32'h01234560; 

 set_stb <= 1; @(posedge clk); set_stb <= 0; @(posedge clk); 

 set_addr <= 8'd101; set_data <= {4'd0,6'd1,2'b0,sync1,4'd0}; 

 set_stb <= 1; @(posedge clk); set_stb <= 0; @(posedge clk); 

  

 //config2 

 set_addr <= 8'd101; set_data <= 32'h01234560; 

 set_stb <= 1; @(posedge clk); set_stb <= 0; @(posedge clk); 

 set_addr <= 8'd101; set_data <= 
{4'd0,6'd2,sync_select,use_filt_10,randomized,sim_pcm_en,external_pcm_en,
nwords,half_clk_div,4'd0}; 

 set_stb <= 1; @(posedge clk); set_stb <= 0; @(posedge clk);  

 

 //config3 

 set_addr <= 8'd101; set_data <= 32'h01234560; 

 set_stb <= 1; @(posedge clk); set_stb <= 0; @(posedge clk); 

 set_addr <= 8'd101; set_data <= 
{4'd0,6'd3,7'd0,decrypt,en_crc,scale_rx2,swap_bytes,sync_size,scale_rx,4'
d0}; 

 set_stb <= 1; @(posedge clk); set_stb <= 0; @(posedge clk); 

 

 //set config4 last - triggers reset 

 set_addr <= 8'd101; set_data <= 32'h01234560; 

 set_stb <= 1; @(posedge clk); set_stb <= 0; @(posedge clk); 
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 set_addr <= 8'd101; set_data <= 
{4'd0,6'd26,5'd0,dummy_sfid,nbits,4'd0}; 

 set_stb <= 1; @(posedge clk); set_stb <= 0; @(posedge clk);  
   

 repeat(10) @(posedge clk); 

 run <= 1'b1; 

 

 #4000000; 

 $finish; 

   end 

    

   reg [7:0]   set_addr; 

   reg [31:0]  set_data; 

   reg set_stb = 1'b0; 

   wire [7:0] ddc_debug; 

   wire [15:0] i_out, q_out; 

 wire fm_out; 

 wire [437:0] config_reg; 

 wire [31:0] debug; 

 reg [63:0] time_reg; 

 reg [7:0]  din = 8'b10101111; 

  

   ddc_chain_iii5p7 #(.BASE(SR_RX_DSP), .DSPNO(0), .WIDTH(24)) ddc_chain 

     (.clk(clk), .rst(reset), .clr(1'b0), 

  .set_stb(set_stb),.set_addr(set_addr),.set_data(set_data), 

  .rx_fe_i(rx_fe_i),.rx_fe_q(rx_fe_q), 

   .sample({i_out,q_out}), .run(run), .strobe(strobe), 

  .ddc_debug(ddc_debug), 

   .debug(debug), .pcm_in(pcm_in), .config_reg(config_reg), 

  .time_in(time_reg), .din(din) ); 

   

 wire [63:0] vita_time; 

   timekeeper_with_subregs #(.BASE(SR_TIME)) timekeeper 

     (.clk(clk), .reset(reset), .pps(1'b0), 

    .set_stb(set_stb), .set_addr(set_addr), .set_data(set_data), 

    .vita_time(vita_time), .vita_time_lastpps(),  
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  .config_reg(config_reg)); 

   

 always @(posedge clk) begin 

  if(reset) begin 

   time_reg<=64'h000A000B000C000D; 

  end else begin 

   time_reg<=time_reg+1; 

  end 

 end   

  

endmodule 
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Appendix B. Python GNU Radio E312 Initialization 

 

 

 

 

 

 

 

 

 

 

 

 

 

____________________________ 

This appendix appears in its original form, without editorial change.
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#!/usr/bin/env python2 

# -*- coding: utf-8 -*- 

################################################## 

# GNU Radio Python Flow Graph 

# Title: E312 Tm Rx 

# Generated: Mon May  6 09:55:55 2019 

################################################## 

 

from gnuradio import blocks 

from gnuradio import eng_notation 

from gnuradio import gr 

from gnuradio import uhd 

from gnuradio import zeromq 

from gnuradio.eng_option import eng_option 

from gnuradio.filter import firdes 

from optparse import OptionParser 

import telemetry 

import time 

 

 

class e312_tm_rx(gr.top_block): 

 

    def __init__(self): 

        gr.top_block.__init__(self, "E312 Tm Rx FPGA") 

 

        ################################################## 

        # Variables 

        ################################################## 

        self.server_address = server_address = 
"192.168.10.77" 

 

        # TM VARIABLES 
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        self.samp_rate = samp_rate = 1e6 # RX rate 

        #self.freq = freq = 20000e5 # center freq 

        self.freq = freq = 22555e5 # center freq 

        self.crate = crate = 32e6 # master clk rate 

        self.gain = gain = 50 # gain 

 

        self.samp_per_bit = samp_per_bit = 8 

        self.nwords = nwords = 48 

        self.nbits = nbits = 16 

        self.dummy_sfid = dummy_sfid = 255 #upper byte of 
3rd word 

        self.external_pcm_en = external_pcm_en = 0 

        self.sim_pcm_en = sim_pcm_en = 0 

        self.no_filt = no_filt= 0            #assign 
use_filt_10 = config_reg2 [16]; 

        self.randomized = randomized = 1 

        self.sync0 = sync0 = 65131 

        self.sync1 = sync1 = 10304  #10304 

        self.scale_rx = scale_rx = 1 

        self.scale_rx2 = scale_rx2 = 1 

        self.sync_size = sync_size = 3 

        self.swap_bytes = swap_bytes = 0 

        self.gps_en = gps_en = 0 

        self.crc = crc = 1 

        self.decrypt = decrypt = 0 

        self.key = key = 
"000100020003000400050006000700080009000A000B000C000D000E00
0F0010" 

        self.nounce = nounce = "001100120013001400150016" 

 

        ################################################## 

        # Blocks 

        ################################################## 
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        self.zeromq_push_sink_0_0_0 = 
zeromq.push_sink(gr.sizeof_short, 2, 'tcp://*:9999', 50, 
False, -1) 

        self.uhd_usrp_source_0 = uhd.usrp_source( 

        
 ",".join(("fpga=/home/root/custom_fpga_images/e300_dum
my_reg.bit", "")), 

         uhd.stream_args( 

          cpu_format="sc16", 

                otw_format='sc16', 

          channels=range(1), 

         ), 

        ) 

 

        #telemetry soft agc 

        #self.telemetry_frame_sync_0 = 
telemetry.frame_sync(65131, 25, 0.5, 0.009, 0.0009, gain, 
70) 

        #self.telemetry_frame_sync_0 = 
telemetry.frame_sync(65131, 50, 0.6, 0.018, 0.0036, gain, 
70) 

        #self.telemetry_frame_sync_0 = 
telemetry.frame_sync(65131, 50, 0.6, 0.018, 0, gain, 75) 

        self.telemetry_frame_sync_0 = 
telemetry.frame_sync(65131, 100, 0.6, 0.0, 0.0072, gain, 
77) 

        #self.telemetry_frame_sync_0 = 
telemetry.frame_sync(65131, 100, 0.6, 0.036, 0.0072, gain, 
77) 

        self.blocks_vector_to_stream_0 = 
blocks.vector_to_stream(gr.sizeof_short*1, 2) 

 

        #self.uhd_usrp_source_0.set_subdev_spec('A:B', 0) 

        #self.uhd_usrp_source_0.set_antenna('TX/RX', 0) 

        self.uhd_usrp_source_0.set_clock_rate(crate, 0) 

        self.uhd_usrp_source_0.set_samp_rate(samp_rate) 
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#self.uhd_usrp_source_0.set_rx_agc(True,'/mboards/0/dboards
/A/rx_frontends/A/gain/agc/mode/value','slow',0); 

        self.uhd_usrp_source_0.set_gain(gain, 0) 

        self.uhd_usrp_source_0.set_center_freq(freq, 0) 

        #self.uhd_usrp_source_0.set_bandwidth(4e6, 0) 

        #print (self.uhd_usrp_source_0.get_bandwidth(0)) 

 

        #self.uhd_usrp_source_0.set_subdev_spec('A:A', 0) 

        #set the AGC to fast 

        
#self.uhd_usrp_source_0.set_rx_agc(True,'/mboards/0/dboards
/A/rx_frontends/A/gain/agc/mode/value','slow',0); 

        #self.uhd_usrp_source_0.set_antenna('TX/RX', 0) 

 

        # CUSTOM REGISTER HACK 

        print('Setting custom registers...') 

        reg_hack = 19088736 

 

        self.hex_key = key_hex = [0] * 22 

        print('Filling AES key...') 

        for x in range(16): 

            tmp = key[x*4:((x+1)*4)] 

            key_hex[x] = int(tmp,16) 

 

        for x in range(0,6): 

            tmp = nounce[x*4:((x+1)*4)] 

            key_hex[x+16] = int(tmp,16) 

        print key_hex 

 

        # load AES-256 

        for x in range(22): 
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self.uhd_usrp_source_0.set_time_now(uhd.time_spec_t(reg_hac
k/crate)) 

            
self.uhd_usrp_source_0.set_time_now(uhd.time_spec_t(((x+4)*
pow(2.0,22.0)+key_hex[x]*pow(2.0,4.0))/crate)) 

 

        
self.uhd_usrp_source_0.set_time_now(uhd.time_spec_t(reg_hac
k/crate)) 

        
self.uhd_usrp_source_0.set_time_now(uhd.time_spec_t((0*pow(
2.0,22.0)+sync0*pow(2.0,4.0))/crate)) # sync0 

 

        
self.uhd_usrp_source_0.set_time_now(uhd.time_spec_t(reg_hac
k/crate)) 

        
self.uhd_usrp_source_0.set_time_now(uhd.time_spec_t((1*pow(
2.0,22.0)+sync1*pow(2.0,4.0))/crate)) # sync1 

 

        
self.uhd_usrp_source_0.set_time_now(uhd.time_spec_t(reg_hac
k/crate)) 

        config_reg = (samp_per_bit/2)+(nwords-
1)*pow(2.0,4.0)+external_pcm_en*pow(2.0,13.0)+sim_pcm_en*po
w(2.0,14.0)+randomized*pow(2.0,15.0)+no_filt*pow(2.0,16.0); 

        print("config2 = %d" % (config_reg)) 

        
self.uhd_usrp_source_0.set_time_now(uhd.time_spec_t((2*pow(
2.0,22.0) + config_reg*pow(2.0,4.0))/crate)) 

 

        
self.uhd_usrp_source_0.set_time_now(uhd.time_spec_t(reg_hac
k/crate)) 

        config_reg = scale_rx + sync_size*pow(2.0,3.0) + 
swap_bytes*pow(2.0,5.0) + scale_rx2*pow(2.0,6.0) + 
crc*pow(2.0,9.0) + decrypt*pow(2.0,10.0); 

        print("config3 = %d" % (config_reg)) 
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self.uhd_usrp_source_0.set_time_now(uhd.time_spec_t((3*pow(
2.0,22.0) + config_reg*pow(2.0,4.0))/crate)) 

 

 

        # set nbits last so that FPGA is reset 

        
self.uhd_usrp_source_0.set_time_now(uhd.time_spec_t(reg_hac
k/crate)) 

        config_reg = nbits + dummy_sfid*pow(2.0,5.0) ; 

        print("config4 = %d" % (config_reg)) 

        
self.uhd_usrp_source_0.set_time_now(uhd.time_spec_t((26*pow
(2.0,22.0) + config_reg*pow(2.0,4.0))/crate)) 

 

        
self.uhd_usrp_source_0.set_time_now(uhd.time_spec_t(1908875
2/crate))  #not sure what this is, but it's in original. 

        
self.uhd_usrp_source_0.set_time_now(uhd.time_spec_t(0/crate
)) 

        print('Done!') 

 

        #actually set time now 

        
self.uhd_usrp_source_0.set_time_now(uhd.time_spec_t(0)) 

        time_now = self.uhd_usrp_source_0.get_time_now() 

        print "Actual FPGA time is: 
",time_now.get_real_secs()," secs" 

 

        ################################################## 

        # Connections 

        ################################################## 

        self.msg_connect((self.telemetry_frame_sync_0, 
'command'), (self.uhd_usrp_source_0, 'command')) 

        self.connect((self.blocks_vector_to_stream_0, 0), 
(self.telemetry_frame_sync_0, 0)) 
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        self.connect((self.uhd_usrp_source_0, 0), 
(self.blocks_vector_to_stream_0, 0)) 

        self.connect((self.uhd_usrp_source_0, 0), 
(self.zeromq_push_sink_0_0_0, 0)) 

 

def main(top_block_cls=e312_tm_rx, options=None): 

 

    tb = top_block_cls() 

    tb.start() 

    tb.wait() 

 

if __name__ == '__main__': 

    main() 
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Appendix C. Ruggedized Field Network Switch Parts List 

 

 

 

 

 

 

 

 

 

 

 

 

 

____________________________ 

This appendix appears in its original form, without editorial change.
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1) Pelican 1430 Protector Top Loader Case with Foam - Yellow- 
www.markertek.com/  P/N BPL1430Y (8/5/2019) 

2) 1430PF Special-Application Panel Frame Kit – 
www.thepelicanstore.com/ P/N 1430-300-110 (8/5/2019) 

3) Ubiquiti Networks EdgeSwitch 8-Port 150-Watt Managed PoE+ 
Gigabit Switch with SFP www.bhphotovideo.com/ P/N ES-8-
150W (8/5/2019) 

4) Ubiquiti U Fiber Multi-Mode 1 Gbps SFP Fiber Module -
www.balticnetworks.com- P/N UF-MM-1G-20 (8/5/2019) 

5) Pushbutton Switch DPST-NO/NC Vandal Resistant Panel 
Mount, Front- www.digikey.com/ P/N 708-1901-ND (8/5/2019) 

6) Knob ROTARY BLACK 21MM HIGH - www.digikey.com/ 
P/N360-2366-ND (8/5/2019) 

7) Voltage (Voltmeter) LCD- Black Characters Display Panel 
Mount-www.digikey.com/ P/N 811-1058-ND (8/5/2019) 

8) Bezel Rectangular 46.38mm x 32.51mm Outside Dim- 
www.digikey.com/ P/N 811-1128-ND (8/5/2019) 

9) Enclosed DC/DC Converter 1 Output 48V 2.08A 36V Input -
www.digikey.com/P/N 102-1812-ND (8/5/2019) 

10) LiFePO4 26650 Battery: 12.8V 6.6Ah (84Wh, 16A rate) - 
UN38.3 Passed -www.batteryspace.com/ P/N LFP-4S2P-14A-
V1 (8/5/2019) 

11) Smart Charger (3.0 A) for 12.8V (4 cells) LiFePO4 Battery Pack, 
110-240VAC - CE / FCC -* www.batteryspace.com/ P/N CU-
JAS213 (8/5/2019) 

12) 65W 5A Solar Charge Controller with MPPT for Lithium 
Batteries www.batteryspace.com/ P/N GV-5-LI142 (8/5/2019) 

13) Rotary Switch 2 ~ 11 Position SP11T 6A (AC) 125VAC Panel 
Mount - www.digikey.com/ P/N 360-2359-ND (8/5/2019) 

14) Fiber Optic Plug Connector LC Duplex 125µm Beige - 
www.digikey.com/ P/N A122063-ND (8/5/2019) 

15) Connector Cap (Cover) For RJ45 Plug, Circular Bayonet 
Coupling- www.digikey.com/ P/N A98866-ND (8/5/2019) 



 

59 

16) Coupler Fiber Optic Connector LC Receptacle To LC 
Receptacle Panel Mount, Bulkhead- www.digikey.com/ P/N 
1828619-1-ND (8/5/2019) 

17) Connector Protective Cap For LC ODVA Compliant 
Connectors- www.digikey.com/ P/N 1918177-1-ND (8/5/2019) 

18) Connector Cap (Cover) For RJ45 Plug, Circular Bayonet 
Coupling- www.digikey.com/ P/N A31780-ND (8/5/2019) 

19) Connector Neutrik power CON TRUE1 Chassis - 
www.markertek.com/ P/N NAC3MPX (8/5/2019) 

20) Plug Modular Connector 8p8c (RJ45, Ethernet) Position 
Shielded Cat5e IDC-- www.digikey.com/ P/N A107361-ND 
(8/5/2019) 

21) Connector Neutrik Sealing Cover for powerCON TRUE1 
Chassis www.markertek.com/ P/N SCNAC-MPX (8/5/2019) 

22) Instrumentation Handle Thermoplastic Screw Holes, Front- 
www.digikey.com/ P/N 1722-1234-ND (8/5/2019) 

23) Sealing Cap Assemble with metal bead chain-Newark- P/N 
208800-1 (8/5/2019) 

24) Circular Connector, CPC Series 1, Panel Mount Receptacle, 4 
Contacts, Nylon (Polyamide) Body-Newark- P/N 23C9744 
(8/5/2019) 

25) Shielded Guard for 3.62" High Square Fan- 
www.mcmaster.com/ P/N 19155K37 (8/5/2019) 

26) Structural Adhesive, Acrylic, 3M DP8005, 1.52 oz. Cartridge, 
Black- www.mcmaster.com/ P/N7467A331 (8/5/2019) 
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Appendix D. Ruggedized Field Telemetry Receiver Parts List 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

____________________________ 

This appendix appears in its original form, without editorial change.



 

61 

1) RG 405 .086” RF coaxial semi rigid coax 
/www.fairviewmicrowave.com/PN# FM-SR086ALTN-STR 

2) Surface mounted RF coaxial connector/ www.newark.com/PN# 
TBCF81 

3) SMA male to SMA male right angle 
connector/www.pasternack.com/PN# PE3822 

4) HD BNC to HD BNC RG58 connector /www.mouser.com/PN# 034-
1110-12G 

5) Plug modular connector 8p8c (RJ45, Ethernet) position shielded Cat5e 
IDC / www.digikey.com/ P/N A107361-ND 

6) PE15A63007 LNA / www.everythingrf.com/products/microwave-rf-
amplifiers/pasternack-enterprises-inc/567-20-pe15a63007 

7) ZFSWA2-63DR+ SWITCH & DRIVER / 
www.minicircuits.com/WebStore/dashboard.html?model=ZFSWA2-
63DR%2B 

8) BW-S15W2+ 15 dB Fixed Attenuator, DC - 18000 MHz / 
www.minicircuits.com/WebStore/dashboard.html?model=BW-
S15W2%2B 

9) USRP E312 (Battery Operated, 2X2 MIMO, 70 MHZ - 6 GHZ) SDR / 
www.ettus.com/all-products/usrp-e312/ 
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List of Symbols, Abbreviations, and Acronyms 

3-D three-dimensional 

AES Advanced Encryption Standard 

AGC automatic gain control 

APG Aberdeen Proving Ground 

CAD computer-aided design 

CPU central processing unit 

DC direct current 

DDC digital down converter 

DIN digital inputs 

FCNT frame counter 

FEC forward error correcting codes 

FER frame error rate 

FIFO first in, first out 

FIR finite impulse response 

FM frequency modulation 

FPGA field-programmable gate array 

FSK frequency-shift keying 

GPS global positioning system 

GTB Guidance Technology Branch 

GUI graphical user interface 

HMA highly maneuverable airframe 

IC integrated circuit 

ID identification 

IDC Insulation Displacement Connector 

LNA low-noise amplifier 

LPF low-pass filter 
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MIMO multiple-input multiple-output 

PC personal computer 

PCM pulse-code modulated  

PID proportional-integral-derivative 

RF radio frequency 

RSSI received signal strength indicator 

RST reset 

RX receive 

SDR software-defined radio 

SFID subframe ID 

SMA SubMiniature version A 

SNR signal-to-noise ratio 

SoC system-on-chip 

TCP transmission control protocol 

TM telemetry 

TX transmit 

UDP user datagram protocol 

UHD USRP hardware driver 

USRP Universal Software Radio Peripheral 

  



 

64 

 1 DEFENSE TECHNICAL 
 (PDF) INFORMATION CTR 
  DTIC OCA 
 
 1 CCDC ARL 
 (PDF) FCDD RLD CL 
   TECH LIB 
 
 6 CCDC ARL 
 (PDF) FCDD RLW LF 
   MJ GRABNER 
   ML DON 
   JM ZAJICEK 
   MD ILG 
   R HALL 
   JM HALLAMEYER 
 
 


	List of Figures
	List of Tables
	1. Introduction
	2. SDR TM Receiver Overview
	3. Software Modifications
	3.1 Original Accumulator Design
	3.2 Continuous TM Output
	3.3 Accumulator Design Simulation

	4. Networked SDR Architecture
	4.1 Porting the FPGA Firmware
	4.2 ZeroMQ Frame Distribution in GNU Radio
	4.3 Software AGC for Reliable Frame Detection
	4.4 Remote TM Monitoring and Logging Front End

	5. Highly Maneuverable Airframe Flight Experiment
	5.1 Ruggedized Field Network Switch8
	5.2 Ruggedized Field TM Receiver
	5.3 Flight Test TM Deployment

	6. Experimental Results
	7. Conclusion
	8. References
	Appendix A. Software-Defined Radio Field-Programmable Gate Array Verilog Code
	Appendix B. Python GNU Radio E312 Initialization
	Appendix C. Ruggedized Field Network Switch Parts List
	Appendix D. Ruggedized Field Telemetry Receiver Parts List
	List of Symbols, Abbreviations, and Acronyms

