

 ARL-TR-8987 ● JULY 2020

A Networked Software-Defined Radio
Telemetry Receiver

by Mitchell J Grabner, Michael L Don, J Michael Zajicek,
Mark D Ilg, Rex Hall, and Jonathan M Hallameyer

Approved for public release; distribution is unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the
Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official
endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

 ARL-TR-8987 ● JULY 2020

A Networked Software-Defined Radio Telemetry
Receiver

Mitchell J Grabner
ORAU, Oak Ridge, TN

Jonathan M Hallameyer
SURVICE Engineering, Belcamp, MD

Michael L Don, J Michael Zajicek, Mark D Ilg, and Rex Hall
Weapons and Materials Research Directorate, CCDC Army Research Laboratory

Approved for public release; distribution is unlimited.

ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

July 2020
2. REPORT TYPE

Technical Report
3. DATES COVERED (From - To)

15–26 July 2019
4. TITLE AND SUBTITLE

A Networked Software-Defined Radio Telemetry Receiver
5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Mitchell J Grabner, Michael L Don, J Michael Zajicek, Mark D Ilg, Rex Hall,
and Jonathan M Hallameyer

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

CCDC Army Research Laboratory
ATTN: FCDD-RLW-LF
Aberdeen Proving Ground, MD 21005

8. PERFORMING ORGANIZATION REPORT NUMBER

ARL-TR-8987

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES
ORCID ID(s): Mitchell J Grabner, 0000-0003-2550-2907; Michael L Don, 0000-0002-8021-9066

14. ABSTRACT

This report discusses the implementation of a software-defined radio receiver for frequency-shift keying telemetry signals.
The field-programmable gate array modifications and host software used to enable reliable telemetry frame decoding in a
multireceiver distributed network framework are also presented in detail. The hardware infrastructure used to construct the
network backbone for the US Army Combat Capabilities Development Command Army Research Laboratory flight test of its
highly maneuverable airframe is also presented. The resulting aggregate frame error rate of three networked receivers is very
low at 2.15%.

15. SUBJECT TERMS

telemetry, software-defined radio, pulse-code modulated/frequency modulation, PCM/FM, field-programmable gate array,
automatic gain control

16. SECURITY CLASSIFICATION OF:
17. LIMITATION
 OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES

72

19a. NAME OF RESPONSIBLE PERSON

Mitchell J Grabner
a. REPORT

Unclassified
b. ABSTRACT

Unclassified

c. THIS PAGE

Unclassified

19b. TELEPHONE NUMBER (Include area code)

(410) 306-0775
 Standard Form 298 (Rev. 8/98)

 Prescribed by ANSI Std. Z39.18

iii

Contents

List of Figures v

List of Tables vi

1. Introduction 1

2. SDR TM Receiver Overview 1

3. Software Modifications 2

3.1 Original Accumulator Design 2

3.2 Continuous TM Output 5

3.3 Accumulator Design Simulation 8

4. Networked SDR Architecture 10

4.1 Porting the FPGA Firmware 11

4.2 ZeroMQ Frame Distribution in GNU Radio 13

4.3 Software AGC for Reliable Frame Detection 13

4.4 Remote TM Monitoring and Logging Front End 15

5. Highly Maneuverable Airframe Flight Experiment 15

5.1 Ruggedized Field Network Switch 15

5.2 Ruggedized Field TM Receiver 19

5.3 Flight Test TM Deployment 21

6. Experimental Results 22

7. Conclusion 26

8. References 28

Appendix A. Software-Defined Radio Field-Programmable Gate Array
Verilog Code 29

iv

Appendix B. Python GNU Radio E312 Initialization 49

Appendix C. Ruggedized Field Network Switch Parts List 57

Appendix D. Ruggedized Field Telemetry Receiver Parts List 60

List of Symbols, Abbreviations, and Acronyms 62

Distribution List 64

v

List of Figures

Fig. 1 TM receiver B200 block diagram ... 2

Fig. 2 decom_acc1 state diagram, modified to accommodate wired inputs 4

Fig. 3 decom_acc2 block diagram... 5

Fig. 4 decom_acc2 state diagram, modified for continuous output 7

Fig. 5 Simulation of a dummy frame in decom_acc2 9

Fig. 6 Simulation of a dummy frame in decom_acc2; close-up view of
extra words .. 9

Fig. 7 Simulation of a real frame in decom_acc2 10

Fig. 8 Functional block diagram of the USRP E312 embedded SDR 11

Fig. 9 FPGA LPF magnitude response vs. baseband frequency 12

Fig. 10 FPGA LPF phase delay vs. baseband frequency 12

Fig. 11 FPGA LPF real taps vs. baseband frequency...................................... 13

Fig. 12 ZeroMQ TM frame distribution flow graph using GNU Radio 13

Fig. 13 Software AGC control flow graph using GNU Radio message passing
... 14

Fig. 14 Visual basic/MATLAB remote monitoring front-end example 15

Fig. 15 CAD model rendering of top-side internals of field network switch .. 17

Fig. 16 CAD model rendering of bottom-side internals of field network switch
... 17

Fig. 17 Picture of the top aluminum plate of the assembled field network
switch .. 18

Fig. 18 Picture of the exterior connectivity of the assembled field network
switch .. 18

Fig. 19 Field TM box block diagram .. 19

Fig. 20 Pelican ruggedized field TM receiver enclosure exterior 20

Fig. 21 Ruggedized field TM receiver aluminum mounting plate 20

Fig. 22 Ruggedized field TM receiver internal component layout 21

Fig. 23 Satellite view of the HMA flight experiment installation at the trench
warfare test site ... 22

Fig. 24 Graph of RSSI vs. time for HMA 3 gun location TM receiver 23

Fig. 25 Graph of RSSI vs. time for HMA 3 mid-range TM receiver 24

Fig. 26 Graph of RSSI vs. time for HMA 3 impact location TM receiver 24

Fig. 27 Graph of frame counter delta vs. time for HMA 3 gun location TM
receiver .. 25

vi

Fig. 28 Graph of frame counter delta vs. time for HMA 3 mid-range location
TM receiver ... 25

Fig. 29 Graph of frame counter delta vs. time for HMA 3 impact location TM
receiver .. 26

List of Tables

Table 1 Extra TM words .. 3

Table 2 Dummy frames.. 7

Table 3 Simulation parameters .. 8

Table 4 HMA flight experiment TM link budget .. 22

1

1. Introduction

The US Army Combat Capabilities Development Command (CCDC) Army
Research Laboratory (ARL) has decades of experience using telemetry (TM)
systems to transmit sensor data during flight tests for postprocessing and
performance analysis. Unfortunately, much of CCDC Army Research Laboratory’s
TM equipment is now antiquated and cumbersome to use in an age of ubiquitous
network connectivity and low-cost embedded high-performance computing
systems. This problem led ARL to develop new software-defined radio (SDR)
solutions to old communication tasks that traditionally required expensive,
standalone, application-specific hardware. An SDR TM receiver suitable for
frequency-shift keying (FSK) pulse-code modulated (PCM) S-band transmitters
was developed for laboratory use, including support for Advanced Encryption
Standard (AES) encryption and layered protocol.1,2 This report extends previous
TM receiver research to support a scalable, multireceiver networked and remotely
monitored SDR framework for field deployment.

In the first section of the report, we review the preexisting receiver architecture; the
remainder of the report documents the field-programmable gate array (FPGA)
modifications and host software used to enable reliable TM frame decoding in a
multireceiver distributed network framework, the remote monitoring and data-
logging front-end software development, the hardware infrastructure used to
construct the network backbone for the flight test, and the results of the TM data
collection.

2. SDR TM Receiver Overview

ARL’s SDR TM receiver is based on the Ettus Research’s Universal Software
Radio Peripheral (USRP) B200.3 This is a single-board SDR, using the Analog
Devices (Cambridge, Massachusetts) RF integrated circuit (IC) that combines an
RF front-end, in-phase/quadrature demodulator and analog-to-digital converters
into a single IC that covers a range of center frequencies from 70 MHz to 6 GHz.
There is an optional GPS-disciplined oscillator that can be installed on the B200 to
enable global timing alignment to within 50 ns. Figure 1 shows the B200 SDR
receiver architecture. Demodulation, bit synchronization, and frame
synchronization modules were developed in Verilog and added to the FPGA
firmware. The decimating half-band filters, which are normally required to reduce
the data rate to speeds slow enough for the host computer to process, were replaced
by nondecimating low-pass filters (LPFs) due to the enhanced processing
capabilities of the FPGA. This allowed an increased baseband sampling resolution

2

equal to the 32 MHz master clock rate of the FPGA. A LabVIEW TM display
program was designed for the host computer to visualize the processed frames. A
separate C++ program was written using the USRP hardware driver (UHD) to
configure the USRP and route data to a user datagram protocol (UDP) port. The
LabVIEW program reads the UDP port to access data from the USRP, performs
frame synchronization, extracts the frame data, and displays the results. Frame
synchronization is performed on the FPGA as well so that extra data, such as time
and received signal strength indicator (RSSI) data, can be added to the end of each
frame.

Fig. 1 TM receiver B200 block diagram

3. Software Modifications

3.1 Original Accumulator Design

Referring back to Fig. 1, after the signal is demodulated and the bits are identified
through bit synchronization, the frames are identified through a frame
synchronization module. This frame synchronization module outputs 16-bit words
and a strobe signal to an accumulator module, which converts the 16-bit words into
a 32-bit format for transmission to the PC. Additionally, the accumulator module
adds eight extra words to the end of each frame as specified in Table 1. The original
Verilog code for the accumulator module is included as decom_acc in
Appendix A, which operates according to the state diagram in Fig. 2. The state
diagram uses the shorthand names for the RSSI and TIME signals specified in
Table 1, along with D_in for data_in, D2 for data_out[31:16], and D1 for
data_out[15:0]. The states are represented as circles, black text indicates the
condition for state transition, and red text indicates a value change in a state, or
during a state transition. The main caveat in the operation of decom_acc1 is that
since there can be a total odd number of words per frame, and since the 16-bit input
words are loaded into a 32-bit output register, a given input word will not always
line up with the same 16 bits of the output register. To handle this problem, the state
machine keeps track of the proper section of the output register to load, either D1
or D2.

3

Table 1 Extra TM words

Index Name Shorthand Description

1 RSSI [31:16] RSSI2 RSSI word 1

2 RSSI [15:0] RSSI1 RSSI word 0

3 TIME [63:48] TIME4 Timestamp word 3

4 TIME [47:32] TIME3 Timestamp word 2

5 TIME [31:16] TIME2 Timestamp word 1

6 TIME [15:0] TIME1 Timestamp word 0

7 AVE AVE Average value of demodulated data

8 DIN DIN Digital inputs (lower byte)

Starting in state reset (RST), the state machine automatically transitions to the LD1
state. When the input strobe ld_in is asserted, D2 is loaded with D_in, and the
state machine transitions to the WAIT1 state. A counter delays the state machine in
WAIT1 for clk_div+1 clock cycles before transitioning to LD2, which is a
sufficient period of time for ld_in to be deasserted. clk_div is set to the number
of clock cycles per PCM bit. When ld_in is asserted again, D1 is set to D_in and
the strobe out signal, ld_out, is asserted, sending the full 32 bit data_out signal
to the PC. ld_in also triggers a state transition to WAIT2, which serves a similar
function to WAIT1. The state machine returns to LD1 from WAIT2 where the
process is repeated. This process continues until a full frame of words has been
processed. The assertion of lastw indicates that the current input word is the last
word of the frame. If lastw is asserted in the LD1 state, the state machine
transitions to RSSI10. If it is asserted in LD2, the state machine transitions to
RSSI20. In both of these branches of the state machine, extra words are loaded into
the output register for transmission to the PC. The branch starting with RSSI10
loads D2, since D1 was just loaded; whereas, the branch starting with RSSI20 loads
D1, since D2 was just loaded. Each branch then continues, alternating between
loading D1 and D2 before returning to the initial branch of the state machine. In
state TIME22, data_out is fully loaded; therefore, the state machine returns to
WAIT2, which will transition to LD1 and begin by loading D2 once again. In state
TIME13, D2 has been loaded but not D1; therefore, the state machine returns to
WAIT1 where it will transition to LD2 for D1 to be loaded.

4

Fig. 2 decom_acc1 state diagram, modified to accommodate wired inputs

 WAIT1

cnt=cnt+1

WAIT2

cnt=cnt+1

ld_out = 0

 TIME13

 TIME22

 TIME12

 RST

ld_out = 0

cnt = 0

ld_in = 1
ld_out = 1
D1 = D_in

 LD1

 LD2

 RSSI20

 RSSI21

 TIME20

 TIME21

 RSSI10

 RSSI11

 TIME10

 TIME11

lastw = 1

ld_in = 1
D2 = D_in

cnt=clk_div
cnt = 0

cnt=clk_div
cnt = 0

lastw = 1

D1 = RSSI2
ld_out = 1

D2 = RSSI1

D2 = RSSI2

D1 = TIME4
ld_out = 1

D2 = AVE
D1 = DIN
ld_out = 1
 D2 = AVE

D1 = RSSI1
ld_out = 1

D2 = TIME3
D1 = TIME2
ld_out = 1

D2 = TIME4
D1 = TIME3
ld_out = 1

D2 = TIME2
D1 = TIME1
ld_out = 1

D2 = TIME1
D1 = AVE
ld_out = 1

5

3.2 Continuous TM Output

In its normal operating mode, the receiver is designed to output TM frames as they
are received. When frames are not being detected, no data are output. This results
in two main problems. First, no RSSI information is sent to the computer, making
it impossible to perform any kind of automatic gain control (AGC) to improve
detection accuracy. Second, the timestamping of wired signals is unreliable. Any
dropped TM frames will also result in a loss of DIN data. For the computer to
receive these extra words without frame detection, the receiver must be used in a
simulator mode, where the SDR continually outputs simulated TM frames
irrespective of the received RF signal. This is clearly impractical for implementing
an AGC and also undesirable for timestamping wired signals. To fix these
problems, the accumulator was modified to output data even when TM frames are
not detected in its normal operation mode. Figure 3 shows a block diagram of the
new accumulator, decom_acc2. The ld_in signal was modified so that it is only
asserted one clock cycle, and is used to load a first-in, first-out (FIFO) buffer with
the incoming TM words. When there is a full frame of words available in the FIFO,
they are unloaded and sent to the computer. When there are not enough words
available, a dummy frame is output. In either case, the extra words, including DIN,
are output with the frames.

Fig. 3 decom_acc2 block diagram

Figure 4 shows a state diagram of decom_acc2. The main words of the frame are
handled in the MAKE_FRAME state, whose operation is briefly outlined in the
diagram. Count registers cnt, bcnt, and wcnt are used to count cycles per bit,
bits per word, and words per frame. high_bits is used to determine if the current
word is loaded into the lower or higher bits of the 32-bit output signal and is
inverted after each word. do_dummy determines if the current frame source is
generated dummy frame data or real TM data from the FIFO. The FIFO is of the
“first-word fall-through” variety, allowing the FIFO word to be available

FIFO
data_in
ld_in

State
Machine

fifo_dout

rd

data_out

ld_out

decom_acc2

din
ave_in

rssi
time_in

6

immediately. The rd signal is asserted every time the FIFO output is used, allowing
the next FIFO word to be available when needed. fifo_cnt is the number of
words in the FIFO. At the end of each frame, fifo_cnt is used to determine the
value of do_dummy. If there are sufficient words in the FIFO, do_dummy is
deasserted. If not, do_dummy is asserted. The internal count registers are used now
to determine transition to the extra word states instead of the external lastw
signal. This transition occurs slightly before the end of a full frame, so that the total
data rate is slightly higher than the TM data rate. This was done to ensure that the
FIFO does not overflow in the case where the transmitter data rate might be slightly
higher than the receiver’s expected data rate due to a mismatch between transmitter
and receiver clocks. Thus, even when TM data are consistently received, a dummy
frame will be occasionally output. The states for the extra words have remained
generally the same, only now high_bits determines if the extra words begin in
the higher bits of data_out (RSSI20) or the lower bits of data_out (RSSI10).
high_bits must also be set correctly when transitioning back to the
MAKE_FRAME state. The dummy frame format is specified in Table 2. The third
word the dummy frame is set as is the subframe ID (SFID), with the upper byte
specified by a configurable dummy_SFID parameter and the lower byte set to zero.
The second-to-last word is a 16-bit frame counter while the last word is a checksum
placeholder set to 1.

7

Fig. 4 decom_acc2 state diagram, modified for continuous output

Table 2 Dummy frames

Word index Words

0 SYNC [31:16]

1 SYNC [15:0]

2 {Dummy_SFID , x00}

3 ... NWORDS-3 Word index

NWORDS-2 FCNT

NWORDS-1 1

 TIME22

wcnt=nwords
high_bits=1

wcnt=nwords
high_bits=0

 TIME13

 TIME12

 RST RSSI20

 RSSI21

 TIME20

 TIME21

 RSSI10

 RSSI11

 TIME10

 TIME11

D1 = RSSI2
ld_out = 1

D2 = RSSI1

D2 = RSSI2

D1 = TIME4
ld_out = 1

D2 = AVE
D1 = DIN
ld_out = 1
high_bits = 1

D2 = AVE
high_bits = 0

MAKE_FRAME

For every word:

high_bits = 1

 do_dummy = 1

 D2=dummy

 do_dummy = 0

 D2=fifo_dout

 rd=1

high_bits = 0

 ld_out = 1

 do_dummy = 1

 D1=dummy

 do_dummy = 0

 D1=fifo_dout

D1 = RSSI1
ld_out = 1

D2 = TIME3
D1 = TIME2
ld_out = 1

D2 = TIME4
D1 = TIME3
ld_out = 1

D2 = TIME2
D1 = TIME1
ld_out = 1

D2 = TIME1
D1 = AVE
ld_out = 1

8

3.3 Accumulator Design Simulation

Due to the long compile times of FPGA images, simulation is a key part of FPGA
design. dcc_chain_tb_din, a test bench for SDR receiver modifications, is
also included in Appendix A. The test bench simulates at the digital down converter
(DDC) level, which contains the accumulator described previously. A full
explanation of the DDC is outside the scope of this report, although some aspects
of the higher-level design are explained briefly. Parameters of the B200 are stored
in setting registers in the FPGA and are set using the UHD. Adding additional
setting registers would typically require modification and recompilation of the
UHD. To avoid this, the timekeeper module was modified to allow for additional
setting registers. When the 32-bit timekeeper register is loaded with x01234560,
the next 32-bit load to the timekeeper, set_data[31:0], will be interpreted as
a custom register load. set_data[31:28] and set_data[3:0] are ignored,
set_data[27:22] is interpreted as a custom register index, and
set_data[21:4] is the custom register data. The important parameters for the
DDC simulation are listed in Table 3, and are loaded into custom setting registers
at the beginning of the test bench using the method described. By setting
sim_pcm_en, the receiver generates simulated TM frames for transmission to the
PC. For our purposes, these simulated frames can take the place of frames received
from the demodulator and should not be confused with the dummy frames
generated in the accumulator in Fig. 4.

Table 3 Simulation parameters

Parameter Value Description

sync1 xFE6B First synchronization word

sync0 x2840 Second synchronization word

clk_div 8 Clock cycles per bit

nbits 16 Bits per word

nwords 11 Number of words per frame - 1

sim_pcm_en 1 Output simulated frames

dummy_sfid xFF High byte of the third word of a dummy frame

Figure 5 shows a simulation of a dummy frame in decom_acc2. The state
machine stays in the MAKE_FRAME state most of the time, which has a value of
15. Words are loaded into the FIFO using ld_in. Observe fifo_cnt increasing
as the FIFO fills. Since this is a dummy frame, no words are read from the FIFO.
Instead, generated dummy words are loaded into data_out. high_bits
alternates as words are loaded into the high or low bits of data_out, and ld_out

9

is asserted as a strobe output. Note that for the PC to receive the data in big-endian
format, each word is transmitted as little-endian. Also, the higher bits of
data_out are received first, and the lower bits are received last. Thus, a data_out
value of x6BFE4028 is received at the PC as xFE6B2840.

Fig. 5 Simulation of a dummy frame in decom_acc2

Figure 6 shows a close-up view of the extra words at the end of the frame.
Transitioning from MAKE_FRAME with high_bits = 1, the state machine enters
RSSI20 (state = 7). The RSSI, TIME, AVE, and DIN registers are inserted into
data_out, and strobed out with ld_out. The state machine returns to the
MAKE_FRAME state with high_bits active, ready to load the next word into
the higher bits of data_out.

Fig. 6 Simulation of a dummy frame in decom_acc2; close-up view of extra words

Figure 7 shows the simulation of a real frame in decom_acc2. fifo_cnt
shows that there is more than a full frame of words in the FIFO, which causes

10

do_dummy to become inactive. The FIFO is unloaded using the rd signal, and
data_out is loaded with the FIFO output, fifo_dout.

Fig. 7 Simulation of a real frame in decom_acc2

4. Networked SDR Architecture

Since the USRP B200 device used in the original TM receiver communicates to the
host device using USB3, a new SDR is needed to enable networked TM monitoring
over Ethernet for proper field deployment. The device chosen for this task is the
USRP E312 embedded series SDR.4 The E312 contains a Xilinx ZYNQ 7020 SoC,
which integrates an FPGA and a dual-core ARM CPU onto a single package. The
functional block diagram of the USRP E312 can be seen in Fig. 8. This allows any
additional processing that may have been done on a connected host device such as
additional frame synchronization or AGC to be self-contained on the SDR
hardware. Additionally, the decoded TM frames can be broadcasted over the
E312’s Ethernet port for remote monitoring and logging.

11

Fig. 8 Functional block diagram of the USRP E312 embedded SDR

4.1 Porting the FPGA Firmware

Because the TM receiver is implemented in the FPGA of the B200 for the increased
processing power, implementing the baseband processing on the E312 is more
difficult than simply recompiling a C++ code repository and running it on the
embedded ARM processor. Since the FPGA image for each USRP is device
specific, the firmware source code for the E312 FPGA needed to be downloaded
and compiled separately from the B200 code used previously. Once basic
functionality of the source-build E312 FPGA image was verified as identical to the
manufacturer-supplied image, the modified accumulator code with continuous
output was then integrated into the DDC functionality of the E312. The same
simulation test bench seen in Figs. 5–7 was used to verify accumulator behavior
before implementation on the physical device. Since the FPGA source on the E312
used a newer Xilinx Vivado license, the included LPF implementation used in place
of the half-band decimating filters had been deprecated and had to be redesigned.
The new filter implemented in the FPGA is a fixed point direct form II, flat phase,
finite impulse response (FIR) LPF.5 The filter sample rate is 32 MHz, which
matches the master clock rate of the FPGA. However, since the FPGA master clock
rate is programmable, new filter coefficients would need to be chosen if this value
changes. The end of the pass band is 2.2 MHz and the start of the stop band is
3.6 MHz with 20 dB stop band attenuation using 21 real taps and an overall filter
gain of 2. This puts the –3 dB point of the magnitude response at 2.7 MHz. This
filter response was chosen to maintain the baseband signal bandwidth of 4 MHz
while removing as much out-of-band noise energy as possible. The input data
resolution of the input baseband signal is 24 bits. The magnitude response, phase
delay, and filter taps for the filter can be seen in Figs. 9–11, respectively.

12

Fig. 9 FPGA LPF magnitude response vs. baseband frequency

Fig. 10 FPGA LPF phase delay vs. baseband frequency

13

Fig. 11 FPGA LPF real taps vs. baseband frequency

4.2 ZeroMQ Frame Distribution in GNU Radio

Because the E312 TM receiver is meant to be field deployed and remotely
monitored, a new host program needs to be used to distribute the TM frame data.
This host program is run on the embedded ARM processor and implements a
distributed messaging protocol called ZeroMQ. A GNU Radio flow graph was
developed to take the 16-bit words from the radio module and stream them over
Ethernet using ZeroMQ.6 The flow graph in Fig. 12 first initializes the radio using
a UHD USRP source block and then sends two words (32 bits) at a time over
transmission control protocol (TCP) port 9999 using the ZMQ PUSH sink block.
The Python source code for the E312 initialization program can be seen in
Appendix B.

Fig. 12 ZeroMQ TM frame distribution flow graph using GNU Radio

4.3 Software AGC for Reliable Frame Detection

For the TM receiver to properly decode frames, the RSSI in the radio needs to be
kept within a 25-dB window. Additionally, the radio needs to quickly respond to

14

the large spike in signal strength after projectile launch and the logarithmic decay
of the signal power as the projectile travels downrange. A proportional-integral-
derivative (PID) AGC system is developed in software to meet these requirements.
The continuous time PID equation7 can be written as

𝑢𝑢(𝑡𝑡) = 𝐾𝐾𝑝𝑝𝑒𝑒(𝑡𝑡) + 𝐾𝐾𝑖𝑖 � 𝑒𝑒(𝜏𝜏)𝑑𝑑𝜏𝜏 + 𝐾𝐾𝑑𝑑
𝑑𝑑𝑒𝑒(𝑡𝑡)
𝑑𝑑𝑡𝑡

𝑡𝑡

0
, (1)

where the control variable is 𝑢𝑢(𝑡𝑡), the proportional gain is 𝐾𝐾𝑝𝑝, the integral gain is
𝐾𝐾𝑖𝑖, and the derivative gain is 𝐾𝐾𝑑𝑑. The error value 𝑒𝑒(𝑡𝑡) is calculated by
𝑒𝑒(𝑡𝑡) = 𝑟𝑟(𝑡𝑡) − 𝑦𝑦(𝑡𝑡) where the set point is 𝑟𝑟(𝑡𝑡) and the process variable is 𝑦𝑦(𝑡𝑡). To
implement the PID control in software, Eq. 1 needs to be discretized into the form

𝑢𝑢[𝑛𝑛] = 𝐾𝐾𝑝𝑝𝑒𝑒[𝑛𝑛] + 𝐾𝐾𝑖𝑖 �𝑒𝑒[𝑘𝑘] ∆t
𝑁𝑁

𝑘𝑘=0

+ 𝐾𝐾𝑑𝑑
𝑒𝑒[𝑛𝑛] − 𝑒𝑒[𝑛𝑛 − 1]

∆t
 , (2)

where the sampling time between error measurements in seconds is ∆t and the
current measurement index is 𝑛𝑛. For the AGC system, the RSSI error in decibels
is𝑒𝑒[𝑛𝑛], which makes 𝑟𝑟[𝑛𝑛] the target RSSI and 𝑦𝑦[𝑛𝑛] is the current RSSI value. The
radio gain is changed by 𝑢𝑢[𝑛𝑛] after each PID iteration to complete the closed-loop
first-order control. The PID AGC block added to the flow graph in Fig. 12 can be
seen in Fig. 13.

Fig. 13 Software AGC control flow graph using GNU Radio message passing

The block first serializes the incoming words and then checks for the sync word of
the TM frame. Once a frame is found, the RSSI information is extracted and
averaged over a specified number of frames. Changing the number of averaged
frames will change the PID sampling time ∆t. The gain values for the PID system
are 𝐾𝐾𝑝𝑝 = 0.6 and 𝐾𝐾𝑖𝑖 = 0.0 and 𝐾𝐾𝑑𝑑 = 0.0067, which are manually tuned to minimize
rise time and overshoot7 to begin receiving valid frames quickly and to drop as few

15

frames as possible after launch, respectively. The integral gain is ignored entirely
to avoid large error buildup between round loading and gun launch. Simply clipping
the integral component would also work but reduce setting time at the expense of
rise time. The sampling interval ∆t is around 20 ms for 100 averaged frames to give
a fast control rate without losing stability.

4.4 Remote TM Monitoring and Logging Front End

The remote monitoring and logging of the TM frames is handled using the ZeroMQ
distributed messaging protocol in a visual basic GUI front end. The front end is
capable of saving large amounts of frame data from any number of networked SDR
receivers as well as plotting RSSI and frame counter information in real time. The
frame data are saved in .mat files for easy postprocessing in MATLAB. An example
of the monitoring front-end functionality can be seen in Fig. 14.

Fig. 14 Visual basic/MATLAB remote monitoring front-end example

5. Highly Maneuverable Airframe Flight Experiment

The highly maneuverable airframe (HMA) flight experiments were conducted by
ARL from July 15–26, 2019, at the trench warfare test facility located at Aberdeen
Proving Ground (APG). The experiment consisted of eight flight tests using eight
airframes developed by the Guidance Technology Branch (GTB). The TM field
deployment equipment used in these tests consists of the field network switch and
field TM receiver.

5.1 Ruggedized Field Network Switch8

In support of the multiple prescribed flight experiments, an urgent requirement for
field-expedient network connectivity was identified. The switch design needed to

16

be versatile enough to support Wi-Fi access points, TM radios, and assured power
at experimental facilities that lack existing communication infrastructure. Field
network switches are capable of transmitting and receiving power and data over
long ranges from different locations where smart projectiles are tested. With the
addition of this capability, the GTB would be able to acquire all data necessary in
support of flight experiments in a uniform and timely fashion. All items used in this
configuration were bought commercially except for the mounting brackets that
were rapid prototyped using a 3-D printer. The full parts list of the field network
switch is included in Appendix C.

A durable Pelican 1430 Protector Top Loader Case (Pelican Products, Inc.,
Torrance, California) was chosen for its polypropylene exterior, O-ring seal, and
double-throw latches. This particular case proved useful in keeping the internal
network switch and other electrical components safe from any particulates or
unexpected weather hazards encountered during the flight experiments. For the
internals, an Ubiquiti Networks (New York, New York) EdgeSwitch 8, 8-port
gigabit switch was chosen for its power over Ethernet capability and support for
high-speed fiber connectivity. The field network switch can be powered one of
three different ways: via an external generator, a 65-W 5-A solar-charge controller,
or internal batteries. The battery interface consists of three lithium 12.8-V, 6.6-Ah
battery packs routed through a 48V 100W DC/DC converter. A 3.0-A, 12.8-V
Smart Charger was incorporated to keep the batteries fully charged in case of
generator or solar power failure.

The computer-aided design (CAD) drawings pictured in Figs. 15 and 16 show the
internal electronic components mounted to two aluminum plates that fit
comfortably inside the external enclosure. The top aluminum plate seen in Fig. 17
is fitted with two weather-tight Ethernet ports and a digital voltmeter controlled
with a panel-mounted push-button switch to verify the charge state of the batteries.
The external Ethernet, fiber optics, and power ports seen in Fig. 18 all use the RJ45
waterproof connection for enhanced durability.

17

Fig. 15 CAD model rendering of top-side internals of field network switch

Fig. 16 CAD model rendering of bottom-side internals of field network switch

18

Fig. 17 Picture of the top aluminum plate of the assembled field network switch

Fig. 18 Picture of the exterior connectivity of the assembled field network switch

The field fiber box was designed to have three distinct operating modes controlled
by a three-position rotary knob: on, off/charge, and storage. Once the field network
switches and corresponding cables were fabricated, functionality was verified via a
series of electrical tests. All single and multimode fiber-optic cables and ports were

19

tested with a fiber scope and connectivity was verified using the network switch
and an SDR. Ethernet cables and ports were tested with a cable tester and
connectivity was again verified with the network switch. The battery charging
circuitry was tested by plugging the switch into a 110-VAC outlet while monitoring
the battery voltage and charging current with a multimeter. The internal batteries
were further tested by performing several charge/discharge cycles using the internal
electronics.

5.2 Ruggedized Field TM Receiver

The field TM box was used to house the networked SDR receiver and supporting
RF components in conjunction with the field fiber box that supplied connectivity.
Figure 19 shows a block diagram of the full configuration.

Fig. 19 Field TM box block diagram

The box was built using a Pelican 1400 series weatherproof case, which can be seen
in Fig. 20.

20

Fig. 20 Pelican ruggedized field TM receiver enclosure exterior

The Pelican case internal components were fixed to a piece of 1/8-inch aluminum
plate mounted to a panel frame inside the box (Fig. 21).

Fig. 21 Ruggedized field TM receiver aluminum mounting plate

An RG405 0.086-inch RF coaxial semi-rigid cable was used to connect the internal
components. This cable was chosen because it had an impedance of 50 ohms, a max
frequency of 40 GHz, a solid center conductor, and a maximum operating

21

temperature of 125 °F. The surface-mounted RF input connector we used was a
Belden (St Louis, Missouri) TBCF81 RF/coaxial connector with an impedance of
75 ohms and maximum frequency of 3 GHz. The other internal RF connectors used
were SMA male to SMA male right-angle connectors with an impedance of
50 ohms. The active RF components consisted of a PE15A63007 low-noise
amplifier (LNA) and ZFSWA2-63DR+ SPST RF switch connected to a BW-
S15W2 15-dB 50-ohm attenuator. The 12V out surface-mounted HD-BNC to HD-
BNC RG58 connector was chosen for this application. Lastly, we went with a
modular plug connector 8p8c (RJ45, Ethernet) position-shielded Cat5e insulation
displacement connector. This TM box was powered over Ethernet by the field
network box feeding a PT-POE-171S power-over-Ethernet switch. These
components, including the USRP SDR, are mounted on the back of the aluminum
plate and can be seen in Fig. 22. The full parts list of the field TM receiver is
included in Appendix D.

Fig. 22 Ruggedized field TM receiver internal component layout

5.3 Flight Test TM Deployment

A total of three networked TM receivers were deployed during the HMA flight
experiment at the trench warfare test site at APG. The installation locations of the
three receivers relative to the flight experiment can be seen in Fig. 23. The deployed
receivers are referenced as gun, impact, and mid-range (right side) throughout the
report. The planned mid-range left-side receiver was not used for this flight
experiment.

22

Fig. 23 Satellite view of the HMA flight experiment installation at the trench warfare test
site

6. Experimental Results

The estimated RF link budget for the HMA flight experiment TM link can be seen
in Table 4. The good RX sensitivity of –80 dBm and a calculated minimum received
power of –18.8 dB means the receiver should have sufficient signal-to-noise ratio
(SNR) throughout the flight.

Table 4 HMA flight experiment TM link budget

Parameter Value Description

Frequency 2255.5 MHz TM RF center frequency

TX power 27 dBm Measured power output of the HMA TX radio

TX antenna gain –10 dB Average far-field gain of the HMA TX antenna

FSPL (min) 53 dB Minimum free space path loss for flight experiments

FSPL (max) 98.8 dB Maximum free space path loss for flight experiments

LNA gain (max) 30 dB Gain of the PE15A630007 LNA

Cable loss 25 dB Loss from wired connections

RX gain range 0–55 dB Possible gain value of the AD9361 RFIC (clipped)

RX antenna gain +3–13 dB Far-field gain range of the 6H2223 RX antenna

RX sensitivity –80 dBm Lowest receivable signal power
Note: TM = telemetry; RF = radio frequency; TX = transmit; HMA = highly maneuverable airframe; FSPL = free
space path loss; LNA = low-noise amplifier; RX = receive; RFIC = radio-frequency integrated circuit.

23

The RSSI values from the HMA 3 launch test can be seen in Figs. 24–26 for TM
receivers at the gun, mid-range (right side), and at impact, respectively. We can see
that the PID RSSI control at the gun had the best performance locking to the target
77-dB RSSI in under 250 ms and only losing lock briefly at 4 s, and at terminal
when the gain value was clipped due to the high path loss and poor line of sight to
the projectile. The mid-range receiver exhibited oscillation behavior because the
receiver was facing the side of the round for the duration of the experiment. The
oscillation rate closely matches the 10-Hz rotation rate of the projectile, which was
launched without deployable canards. The PID will need to be tuned further to deal
with this rotation if another HMA launch is conducted without deployable canards.
The impact receiver likely experienced problems for the first half of the launch
thanks to the overly conservative maximum gain value set in the PID feedback.
This conservative max gain of 55 was chosen to prevent damaging the radio during
gun launch, which quickly spikes the signal power by 30 dB. A higher max gain in
the feedback will need to be chosen to solve this problem. If this value is also made
tunable in software, we can set different values per receiver at runtime, which will
avoid damaging the receiver at the gun, which is most likely to experience high-
input power at the time of launch. The frame drop graphs for the three receivers can
be seen in Figs. 24–29. Frame counter deltas greater than 1 indicate 𝑁𝑁 − 1 dropped
frames.

Fig. 24 Graph of RSSI vs. time for HMA 3 gun location TM receiver

24

Fig. 25 Graph of RSSI vs. time for HMA 3 mid-range TM receiver

Fig. 26 Graph of RSSI vs. time for HMA 3 impact location TM receiver

25

Fig. 27 Graph of frame counter delta vs. time for HMA 3 gun location TM receiver

Fig. 28 Graph of frame counter delta vs. time for HMA 3 mid-range location TM receiver

26

Fig. 29 Graph of frame counter delta vs. time for HMA 3 impact location TM receiver

By aggregating all of the received frames from the three receivers and finding any
missing frame numbers we can find the frame error rate (FER) in percent by
computing �𝑁𝑁𝑒𝑒

𝑁𝑁𝐹𝐹
� × 100 where the number of missed frames is 𝑁𝑁𝑒𝑒 and the total

number of frames is 𝑁𝑁𝐹𝐹. Using this method, the FER is found to be around 2% with
most of the errors occurring at the very end of flight.

7. Conclusion

In summary, this report has discussed the successful development, integration, and
deployment of a networked SDR receiver for FSK S-band TM signals. The field
experiment of the receivers, conducted during the GTB flight test of the HMA, was
very successful with an overall FER of 2.15% from three receivers.

Further research and development to be conducted to improve the performance of
the TM receiver design includes the following:

1) Increasing the FPGA digital baseband dynamic range to take full
advantage of the RF front-end sensitivity, which will also relax the AGC
rise-time requirements and leading to better steady-state error
performance.

27

2) Implementing a more robust AGC algorithm, specifically a clipped
integral error component, will allow for improved steady-state response.

3) Implementing a digital frequency-locked loop will remove any
frequency offset due to clock mismatch and drift between the transmitter
and receiver.

4) Implementing forward error correction coding and exploiting the
multiple-input multiple-output (MIMO) capabilities of the E312 to
provide diversity gain at the receiver, which will lead to a reduced error
rate at low SNR and provide mitigation from channel fading effects.

28

8. References

1. Don ML. A low-cost software-defined telemetry receiver. Proceedings of the
51st International Telemetering Conference; 2015 Oct 26–29; Las Vegas, NV.
San Diego (CA): International Foundation for Telemetering; 2015.

2. Don M, Ilg M. Advances in a low-cost software-defined telemetry system.
Proceedings of the 53rd International Telemetering Conference; 2017
Oct 23–26; Las Vegas, NV. San Diego (CA): International Foundation for
Telemetering; 2017.

3. USRP bus series B200/B210/B200mini/B205mini. Mountain View (CA):
Ettus Research LLC; 2019 Oct 29 [accessed 2019 Sep 11].
https://kb.ettus.com/B200/B210/B200mini/B205mini.

4. USRP E310/E312. Mountain View (CA): Ettus Research LLC; 2017 June 25
[accessed 2019 Sep 11]. https://kb.ettus.com/E310/E312.

5. Pardo D. filtro_FIR: VHDL parametrizable FIR filter. Amsterdam (the
Netherlands): OpenCores; 2015 Aug [accessed 2019 Sep 11].
https://opencores.org/projects/fir_filter.

6. ZeroMQ distributed messaging. [accessed 2019 Sep 11].
http://wiki.zeromq.org/.

7. Kiam HA, Chong G, Li Y. PID control system analysis, design, and
technology. IEEE T Contr Syst T. 2005;13(4):559–576.

8. Zajicek JM. Ruggedized field network switch. Aberdeen Proving Ground
(MD): CCDC Army Research Laboratory (US); 2019 Nov. Report No.: ARL-
TN-0997.

29

Appendix A. Software-Defined Radio Field-Programmable Gate
Array Verilog Code

This appendix appears in its original form, without editorial change.

30

This appendix includes the following Verilog files:

1) decom_acc1: the extra digital inputs (DIN) word added

2) decom_acc2: continuous output added

3) dcc_chain_tb_din: the test bench

//take 16 bit words, and load into 32 samples to output to PC

//add on extra words at end of each frame, including din

module decom_acc1(

clk,

reset,

data_in,

ld_in,

data_out,

ld_out,

clk_div,

rssi,

lastw,

time_in,

ave_in,

din

);

input clk;

input reset;

input [15:0] data_in;

input ld_in;

output [31:0] data_out;

output ld_out;

input [5:0] clk_div;

input [31:0] rssi;

input lastw;

input [63:0] time_in;

input [15:0] ave_in;

input [7:0] din;

31

wire clk;

wire [15:0] data_in;

wire ld_in;

wire reset;

reg [31:0] data_out;

reg ld_out;

wire [5:0] clk_div;

wire [31:0] rssi;

reg [31:0] rssi_reg;

wire lastw;

wire [63:0] time_in;

wire [15:0] ave_in;

reg [15:0] ave_reg;

reg [63:0] time_reg;

reg from_LD1;

integer cnt;

parameter [3:0]

 RST = 0,

 LD1 = 1,

 LD2 = 2,

 WAIT1 = 3,

 WAIT2 = 4,

 DO_RSSI10 = 5,

 DO_RSSI11 = 6,

 DO_RSSI20 = 7,

 DO_RSSI21 = 8,

 DO_TIME10 = 9,

 DO_TIME11 = 10,

 DO_TIME12 = 11,

 DO_TIME20 = 12,

 DO_TIME21 = 13,

 DO_TIME22 = 14,

32

 DO_TIME13 = 15;

reg [3:0] state;

 always @(posedge clk) begin : P1

 if((reset == 1'b 1)) begin

 state <= RST;

 end

 else begin

 case(state)

 RST : begin

 cnt <= 0;

 data_out <= 0;

 state <= LD1;

 time_reg <=64'd0;

 ave_reg <=16'd0;

 from_LD1 <= 0;

 end

 LD1 : begin //load one 16 bit word

 rssi_reg<=rssi;

 ld_out <= 1'b0;

 if(ld_in == 1'b1) begin

 data_out[31:16] <= {data_in[7:0],data_in[15:8]};

 if (lastw == 1'b0)

 state <= WAIT1;

 else begin

 time_reg<=time_in;

 ave_reg<=ave_in;

 state <= DO_RSSI10;

 end

 end

 end

 WAIT1 : begin //wait for load signal to go low

 if(cnt == clk_div) begin

33

 cnt <= 0;

 state <= LD2;

 end else begin

 cnt <= cnt+1;

 end

 end

 LD2 : begin

 rssi_reg<=rssi; // assert load out to load out 32 bit value

 if(ld_in == 1'b1) begin

 data_out[15:0] <= {data_in[7:0],data_in[15:8]};

 ld_out <= 1'b1;

 if (lastw == 1'b0)

 state <= WAIT2;

 else begin

 time_reg<=time_in;

 state <= DO_RSSI20;

 end

 end

 end

 WAIT2: begin

 ld_out <= 1'b0;

 if(cnt == clk_div) begin

 cnt <= 0;

 state <= LD1;

 end else begin

 cnt <= cnt+1;

 end

 end

 DO_RSSI10: begin // now do next 2cd with ld out

 data_out[15:0] <= {rssi_reg[23:16],rssi_reg[31:24]};

 ld_out <= 1'b1;

 state <= DO_RSSI11;

 end

 DO_RSSI11: begin // now do time, start with 2cd slot

 data_out[31:16] <= {rssi_reg[7:0],rssi_reg[15:8]};

34

 ld_out <= 1'b0;

 state <= DO_TIME10;

 end

 DO_RSSI20: begin //This is 1st slot

 data_out[31:16] <= {rssi_reg[23:16],rssi_reg[31:24]};

 ld_out <= 1'b0;

 state <= DO_RSSI21;

 end

 DO_RSSI21: begin // now do time, start with 1st slot

 data_out[15:0] <= {rssi_reg[7:0],rssi_reg[15:8]};

 ld_out <= 1'b1;

 state <= DO_TIME20;

 end

 DO_TIME10: begin // now do next 2cd with ld out

 data_out[15:0] <= {time_reg[55:48],time_reg[63:56]};

 ld_out <= 1'b1;

 state <= DO_TIME11;

 end

 DO_TIME11: begin //Do whole 32 bit value and ld out

 data_out[31:16] <= {time_reg[39:32],time_reg[47:40]};

 data_out[15:0] <= {time_reg[23:16],time_reg[31:24]};

 ld_out <= 1'b1;

 state <= DO_TIME12;

 end

 DO_TIME12: begin //32 bit value

 data_out[31:16] <= {time_reg[7:0],time_reg[15:8]};

 data_out[15:0] <= {ave_reg[7:0],ave_reg[15:8]};

 ld_out <= 1'b1;

 state <= DO_TIME13;

 end

 DO_TIME13: begin //This is 1st value, do back to words in 2cd slot

 data_out[31:16] <= {din[7:0],8'b00000000};

 ld_out <= 1'b0;

 state <= WAIT1;

 end

35

 DO_TIME20: begin // now do next 2cd with ld out

 data_out[31:16] <= {time_reg[55:48],time_reg[63:56]};

 data_out[15:0] <= {time_reg[39:32],time_reg[47:40]};

 ld_out <= 1'b1;

 state <= DO_TIME21;

 end

 DO_TIME21: begin //Do 32 bit value

 data_out[31:16] <= {time_reg[23:16],time_reg[31:24]};

 data_out[15:0] <= {time_reg[7:0],time_reg[15:8]};

 ld_out <= 1'b1;

 state <= DO_TIME22;

 end

 DO_TIME22: begin //32 bits, go back to words in 1st slot

 data_out[31:16] <= {ave_reg[7:0],ave_reg[15:8]};

 data_out[15:0] <= {din[7:0],8'b00000000};

 ld_out <= 1'b1;

 state <= WAIT2;

 end

 default : begin

 state <= RST;

 end

 endcase

 end

 end

endmodule

//take 16 bit words, and load into 32 samples to output to PC

//add on extra words at end of each frame, including din

//continuous data output

module decom_acc2(

clk,

reset,

data_in,

36

ld_in,

data_out,

ld_out,

clk_div,

rssi,

lastw,

time_in,

ave_in,

din,

nbits,

nwords,

sync,

dummy_sfid

);

input clk;

input reset;

input [15:0] data_in;

input ld_in;

output [31:0] data_out;

output ld_out;

input [5:0] clk_div; //clock cycles per bit

input [31:0] rssi;

input lastw;

input [63:0] time_in;

input [15:0] ave_in;

input [7:0] din;

input [4:0] nbits; //bits per word

input [8:0] nwords; //words per frame - 1

input [31:0] sync;

input [7:0] dummy_sfid;

wire clk;

wire [15:0] data_in;

wire ld_in;

wire reset;

37

reg [31:0] data_out;

reg ld_out;

wire [5:0] clk_div;

wire [31:0] rssi;

reg [31:0] rssi_reg;

wire lastw;

wire [63:0] time_in;

wire [15:0] ave_in;

wire [4:0] nbits;

wire [8:0] nwords;

wire [31:0] sync;

wire [7:0] dummy_sfid;

reg [15:0] ave_reg;

reg [63:0] time_reg;

reg from_LD1;

reg high_bits;

reg do_dummy;

reg [15:0] dummy;

integer cnt; //cnt clk cycles for 1 bit

integer bcnt; //cnt bits in a word

integer wcnt; //cnt words in frame

integer fcnt; //cnt frames

parameter [4:0]

 RST = 0,

 LD1 = 1,

 LD2 = 2,

 WAIT1 = 3,

 WAIT2 = 4,

 DO_RSSI10 = 5,

 DO_RSSI11 = 6,

 DO_RSSI20 = 7,

 DO_RSSI21 = 8,

38

 DO_TIME10 = 9,

 DO_TIME11 = 10,

 DO_TIME12 = 11,

 DO_TIME20 = 12,

 DO_TIME21 = 13,

 DO_TIME22 = 14,

 MAKE_FRAME = 15,

 DO_TIME13 = 16;

 wire [7:0] fifo_cnt;

 wire [15:0] fifo_dout;

 reg rd;

//incoming frame fifo

ddc_output_fifo ddc_output_fifo1

 (.clk(clk), .rst(reset), .din(data_in), .wr_en(ld_in), .rd_en(rd),

 .dout(fifo_dout), .full(), .empty(), .data_count(fifo_cnt));

reg [3:0] state;

 always @(posedge clk) begin : P1

 if((reset == 1'b 1)) begin

 state <= RST;

 end

 else begin

 case(state)

 RST : begin

 fcnt<=0;

 do_dummy<=1;

 cnt <= 0;

 bcnt<=0;

 wcnt<=0;

 data_out <= 0;

39

 state <= MAKE_FRAME;

 time_reg <=64'd0;

 ave_reg <=16'd0;

 from_LD1 <= 0;

 rssi_reg <=32'd0;

 high_bits<=1; //first data load will be high bits

 end

 //cnt - counts clks; bcnt - counts bits; wcnt - counts words

 //each increments when one below reaches max value

 //dummy word set with wct - will change 1 cycle after wcnt changes

 MAKE_FRAME : begin

 //run clock counter

 if(cnt == clk_div-1) //clk_div is cycles per bit

 cnt <= 0;

 else

 cnt <= cnt+1;

 //run bit counter

 if (cnt == clk_div-1)

 if (bcnt == nbits-1) //nbits is bits per word

 bcnt <= 0;

 else

 bcnt <= bcnt+1;

 //run word counter

 if (bcnt == nbits-1 && cnt == clk_div-1)

 if (wcnt == nwords) //nwords is words per frame - 1

 wcnt <= 0;

 else

 wcnt <= wcnt+1;

 case(wcnt)

 0 : dummy<=sync[31:16];

 1 : dummy<=sync[15:0];

40

 2 : dummy<={dummy_sfid,8'd0};

 (nwords-1) : dummy<=fcnt;

 nwords : dummy<=1;

 default : dummy<=wcnt;

 endcase

 //make frame counter

 if (cnt == 0 && bcnt == 0 && wcnt == 0)

 if (fcnt == 65535)

 fcnt<=0;

 else

 if (do_dummy == 1)

 fcnt<=fcnt+1;

 //output data

 if (cnt == 0 && bcnt == 1) begin

 if (high_bits == 1) begin

 if (do_dummy == 1) begin

 data_out[31:16]<={dummy[7:0],dummy[15:8]};

 ld_out <= 1'b0;

 end else begin

 data_out[31:16]<={fifo_dout[7:0],fifo_dout[15:8]};

 ld_out <= 1'b0;

 rd<=1;

 end

 end else begin

 if (do_dummy == 1) begin

 data_out[15:0]<={dummy[7:0],dummy[15:8]};

 ld_out <= 1'b1;

 end else begin

 data_out[15:0]<={fifo_dout[7:0],fifo_dout[15:8]};

 ld_out <= 1'b1;

 rd<=1;

 end

 end

 high_bits<=~high_bits;

41

 end else begin

 ld_out <= 1'b0;

 rd<= 1'b0;

 end

 //state transition

 //there will be at most 5 cycles to do extra words

 //want full frame period to be slight less than full period

 //so have some dummy frames even when getting data

 //make sure the FIFO is kept empty

 //state change at nbits-4 will slowly empty fifo

 if ((cnt == clk_div-1) && (bcnt == nbits-4) && (wcnt == nwords))
begin

 time_reg<=time_in;

 rssi_reg<=rssi;

 ave_reg<=ave_in;

 if (high_bits==1) //this means that just did low

 state <= DO_RSSI20;

 else

 state <= DO_RSSI10;

 end

 end

 DO_RSSI10: begin // now do next 2cd with ld out

 data_out[15:0] <= {rssi_reg[23:16],rssi_reg[31:24]};

 ld_out <= 1'b1;

 state <= DO_RSSI11;

 end

 DO_RSSI11: begin // now do time, start with 2cd slot

 data_out[31:16] <= {rssi_reg[7:0],rssi_reg[15:8]};

 ld_out <= 1'b0;

 state <= DO_TIME10;

 end

 DO_RSSI20: begin //This is 1st slot

 data_out[31:16] <= {rssi_reg[23:16],rssi_reg[31:24]};

 ld_out <= 1'b0;

42

 state <= DO_RSSI21;

 end

 DO_RSSI21: begin //now do time, start with 1st slot

 data_out[15:0] <= {rssi_reg[7:0],rssi_reg[15:8]};

 ld_out <= 1'b1;

 state <= DO_TIME20;

 end

 DO_TIME10: begin // now do next 2cd with ld out

 data_out[15:0] <= {time_reg[55:48],time_reg[63:56]};

 ld_out <= 1'b1;

 state <= DO_TIME11;

 end

 DO_TIME11: begin //Do whole 32 bit value and ld out

 data_out[31:16] <= {time_reg[39:32],time_reg[47:40]};

 data_out[15:0] <= {time_reg[23:16],time_reg[31:24]};

 ld_out <= 1'b1;

 state <= DO_TIME12;

 end

 DO_TIME12: begin //This is 1st value

 data_out[31:16] <= {time_reg[7:0],time_reg[15:8]};

 data_out[15:0] <= {ave_reg[7:0],ave_reg[15:8]};

 ld_out <= 1'b1;

 state <= DO_TIME13;

 end

 DO_TIME13: begin //This is 1st value, do back to words in 2cd slot

 data_out[31:16] <= {din[7:0],8'b00000000};

 ld_out <= 1'b0;

 state <= MAKE_FRAME;

 high_bits<=0;

 if (fifo_cnt > nwords) begin

 do_dummy<=0;

 cnt <= 0;

 bcnt<=0;

43

 wcnt<=0;

 end else

 do_dummy<=1;

 end

 DO_TIME20: begin // now do next 2cd with ld out

 data_out[31:16] <= {time_reg[55:48],time_reg[63:56]};

 data_out[15:0] <= {time_reg[39:32],time_reg[47:40]};

 ld_out <= 1'b1;

 state <= DO_TIME21;

 end

 DO_TIME21: begin //Do 32 bit value and ld out

 data_out[31:16] <= {time_reg[23:16],time_reg[31:24]};

 data_out[15:0] <= {time_reg[7:0],time_reg[15:8]};

 ld_out <= 1'b1;

 state <= DO_TIME22;

 end

 DO_TIME22: begin //32 bit value, go back to MAKE_FRAME in 2cd slot

 data_out[31:16] <= {ave_reg[7:0],ave_reg[15:8]};

 data_out[15:0] <= {din[7:0],8'b00000000};

 ld_out <= 1'b1;

 high_bits<=1;

 state <= MAKE_FRAME;

 if (fifo_cnt > nwords) begin

 do_dummy<=0;

 cnt <= 0;

 bcnt<=0;

 wcnt<=0;

 end else

 do_dummy<=1;

 end

 default : begin

 state <= RST;

 end

 endcase

44

 end

 end

endmodule

//Testbench to test the DIN function and cont. output of the dcc

`timescale 1ns / 1ps

module dcc_chain_tb_din;

localparam SR_RX_DSP = 8'd144;

localparam SR_TIME = 8'd100;

reg clk = 0;

reg reset = 1;

reg run = 0;

wire strobe;

reg [23:0] rx_fe_i, rx_fe_q,debug_reg;

integer i,i2;

reg [1:0] pcm_in = 2'b00;

wire [2:0] scale_rx,scale_rx2;

wire [3:0] half_clk_div;

wire [8:0] nwords;

wire external_pcm_en,sim_pcm_en,randomized,use_filt_10;

wire sync_select,swap_bytes,en_crc;

wire [1:0] sync_size;

wire [4:0] nbits;

wire [7:0] dummy_sfid;

wire [15:0] sync0,sync1;

//Telemetry parameters:

assign sync0 = 16'hfe6b;

assign sync1 = 16'h2840;

assign half_clk_div = 4'd4;

assign nwords = 9'd11; //nwords is really nwords-1, nwords=47 gives 48
words

45

assign external_pcm_en = 1'b0;

assign sim_pcm_en = 1'b1;

assign randomized = 1'b0;

assign use_filt_10= 1'b0;

assign sync_select = 1'b0;

assign scale_rx = 3'd1;

assign swap_bytes = 1'b0;

assign scale_rx2 = 3'd1;

assign en_crc = 1'b0;

assign decrypt = 1'b0;

assign sync_size = 2'd3; //3 = 32, 2=24

assign nbits = 5'd16;

assign dummy_sfid = 8'hFF;

always #10 clk = ~clk;

 initial

 begin

 rx_fe_i <= 24'b001000000000000000000000;

 rx_fe_q <= 24'b001000000000000000000000;

 #1000 reset = 0;

 @(posedge clk);

 set_addr <= 8'd144; set_data <= 32'd8434349; set_stb <= 1;

 @(posedge clk); // CORDIC

 set_addr <= 8'd145; set_data <= 18'd19800; set_stb <= 1;

 @(posedge clk); // Scale factor

 set_addr <= 8'd146; set_data <= {1'b1, 1'b1, 1'b1, 1'b0, 6'd47};
 set_stb <= 1;

 @(posedge clk); // {enable_hb1_real, enable_hb2_real,
cic_decim_rate_real}

 set_addr <= 8'd147; set_data <= 0; set_stb <= 1;

 @(posedge clk); // Swap iq

 set_addr <= 8'd148; set_data <= 0; set_stb <= 1;

 @(posedge clk); // filter taps

 set_addr <= 8'd186; set_data <= {1'b1, 1'b1, 4'd0, 4'd4};

 set_stb <= 1; @(posedge clk); // {enable_hb1, enable_hb2,
interp_rate_duc}

46

 set_addr <= 8'd128; set_data <= 32'hF001F002; set_stb <= 1;

 @(posedge clk);

 //Set config regs using timekeeper:

 //4 upper blank, next 6 address, next 18 data, next 4 blank

 //sync0

 set_addr <= 8'd101; set_data <= 32'h01234560;

 set_stb <= 1; @(posedge clk); set_stb <= 0; @(posedge clk);

 set_addr <= 8'd101; set_data <= {4'd0,6'd0,2'b0,sync0,4'd0};

 set_stb <= 1; @(posedge clk); set_stb <= 0; @(posedge clk);

 //sync1

 set_addr <= 8'd101; set_data <= 32'h01234560;

 set_stb <= 1; @(posedge clk); set_stb <= 0; @(posedge clk);

 set_addr <= 8'd101; set_data <= {4'd0,6'd1,2'b0,sync1,4'd0};

 set_stb <= 1; @(posedge clk); set_stb <= 0; @(posedge clk);

 //config2

 set_addr <= 8'd101; set_data <= 32'h01234560;

 set_stb <= 1; @(posedge clk); set_stb <= 0; @(posedge clk);

 set_addr <= 8'd101; set_data <=
{4'd0,6'd2,sync_select,use_filt_10,randomized,sim_pcm_en,external_pcm_en,
nwords,half_clk_div,4'd0};

 set_stb <= 1; @(posedge clk); set_stb <= 0; @(posedge clk);

 //config3

 set_addr <= 8'd101; set_data <= 32'h01234560;

 set_stb <= 1; @(posedge clk); set_stb <= 0; @(posedge clk);

 set_addr <= 8'd101; set_data <=
{4'd0,6'd3,7'd0,decrypt,en_crc,scale_rx2,swap_bytes,sync_size,scale_rx,4'
d0};

 set_stb <= 1; @(posedge clk); set_stb <= 0; @(posedge clk);

 //set config4 last - triggers reset

 set_addr <= 8'd101; set_data <= 32'h01234560;

 set_stb <= 1; @(posedge clk); set_stb <= 0; @(posedge clk);

47

 set_addr <= 8'd101; set_data <=
{4'd0,6'd26,5'd0,dummy_sfid,nbits,4'd0};

 set_stb <= 1; @(posedge clk); set_stb <= 0; @(posedge clk);

 repeat(10) @(posedge clk);

 run <= 1'b1;

 #4000000;

 $finish;

 end

 reg [7:0] set_addr;

 reg [31:0] set_data;

 reg set_stb = 1'b0;

 wire [7:0] ddc_debug;

 wire [15:0] i_out, q_out;

 wire fm_out;

 wire [437:0] config_reg;

 wire [31:0] debug;

 reg [63:0] time_reg;

 reg [7:0] din = 8'b10101111;

 ddc_chain_iii5p7 #(.BASE(SR_RX_DSP), .DSPNO(0), .WIDTH(24)) ddc_chain

 (.clk(clk), .rst(reset), .clr(1'b0),

 .set_stb(set_stb),.set_addr(set_addr),.set_data(set_data),

 .rx_fe_i(rx_fe_i),.rx_fe_q(rx_fe_q),

 .sample({i_out,q_out}), .run(run), .strobe(strobe),

 .ddc_debug(ddc_debug),

 .debug(debug), .pcm_in(pcm_in), .config_reg(config_reg),

 .time_in(time_reg), .din(din));

 wire [63:0] vita_time;

 timekeeper_with_subregs #(.BASE(SR_TIME)) timekeeper

 (.clk(clk), .reset(reset), .pps(1'b0),

 .set_stb(set_stb), .set_addr(set_addr), .set_data(set_data),

 .vita_time(vita_time), .vita_time_lastpps(),

48

 .config_reg(config_reg));

 always @(posedge clk) begin

 if(reset) begin

 time_reg<=64'h000A000B000C000D;

 end else begin

 time_reg<=time_reg+1;

 end

 end

endmodule

49

Appendix B. Python GNU Radio E312 Initialization

This appendix appears in its original form, without editorial change.

50

#!/usr/bin/env python2

-*- coding: utf-8 -*-

GNU Radio Python Flow Graph

Title: E312 Tm Rx

Generated: Mon May 6 09:55:55 2019

from gnuradio import blocks

from gnuradio import eng_notation

from gnuradio import gr

from gnuradio import uhd

from gnuradio import zeromq

from gnuradio.eng_option import eng_option

from gnuradio.filter import firdes

from optparse import OptionParser

import telemetry

import time

class e312_tm_rx(gr.top_block):

 def __init__(self):

 gr.top_block.__init__(self, "E312 Tm Rx FPGA")

 ##

 # Variables

 ##

 self.server_address = server_address =
"192.168.10.77"

 # TM VARIABLES

51

 self.samp_rate = samp_rate = 1e6 # RX rate

 #self.freq = freq = 20000e5 # center freq

 self.freq = freq = 22555e5 # center freq

 self.crate = crate = 32e6 # master clk rate

 self.gain = gain = 50 # gain

 self.samp_per_bit = samp_per_bit = 8

 self.nwords = nwords = 48

 self.nbits = nbits = 16

 self.dummy_sfid = dummy_sfid = 255 #upper byte of
3rd word

 self.external_pcm_en = external_pcm_en = 0

 self.sim_pcm_en = sim_pcm_en = 0

 self.no_filt = no_filt= 0 #assign
use_filt_10 = config_reg2 [16];

 self.randomized = randomized = 1

 self.sync0 = sync0 = 65131

 self.sync1 = sync1 = 10304 #10304

 self.scale_rx = scale_rx = 1

 self.scale_rx2 = scale_rx2 = 1

 self.sync_size = sync_size = 3

 self.swap_bytes = swap_bytes = 0

 self.gps_en = gps_en = 0

 self.crc = crc = 1

 self.decrypt = decrypt = 0

 self.key = key =
"000100020003000400050006000700080009000A000B000C000D000E00
0F0010"

 self.nounce = nounce = "001100120013001400150016"

 ##

 # Blocks

 ##

52

 self.zeromq_push_sink_0_0_0 =
zeromq.push_sink(gr.sizeof_short, 2, 'tcp://*:9999', 50,
False, -1)

 self.uhd_usrp_source_0 = uhd.usrp_source(

 ",".join(("fpga=/home/root/custom_fpga_images/e300_dum
my_reg.bit", "")),

 uhd.stream_args(

 cpu_format="sc16",

 otw_format='sc16',

 channels=range(1),

),

)

 #telemetry soft agc

 #self.telemetry_frame_sync_0 =
telemetry.frame_sync(65131, 25, 0.5, 0.009, 0.0009, gain,
70)

 #self.telemetry_frame_sync_0 =
telemetry.frame_sync(65131, 50, 0.6, 0.018, 0.0036, gain,
70)

 #self.telemetry_frame_sync_0 =
telemetry.frame_sync(65131, 50, 0.6, 0.018, 0, gain, 75)

 self.telemetry_frame_sync_0 =
telemetry.frame_sync(65131, 100, 0.6, 0.0, 0.0072, gain,
77)

 #self.telemetry_frame_sync_0 =
telemetry.frame_sync(65131, 100, 0.6, 0.036, 0.0072, gain,
77)

 self.blocks_vector_to_stream_0 =
blocks.vector_to_stream(gr.sizeof_short*1, 2)

 #self.uhd_usrp_source_0.set_subdev_spec('A:B', 0)

 #self.uhd_usrp_source_0.set_antenna('TX/RX', 0)

 self.uhd_usrp_source_0.set_clock_rate(crate, 0)

 self.uhd_usrp_source_0.set_samp_rate(samp_rate)

53

#self.uhd_usrp_source_0.set_rx_agc(True,'/mboards/0/dboards
/A/rx_frontends/A/gain/agc/mode/value','slow',0);

 self.uhd_usrp_source_0.set_gain(gain, 0)

 self.uhd_usrp_source_0.set_center_freq(freq, 0)

 #self.uhd_usrp_source_0.set_bandwidth(4e6, 0)

 #print (self.uhd_usrp_source_0.get_bandwidth(0))

 #self.uhd_usrp_source_0.set_subdev_spec('A:A', 0)

 #set the AGC to fast

#self.uhd_usrp_source_0.set_rx_agc(True,'/mboards/0/dboards
/A/rx_frontends/A/gain/agc/mode/value','slow',0);

 #self.uhd_usrp_source_0.set_antenna('TX/RX', 0)

 # CUSTOM REGISTER HACK

 print('Setting custom registers...')

 reg_hack = 19088736

 self.hex_key = key_hex = [0] * 22

 print('Filling AES key...')

 for x in range(16):

 tmp = key[x*4:((x+1)*4)]

 key_hex[x] = int(tmp,16)

 for x in range(0,6):

 tmp = nounce[x*4:((x+1)*4)]

 key_hex[x+16] = int(tmp,16)

 print key_hex

 # load AES-256

 for x in range(22):

54

self.uhd_usrp_source_0.set_time_now(uhd.time_spec_t(reg_hac
k/crate))

self.uhd_usrp_source_0.set_time_now(uhd.time_spec_t(((x+4)*
pow(2.0,22.0)+key_hex[x]*pow(2.0,4.0))/crate))

self.uhd_usrp_source_0.set_time_now(uhd.time_spec_t(reg_hac
k/crate))

self.uhd_usrp_source_0.set_time_now(uhd.time_spec_t((0*pow(
2.0,22.0)+sync0*pow(2.0,4.0))/crate)) # sync0

self.uhd_usrp_source_0.set_time_now(uhd.time_spec_t(reg_hac
k/crate))

self.uhd_usrp_source_0.set_time_now(uhd.time_spec_t((1*pow(
2.0,22.0)+sync1*pow(2.0,4.0))/crate)) # sync1

self.uhd_usrp_source_0.set_time_now(uhd.time_spec_t(reg_hac
k/crate))

 config_reg = (samp_per_bit/2)+(nwords-
1)*pow(2.0,4.0)+external_pcm_en*pow(2.0,13.0)+sim_pcm_en*po
w(2.0,14.0)+randomized*pow(2.0,15.0)+no_filt*pow(2.0,16.0);

 print("config2 = %d" % (config_reg))

self.uhd_usrp_source_0.set_time_now(uhd.time_spec_t((2*pow(
2.0,22.0) + config_reg*pow(2.0,4.0))/crate))

self.uhd_usrp_source_0.set_time_now(uhd.time_spec_t(reg_hac
k/crate))

 config_reg = scale_rx + sync_size*pow(2.0,3.0) +
swap_bytes*pow(2.0,5.0) + scale_rx2*pow(2.0,6.0) +
crc*pow(2.0,9.0) + decrypt*pow(2.0,10.0);

 print("config3 = %d" % (config_reg))

55

self.uhd_usrp_source_0.set_time_now(uhd.time_spec_t((3*pow(
2.0,22.0) + config_reg*pow(2.0,4.0))/crate))

 # set nbits last so that FPGA is reset

self.uhd_usrp_source_0.set_time_now(uhd.time_spec_t(reg_hac
k/crate))

 config_reg = nbits + dummy_sfid*pow(2.0,5.0) ;

 print("config4 = %d" % (config_reg))

self.uhd_usrp_source_0.set_time_now(uhd.time_spec_t((26*pow
(2.0,22.0) + config_reg*pow(2.0,4.0))/crate))

self.uhd_usrp_source_0.set_time_now(uhd.time_spec_t(1908875
2/crate)) #not sure what this is, but it's in original.

self.uhd_usrp_source_0.set_time_now(uhd.time_spec_t(0/crate
))

 print('Done!')

 #actually set time now

self.uhd_usrp_source_0.set_time_now(uhd.time_spec_t(0))

 time_now = self.uhd_usrp_source_0.get_time_now()

 print "Actual FPGA time is:
",time_now.get_real_secs()," secs"

 ##

 # Connections

 ##

 self.msg_connect((self.telemetry_frame_sync_0,
'command'), (self.uhd_usrp_source_0, 'command'))

 self.connect((self.blocks_vector_to_stream_0, 0),
(self.telemetry_frame_sync_0, 0))

56

 self.connect((self.uhd_usrp_source_0, 0),
(self.blocks_vector_to_stream_0, 0))

 self.connect((self.uhd_usrp_source_0, 0),
(self.zeromq_push_sink_0_0_0, 0))

def main(top_block_cls=e312_tm_rx, options=None):

 tb = top_block_cls()

 tb.start()

 tb.wait()

if __name__ == '__main__':

 main()

57

Appendix C. Ruggedized Field Network Switch Parts List

This appendix appears in its original form, without editorial change.

58

1) Pelican 1430 Protector Top Loader Case with Foam - Yellow-
www.markertek.com/ P/N BPL1430Y (8/5/2019)

2) 1430PF Special-Application Panel Frame Kit –
www.thepelicanstore.com/ P/N 1430-300-110 (8/5/2019)

3) Ubiquiti Networks EdgeSwitch 8-Port 150-Watt Managed PoE+
Gigabit Switch with SFP www.bhphotovideo.com/ P/N ES-8-
150W (8/5/2019)

4) Ubiquiti U Fiber Multi-Mode 1 Gbps SFP Fiber Module -
www.balticnetworks.com- P/N UF-MM-1G-20 (8/5/2019)

5) Pushbutton Switch DPST-NO/NC Vandal Resistant Panel
Mount, Front- www.digikey.com/ P/N 708-1901-ND (8/5/2019)

6) Knob ROTARY BLACK 21MM HIGH - www.digikey.com/
P/N360-2366-ND (8/5/2019)

7) Voltage (Voltmeter) LCD- Black Characters Display Panel
Mount-www.digikey.com/ P/N 811-1058-ND (8/5/2019)

8) Bezel Rectangular 46.38mm x 32.51mm Outside Dim-
www.digikey.com/ P/N 811-1128-ND (8/5/2019)

9) Enclosed DC/DC Converter 1 Output 48V 2.08A 36V Input -
www.digikey.com/P/N 102-1812-ND (8/5/2019)

10) LiFePO4 26650 Battery: 12.8V 6.6Ah (84Wh, 16A rate) -
UN38.3 Passed -www.batteryspace.com/ P/N LFP-4S2P-14A-
V1 (8/5/2019)

11) Smart Charger (3.0 A) for 12.8V (4 cells) LiFePO4 Battery Pack,
110-240VAC - CE / FCC -* www.batteryspace.com/ P/N CU-
JAS213 (8/5/2019)

12) 65W 5A Solar Charge Controller with MPPT for Lithium
Batteries www.batteryspace.com/ P/N GV-5-LI142 (8/5/2019)

13) Rotary Switch 2 ~ 11 Position SP11T 6A (AC) 125VAC Panel
Mount - www.digikey.com/ P/N 360-2359-ND (8/5/2019)

14) Fiber Optic Plug Connector LC Duplex 125µm Beige -
www.digikey.com/ P/N A122063-ND (8/5/2019)

15) Connector Cap (Cover) For RJ45 Plug, Circular Bayonet
Coupling- www.digikey.com/ P/N A98866-ND (8/5/2019)

59

16) Coupler Fiber Optic Connector LC Receptacle To LC
Receptacle Panel Mount, Bulkhead- www.digikey.com/ P/N
1828619-1-ND (8/5/2019)

17) Connector Protective Cap For LC ODVA Compliant
Connectors- www.digikey.com/ P/N 1918177-1-ND (8/5/2019)

18) Connector Cap (Cover) For RJ45 Plug, Circular Bayonet
Coupling- www.digikey.com/ P/N A31780-ND (8/5/2019)

19) Connector Neutrik power CON TRUE1 Chassis -
www.markertek.com/ P/N NAC3MPX (8/5/2019)

20) Plug Modular Connector 8p8c (RJ45, Ethernet) Position
Shielded Cat5e IDC-- www.digikey.com/ P/N A107361-ND
(8/5/2019)

21) Connector Neutrik Sealing Cover for powerCON TRUE1
Chassis www.markertek.com/ P/N SCNAC-MPX (8/5/2019)

22) Instrumentation Handle Thermoplastic Screw Holes, Front-
www.digikey.com/ P/N 1722-1234-ND (8/5/2019)

23) Sealing Cap Assemble with metal bead chain-Newark- P/N
208800-1 (8/5/2019)

24) Circular Connector, CPC Series 1, Panel Mount Receptacle, 4
Contacts, Nylon (Polyamide) Body-Newark- P/N 23C9744
(8/5/2019)

25) Shielded Guard for 3.62" High Square Fan-
www.mcmaster.com/ P/N 19155K37 (8/5/2019)

26) Structural Adhesive, Acrylic, 3M DP8005, 1.52 oz. Cartridge,
Black- www.mcmaster.com/ P/N7467A331 (8/5/2019)

60

Appendix D. Ruggedized Field Telemetry Receiver Parts List

This appendix appears in its original form, without editorial change.

61

1) RG 405 .086” RF coaxial semi rigid coax
/www.fairviewmicrowave.com/PN# FM-SR086ALTN-STR

2) Surface mounted RF coaxial connector/ www.newark.com/PN#
TBCF81

3) SMA male to SMA male right angle
connector/www.pasternack.com/PN# PE3822

4) HD BNC to HD BNC RG58 connector /www.mouser.com/PN# 034-
1110-12G

5) Plug modular connector 8p8c (RJ45, Ethernet) position shielded Cat5e
IDC / www.digikey.com/ P/N A107361-ND

6) PE15A63007 LNA / www.everythingrf.com/products/microwave-rf-
amplifiers/pasternack-enterprises-inc/567-20-pe15a63007

7) ZFSWA2-63DR+ SWITCH & DRIVER /
www.minicircuits.com/WebStore/dashboard.html?model=ZFSWA2-
63DR%2B

8) BW-S15W2+ 15 dB Fixed Attenuator, DC - 18000 MHz /
www.minicircuits.com/WebStore/dashboard.html?model=BW-
S15W2%2B

9) USRP E312 (Battery Operated, 2X2 MIMO, 70 MHZ - 6 GHZ) SDR /
www.ettus.com/all-products/usrp-e312/

62

List of Symbols, Abbreviations, and Acronyms

3-D three-dimensional

AES Advanced Encryption Standard

AGC automatic gain control

APG Aberdeen Proving Ground

CAD computer-aided design

CPU central processing unit

DC direct current

DDC digital down converter

DIN digital inputs

FCNT frame counter

FEC forward error correcting codes

FER frame error rate

FIFO first in, first out

FIR finite impulse response

FM frequency modulation

FPGA field-programmable gate array

FSK frequency-shift keying

GPS global positioning system

GTB Guidance Technology Branch

GUI graphical user interface

HMA highly maneuverable airframe

IC integrated circuit

ID identification

IDC Insulation Displacement Connector

LNA low-noise amplifier

LPF low-pass filter

63

MIMO multiple-input multiple-output

PC personal computer

PCM pulse-code modulated

PID proportional-integral-derivative

RF radio frequency

RSSI received signal strength indicator

RST reset

RX receive

SDR software-defined radio

SFID subframe ID

SMA SubMiniature version A

SNR signal-to-noise ratio

SoC system-on-chip

TCP transmission control protocol

TM telemetry

TX transmit

UDP user datagram protocol

UHD USRP hardware driver

USRP Universal Software Radio Peripheral

64

 1 DEFENSE TECHNICAL
 (PDF) INFORMATION CTR
 DTIC OCA

 1 CCDC ARL
 (PDF) FCDD RLD CL
 TECH LIB

 6 CCDC ARL
 (PDF) FCDD RLW LF
 MJ GRABNER
 ML DON
 JM ZAJICEK
 MD ILG
 R HALL
 JM HALLAMEYER

	List of Figures
	List of Tables
	1. Introduction
	2. SDR TM Receiver Overview
	3. Software Modifications
	3.1 Original Accumulator Design
	3.2 Continuous TM Output
	3.3 Accumulator Design Simulation

	4. Networked SDR Architecture
	4.1 Porting the FPGA Firmware
	4.2 ZeroMQ Frame Distribution in GNU Radio
	4.3 Software AGC for Reliable Frame Detection
	4.4 Remote TM Monitoring and Logging Front End

	5. Highly Maneuverable Airframe Flight Experiment
	5.1 Ruggedized Field Network Switch8
	5.2 Ruggedized Field TM Receiver
	5.3 Flight Test TM Deployment

	6. Experimental Results
	7. Conclusion
	8. References
	Appendix A. Software-Defined Radio Field-Programmable Gate Array Verilog Code
	Appendix B. Python GNU Radio E312 Initialization
	Appendix C. Ruggedized Field Network Switch Parts List
	Appendix D. Ruggedized Field Telemetry Receiver Parts List
	List of Symbols, Abbreviations, and Acronyms

