
DATA PROVENANCE ASSURANCE IN CLOUD USING
BLOCKCHAIN

OLD DOMINION UNIVERSITY

JUNE 2020

FINAL TECHNICAL REPORT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

AFRL-RI-RS-TR-2020-107

 UNITED STATES AIR FORCE  ROME, NY 13441 AIR FORCE MATERIEL COMMAND

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any purpose other
than Government procurement does not in any way obligate the U.S. Government. The fact that the
Government formulated or supplied the drawings, specifications, or other data does not license the holder
or any other person or corporation; or convey any rights or permission to manufacture, use, or sell any
patented invention that may relate to them.

This report is the result of contracted fundamental research deemed exempt from public affairs security
and policy review in accordance with SAF/AQR memorandum dated 10 Dec 08 and AFRL/CA policy
clarification memorandum dated 16 Jan 09. This report is available to the general public, including
foreign nations. Copies may be obtained from the Defense Technical Information Center (DTIC)
(http://www.dtic.mil).

AFRL-RI-RS-TR-2020-107 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN
ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE CHIEF ENGINEER:

/ S /
LAURENT Y. NJILLA
Work Unit Manager

 / S /
JAMES S. PERRETTA
Deputy Chief, Information
Exploitation & Operations Division
Information Directorate

This report is published in the interest of scientific and technical information exchange, and its publication
does not constitute the Government’s approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information
if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

JUNE 2020
2. REPORT TYPE

FINAL TECHNICAL REPORT
3. DATES COVERED (From - To)

AUG 2018 – DEC 2019
4. TITLE AND SUBTITLE

Data Provenance Assurance in Cloud using Blockchain

5a. CONTRACT NUMBER
FA8750-18-1-0075

5b. GRANT NUMBER
N/A

5c. PROGRAM ELEMENT NUMBER
62788F

6. AUTHOR(S)

Sachin Shetty

5d. PROJECT NUMBER
BLOC

5e. TASK NUMBER
KC

5f. WORK UNIT NUMBER
02

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Old dominion University
Research Foundation
4111 Monarch Way, Suite 204
Norfolk VA 23508

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/RIGA
525 Brooks Road
Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)

AFRL/RI
11. SPONSOR/MONITOR’S REPORT NUMBER

AFRL-RI-RS-TR-2020-107
12. DISTRIBUTION AVAILABILITY STATEMENT
Approved for Public Release; Distribution Unlimited. This report is the result of contracted fundamental research
deemed exempt from public affairs security and policy review in accordance with SAF/AQR memorandum dated 10 Dec
08 and AFRL/CA policy clarification memorandum dated 16 Jan 09
13. SUPPLEMENTARY NOTES

14. ABSTRACT

The project started on Apr 06, 2018. In the 24 months of executing the project, the team has conducted basic research on
data provenance architecture for cloud using block chain, surveyed the vulnerabilities in block chain, in-depth analysis of
the block discarding attack, developed a Proof-of-Stake consensus protocol for cloud based blockchain, architecture for
secure BattlefieldIoT, cyber supply chain provenance, integration of software guard extensions on distributed ledgers for
increased privacy.

15. SUBJECT TERMS

Blockchain, cloud, data provenance, consensus protocol, directed acyclic graph, fault tolerance, smart contract

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON
LAURENT Y. NJILLA

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
N/A

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

99

Table of Contents

i

1. EXECUTIVE SUMMARY ...1
2. INTRODUCTION ...2
3. METHODS, ASSUMPTIONS AND PROCEDURES..3
3.1 GENERALIZED CONSENSUS BLOCKCHAIN SIMULATION PLATFORM ..3

3.1.1 METHODOLOGY ...3
3.1.2 ESTABLISHING DISCRETE EVENT SIMULATOR ...4

A) Performance Metrics ...5
B) Ideal System...6
C) Data Collection...6

J) Consensus Layer Modeling ...8
3.1.3 IMPLEMENTATION ..9

A) Simulation Data Gathering ...9
B) Network Layer Implementation ... 11
C) Consensus Layer Implementation .. 12
D) Calibration and Simulation Sensitivity.. 12

3.1.4 RESULTS AND DISCUSSION... 12
A) Network Layer Observations... 12
B) Consensus Layer Observations ... 14
C) Network Topology Generation ... 15
D) Project Integration with Simulation .. 16
E) PCBChain ... 17
F) Integration .. 17
G) Drone MPC .. 18

3.2 FASTCHAIN: LIGHTWEIGHT BLOCKCHAIN WITH SHARDING FOR INTERNET OF BATTLEFIELD-THINGS IN
NS-3..18

3.2.1 INTRODUCTION ... 19
3.2.2 SYSTEM MODEL .. 21
3.2.3 BUILDING BLOCKS OF FASTCHAIN SIMULATOR .. 22
3.2.4 ANALYSIS AND DISCUSSION .. 27
3.2.5 CONCLUSION... 28

3.3 SCALABLE BLOCKCHAIN SOLUTIONS .. 28
3.3.1 SCALABLE BLOCKCHAIN PLATFORM FOR AUDITING .. 29
3.3.2 BLOCKTRAIL DESIGN .. 30

A. Syst em Architecture ..30

D) nMessage..6
E) nodeDelay..6
F) nodeConsen..7
G) consenDelay ..7
H) consenDelay...7
I) pauseState Time..8

ii

I. CONCLUSION.. 62
3.5 ARCHITECTING BLOCKCHAIN FOR IOBT AND ITS PERFORMANCE EVAL UATION ... 63
3.5.1 MOTIVATION ... 63
3.5.2 NEXT GENERATION BATTLEFIELD CHARACTERISTICS .. 64
3.5.3 BACKGROUND AND RELATED RESEARCH ... 66
3.5.4 BLOCKCHAIN-ENABLED IOBT ARCHITECTURE .. 67
3.5.5 APPLICATIONS OF THE BLOCKCHAIN-BASED IOBT ARCHITECTURE.. 71
3.5.6 PERFORMANCE MEASUREMENT AND EVALUATION ... 72
3.5.7 CONCLUDING REMARKS ... 78

4 RESULTS AND DISCUSSIONS ... 78
5 CONCLUSIONS... 81
6 REFERENCES .. 82
7 LIST OF ACRONYMS ... 92

3.3.3 BLOCKTRAIL ANALYSIS... 32
A. Transaction Processing and Throughput .. 32
B. Complexity Analysis.. 33
C. Security Analysis.. 35
D. Positioning Malicious Replicas .. 35
E. Countering Targeted Attacks.. 36
F. EXPERIMENTS AND EVALUATION .. 37
G. RELATED WORK ... 38
H. CONCLUSION.. 38

3.4 SECURE BLOCKCHAIN PLATFORM .. 39
A. INTRODUCTION .. 39
B. BACKGROUND AND THREAT MODEL ... 41
C. RELATED WORK ... 44
D. PROBLEM STATEMENT.. 45
E. BLOCKAUDIT.. 47
F. BLOCKAUDIT ANALYSIS... 54
G. EXPERIMENT AND EVALUATION .. 59
H. DISCUSSION AND FUTURE WORK .. 60

List of Figures

Figure Page

Figure 1: Consensus and Network Layers in Blockchain Simulator .. 4
Figure 2: Demonstration of the data collection from the ideal system ... 5
Figure 3: Histogram of time for Raft to find consensus.. 10
Figure 4: Histogram of time for a peer node to process a Raft message... 10
Figure 5: Curve fitting node message process times of Raft peers... 11
Figure 6: Calibrating scatter plots of simulation versus observed consensus times 13
Figure 7: Average time (in ms) to confirm 1000 transactions ... 15
Figure 8: Randomly generated network topologies effects on the consensus protocol 16
Figure 9: Exponential distribution fit of Proof of Work hash attempts .. 18
Figure 10: A typical block diagram of the Internet of Battlefield Things (IoBT).............................. 21
Figure 11: Class diagram of FastChain simulator [17]. .. 23
Figure 12: Visualization (Example Scenario) of IoBT nodes in FastChain Simulator 27
Figure 13: Multichain blockchain system design tailored to the specifications of BlockTrail. 30
Figure 14: M/D/1 queue .. 31
Figure 15: M/D/c queue... 31
Figure 16: Complexity Analysis of BlockTrail. ... 33
Figure 17: Results obtained from the simulations of BlockTrail. .. 35
Figure 18: Audit log generation in an OLTP system. ... 40
Figure 19: An overview of Blockchain structure consisting of three blocks. 42
Figure 20: The network overview of nodes employing BlockAudit. ... 46
Figure 21: The information flow between various components of the application. 47
Figure 22: Audit generation for a transaction spanning across multiple objects. 51
Figure 23: Audit Entry generation for an object. ... 52
Figure 24: An overview of PBFT protocol with client issues a request to the primary replica. 54
Figure 25: Complete system architecture of BlockAudit after blockchain is integrated to the JSON

output. .. 55
Figure 26: Time taken to reach consensus at different types of audit transaction with varying

transaction rate 𝜆𝜆 (200-6,000 tx/second). ... 57
Figure 27: Audit log block chain detection vs recovery.. 62
Figure 28: Blockchain-enabled IoBT Architecture .. 68
Figure 29: IoT Network Standards and their Trade-offs ... 69
Figure 30: IoBT Relevant Topologies for Evaluation .. 73
Figure 31: Maintenance packets for 1Gbps, 100Mbps, and 64Kbps simulations. 74
Figure 32: Number of total data packets sent in different type of links and topology........................ 75
Figure 33: Actual throughput (a) 100 Mbps link (b) 64 Kbps link .. 76

iii

List of Tables
Table Page

Table 1: Consensus times (in ms) for 1-Message scenario ... 14
Table 2. Clear Village’s actual transaction sizes in (bytes) for the three transaction schemes............ 50
Table 3. The description of fields of audit log JSON packet. .. 50
Table 4. An overview of popular consensus algorithms used in blockchains. 53
Table 5. Data packet comparison for “unlimited” and 1 Gbps BW ... 74

iv

1. EXECUTIVE SUMMARY

Emerging Internet of Things (IoT) technology is becoming a major part of our society to
enhance operational efficiency of the existing infrastructure. Through advanced sensors and
actuators, environmental data can be collected from various end-points and used to analyze for
taking necessary control actions. In particular, the modern battlefields are equipped with
advanced IoT-enabled weaponries, wearables, and vehicles, to increase the accuracy of
decision taking capability during military missions. Although the operating devices in
battlefield can have resource constraints such as storage, processing capability, and networking
ability, security of data exchanged among these devices is critical to mission’s success. The
massive scale, heterogeneity, and distributed characteristics of Internet-of-Battlefield-Things
(IoBT) present challenges in realizing a practical and effective security solution. Blockchain
empowered platforms and technologies have been proposed to address such challenges by
utilizing its tamper-resistant ledger. However, the amount of data generated in the IoBT
network need to be validated and verified in real time in order to authenticate the missio n-
related data. Therefore, the core Blockchain infrastructure must be capable enough to meet
these demands.
In this project, the key contributions are a) Blockchain simulator for IoBT environment, b)
Lighweight Blockchain with sharding, c) Techniques for optimizing memory pools against
flooding attacks and framework for characterizing blockchain based systems for accurate
systems. The Blockchain simulator evaluates the consensus algorithms in a realistic and
configurable network environment. Though, there are several Blockchain evaluation
platforms, they are either wedded to a specific consensus protocol and do not allow evaluation
in a configurable and realistic network environment. In our proposed simulator, we provide the
ability to evaluate the impact of the consensus and network layer that will inform practitioners
on the appropriate choice of consensus algorithms and the impact of network layer events in
congested or contested scenarios in IoT. To accomplish this a generalized representation for
consensus methods is proposed. The Blockchain simulator uses a discrete event simula t io n
engine for fidelity and increased scalability. We evaluate the performance of the simulator by
varying the number of peer nodes and number of messages required to find consensus.
FastChain is a simulator built in NS-3 which simulates the networked battlefield scenario with
military applications, connecting tankers, soldiers, and drones to form Internet-of-Battlefie ld-
Things (IoBT). Computing, storage, and communication resources in IoBT are limited during
certain situations in IoBT. Under these circumstances, these resources should be carefully
combined to handle the task to accomplish the mission. FastChain simulator uses Sharding
approach to provide an efficient solution to combine resources of IoBT devices by identifying
the correct and the best set of IoBT devices for a given scenario. Then, the set of IoBT devices
for a given scenario collaborate together for sharding enabled Blockchain technology.
Interested researchers, policy makers, and developers can download and use the FastChain
simulator to design, develop and evaluate blockchain-enabled IoBT scenarios that help make
robust and trustworthy informed decisions in mission-critical IoBT environment.

Approved for Public Release; Distribution Unlimited.
1

2. INTRODUCTION

Military environments are increasingly dependent on IoT-enabled devices to aid decision
making. Despite resource constraints such as storage, processing capability, and networking
ability, verifying authenticity of the devices and the integrity and provenance of the information
exchanged by the devices is critical. The massive scale, heterogeneity, and distributed
characteristics of Internet-of- Battlefield-Things (IoBT) present challenges in realizing a practical
and effective security solution. We have proposed a Blockchain empowered platform for a
resource constrained IoT environment [1]. Leveraging the tamper-resistant ledger can help
achieving trust in IoBT, but it imposes various challenges in terms of network infrastructure, and
real time quality of service requirements. The amount of data generated in the IoBT network must
be stored and need to be validated as well as verified in real time in order to authenticate and
validate the device operation.

Although the provably secure cryptographic primitives in Blockchain make it a suitable platform
to avail security services for IoBT, the foundational layers of Blockchain platforms such as
consensus and network layers are the main bottlenecks in achieving higher transactiona l
throughput. Researchers and practitioners have pointed out the main performance benefits of
Blockchain are closely tied to the choice of consensus plane and the network plane [2].

The consensus mechanism describes the process to confirm group of trustless transactions.
However, there exist several consensus protocols, such as, Proof of Work, Proof of Stake,
Delegated Proof of Stake, Practical Byzantine Fault Tolerant, etc. In order to realize a consensus
model in resource-constrained and dynamic environments, such as IoBT, a single consensus
mechanism may not be sufficient. There is a need for a reconfigurable consensus plane that will
facilitate the ability to deploy hybrid consensus protocols in an on-demand basis. The flexib le
network layer is also responsible for ensuring that the transaction validation messages will reach
to the peers in a bounded time and the network will be resilient to failures. Most Blockchain
environments offer a static network topology and do not provide the ability to configure the
network plane, as needed, to evaluate the feasibility in resource constrained environments, such
as, IoBT. Thus, there is a need to develop a Blockchain environment comprising of a configurab le
network and consensus plane that can provide a trusted framework for IoBT environments.

In this projecte, we have developed a simulator that would provide the ability to analyze and to
validate the claimed performance advantages of a practical Blockchain platform prior to deploying
the technology in a production environment. Understanding that the IoBT network may have wide
variety of devices, different network topologies, and bandwidths, it is of utmost important to
address the scalability issue using a graph-theoretic model where the underlying network topology
including all sensors can be interpreted as a graph. To improve the reliability of IoBT networks,
and to reduce/discard the invalid data transactions/information, it is important to devise a
mechanism that will relax the underlying network topology in such a way that the resourceful
nodes will be fairly used while removing specific edges and limiting the sensing rates.

Approved for Public Release; Distribution Unlimited.
2

3. METHODS, ASSUMPTIONS AND PROCEDURES

The impact of the vagaries in the network layer on the Blockchain performance due to node
mobility and intermittent connectivity, in IoBT environments, has motivated us to develop a
Blockchain simulator. We propose the development of a Blockchain simulator that would provide
the ability to evaluate the performance of consensus protocols in diverse and dynamic IoBT
environments under various networking conditions. The simulation would provide users the ability
to swap in and out various consensus protocols, configure the network settings, and assess the
performance of the consensus protocols. Next, for several IoBT networking configurations, we
will provide the ability to develop a meta-consensus mechanism that would allow one to integrate
multiple consensus protocols based on the QoS requirements.

3.1 Generalized Consensus Blockchain Simulation Platform

The massive scale, heterogeneity and distributed nature of Internet-of-Things (IoT) presents
challenges in realizing a practical and effective security solution. Blockchain empowered
platforms and technologies have been proposed to address aspects of this challenge. In order to
realize a practical Blockchain deployment for IoT, there is a need for a testing and evaluation
platform to evaluate performance and security of Blockchain applications and systems. In this
project, we present a Blockchain simulator that evaluates the consensus algorithms in a realistic
and configurable network environment. Though, there are several Blockchain evaluation
platforms, they are either wedded to a specific consensus protocol and do not allow evaluation in
a configurable and realistic network environment. In our proposed simulator, we provide the
ability to evaluate the impact of the consensus and network layer that will inform practitioners on
the appropriate choice of consensus algorithms and the impact of network layer events in
congested or contested scenarios in IoT. To accomplish this a generalized representation for
consensus methods is proposed. The Blockchain simulator uses a discrete event simulation
engine for fidelity and increased scalability. We evaluate the performance of the simulator by
varying the number of peer nodes and number of messages required to find consensus.

3.1.1 Methodology

A set of abstraction layers, such as (1) Network; (2) Consensus; (3) Storage; and (4) View and
Side, have been proposed [1] in past to provide a hierarchical design structure for the
decentralized Blockchain ecosystem. Testing performance of specific consensus based
algorithms is studied in the literature [2-3], but a general model for network layer evaluation of
Blockchains is yet to be proposed. It is important to understand the complexity and performance
metrics at each layer prior to deployment of Blockchain-based solutions. Therefore, we propose
the development of a simulator that implements these layers and provides statistical insights on
performance and security metrics via realization of the Network and Consensus layer.

Our choice of focusing on consensus and network layer is driven by the need and potential of
Blockchain deployment in IoT environments where nodes are heterogeneous and have stringent
constraints on networking, computation, and communication capabilities. Given the bottom-up
design [113], the consensus and network layer is the core of Blockchain platforms and its

Approved for Public Release; Distribution Unlimited.
3

cost/complexity needs must be analyzed prior to integration of the additional layers. This
approach will provide inner insights for the community of Blockchain adopters about the
performance and security metrics of the underlying consensus protocols under various network
conditions. In Figure 1, the architecture overview is presented which incorporates different
network topology for establishment of a P2P network and implements various distributed
consensus protocols for evaluation of performance metrics. We present an overview of the
proposed architecture wherein consensus protocols and the network architectures are
interchangeable.

Figure 1: Consensus and Network Layers in Blockchain Simulator

3.1.2 Establishing Discrete Event Simulator

We propose a discrete event simulator to implement the consensus and network layers wherein
the simulation time step is considered to be system events rather than regular time steps to
facilitate quicker computation. The design goals considered while developing the simulator are:

1. consensus protocols need to be generalized,
2. underlying network needs to be re-configurable,
3. simulator must be able to handle large networks so that tests of scale can be performed.

The interchangeability of consensus protocols will ensure that the key aspect to the Blockchain
systems performance is considered and evaluated instead of efficiency of the whole platform
itself. The simulator will contribute to the benchmarking of consensus protocols for different
network topologies. Using the simulator, developers will be able to make informed decisions on
which consensus protocol would be preferred in certain types of network environments where

Approved for Public Release; Distribution Unlimited.
4

the Blockchain is considered for by understanding the performance metrics of each protocol,
which is discussed in the following subsection.

A) Performance Metrics

The key metrics considered in the simulator are discussed briefly in the following.
• Throughput: Number of successful transactions/second.
• Latency: Response time/transaction.
• Fault Tolerance: Ability to find consensus and complete transactions with sub-optimal

network topology.
• Heterogeneity: Meet above three requirements under heterogeneous network conditions

and device characteristics.

The performance and resilience evaluations of consensus protocols on the considered
Blockchain- integrated network are mainly conducted at the node level. Modeling the system at
the node level enables better representation of the specific protocols' reliance on number of nodes
and how they operate with varying network topologies. Therefore, we first observe and record
the key aspects from an ideal system that has minimum influence from external factors, which is
discussed more in the following subsection. Then, we use the observed data to model various
components of the simulator for performance evaluation. Figure 2 shows the collection and use
of the data from both the ideal system and the simulated system where blue indicating data
gathered from individual nodes and red indicating data gathered from total system. Finally, we
fine tune the developed model and validate to provide a meaningful measure on its effectiveness
to represent the ideal system.

Figure 2: Demonstration of the data collection from the ideal system

Approved for Public Release; Distribution Unlimited.
5

B) Ideal System

An ideal system is a set up of the consensus protocols where the external engagements and
influences are minimum. The purpose of the ideal system is to provide a platform that can be
easily modeled which will provide results for the baseline scenarios. In this context, the ideal
system has several nodes where every node may have either transient or permanent network
connectivity with each other in a mesh topology. A good candidate for implementing this is to
use a virtual network and containerized technology on a single machine using docker containers
[4]. The docker nodes in an ideal system act as validator nodes and run the consensus protocol.
The number of networked nodes is kept variable to identify how performance metrics change as
number of nodes scale. Logging is also enabled on the individual nodes to record performance
aspects of the consensus protocol. In the next subsection, we discuss different kinds of gathered
data and collection mechanism to better understand the state and performance of the system.

C) Data Collection

The ideal system provides the ground truth for the proposed simulator and will be run with each
consensus protocol modeled. We collect various features in order to represent the key
performance metrics of the modeled system as discussed earlier. The details of data points to be
recorded are discussed below.

• nMessage: Numer of exchanged messages to achieve consensus
• nodeDelay: Processing delay at node level required for achieving consensus.
• nodeConsen: Number of participating nodes required to achieve consensus
• consenDelay: Network delay for the consensus protocol to achieve consensus
• consenPauseState: Probability that the consensus state is paused for a special case
• pauseStateTime: Time that the consensus system remains in the paused state

D) nMessage
In the ideal system from the participating node the number messages will be recorded during the
consensus process. The data nMessage will be recorded by counting the number of messages
received and sent while consensus is being determined. The flow for recording this is as
followed:

• A transaction is proposed to the consensus system
• from the participating node increment received counter when messages received
• increment sent counter responding messages sent
• when consensus is found report counter results and initialize them to zero

This process will be repeated several times in order to get a good representation of the number of
messages a participating node must process during the process of finding consensus. The total
data set can then be processed and fitted to a distribution that represents the number of messages
a participating node processes during consensus

E) nodeDelay
The nodeDelay can be recorded the same time the nMessage is recorded. The participating nodes

Approved for Public Release; Distribution Unlimited.
6

take a small amount of time to process each message during the consensus process. The data
nodeDelay is essentially the time delay between each message received and each message sent
during the consensus process. The flow for recording is provided below:

• A transaction is proposed to the consensus system
• from the participating node when a message is received record a time stamp
• when the participating node responds record a time stamp
• initialize both time stamps
• report received and sent timestamps
• when consensus is found output time stamps for processing

Data will be gathered for a number of messages preferably simultaneously to the recording of
nMessage. Once the data has been collected, the difference between the timestamps of the
messages can be processed to derive the time it took the participating node to process each
message. This data can then be used to fit a distribution that represents the typical time to process
messages during consensus.

F) nodeConsen
The nodeConsen can be obtained from literature or documentation for the consensus protocol.
The purpose of nodeConsen is to find a threshold value for how many nodes need to functioning
properly for the system to operate. This is often referred to as the byzantine node threshold or the
number of nodes required for the system to function properly. If this does not exist, the measure
can be obtained by running the ideal system and then removing nodes until the system no longer
finds consensus or the consensus is incorrect. This measure can be a static number or a function
based on the number of participating nodes.

G) consenDelay
The consenDelay can be recorded from the ideal system while the other measurements are be
recorded. It is the time it takes the consensus system as a whole to find consensus. This time can
be realized by the start time of when a transaction is requested and the time that consensus is
found by the system. The flow for recording this is as followed:

• A transaction is proposed to the consensus system
• a time stamp is recorded at the time of the proposal
• when the system finds consensus a time stamp is recorded
• time stamps are reported and all time stamp variables are initialized

Data will be obtained for many transactions to get a large sample of consensus delay time
stamps. These time stamps can be processed after recording to identify the difference between
the two time stamps resulting in the time that each transaction took to find consensus. This data
is then divided in two sets one set for calibration of the model and simulation during
development and another set for the validation of the model and simulation.

H) consenDelay
Certain consensus protocols have periods of restructuring or organizing that occur when nodes
go down or at various periods of time during operation. This special state of the system could be

Approved for Public Release; Distribution Unlimited.
7

a leader selection process or anchor node assignment. This process is period where the system
may delay transaction until the state is resolved based on each protocols own process. Once this
state is resolved, the consensus protocol goes back to its normal transaction state. The measure
consenDelay is the probability of at this moment in the simulation that the consensus system will
go into this special state halting transactions until resolved. To obtain this value, literature of the
consensus protocol can be utilized to identify if there is a periodic time when a special case
occurs. This might happen when a change to the participating nodes occurs. If this is the case the
consenDelay can be assigned to 1 when the network topology changes for the participating
nodes.

I) pauseStateTime
For the special states, the time to process it needs to be identified. The variable pauseStateTime
will hold this value for each consensus protocol. This measure is the amount of time the
consensus protocol takes to typically resolve the special state and continue processing
transactions again. This measure will be obtained by identifying when the ideal system
consensus protocol enters this special state and exits the special state. This measure will be
sampled many times so that the data set can be fitted to a distribution to represent the possible
values that represent the special state length.

J) Consensus Layer Modeling

To fully represent the consensus protocols’ effects on different numbers of participating nodes,
limitations on network, computing resources, and network topology, several simulation runs with
samples of the input data is needed. Hence, to complete these runs in a reasonable amount of
time, discrete event simulation is used, where a networked message is considered as an event.
The discrete event simulation engine schedules each message as the simulation runs based on
how each modeled component affects the system. The component affects are modeled as
statistical representations of observed data from the ideal system or distributions.

Each participating node runs a validation instance that models the actual workload of a peer in
the consensus protocol. The validation process includes the necessary inputs required to
represent the underlying consensus protocol steps. All the input data for each state of the
consensus protocol is stored in the form of distributed libraries or variables in the application. As
the simulation runs, the participating peer either begins a new transaction or participates in the
consensus of an existing transaction. The participating peer continues this operation until either a
certain number of transactions have been processed or a period of time has elapsed.

Transaction processing starts when one of the current peers proposes a transaction to the system.
It causes initialization of the transaction module, which then sends out messages to the
participating peer nodes. The transacting node schedules the message to be delivered to every
peer node that it can communicate with on the simulated network through utilizing the existing
routing libraries. Based on the simulated arrival time of the message to each node, the simulation
engine orders the events accordingly where the events are handled in the order they are
scheduled in the event list.

As participating peer nodes receive messages from the consensus process, they internally record

Approved for Public Release; Distribution Unlimited.
8

the number of messages processed during the current consensus iteration. If a threshold number
messages have been processed by a peer node as determined by nMessage, then the node's state
is assigned to ``completed". Peer nodes with status ``completed" send a ``completed" message to
the other participating nodes stating that it has completed its consensus round. If the peer node
has not processed enough messages, it will schedule another process message with the simulation
engine for a delay sampled value based on the nodeDelay distribution. The node continues to
process messages until the appropriate number of messages have been processed and upon
completion, its state changes to ``completed". The leader peer that started the transaction
monitors the system until nodeConsen number of participating nodes reach a state of
``completed". After enough participating nodes have reached a ``completed" state, another
random peer can start a transaction.

The general consensus system is modeled to change leaders periodically based on the consensus
protocol it is modeling. If the system changes states, the transactions will be halted for period of
time pauseStateTime). The next event would be scheduled with a new transaction and the start
time is set after the delay pauseStateTime completes.

3.1.3 Implementation

In this Section, we discuss the steps taken to implement the proposed Blockchain simulator in
details. The simulation paradigm is considered to be discrete event simulation. The general
consensus protocol described in the methodology is built on Network Simulator-3 (NS3).

A) Simulation Data Gathering

For this initial test, Raft [5] is chosen as the consensus protocol because of its simplicity and the
many available packages that exist to execute just the consensus protocol without any additional
features. Running full packages of systems that utilize consensus protocols could produce results
that are inflated based on the additional processing required to run additional features, hence for
this paper just the consensus protocol is of interest. Raft is set up to run on a single machine with
three to five participating nodes. For each of these settings one of the nodes is the leader node the
entire time. The nodes run as docker containers on a single machine using a virtual network that
provides the fastest connection possible. This environment ensures that the time to process each
message is obtained without the effects of network delay. The time to find consensus is recorded
for one thousand iterations and the frequency plot is shown in Figure 3.

The time for each node to process a single message of those thousand iterations is shown in Fig
3. We set up Raft to run on a single machine with three to five participating nodes. For each of
these settings one of the nodes acts as a leader node throughout the test. The nodes run as docker
containers on that machine and are connected through a virtual network to provide as ideal
connectivity as possible so that the time to process each message does not get effected by
network delays.

Approved for Public Release; Distribution Unlimited.
9

Figure 3: Histogram of time for Raft to find consensus

Figure 4: Histogram of time for a peer node to process a Raft message

As discussed, consensus data is collected for the Raft protocol to test the methodology. We
record the time to find consensus for one thousand iterations and the time for each node to
process a single message in each of the thousand iterations. We subsequently fit the gathered
data to a distribution. Figure 5 shows the distribution of a node's processing data represented as a
histogram and the result of the curve fitting (using R stats) for Weibull, Lognormal, and Normal

Approved for Public Release; Distribution Unlimited.
10

distributions. It is observed that node's processing data for the Raft protocol follows the Weibull
distribution as it best fits the ideal Raft consensus with a scale parameter of 1.35 and a shape
parameter of 249857.5.

Figure 5: Curve fitting node message process times of Raft peers

B) Network Layer Implementation

The network simulator handles the flow messages among the participating peers. Researchers
have implemented a proof-of-work consensus protocol with the Bitcoin-Simulator using NS3
[115]. It has the ability to generate large scale networks and communicate using various
networking methods such as P2P and gossip-relay types of network. For this paper, we modified
the main controller module, as well as the Bitcoin node and built a new application extending the
Bitcoin node for the general consensus node.

The network layer is built to represent the ideal system that is used to gather data for the
simulation. To best represent this, the simulator uses a mesh P2P network using the point-to-
point NS3 module. The links use data rate in the order of gigabits per second, and the link delay
is set to zero with the intention of modifying this for calibration. Although the Bitcoin simulator
is capable to generate more complex network topologies spanning multiple regions of the world,
in this paper we consider that all nodes are connected through a mesh P2P network in the same
region.

Approved for Public Release; Distribution Unlimited.
11

As described in the methodology section, each participating node has certain variables and
distributions to represent the behavior of the consensus protocol it is modeling. A leader node is
specified at the beginning and will broadcast a message to the participating peers indicating the
start of consensus. The message is sent using the NS3 socket class and the send ability. NS3
handles the message as a set of discrete events traversing the network. The peer nodes then
proceed to process consensus messages as specified in the methodology section and consensus is
found when nodeCompleted nodes have processed nMessages.

D) Calibration and Simulation Sensitivity

With the model developed and functioning based on the observed data from the participating
nodes, the total system is calibrated to observe how close it performs with respect to the ideal
system. Calibration is used to tune the model so that it performs good enough compared to the
ideal system. Tuning the model and simulation is done by increasing network background traffic
or adding delay to network to create more delay in the message processing. Calibration is done
by tuning the distributions used to represent the message processing. This is done using constants
as a scaling factor for selected input data sets as needed. In our proposed simulator, calibration is
done by:

a. increasing network background traffic or adding delay to network to create more delay in
the message processing,

b. tuning the distributions using constants as a scaling factor for selected input datasets as
needed.

It is an iterative process and can use optimization methods to minimize the error in time to find
consensus between the model system and the observed data from the ideal system.

3.1.4 Results and Discussion

In this section, we provide the results obtained. First, we show the observation of the data
gathered and how we fit it in the curve. Then, we show the calibration results with the sensitivity
observations. Based on these observations, we use a curve fitting software to find the best
distribution to represent the time a node takes to process a message. The MASS library for R
stats is used for the curve fitting and Figure 5 shows the results of the node processing data
represented as a histogram and the results of the curve fitting software for weibull, lognormal,
and normal distributions. For the node process the weibull distribution is the best fit for
representing the raft consensus.

A) Network Layer Observations

The network delay is modeled using a lognormal distribution. The lognormal mean and variance
are found to be good at 12.85 and 0.57 respectively. These values are fitted with an iterative
process, running the simulation comparing results, then we use these results to adjust the
parameters and feedback this change to the model. This process continues for several iterations
until a close fit is found. The calibration is done for the ideal system, with three peers running the
Raft implementation. %which utilized one message from each peer.

C) Consensus Layer Implementation

Approved for Public Release; Distribution Unlimited.
12

The results of the calibrated model are shown in Figure 6 with two scatter plots. The scatter plot
on the left is calibration of the simulation to the ideal system. The x-axis represents time in
seconds for a consensus transaction by the simulator. The y-axis represents time in seconds for a
consensus transaction by the ideal system. The red straight line is the computed regression line of
the two data sets. The left scatter plot shows that there is a tight grouping and positive correlation
with the simulation and the observed ideal system. The scatter plot also shows that for the few
extreme values the two systems differ some. This is likely because the curve fitting is mostly
matching the common results in the observed data. The distribution could be modified and
calibration could be pursued further to better match the extreme values.

Figure 6: Calibrating scatter plots of simulation versus observed consensus times

The scatter plot to the right in Figure 66 is the results of the calibrated model and simulation of
the ideal system but run with 5-nodes instead of 3. The simulated results are compared with
observed results for the same system. In this plot, the simulator is not calibrated for 5-peers,
rather we wanted to observe if the behavior is good enough to represent the system's state using
the calibration from the 3-peers scenario. This comparison in Figure 66 was done as a
verification process to see if the behavior of the calibrated simulation is transferable to other
scenarios.

Approved for Public Release; Distribution Unlimited.
13

B) Consensus Layer Observations

The calibrated model and simulation now allow us change the inputs to explore how the
systems performance might change. At this point the number of required participating nodes can
be changed to see how that will change the performance of the consensus system. The number
of messages can also be altered to show how a different consensus protocol similar to rafts
message processing might perform.

A sensitivity analysis is done where the number of peers and the number of messages required
for the general consensus protocol are modified. This type of exercise gives insight into how
much the simulation of the general consensus protocol changes and gives an idea of which input
between the number of peers and number of messages has a greater effect on the resulting time
to find consensus.

In order to get insight into how much the simulation of the general consensus protocol changes and
understand the effect of the number of peers and the number of messages on the time to find
consensus consensus, we conduct sensitivity analysis. In this analysis, we modify the number of
peers and the number of messages required for the general consensus protocol, and observe
their impact.

For this test, 30 simulation runs are conducted for each scenario to handle the stochastic nature
of the sampled distributions used. The first scenario consisted of three required participating
peers and the requirement for each one to process one message. The simulation processed 1000
consensus transactions and then recorded the time it took to complete the transactions. Table
Consensus times shows the results for the test while varying the number of peers. In this table, the
average time to process 1000 consensus transactions is shown for each number of peers tested.
The data shows an increasing amount of time as the number of peers increases. The chart also
includes error bars that provide information on the maximum and minimum values of the 30
simulation runs for each average data. This gives an idea on the amount of variability the
simulator is producing in its results.

We can observe that the time to reach consensus increases as the number of peers increases.
The table also includes the standard deviation and the minimum and maximum values as a
percentage of the average to provide information on the variance over 30 simulation runs. This
gives an idea on the amount of variability the simulator is producing in its results for each number
of peers used. Generally speaking the standard deviation increases as the number of peers
increases indicating more variance in the results. This is expected since the system becomes
more complex with more participating peers.

Table 1: Consensus times (in ms) for 1-Message scenario

Peers Average (ms) Standard
Deviation

Minimum Maximum

3 1318.48 27.87 -3.96% 4.81%
4 1505.0 26.44 -2.69% 5.72%
5 1651.89 30.73 -3.68% 3.30%
10 2168.90 40.53 -3.96% 4.06%
16 2575.94 45.39 -4.01% 4.24%

Approved for Public Release; Distribution Unlimited.
14

In order to further observe the impact of the number of messages on the time to find consensus,
we ran the above described simulation while increasing the number of messages. Figure 7 shows
the same data for the 1 message test as shown in Table Consensus Times , but compared to
similar tests with 4 message consensus and 10 message consensus. With this figure we observe
increments in time to process 1000 consensus transactions between the different scenarios. Also,
the time difference between different number of messages decreases when the number of peers
increase. This finding provides some insight into the factors that cause the most delay. In this
case it is shown that the number of peers has a greater effect on the delay of the system than the
number of messages.

Figure 7: Average time (in ms) to confirm 1000 transactions

By observing the ability for the system to operate in various configurable network topology's we
begin to study under what conditions the system fails to operate. This can occur when portions of
the network do not allow the peer nodes to quickly message in participation of transactions. The
unique characteristics of the simulator are a general consensus algorithm operating in a realistic
and configurable network environment. The discrete event simulation engine allows to specify
the consensus algorithm operations at faster than real-time fidelity without loss of scalability.

C) Network Topology Generation
To better test the effects of the network on the generalized consensus protocol a function was
included to generate random network topologies. This function generates a simple
representation of nodes and edges to form various topologies to test with. The random generation
is uniform offering no bias in the process.

Approved for Public Release; Distribution Unlimited.
15

Figure 8: Randomly generated network topologies effects on the consensus protocol

The current functionality utilizes a peer to peer (p2p) network connection. The number of nodes
is received as an input along with the number of peer nodes that will participate in the consensus
protocol. The edges can assign a network speed throttling the speed of messages passed between
the two nodes. All nodes are able to exchange information to and from any node they are
connected to. For this simulation, all nodes that are not participating peer nodes do not exchange
any additional messages, but only act as relay nodes for the active participating nodes. Future
implementations can model background network traffic from all the nodes.

D) Project Integration with Simulation

Two projects are selected to integrate with the blockchain simulation. The titles of the two
projects are:

1. PCBChain
2. Drone MPC

 The two projects implement distributed systems on real hardware to indicate the proof of
concepts for future systems. PCBChain is a proof of work variant able to run on small and low
resourced devices. Drone MPC is an implementation of a Multi-Party Computation algorithm
with commercial drone equipment through raspberry pi device communication over wifi.

The two projects will be integrated into the blockchain simulation using the general consensus
protocol method. Parameters will be defined for both projects then implemented in the
blockchain simulation. The simulator will be able to test these projects based on the reported

Approved for Public Release; Distribution Unlimited.
16

performance characteristics associated with their distributed system. With this ability, various
network topology’s can be tested with the system to offer insight in the effects different networks
have on the performance of these systems.

E) PCBChain

This project implemented a lightweight consensus protocol for internet of things (IOT) devices
that do not have large amounts of resource. These devices have limited memory or storage for
large blockchain systems. This project focused on a proof of work (PoW) consensus protocol.
The authors utilized a minimized hashing function to allow for faster hash generation in the PoW
process. Extra hardware specific security was also implemented to aid in the performance of
secure communication between participating peers that helps to mitigate device spoofing on the
system.

The reported metrics included:
1. Verification of signers between nodes: 10ms
2. Hash rate (per second) 3.13mh/s
3. Transactions per second (TPS)

a. One full node per lightweight node = 5tps
b. One full node per 50 lightweight nodes = 350tps

The initial transaction values are determined based best case network topology’s. This topology
is represented as a centralized type of topology where each lightweight node I connected to the
full node. The authors tested up to 6,250 lightweight nodes with either all of them working with
the same full node or a full node assigned to up 50 light weight nodes.

F) Integration

The integration is ongoing but utilizes distributions of PoW success for varying difficulties. PoW
utilizes text that is hashed. A participating node uses a nonce value at the end of the text and
iteratively changes the nonce value until a hash value is found in which the difficulty is met. In
the case of traditional PoW, the difficulty is enforced by requiring a certain number of zeros at
the beginning of the hash value. A simple PoW implementation was used to sample the number
of attempts that were used to find a successful hash value based on various levels of difficult.

In the case of PCBChain the 5tps at a hash rate of 3.13mh/s is roughly between a difficulty of 5
or 6. Using a simple PoW implementation attempts were recorded for thousands of blocks and
fitted to a distribution. From the samples of different difficulty levels, exponential distribution
was shown to be suitable. Figure 9 shows a histogram of the recorded data and the fitted data
with lambda value of (9.899e-07)

Approved for Public Release; Distribution Unlimited.
17

Figure 9: Exponential distribution fit of Proof of Work hash attempts

When the distribution is used with the hash rate of the PCBChain, the simulator gets a TPS value
slightly higher than the expected 5tps of the observed system. A scaling rate of a ceiling rounded
value of 23% is applied to the hashed results giving the final results a close match to the
observed system.

G) Drone MPC

This implementation utilized raspberry pi comm link with commercial drone hardware. The
Rasberry Pi participates as a peer node in a secure Multi-Party Computation based system. MPC
algorithms are valuable in the use of obfuscating specific data while still being able to share
aggregate data with the network. This system is distributed but not necessarily a consensus
protocol, however, the system is distributed and relies on communication from all participating
nodes in order to derive the correct aggregate information. The MPC algorithms can still be
represented with the general consensus protocol using the number of messages required and the
time to process a message.

The Drone MPC project success is partly from the use of its wifi communication between the
Rasberry Pi and the participating Drones. There is a range limitation to this project and therefore
can offer connectivity issues. The network simulator is capable of simulating varying frequencies
of connection loss and timing of the connection loss. The network simulator will be adapted to
handle the loss of connection between the drone and the Rasberry Pi unit. For this
implementation an MPC application will be chosen that has metrics that are identified based on
the number of messages and the ideal system computation time. One example of this is the
following paper [6].

3.2 FastChain: Lightweight Blockchain with Sharding for Internet of Battlefield-Things
in NS-3

FastChain is a simulator built in NS-3 which simulates the networked battlefield scenario
with military applications, connecting tankers, soldiers, and drones to form Internet-of-
Battlefield-Things (IoBT). Computing, storage, and communication resources in IoBT are
limited during certain situations in IoBT. Under these circumstances, these resources should
be carefully combined to handle the task to accomplish the mission. FastChain simula tor

Approved for Public Release; Distribution Unlimited.
18

uses Sharding approach to provide an efficient solution to combine resources of IoBT
devices by identifying the correct and the best set of IoBT devices for a given scenario.
Then, the set of IoBT devices for a given scenario collaborate together for sharding
enabled Blockchain technology. Interested researchers, policy makers, and developers can
download and use the FastChain simulator to design, develop and evaluate blockchain-
enabled IoBT scenarios that help make robust and trustworthy informed decisions in
mission-critical IoBT environment.

3.2.1 Introduction
Internet-of-Battlefield-Things (IoBT) has been emerging as one of the major components of
mission-critical military ap- plications where tankers, vehicles, war-fighters/soldiers and drones
are connected and work collaboratively to accomplish the mission [7], [8]. However, the operations
and commands coming from higher authority or peers could be compromised by the adversaries
which could mislead the overall mission. Thus it is essential to have tamper-proof and trustworthy
communications in IoBT. Distributed digital ledger also known as Blockchain is regarded as a
next-generation consensus technology which does not depend on centralized trusted third-party
[9], [10]. Blockchain is an open distributed ledger that can record transaction between two parties
efficiently and in a verifiable and permanent way by definition [9], [11]. Blockchain is a peer-to-
peer network which collectively coheres to a protocol for inter-node connection and validates and
adds new blocks to the chain on a consensus basis. IoBT is the bare fruit of implementing
BlockChain technology on the battlefield to be able to make trusted informed military decision
using IoBT.
The overall intention of IoBT is to develop the fundamental dynamically-composable, adaptable
and goal-driven networked battlefield environment to enable informed intelligent command and
control operations to accomplish the assigned mission in the battlefield. In the near future, military
operations will depend less on the human officials or warfighters and more on interconnected
innovations and smart things/devices with advancements in embedded systems and machine
intelligence to achieve superior defensive capabilities. The IoBT is expected to connect
soldiers/war-fighters with advanced technologies to serve better in armor, radios, weapons, and
other objects to grant troops with extra sensory perception, offer situational understanding, give
better prediction power in certain situations, provide better risk assessment and develop shared
intuition [12].
The huge scale and distributed nature of IoBT devices create many security and privacy challenges.
The military mission scenarios constantly change and to adapt to that change, the underlying
network and communication IoBT infrastructure needs to be flexible and adaptive. This can be
achieved in an autonomous way, where no dependence on the centralized server should be sought.
Moreover, the information propagating through IoBT devices should be verified to be from the
trusted party and to be accurate. In addition, adversaries can interfere and compromise IoBT
devices to impact the mission negatively. To address these challenges, enhance trust, and to enhance
the credibility of the information in IoBT devices, emerging Blockchain technology should be
utilized. Blockchain is an auditable platform to authenticate the accuracy of the information and
create a tamper-resistant, robust and trusted environment for IoBT devices to communicate.
Therefore, Blockchain is the perfect technology to integrate with network-centric mission-crit ica l
military operations. Furthermore, transparency and cost-effective properties of blockchain make it
an appealing choice to be used in interconnected IoBT devices. A blockchain platform can have

Approved for Public Release; Distribution Unlimited.
19

many advantages to military cyber operations. The origin of every operation on cyberspace is
recorded and traceable which ensures transparency. Once a transaction occurs, it cannot be
reversed. The created transaction cannot be altered but a new amended one could be appended to
the chain. The transactions in Blockchain are verifiable and can be audited as the ledger is tamper-
resistant. Blockchain helps to establish decentralized trust among the entities and avoids depending
heavily on one single entity.

This project report presents design, development, and evaluation of IoBT scenarios by marring the
blockchain technology with IoBT devices [13], [14] using NS-3 [15]. IoBT is a complex network
which needs not only highly scalable but also an accurate simulator to evaluate the complex IoBT.
Simulation plays a vital role on IoBT research for experimental speed, scalability, reproducibility,
experimenting the war-zone scenarios and training the war-fighters. Simulations can help study on
small scale, large scale, simple scenario and complex scenarios to analyze the results and
consequences without actual cost of creating real-battlefield testbeds. When IoBT relies on
computing and storage resources of the IoBT devices, resources that are available on the battlefie ld
might not have been utilized efficiently to achieve the goal of the mission. Simulators can help us
how overall efficiency can be enhanced by effectively utilizing IoBT resources. This report
presents, how FastChain simulator can help to simulate IoBT scenarios to group resources available
in the Battlefield to implement Blockchain for trustworthy and temper-proof information and
communications which help complete the mission in the battlefield. This grouping can be done
depending on the computing, storage and transmission capabilities of individual IoBT nodes needed
for implementing Blockchain technology in the battlefield. Then, groups in IoBT setup implement
sharding enabled Blockchain [13], [16] for trustworthy and tamper-proof information and
communications while establishing consensus needed for each IoBT devices. Specifically, we break
down the approach taken to establish the IoBT context, create IoBT nodes, establish
communications and form clusters by grouping IoBT nodes considering their computing, storage
and transmission capabilities. The FastChain simulator helps visualize IoBT nodes representing the
battlefield scenario and how resource limited IoBT devices can be grouped to implement sharding
enabled blockchain technology [16].

Approved for Public Release; Distribution Unlimited.
20

Figure 10: A typical block diagram of the Internet of Battlefield Things (IoBT)

3.2.2 System Model

A typical system model for IoBT consists of war-fighters, drones, tankers, and command
centers as shown in the lower part of the diagram in Fig. 10. War-fighters, drones, and tankers
deployed to accomplish the assigned mission through the command and control operations
coming from command centers as well as based on the learned/observed surroundings of the
IoBT nodes. All war-fighters, drones, tankers and command centers are assumed to have
computing, storage and transmission (for communication) capabilities which might be self-
sufficient or insufficient to deploy blockchain technology in IoBT. In the case of insufficient
resources, IoBT devices form a cluster based on their need to participate in Blockchain-enab led
IoBT. To develop the simulator called FastChain [17], we used NS-3 and developed sharding
enabled blockchain for IoBT. In other words, the networking part is implemented in NS-3 and
sharding enabled Blockchain is developed on top of networking model of NS-3 where IoBT
nodes are created for portraying the IoBT devices/nodes. IoBT nodes have unique addresses and
can establish communication link among them. Furthermore, IoBT devices which have
insufficient resources to participate sharding enabled blockchain, form clusters based on their
computing, storage and communication range (or mobility pattern) capabilities.

Fig. 10 shows how the IoBT nodes in the battlefield scenario are connected through either
single-hop or multi-hop links. Those IoBT nodes are mapped with networking nodes in NS-3 in
the network layer, as shown in Fig. 10. Finally, those connected nodes build the blockchain

Approved for Public Release; Distribution Unlimited.
21

ecosystem by participating in blockchain either by individually if they have sufficient resources
(such as computing, storage and communication) or by forming groups if they do not have
sufficient resources (computing or storage or communication) to participate in blockchain-
enabled IoBT. As shown in Fig. 10, upper level illustrates the blockchain implementation where
IoBT nodes are assigned some responsibilities.

3.2.3 Building Blocks of FastChain Simulator

This section presents the architecture and building blocks of FastChain simulator that was
written in NS-3, as shown in Fig. 11. The ‘Main’ program uses seven classes represented in the
oval rectangle, as shown in Fig. 11, and creates the IoBT network of battlefield nodes and
identifies possible shard for the required task in IoBT scenario. The main implementation calls
all the classes and generates IoBT devices and places in a given location randomly. Each IoBT
node gets random values for computing, storage, and transmission range. The networking
connectivity for the nodes is created in the main program. Specifically, three types of IoBT
nodes representing tankers, drones, and war-fighters are randomly created with resources
(computing, storage and communications) and placed in the battlefield scenario. On top of these
IoBT nodes, there will be a command center as shown in Fig. 11. Connectivity among IoBT
nodes is created using networking modes available in NS-3. All IoBT nodes are visualized in
NetAnim map for their visual representation. Different colors represent different IoBT devices.
In particular, a blue-colored node represents tankers, red color represents drones, and the green
represents the ground war-fighters (as shown in Fig. 12). Furthermore, the size of the IoBT node
represents the proportionality in terms of its computing, storage, and transmission capacities.

The unique height and width for each IoBT node is computed using the function detailed in
Algorithm 1. Each node has unique height and width which are proportionality to their
computing, storage, and transmission capabilities, as explained in Algorithm 2. Once all nodes
are initialized with their respective capacities in terms of storage, computing and transmiss ion
range, the size of the node, as shown in Fig. 12, is determined for visualization purpose. We
briefly describe the different IoBT nodes and their equivalent class of FastChain simulator in
NS-3 in Fig. 11.

Approved for Public Release; Distribution Unlimited.
22

−

Algorithm 2 Algorithm for creating dynamic node sizes

1: Create num number of random numbers between the threshold defined where num is
randomly generated number or entered through command line by a user

2: Create a vector and push the numbers into a vector
3: Repeat steps 1 2 until three vectors for storage, computing, and transmission are filled
respectively
4: Compute the height and the width for each node depending on the computing, storage

and transmission range factor of the node by calling the function
FINDNODESPEC(v, u, p)

5: Create the number of respective nodes as entered through command line or randomly
generated
6: Setup Point to Point or Wi-fi connections between the nodes
7: Simulate the nodes using NetAnim with the height and width calculated from the function

Figure 11: Class diagram of FastChain simulator [17].

A. Tankers
The Tankers class is responsible for handling all the requirements for tankers in IoBT.

Specifically, Tankers possess the following properties.
• Tanker’s Minimum Storage Capacity

Approved for Public Release; Distribution Unlimited.
23

• Tanker’s Maximum Storage Capacity
• Tanker’s Minimum Computing Capacity
• Tanker’s Maximum Computing Capacity
• Tanker’s Minimum Transmission Range
• Tanker’s Maximum Transmission Range
• A two-dimensional array containing height and width for every Tanker node
The Tankers is a class which expects user input for the number of tankers they want in the

battlefield context for IoBT. Hence, the main adds the same amount of nodes requested by the
user in IoBT scenario. Similarly, Tankers class asks users for the minimum and maximum
capacity of storage, computing, and transmission values for each Tanker node. A random
number is generated between the minimum and maximum value as requested by the user for
each of the node’s respective capacities for storage, computing and transmission range. All the
values generated are pushed back into respective vectors for storage, computing, and
transmission range. The first values in these vectors represent the root node while other values
represent the added Tanker nodes.

Alternatively, users have an option to automate the program, in which case, a random number
of IoBt nodes for Tankersares between 1 and 3 automatically without asking users to input the
range. Random numbers generated for the each node’s capacities range from 10 - 1000 in the
case of automation.

B. Drones
The Drones class has precisely the same functionality as the class Tankers. The Drones class

is responsible for generating all the necessary variables needed for the Drone nodes. Similar to
Tankers, Drones take user input to generate the storage, computing, and transmission for every
Drone nodes and the desired number of Drones in the simulation. For automated simulat ion
process, Drones automatically generate these numbers in the beginning. In this case, drones are
generated from from the range [1, 3] and the capacities of Drone can fall from [10, 1000] units
of respective capacities. The node sizes are generated and filled in the two-dimensional array
as it is done for the Tankers.

C. Ground Personals or War-Fighters
The Ground Personals class also inherits the same functionality as Tankers or Drones class.

Ground Personals get the required user input for the number of Ground Personals and generate
random numbers in between the minimum and maximum numbers representing storage,
computing, and transmission capacities of Ground Personal nodes. It computes dynamic sizes
of the IoBT nodes using the same algorithms, Algorithm 1 and Algorithm 2.

D . Coordinates
Coordinates class generates geolocations of the nodes for their positions in the NetAnim. The

functions in Coordinates generate random numbers for the x and y values on the NetAnim graph.
These numbers are then stored in a variable using another function for later use. These
coordinate values are used to find the Euclidean distance between the IoBT nodes, along with
the transmission range, to find out whether given IoBT nodes can directly communicate or not.
The vector of tuples hold the values for the coordinates.

Approved for Public Release; Distribution Unlimited.
24

E. Groups
Groups is the backbone class in the FastChain as this class selects the group of minimum

nodes with the capacity required to fulfill the storage, computing and communicat ion
requirements for sharding enabled Blockchain.

Algorithm 3 explains this process in detail on how to form a group based on their needs and
capacities to precipitate in blockchain-enabled IoBT. Using the Transmission vector generated
initially, we then design the communication model to map the nodes to the ones it can
communicate to. Two IoBT nodes can communicate directly with each other if the euclidean
distance between the two nodes is less than the transmission range of both of the nodes or there
is a line of sight. Hashmap is created to store the mapping between a given IoBT node and
the IoBT nodes it can communicate with. Every node is a key in the Hashmap with its values
being possible shard nodes. The x and y coordinates of each node from the cotuple vector are
used to find the Euclidean distance. We start with the first node and calculate the Euclidean
distance with the next node and check if it is less than the transmission range of both the nodes.
If so, we add it to the hashmap. We access every node and compare it with every other node
and create the Hashmap or the communication model. In the algorithm, for a given size say k,
we check if the vector current is the same size as the k. If yes, we check if the combination can
fulfill the storage and computing requirement for the given task. If the combination does fulfi ll
the task requirement, we return the found combination as the best combination. If it does not
fulfill the requirement, we keep on checking the other combinations of the same size iterative ly.

Furthermore, if the vector current is not yet the size of k, we add on further nodes. We select
the first node in the given current vector, which is 0 initially. We select all the values with the
first node as the key from the hashmap. We then select the values from the given index to the
end of the values. Inside the loop of the selected values from the hashmap, we check if the
element selected is in the keys of all the elements of the current vector. If yes, add the IoBT
node to the current vector. If not, we continue with the loop.

If the node is added to the current vector, we recursive call the function backtrack. If the
storage and computing requirement for the task is fulfilled, we return the vector. If the
requirement not fulfilled, we pop up the last element from the current vector and check for
the other combination of the same size.

Algorithm 4 depicts how we find the best shard for blockchain-enabled IoBT. The algorithm
first checks if any individual nodes can complete the given storage and computing requirement
of the given task. If not, we start with the first loop which is the loop of integers starting with 2
to the total number of nodes. The first loop, in Algorithm 4, represents the size of the node
combinations we are looking for. The second loop selects every node as the first node and
checks for all the combination of size k and calls the function backtrack. This way, we always
look for the smaller size of combination of nodes first. We check if all the smallest combinat io n
possible that can communicate with each other can fulfill the job requirement. If the algorithm
does find such a combination, it returns the vector and breaks from the function. If not, it keeps
on searching for best-suited combination.

Approved for Public Release; Distribution Unlimited.
25

←
←

←
←

←
←

The Block class in the program has the index value, nonce value, Hash value, the required data
to create a block, and the current time as the primary property. Block class does the entire block
implementation on the best combination of nodes we found from the algorithms above.
CalculateHash function generates the Hash value from the sha256 hash value generating script.
These values are sent as a input stream to the hash generating script to generate the hash vales:
Index << current time
<< nodedata << Nonce value << Hash value of the previous block. MineBlock function in the
class checks if the generated hash value is the correct one according to the difficulty level set
before mining the block where difficulty level refers to the complexity of consensus protocol.
The first ndifficulty strings in the hash value should be 0 to meet the difficulty to mine the block.
The Block class generates the right hash value for the block given the input as the combinat ion
of nodes we found as the best one to fulfill the task.

Algorithm 3 Algorithm for grouping IoBT nodes for clusters

1: Vector couple tuples containing coordinates of n number of nodes
2: Vector Transmission range integer of total n number of nodes
3: Create hashmap() to list possible grouping nodes for each node
4: Generate n number of random integers x and y
5: Push every (x,y) as a tuple to the vector cotuple
6: for i 1, n do
7: for j 1, n do
8: if euclideandistance <= min(radius node1, radius node2) then
9: Add the node to the vector

10: end if
11: end for
12: Update the hashmap with possible grouping nodes by evaluating the computing and
storage capabilities of each node

Algorithm 4 Algorithm to find the best shard

1: if If any of the individual node can complete the given storage and computing requirement
of the given task then
2: Return that node and break
3: else
4: for k 2, n do
5: for i 0, n do
6: Set vector current to 0
7: Call the function backtrack
8: As soon as the combination with the minimum node fulfills the requirement for

the task, it breaks from the loop.
9: end for

10: end for
11: end if

F. Block

Approved for Public Release; Distribution Unlimited.
26

Figure 12: Visualization (Example Scenario) of IoBT nodes in FastChain Simulator

G . Blockchain
The Blockchain class simply creates the vector to place the block that has been mined. If there

are no previous blocks in the blockchain, it generates the initial genesis block for the blockchain.
The mined block is then pushed in the vector of the blockchain.

3.2.4 Analysis and Discussion
As noted earlier, in FastChain simulator, we have modular C++ script written in NS-3 where
the main program calls different functions and classes to create IoBT scenario to simula te
the same. IoBT nodes, when they don’t have enough resources in terms of computing and
storage, are grouped into clusters according to their storage capacity, computing capacity,
and transmission range. In FastChain, IoBT nodes communicates with each other using peer-
to-peer communications to exchange information among Tankers, Drones, and Ground
Personals. IoBT nodes are generated randomly either based on user input or automatica lly
based on default values set in FastChain simulator. Then, each node get randomly generated
values for storage, computing and commutation range values from their respective ranges
specified by the user or default set in the program. Algorithms 1 through 4 are used to
increase the size of the IoBT nodes proportional to their resources and create a
communication model based on the geolocations and transmission ranges of IoBT nodes.
Based on the communication ranges of IoBT nodes, the communication ranges are used to

Approved for Public Release; Distribution Unlimited.
27

find the combination of a suitable set of IoBT nodes to fulfill needs where all nodes in the
cluster can communicate with each other to participate in IoBT. If the IoBT device such as
Tanker has enough resources to participate in blockchain-enabled IoBT, it can participate
alone without being a member of the cluster. Specifically, the hashmap is used to find which
IoBT node can talk to which other IoBT nodes. In FastChain simulator, every node has the
list of nodes to which it can establish a connection in terms of transmitting range. Once
each node has the hashmap, each node updates the hashmap to make sure these nodes can
fulfill not only communication but also computing and storage capabilities required for
sharding enabled IoBT. Once all nodes, either can participate individually or through formed
clusters, use the input streams to create the block and add to the blockchain.

The IoBT scenario in FastChain can be visualized through the NetAnim Animator which shows
IoBT nodes and their locations and sizes. Visualization can also help to see whether these IoBT
nodes can communicate with each other or not. Fig. 12 shows the colored nodes where blue-
colored nodes represent the tankers, red-colored nodes represent the drones, and the green-
colored nodes represent ground personals/war-fighters. The simulation can be run where we can
see how IoBT device can interact with other IoBT devices, and send and receive the
information. This allows us to select suitable nodes that can interact and work efficient ly
together for sharding enabled blockchain system in the battlefield context. FastChain shows how
the limited resources during the battlefield scenario can be efficiently used through collaborat ion
by grouping them dynamically.

3.2.5 Conclusion
In this work, we developed and presented a simulator, called FastChain, built in NS-3 which
simulates the battlefield scenarios with military applications which connects tankers, soldiers,
and drones to form IoBT. The simulator uses the sharding enabled blockchain for trustworthy
IoBT operations. Resource constraint IoBT devices form a group to participate in sharding
enabled blockchain for IoBT scenarios. Researchers, educators and policymakers working on
IoBT or similar scenarios can use the FastChain simulator and evaluate their systems.

3.3 Scalable Blockchain Solutions

Blockchain-based audit trails provide a consensus-driven and tamper-proof trail of system events
that are helpful in creating provenance in enterprise solutions. However, taking into account the
transaction bulk generated by these applications and the throughput limitations of existing
blockchains, a single ledger for record keeping can be inefficient and costly. To that end, we see
an imperative need for a new blockchain design that is capable of addressing current challenges,
without compromising security and provenance. Hence, we propose BlockTrail, a scalable and
efficient blockchain solution for auditing applications. BlockTrail fragments the legacy
blockchain systems into layers of co-dependent hierarchies, thereby reducing the time and space
complexity, and increasing the throughput. BlockTrail is prototyped on “Practical Byzantine
Fault Tolerance” (PBFT) protocol with a custombuilt blockchain. Experiments with BlockTrail
show that compared to the conventional schemes, BlockTrail is more efficient, and has less
storage footprint.

Approved for Public Release; Distribution Unlimited.
28

3.3.1 Scalable Blockchain Platform for Auditing

Audit trails are important for efficient record management and provenance assurance [19], [20].
For example, government agencies are responsible for appraising properties and collecting taxes
from residents [21], [22]. Starting from cities, these agencies work at various levels, including
counties, states, and federation. As such, they keep track of property exchange, tax collection,
permits, etc. Furthermore, these agencies have applications that generate audit trails to perform
auditing and ensure system transparency. These applications continuously monitor the
application’s database, and generate an audit trail record upon change in the value of an object.
However, due to the client-server relationship, audit trails are vulnerable to a single point-of-
failure, whereby an adversary can externally and internally manipulate database and audit trails.

An intuitive solution to safeguard audit trails from single point-of-failure is to replicate them
over all applications. This will raise the attack cost for the adversary since corrupting audit trails
would require attacking all applications. This replication of audit trails can be achieved using
blockchains, to enable secure, transparent, and immutable management of audit trails without
needing a trusted intermediary [23], [24].

Current blockchain systems operate with a single- ledger shared among all system entities. The
use of a single- ledger is therefore considered as a baseline model, atop which all applications
abstract their services. However, the use of single ledger not only increases the storage footprint
but also creates a bottleneck by preventing parallel processing. Applied to auditing, blockchains
systems suffer from enormous space and time complexity, owing to the rate and size of
transactions.

To address those challenges, we take a clean-slate approach towards the architecture of
blockchain systems. We propose a multichain blockchain model that segregates the network into
a set of layers, each capable of processing transactions independently. We leverage the
hierarchical structure of eGovernment applications to facilitate parallel transaction processing
and subsidized storage overhead. Moreover, the layered architecture also increases the
throughput of the system by reducing congestion and transaction stall. In addition to the layered
architecture, we further enhance capabilities of BlockTrail by using “Practical Byzantine Fault
Tolerance” (PBFT) as the consensus protocol. In contrast to the existing schemes such as Proof-
of-Work (PoW) and Proof-of-Stake (PoS), PBFT is energy efficient and achieves higher
throughput.

A major limitation of PBFT is its lower fault tolerance compared to PoW and PoS. While PoW
and PoS can withstand up to 49% malicious entities in the system, PBFT, on the other hand, can
only sustain ≈ 30% malicious nodes [25]. This is one of the reasons why PBFT has not been
popular among applications with weaker trust models. However, specific to the requirements of
our audit trail application, we take sufficient measures to equip BlockTrail with strong security
measures in order to mitigate various attacks.

Contributions. We make the following contributions in this paper 1) We revisit the legacy
designs of blockchains, and introduce a multilayer blockchain architecture that ensures higher

Approved for Public Release; Distribution Unlimited.
29

throughput with low processing delays. 2) We present BlockTrail; an end-to-end blockchain
solution for audit trail applications that uses the multichain blockchain model to provide secure
and tamper-proof audit trails. 3) We provide the theoretical constructs of BlockTrail and validate
its performance through experiments and simulations.

Figure 13: Multichain blockchain system design tailored to the specifications of BlockTrail.

3.3.2 BlockTrail Design

We begin by providing an overview of a audit log application that we use for the instrumentation
of BlockTrail. The first step in design is the access to a large-scale audit log generation system
that is currently being used by an enterprise. For this purpose, we used the services provided by
ClearVillage Inc. [26], which provides software for cities and counties.

A. System Architecture
As defined previously, audit trails generated by the application are broadly associated to the
exchange of property information among multiple entities at different hierarchies. This exchange
of information occurs among: 1) peers (replicas) within the same city, 2) cities within counties,
3) counties within states, or 4) states within a country.

In conventional schemes of generating blockchain-based audit trails, a global blockchain is used
to incorporate all the transactions. Although, this serves the purpose of secure and tamper-proof
audit trails, it is not efficient and scalable. Each transaction has to traverse the entire network and
get approval from all the peers. In particular, a local transaction related to a state change at the
city level will require approval from all other parties in other cities that might not be relevant to
that transaction. In addition to causing delays, this also limits the system throughput, since PBFT
protocol serializes the transaction processing.

We argue that efficiency and throughput constraints faced by conventional systems can be

Approved for Public Release; Distribution Unlimited.
30

resolved by partitioning the network into multiple hierarchies. As such, transactions that are
specific to a group of organizations within a city must be processed locally, while the
transactions related to cities within a county can be processed at the county level and stored in
county’s blockchain. Taking this bottom-up approach from peers within the cities to the states
within a country, we obtain a hierarchical tree of blockchain system that incorporates multiple
blockchains, each holding data of its corresponding set of peers. Transactions will be generated
by the organizations within the cities that act as a root in the system. Each transaction will have
an identifier that will determine its destination blockchain.

Using this structure, our system will be able to achieve the following features: 1) Transactions
within the same branch can be processed in parallel, thereby enabling parallel processing and
increasing throughput. 2) For a transaction within same branch, the approval will be required
from the leaf nodes within that branch that are relevant to the transaction. This will reduce the
processing overhead incurred by transactions in conventional scheme. 3) Other than transaction
generation and processing, this scheme is highly efficient in blockchain queries during auditing
process or for conflict resolution. In Figure 1, we show the topology of our hierarchical
blockchain paradigm, and in the following, we provide the notations that capture the abstraction
of our model. Let Lf = {L1,L2,...,Ls} denote the country-level (federal) hierarchy that incorporates
a set of all states within the country. This hierarchical blockchain paradigm can be extended from
four levels to k levels, to increase the scallibility and reduce the time and space complexity.
Keeping in mind the baseline fault tolerance of PBFT, we assert that the minimum number of
replicas in blockchain, at each level is s ≥ 4. For each state in Lf, let Li = {l1,l2,...,lc} be a set of
counties in state. For each county in Li, let lj = {p1,p2,...,pd} denote the number of cities that are
associated with each county. Finally, for each city in lj, let aq = {n1,n2,...,nr}, be the set of peers
(audit log applications), operating within the city. Given this topology, the overall size of the
network S, determined by the number of audit-log applications, can be computed using.

(1)
Here, Xqji represents the position of a node within the system (identified by city, county, and state
indexes). For each level, we have primary replica that executes the verification process. Specific
to the design outlined in this paper, we have a primary replica for each city, county, and state in
the system. Therefore, the total number of primary replicas in our blockchain system are d + c +
s.

Figure 14: M/D/1 queue

Figure 15: M/D/c queue

Approved for Public Release; Distribution Unlimited.
31

3.3.3 Blocktrail Analysis

A. Transaction Processing and Throughput

To understand the efficiency our system with respect to the transaction processing, we use a
Markovian model that broadly formulates the PBFT-based blockchain systems. To that end, we
envision that the system can be viewed as a Poisson process characterized as an M/D/1 queue at
the primary replica [27]. Here, M denotes the arrivals determined by a Poisson process, D
denotes the deterministic mean service time, and 1 shows that there is one server in the system.
In M/D/1 queue, as shown in Figure 14 where transactions are arriving with rate λ, and there is
one server that process the transactions at the average rate D, λ denotes the mean arrival rate of
the transactions at the primary replica and D denotes the mean service rate of the active replicas
that collectively act as a server. From this, we can derive ρ = λ/D, which denotes the utilization of
the server. If the arrival rate is less than the service rate λ ≤ D, there is no queuing at the primary
replica, and each transaction gets processed before the next arrival.

However, in practice, the rate of incoming transactions is usually greater than the rate of
transaction confirmation [28]. Therefore, this leads to the formation of a queue at the primary
replica. In PBFT, if there are a number of active replicas in the system, then the minimum
number of messages exchanged to verify the transaction are a(a − 1). Assuming that the time
taken to exchange one message in the system is t, then the total time T taken to process a
transaction becomes t(t−1). Therefore, as the size of network grows and the number of active
replicas increase, the time taken to process the transaction decreases, and the service time of
server D decreases. Some key performance indicators of M/D/1 queue are the mean number of
transactions in the system and the average wait time for each transaction. As such, the mean
number of transactions L in the system can be calculated as:

(2)
In (2), ρ is the server’s utilization, λ is the arrival rate, and t is the time taken to exchange one
message. Moreover, the average wait time for a transaction in the system w is:

(3)
Applied to our multichains, the total number of servers increase at each layer for parallel
processing. When the number of servers increases, the number of replicas splits between the
servers, thereby reducing the service time for each transaction. In such conditions, the system
reflects an M/D/c queue presented in Figure 15 where with transactions arriving at mean rate λ,
and a group of servers are processing transactions with rate D. Here, c depends on the total
number of replicas related to the transaction. For instance, lets assume a transaction tx1 that is
initiated between two cities Ca and Cb at time t1. The total replicas involved in the verification
process are a + b. On the other hand, another transaction tx2 is initiated at the same time t1 among
two different cities Ce and Cf, having total active replicas e + f. Now, these two transactions can
be processed in parallel if the following condition is met:

Condition 1: Two transactions can be considered to be non-overlapping if their associated

Approved for Public Release; Distribution Unlimited.
32

active replicas are unique and have no intersection. (Ca ∪ Cb) ∩ (Ce ∪ Cf) = ∅.
Depending on the size of replicas, each transaction will be processed accordingly. Under the
assumption that at a given moment, there is a set of size c replicas that satisfy the aforementioned
criteria, the system will behave as an M/D/c queue for transactions destined for each server. As
the size of server may vary, depending on the number of verifiers involved with the transaction,
the verification time and the throughput of the system may also vary accordingly.

B. Complexity Analysis
A key challenge with blockchain-based audit trails is the time and space complexity associated
with the network and the blockchain size. The time complexity involves the time taken by peers
to develop consensus over the blockchain state. The space complexity involves the storage and
the search overhead that compounds due to append-only blockchain design. We suggest that the
multilayer architecture of BlockTrail can be helpful in reducing the time and space complexity to
achieve faster consensus and enhance storage capability of peers. For this analysis we used 100
peers, federal level transaction are 0.1%, state level are 0.9%, county level are 9% and city level
are 90%. Consensus time is measured in microseconds presented in Figure 16.

Figure 16: Complexity Analysis of BlockTrail.
To estimate the complexity of the system, let the total number of transactions in the system be bt.
Let td be the total number of transactions at the city level, tc be the total number of transactions at
county level, ts be the total number of transactions at the state level, and tf be the total number of
transactions at the federal level. In (4), we show the relationship among these transactions. We
assume that most transactions are exchanged at the city level, and the amount of transactions
decreases as the hierarchy increases.

(4)

(5)

Approved for Public Release; Distribution Unlimited.
33

1) Space Complexity: BlockTrail reduces the space complexity of system by optimizing the
transaction overhead at each layer. Storage used by a conventional blockchain system is bt×n where
bt is the total number of transaction and n is the number of peers. Since bt >> n the space
complexity of flat blockchain system is O(bt). However, a major downside of this method is that
every peer is required to maintain a log of transactions that may not be related to its application.
Benefiting from the hierarchical structure of BlockTrail and the non-overlapping nature of
transactions, we suggest that the space overhead can be considerable reduced.
In our design, a major fraction of transactions is stored at the city level. Since transactions
particular within the city are only stored locally, all other cities are not required to participate or
store transactions. Deriving from (5), the major fraction of city transactions can be be computed
as follows:

(6)

Since tdi is the dominant component, therefore, the amortized cost of storage, outside the city
layer becomes negligible, and the complexity of the system approximates to the complexity at
the lowest layer.

(7)
2) Time Complexity: With respect to time, we explore two aspects of complexity namely,

consensus complexity and search complexity. We show that by design, in BlockTrail amortized
cost of search and consensus is better than the conventional blockchain.
Consensus Complexity. To achieve consensus over the state of blockchain with n replicas, n2 − n
messages are exchanged. Assuming that the system receives τ number of transactions, the cost of
consensus in the conventional blockchain model becomes O(τ2). However, in BlockTrail, the
system is partitioned into sublayers, each comprising of different number of replicas. This
partitioning of the system, as shown in Figure 13 where levels denote the hierarchies that keep
blockchains and at the lowest level, there are applications connected to a city that emanate
transactions from audit trails, reflects a tree structure with branches depicting multiple layers.
Leveraging the number of transactions at each layer and using (5), the cost of consensus in
conventional (Tconv) blockchain and BlockTrail (Tbt) can be computed as:

(8)
Since , therefore, the cost of consensus in BlockTrail is much less than the
conventional blockchains.

Search Complexity. Similar to the space complexity, the search complexity in blockchains
depends upon the number of transactions that are logged at a particular layer in the system. As
such, the search cost in conventional blockchains (Sconv), and BlockTrail (Sbt) becomes:

(9)

Approved for Public Release; Distribution Unlimited.
34

Figure 17: Results obtained from the simulations of BlockTrail.

Given td << bt, therefore as shown in (9), the amortized search complexity in BlockTrail is much
less than conventional blockchains. In Figure 16, we show the plots obtained by comparing
complexity of conventional blockchains and BlockTrail. Our simulation results validate the
theoretical analysis. Note that as the rate of transactions increases and the number of peers grow,
the consensus time increases accordingly. The consensus time is smallest in the city blockchain
and it increases as we proceed towards upper levels in hierarchy. Federal blockchain experiences
the same delays as a conventional blockchain.

C. Security Analysis
We perform the security analysis of BlockTrail. We begin by outlining our trust model and
adversarial model to access the strength of BlockTrail against various attacks. We use our
analysis to suggest possible advancements that can be made to enhance the security of PBFT-
based blockchain systems.
Trust Model. In BlockTrail, we assume that at any level of blockchain, there are four or more
replicas that process a transaction. This criteria is critical for developing consensus in PBFT
blockchains, that require approval from at least 3f +1 active replicas in the presence of f faulty
replicas. Since BlockTrail uses a permissioned blockchain, we can assume a more trustworthy
environment where peers have mutual interests and limited incentives to misbehave.
Adversarial Model. For our adversarial model, we assume a computationally-bounded adversary
that controls a set of malicious replicas in the system. We assume that the adversary attains the
trust of other peers and positions himself among the active replicas. If the network has n replicas
and the adversary controls f replicas, then in conventional blockchain design, the value of f has to
be large enough (n − f ≤ 3f + 1) to enable the adversary to attain control over the system. If the
value of f is sufficiently large, then the adversary can compromise the system by asking the
faulty nodes to withhold their signatures on a given transaction in order to halt the verification. In
a layered design, a major challenge for adversary is to position his replicas in a way to obtain
maximum benefits with minimum effort. In the following, we discuss the possible attack options
for the adversary.

D. Positioning Malicious Replicas
The attacker with f malicious replicas can either randomly position them in the network at
different layers of blockchain or select a targeted layer with fewer replicas to launch a targeted
attack. In this section, we will evaluate both these design choices and analyze the state of the
system under attack. First, we observe the possibility when the attacker randomly allocates f
malicious peers in a layered blockchain system with b number of blockchains.

Approved for Public Release; Distribution Unlimited.
35

The random allocation of f replicas in b blockchains can be modeled as the classical balls-into-
bins probability problem [29]. Provided that there are b blockchains and f malicious replicas, the
probability that a replica gets allocated to any random blockchain is 1b. Using this premise, we
are interested in answering the following questions: 1) Probability that two malicious replicas are
allocated to a specific layer of blockchain, 2) Probability that a specific blockchain has exactly p
malicious replicas, where p ≤ f, 3) Probability a specific blockchain has no malicious replica.
To answer the first question, let Allocki denote the event that i-th replica gets allocated to
blockchain k, and let Mi,j be the event that replica i and j get allocated to the same blockchain. By
using Bayes’ rule, we can find the probability of such an event as follows:

(10)
While doing the random allocation, a blockchain with more sensitive information may get
exactly the number of peers that may compromise it. Let’s assume that a specific blockchain bs
with p number of honest replicas cannot accommodate more than q malicious replicas. This leads
to a problem raised in the second question which attempts to estimate the target blockchain gets
exactly p malicious replicas, where p ≤ f. This can be calculated by the following model:

(11)

It remains within the realm of possibilities that the attacker may not be able to position any
malicious replica at any layer of the blockchain. This eventually adds to our trust assumptions of
the system and may require less effort to defend against attacks. In the following, we show the
probability that a specific blockchain in our system exhibits this property and contains no
malicious replica belonging to the adversary. This addresses the third question above.

(12)
As the hierarchy of blockchain increases from city to county and eventually the federal
blockchain, the security of the system also increases due to more active replicas being involved
in the transaction confirmation. To enhance the security features of BlockTrail at lower levels of
blockchain, we propose the following countermeasures.

E. Countering Targeted Attacks
In a situation where there are r number of honest replicas in a city blockchain and the attacker is
able to position f faulty replicas such that 4f +1 > f +r, then the attacker will be able to stop
transactions verification in that layer. To counter this, we propose an expected verification time
window Wt which will be set by the primary replica before passing the transaction to the
verifying replicas. The primary replica knows the total number of active replicas in the system
and can calculate the total number of messages to be exchanged until the transaction gets

Approved for Public Release; Distribution Unlimited.
36

verified. In this case, the total number of messages will be in the order of (f + r)2 − (f + r). If one
message, exchanged among f + r peers, takes t0 time, then the total time taken for transaction
verification will be c × (t02 − t0), where c is an arbitrary constant set by the primary replica. Based
on these values, the primary replica can set an expected time window Wt ≥ c × (t02 − t0) in which it
expects all peers to validate the transaction and submit their response. Let tstart be the start time at
which the primary replica initiates the transaction. If by Wt the primary replica does not receive the
expected number of responses from the replicas, it will abort the verification process and notify the
auditor.
Depending on the application’s sensitivity, the primary replica can either set another optimistic
value of Wt0, where Wt0 ≥ Wt, and repeat the process or it can simply abort the process and notify
the auditors in application regarding the malicious activity. We leave that decision to the audit log
application and its sensitivity to malicious activities. However, in our experiments, we relax the
condition of sensitivity and re-submit the transaction for another round of verification. We set a
new expected verification time window Wt0 and wait for the response. Our choice of relaxing the
condition of sensitivity is owing to the unexpected delays in the message propagation; given that
our system would run over Internet. However, if the primary replica does not receive the approval
of transaction the second time, it aborts the process and notifies the application.

F. Experiments and Evaluation

We first prototype BlockTrail on a popular blockchain framework called Hyperledger [30], to
verify its correctness and consistency with blockchain systems. However, in Hyperledger, we do
not have the flexibility of applying the layered blockchain design proposed in this paper. As such,
we employ the core functionality of Hyperledger including orders (primary replica), replicas, and
PBFT protocol. Leveraging the design constructs of Hyperledger, we proceed with abstracting its
core functionality and developing our propriety blockchain system that is tailored to the
specifications of our application. In the following, we outline the steps taken to deploy our propriety
blockchain system.
For experiment, we used existing logs to generate the JSON packets to generate audit trail entries.
These audit trail entries are generated by the application and sent to the relevant city, county, state
or federal blockchain. The primary replica notifies all concerned replicas that are associated with a
blockchain and request them to validate the transaction. We generate a series of transaction for each
layer of blockchain. We vary the transaction rate by increasing λ, and note the time taken by all the
peers to reach consensus over it. Additionally, for each layer, we vary the number of peers and the
size of transaction to see the overhead in consensus time. λ was increased from 25 to 50, and the
city peers were set to 10,20,30 and 50, the county peers were set to 50, 100, 150 and 200, and the
state level peers were set to 80, 160, 240 and 320. Finally, the federal level peers were set from 100,
200, 300, and 400.
We evaluate the performance of BlockTrail by the time taken for all the nodes to reach to a
consensus over the transaction sent by the primary replica. Let tg be the transaction generation time,
and tc be the time at which it gets approval from all active peers and gets confirmed in the
blockchain. In that case, the latency lt is calculated as the difference between tc and tg (lt = tc − tc,
where tc > tg). The mean values of each experiment are plotted in Figure 17. It can be observed that
as the number of peers increases at each layer, the consensus time increases considerably. Also, as
the rate of incoming transactions increase, naturally, the consensus time increases. As expected, the
time for consensus at the city level was less compared to county and the state level.

Approved for Public Release; Distribution Unlimited.
37

G. Related Work

We review work on secure audit logging mechanisms and contrast them with our approach to
highlight our contributions. Audit Trails. Schneier and Kelsey [31], [32] proposed a secure audit
logging scheme capable of tamper detection even after the system compromise. However, their
system requires the audit log entries to be generated prior to the attack. Moreover, their system
does not provide an effective way to stop the attacker from deleting or appending audit records,
which, in our case is easily spotted by BlockTrail.
Waterset al. [33] proposed a searchable encrypted audit log, which uses identity-based encryption
keys to encrypt audit trails, and allow search by certain keywords. Yavuz and Ning [34]
developed a forward secure and aggregate audit logging system for distributed systems, without
using a trusted third party. Zawoad et al. presented Secure-Logging-as-a-Service
(SecLaaS) for storing virtual machine audit trails in secure manner, SecLaaS ensures
confidentiality of users and protects integrity of logs by preserving proofs of past logs. Ma and
Tsudik [35] looked into temper-evident logs that are based on forward-secure aggregating
signature schemes.
Xu et al. [36] proposed to use game theory and blockchain to reduce latency by moving
applications to edge servers. Similarly we are using the geographical proximity to store audit logs
in servers that are close to reduce latency.
Blockchain and audit trails. Sutton and Samvi [37] proposed a blockchain-based approach that
stores the integrity proof digest to the Bitcoin blockchain. Castaldo et al. [38] proposed a logging
system to facilitate the exchange of electronic health data across multiple countries in Europe.
They created a centralized logging system that provides traceability through an unforgeable log
management using blockchain. Cucrull et al. [39] proposed a system that uses blockchains to
enhances the security of the immutable logs. Log integrity proofs are published in the blockchain,
and provide non-repudiation security properties resilient to log truncation and log regeneration.
Chi and Yai [40] proposed an ISO/IEC 15408-2 Compliant Security Auditing system using
Ethereum that creates encrypted audit logs for IOT devices. Chen et al. [41] proposed a
Blockchains based system to address shortcomings in log-based misbehavior monitoring
schemes used to monitor Certificate Authorities (CA). In contrast to prior work, BlockTrail is
implemented by extending a data access layer of the business application, which only required
modification to access layer, and no other modifications.

H. Conclusion

In this paper, we present BlockTrail; a multilayer blockchain system that leverages the
hierarchical distribution of replicas in audit trail applications to reduce the system complexity
and increase the throughput. BlockTrail fragments a single ledger into multiple chains that are
maintained at various layers of the system. We prototype BlockTrail on an audit trail application
and use PBFT protocol to augment consensus among replicas. We also propose new strategies to
mitigate security risks associated with weak trust model of PBFT. Our experiments show that
compared conventional blockchains, BlockTrail is more efficient with tolerable delays. In future,
we aim to explore the application of BlockTrail beyond audit trails including IoT and health care.

Approved for Public Release; Distribution Unlimited.
38

3.4 Secure Blockchain Platform

Audit logs serve as a critical component in enterprise business systems and are used for
auditing, storing, and tracking changes made to the data. However, audit logs are vulnerable to
a series of attacks enabling adversaries to tamper data and corresponding audit logs without
getting detected. Among them, two well-known attacks are “the physical access attack,” which
exploits root privileges, and “the remote vulnerability attack,” which compromises known
vulnerabilities in database systems. In this paper, we present BlockAudit: a scalable and
tamper-proof system that leverages the design properties of audit logs and security guarantees
of blockchain to enable secure and trustworthy audit logs. Towards that, we construct the
design schema of BlockAudit and outline its functional and operational procedures. We
implement our design on a custom-built Practical Byzantine Fault Tolerance (PBFT)
blockchain system and evaluate the performance in terms of latency, network size, payload
size, and transaction rate. Our results show that conventional audit logs can seamlessly
transition into BlockAudit to achieve higher security and defend against the known attacks on
audit logs.

A. Introduction

Enterprise business systems and corporate organizations maintain audit logs for transparent
auditing and provenance assurance [42, 43]. In addition to their functional utility, the
maintenance of audit logs is mandated by Federal laws. For instance, the Code of Federal
Regulations of FDA, Health Insurance Portability and Accountability Act, etc. require
organizations to maintain audit logs for data auditing, insurance and compliance [44].
Secure audit logs enable stakeholders to audit the systems’ state, monitor users’ activity, and
ensure user accountability with respect to their role and performance. Due to such properties,
audit logs are used by data-sensitive systems for logging activities on a terminal database.
Often times, audit logs are also used to restore data to a prior state after encountering unwanted
modifications. These modifications may result from attacks by malicious parties, software
malfunctioning, or simply user negligence.
 Audit logs typically use conventional databases as their medium for record keeping.
Therefore, with databases, audit logs reflect a client-server model of communication and data
exchange. The client-server model positions databases as a single point-of-trust for the audit
logs, and therefore naturally a single point-of-failure. With this vantage of vulnerability, audit
logs can be compromised in many ways. An adversary with root access to the database can
manipulate critical information both in the database and the corresponding audit log. Once an
audit log is compromised, the safety and transparency of the application is put to a risk. In the
light of this weak security model, there is a need for secure, replicated, and tamper-proof audit
logs that do not suffer from this shortcoming and have effective defense capabilities to resist
attacks. To that end, we envision that blockchain technology can naturally bridge the gap to
nicely serve the security requirements for audit log management, including ensuring security,
provenance and transparency [45, 46].

Approved for Public Release; Distribution Unlimited.
39

 Over recent years, blockchain has acquired significant attention due to its use in distributed
systems [47]. In peer-to-peer settings, blockchain is capable of augmenting trust over an
immutable state of system events [48]. The most prominent example of blockchain technology
has been realized in Bitcoin [49]; a peer-to-peer digital currency that enables secure transfer of
digital assets without the need of a trusted intermediary. Since Bitcoin, the use of blockchain has
become prevalent in various applications and industries including smart contracts [50, 51],
communication systems [52], health care [53-54], Internet of Things [55-56], censorship
resistance [57], and electronic voting [58-59]. The potential of blockchains is fully utilized in an
environment where, 1) entities belonging to the same organization have competing interests [60]
and/or 2) there is a need for immutable data management whose security increases over time [61-
62]. Because audit log applications meet the aforementioned requirements, they can intuitively
use blockchain properties for an added security of audit logs. In Figure 18, we presented the
audit log generation in an OLTP system where we annotate each step with a number to show the
sequence of progression. Notice that the user generates a transaction to change the value from C
to D, and the change is then recorded in the audit log by the database.

Figure 18: Audit log generation in an OLTP system.

Applied to an audit log application, blockchain can replicate the information contained in
audit logs over a set of peers, thereby providing them a consistent and tamper-proof view of the
system [63]. Blockchains use an append-only model secured by strong cryptography hash
functions. The security of data in the ledger increases while the blockchain grows with time.
Furthermore, a malicious party intending to compromise the system will have to change logs
maintained by a majority of peers. This increases the cost and complexity of the attack and
increasing the overall defense capability of the audit log application. However, the design
space of blockchain is modular due to varying access control policies and consensus schemes.
Therefore, it becomes a design challenge to apply suitable structural and functional primitives
that best fit the application requirements and achieve the end goal of transparency and
provenance. Motivated by that, we propose a blockchain-based audit log system called
BlockAudit. Broadly speaking, in BlockAudit, we 1) capture system events generated by the
data access layer of an enterprise application, 2) transform the acquired information into
blockchain compatible transactions, 3) construct a peer-to-peer network consisting of entities
that evaluate and approve the authenticity of transactions by executing a consensus protocol,
and 4) lock the transaction in an append-only and immutable blockchain ledger, maintained by
each network entity.

Approved for Public Release; Distribution Unlimited.
40

Contributions. In summary, in this paper we make the following key contributions: (1) We outline
security vulnerabilities in audit log applications and discuss shortcomings of the prior work in
addressing those vulnerabil-ities. (2) We present a blockchain-based audit log system called
BlockAudit which addresses these vulnerabilities and ensures security, transparency, and
provenance in the auditing system. Towards that, we review the modular constructs of blockchain
systems and discuss suitable design choices that best fit the requirements of an auditing system.
(3) We test the design of BlockAudit using a real-world eGovernment application, provided by
Clearvillage Inc, and analyze its performance using three evaluation metrics, namely the latency,
the network size, and the payload size. (4) Based on observations made from theoretical analysis
and experiments, we discuss our proposed solution and provide future directions for research on
blockchain-based audit logs.

B. Background and Threat Model

In this section, we provide the background of audit logs including their benefits and
vulnerabilities. We also provide a threat model for the systematic exposition of the outlined
vulnerabilities.

Audit Logs

An audit log is an essential component in online transaction processing (OLTP) systems such as
order entry, retail sales, and financial transaction systems [64, 65]. The OLTP system maintains
audit logs to monitor users’ activity and provide insight into the sequential processing of
transactions [66]. Each processed payment in OLTP system creates a unique record in the audit
log. The aggregate volume of transactions and the total payment made during a financial year can
be verified by consulting the data recorded in the audit logs. Moreover, these audit logs can also be
used to identify discrepancies, anomalies, and malicious activities in payments. Audit logs have to
be secure, searchable, and readily accessible from the application so that business users can easily
view the chain of actions that lead to the current state of a business object. In Figure 18, we
provide an overview of the OLTP system in which an audit log is generated once an authorized
user commits a transaction to the database. The transaction makes a change in the value of an
object and, as a result the change is recorded in the database and audit log. These changes can be
matched later with the database and/or the application for auditing and provenance.
Benefits of Audit Logs. The audit log is widely used in modern information systems to provide a
chronological record of changes being made to the data, and track the life-cycle of objects. Audit
logs are also used to verify and authenticate operational actions, provide proof-of-compliance,
ensure operational integrity, detect malicious activity, and provide system-wide provenance [67,
68]. Organizations that use audit log applications no longer maintain a paper trail for
chronological record management, thereby saving cost and storage space with additional
environmental benefits. With the elimination of the paper trail, the electronic audit logs are solely
responsible for establishing security and the correctness of sensitive information. In the situation
of an attack, the audit log is typically used as a starting point of forensic analysis.

Approved for Public Release; Distribution Unlimited.
41

Audit logs also contribute to organizing user behavior in applications. Since audit logs
maintain the user activity over time and detect misbehavior, naturally, they promote
responsible user behavior and reduce the chances of misconduct. The users remain aware of
their actions being recorded in an audit log. Moreover, in the case of an attack or a malicious
activity, audit logs can be used to ensure users are accountable for their actions.

 The correctness of audit logs is imperative to find the cause of the attack and initiate suitable
countermeasures. For example, the first step in identifying the solution to a system crash is
obtaining appropriate knowledge of the conditions that lead to the crash. This knowledge can
be obtained through audit logs which can be used to reconstruct the conditions of an event.
Such reconstruction can correctly identify the root cause of the issue, such as network failures,
system bugs, or information tampering. Furthermore, after fault detection, the system can be
restored back to the original state by rolling back transactions to the point in time prior to the
attack. Atop the real-time monitoring, audit logs can also be used to identify system-related
problems such as implementation errors, software bugs, and deployment faults. Finally, audit
logs can also help in intrusion detection, by providing useful information to detect
unauthorized system access.

Vulnerabilities in Audit Logs. Despite the aforementioned benefits, audit logs are vulnerable
to a series of attacks that may compromise the integrity of OLTP systems. An attacker can use
multiple attack vectors which exploit the known weaknesses in OLTP systems and corrupt the
state of the database and audit logs. Conventional schemes of protecting audit data include the
use of an append-only device such as continuous feed printer or Write Once Read Multiple
(WORM) optical devices. These systems work under a weak security assumption that the
logging site cannot be compromised, which eventually keeps the integrity of the system intact.
However, attackers have often exploited vulnerabilities at logging site to tamper with data in
audit logs [69-70].

If the attacker acquires the credentials of an authorized user, he can corrupt the database as
well as the audit log. On the other hand, if the attacker compromises the database by breaching
its defense, he can manipulate the database and prevent it from populating audit logs. Then, not
only he will be able to corrupt the database, but also disable the auditing procedure by blocking
the backward compatibility of audit logs with the database.

Figure 19: An overview of Blockchain structure consisting of three blocks.

Approved for Public Release; Distribution Unlimited.
42

Threat Model

To sufficiently analyze the vulnerabilities of audit logs and set the security model objectives, we
present the threat model for the auditing systems in this section.
Inspired by the limitations found in the prior work [71-72], our threat model assumes an adversary
that is capable of both physically accessing the trusted computing base (TCB) and remotely
penetrating the OLTP system by exploiting software bugs. As such, the adversary can be a
malicious third party aiming to tamper data to compromise auditing procedures. This would
require the adversary to obtain root privileges to the system, or have significant knowledge of the
system architecture. Additionally, the adversary can also hack and acquire the credentials of a root
user of the system. This can be carried out using various attack procedures available in the
conventional attack catalog [73]. However, possessing the knowledge of a private database system
or a remotely acquiring credentials of a root user would require exceptional capabilities for the
adversary. Therefore, we assume the third party attacker to have strong capabilities.
In a less hostile environment, the adversary can also be someone from within the system with root
privileges. For instance, a corrupt auditor, who has tampered data for personal gains, might want
to cover his act by changing data values. In contrast to the third party attacker, this adversary will
not need sophisticated capabilities since he already has root privileges and the system knowledge.
For the system architecture, we assume an OLTP system similar to a retail sale repository. The
system implements the design logic of an application using secure communication protocols such
as SSL/TLS. Moreover, the system has a database that keeps records of sales and maintains a
remote audit log. The audit log keeps track of the database changes through transactions, as shown
in Figure 1. In such a design, the attacker can exploit the system by launching two possible
attacks, namely the physical access attack and the remote vulnerability attack.
The Physical Access Attack. In the physical access attack, the adversary will use the root
privileges to corrupt the database. As shown in Figure 1, the adversary will generate a series of
transactions to change the values of objects in the database. Once the attacker manipulates the
data, the database will automatically generate an audit log, tracking all changes made by the
attacker. However, to evade detection, the attacker can either delete the newly generated audit log
or modify its values. Furthermore, the attacker will also be able to tamper the history maintained
by the audit log in order to corrupt the auditing process. Therefore, in the physical access attack,
we assume an adversary inside or outside the system who has access to the key system
components.

The Remote Vulnerability Attack. In the remote vulnerability attack, the attacker may only exploit
the default vulnerabilities in the OLTP applications such as software malfunctions, malware
attacks, buffer overflow attacks etc.. In this attack, the adversary, although not as strong as the
physical access attack may still be able to contaminate the database and the audit log with wrong
information. Despite these adversarial capabilities, we assume that the OLTP application is secure
against the conventional database and network attacks such as SQL

Approved for Public Release; Distribution Unlimited.
43

injection and weak authentication. Generally, database systems used by corporate organizations
are secure against these conventional attacks, and for the application service used in this paper,
we ensure this requirement is meet.

C. Related Work

In the following, we review the notable work done in the direction of securing audit logging
mechanisms. We also discuss the limitations of the prior work in light of the threat model
(§2.2).

Audit Logs. Schneier and Kelsey [72-73] proposed a secure audit logging scheme capable of
tamper detection even after compromise. However, their system requires the audit log entries to
be generated prior to the attack. Moreover, their system does not provide an effective way to
stop the attacker from deleting or appending audit records, which, in our case is easily spotted
by BlockAudit. Snodgrass et al. [74] proposed a trusted notary based tampering detection
mechanism for RDBMS audit logs. In their scheme, a check field is stored within each tuple,
and when a tuple is modified, RDBMS obtains a timestamp and computes a hash of the new
data along with the timestamp. The hash values are then sent as a digital document to the
notarization service which replies with a unique notary ID. The ID is stored in the tuple, and if
the attacker changes the data or the timestamp, the ID becomes inconsistent, which can be used
for attack detection. Ray et al. [75] proposed a framework for maintaining secure audit logs in
cloud computing platforms. In particular, their framework uses cryptography to maintain
integrity and confidentiality while storing, processing, and accessing the audit logs. Ma and
Tsudik [76] proposed a technique to generate an aggregate signature by sequentially combining
individual log entry signatures using forward-secure, append-only signatures. This scheme
provides provable security with efficient space utilization; where the correctness of individual
entry can only be verified by generating the aggregated signature. Yavuz et al. [36] proposed a
scheme that stores individual and aggregate signatures, where the storage of individual
signatures increases the storage footprint while allowing individual verification of signatures.

Blockchains. A blockchain is a data structure that enables transparent and tamper-proof data
management in distributed systems [78, 79]. As such, blockchain consists of a sequence of data
blocks that are linked through on-way hash functions. Due to the one-way property of hash
operations, blockchain exhibit the append-only model where once a data item is inserted it
becomes immutable [80-81]. An illustration of the blockchain data structure is provided in
Figure 19. Transaction ordering using blockchain is enabled by multi-party consensus schemes
[82-83]. Popular among these schemes are the proof-of-work, proof-of-stake, and practical
Byzantine Fault Tolerance [80,84]. Roughly speaking, a consensus algorithm is a set of
instructions executed independently by each party in the system. The execution is completed if a
majority under fixed bound obtains the same output from the computation. For more on
blockchains and consensus schemes, we refer the reader to [85-86]. In Figure 19, we presented
an overview of Blockchain structured consisting of three blocks. Notice that each block header
consists of the hash of the previous block. This relationship gives blockchain, the property of an
immutable ledger. Also notice that the merkle root ensures that the transactions are ordered in a
sequence.

Approved for Public Release; Distribution Unlimited.
44

Blockchain and Audit Logs. Combining blockchain and audit logs, Sutton and Samvi [87]
proposed a blockchain-based approach that stores the integrity proof digest to the Bitcoin
blockchain. Bitcoin uses a proof-of-work (PoW) consensus protocol. As we show later in Table 3,
PoW suffers from low throughput and high confirmation time. In particular, Bitcoin has a
maximum throughput of 3–7 transactions per second. Therefore, for audit log applications that
have a high transaction generation rate, the concept provided in [46] can be insufficient. Castaldo
et al. [88] proposed a logging system to facilitate the exchange of electronic health data across
multiple countries in Europe. They created a centralized logging system that provides traceability
through unforgeable log management using blockchain. Cucrull et al. [89] proposed a system that
uses blockchain to enhance the security of the immutable logs. Log integrity proofs are published
in the blockchain providing non-repudiation security properties.

D. Problem Statement

The prior related research provides the groundwork for securing audit logs with blockchains and
represent the foundation of our work. However, our major contribution is seen in our focus on
audit logs related to enterprise business applications, focusing on scalability and performance. As
outlined in §1, blockchain applications may vary in their access control policies and consensus
schemes. Exploring the blockchain model for Enterprise business applications would require an
understanding of their requirements, and methods to overcome the domain-specific design
challenges, which we explore in this paper.

Another limitation that can be observed in [74, 89] is the inability to address Byzantine behavior
among network peers. In other words, the application assumes all participating entities faithfully
execute the consensus protocol without incurring any malicious behavior. However, in
distributed systems adversaries can control a subset of replicas who can behave arbitrarily in
order to withhold transaction processing and cause conflicting views among other replicas.
Tolerance towards Byzantine nodes is a function of consensus schemes to be applied. For
instance, permissionless blockchain applications such as Bitcoin can tolerate up to 50% of
Byzantine nodes while maintaining operational consistency. On the other hand, PBFT-based
private blockchains can tolerate only 30% Byzantine nodes. Therefore, the selection of a
consensus algorithm can influence the security model of the application. In BlockAudit, we
address the aforementioned limitations and present an end-to-end solution constructed by
transforming knowledge problems into design problems.

Design Engineering
So far, we have discussed the benefits of audit logs, their key vulnerabilities, and the existing
solutions that address those vulnerabilities. We have also presented a threat model to outline
adversarial conditions. In this section, we use this knowledge to make design choices to meet the
requirements of a practical blockchain-based audit log solution. In the following, we define
functional, structural, and security requirements that we expect BlockAudit to meet.

Approved for Public Release; Distribution Unlimited.
45

Figure 20: The network overview of nodes employing BlockAudit.

Functional Requirements. An audit log application is expected to ensure trust in the application
data and provide tamper-proof evidence of transaction history when needed. Data tampering
has to be prevented for the application data as well as the audit logs. However, a priority is
given to the audit logs, since they are used to establish provenance. For this purpose, the audit
log data should be stored across multiple peers in such a way that it remains consistent at each
node, and therefore, hard to corrupt. If tampering happens at any node, the system should be
able to detect and correct it. This requirement, however useful, comes with an assumption that
a majority of peers behaves honestly, and faithfully executes the system protocols.

For audit data to be added to the blockchain, the participating peers in the audit log network
must reach a quick consensus over a newly generated transaction. Since audit logs are
generated in real-time and persisted inside the database transaction, therefore, any delay in
using distributed audit logs adversely affects the system performance. In order to prevent such
delays, the system needs to have low latency while maintaining the capability of processing a
large volume of transactions. Additionally, the application should not add any data without
consensus among a majority of peers.

The audit log system architecture should be modular and service-oriented so that it is
possible for various types of applications to participate and benefit from this system. Moreover,
audit logs should be data agnostic and must not rely upon the nature of data that is stored in
them. The business application should be able to provide data in any format as per the
requirements of the application.

Finally, the audit log system should provide searching and retrieval capability to enable the
retrieval of any desired transaction or a set of transactions (e.g., audit log entries for the last ten
minutes, all audit log entries registered against a specific user ID, etc.). The search needs to be
fast and responsive to ensure the end user is able to perform the audit in real-time.

Structural Requirements. Keeping in view of the design the baseline models introduced [74,89],
we envision that BlockAudit must operate in a distributed manner with application services
running on multiple hosts without a central authority. As such each application peer would
require its own blockchain node to become part of the the BlockAudit network. In Figure 20, the
network overview of nodes employing BlockAudit. Notice that each node maintains an interface

Approved for Public Release; Distribution Unlimited.
46

that connects them to the audit log application. They exchange transactions with one another
during the application life-cycle.

.The audit log system should have a high throughput and should be able to process a large
number of transactions. BlockAudit should be able to support transactions of various sizes since
the transaction size varies in audit log applications. The audit log system should be easy to
integrate with existing system with minimal structural and functional changes in the
application. It should also be independent of the underlying application database. Finally, the
system auditing should be secure, transparent, and visible to all peers within the network.

Security Requirements. In the light of our threat model §2.2, we require BlockAudit to be
secure in adversarial conditions. To that end, if the adversary launches a physical access attack,
BlockAudit should be able to neutralize it and prevent data tampering at the source. If the
adversary launches the remote vulnerability attack, BlockAudit should stop the attack
propagation across the network peers. In other words, if the adversary

Figure 21: The information flow between various components of the application.

exploits a bug in the audit log of one peer, BlockAudit should immediately recognize the attack
and notify the victim peer. Furthermore, the infection should be curtailed at the target zone,
preventing its spread in the network.

In addition to the baseline attack model, we also expect BlockAudit to remain secure in the
presence of Byzantine nodes. Therefore, if a strong adversary controls a subset of nodes in the
network, he should not be able to corrupt audit logs or delay transaction verification. This can
be achieved by either raising the attack cost i.e., constructing a large network or relaxing
anonymity so that the adversary risks identity exposure by misbehaving.

E. BlockAudit

In this section, we show the implementation of BlockAudit. First, we describe the eGovernment
application that we used to generate audit logs. Next, we show how a blockchain network is
constructed to integrate audit logs. In that, we describe the methods of generating transactions,
creating a distributed network, managing the access control, and developing consensus among
peers over the state of the audit logs In Figure 21, the information flow between various
components of the application is presented. Notice that the transaction is generated at the

Approved for Public Release; Distribution Unlimited.
47

business logic layer, and once the database commits to the transaction it is rendered on the web
page.

Application Architecture

For BlockAudit, we use an eGovernment application provided by a company called
ClearVillage inc which provides software solutions for various government operations e.g.
property appraiser, building permits etc. The application uses a multi-tier system architecture
comprising of web and mobile clients, a business logic layer, a data access layer, and a
database. In the following, we describe the core functionality of each component along with its
role in generating an audit log.

Web Applications . The web applications are built using asp.net and users access the
application services through a web browser. Additionally, native clients are provided for
Android and iOS, built using their respective development frameworks. The web application
and web services are hosted on Microsoft’s Internet Information Services (IIS) web server. The
public side portal is available on the Internet and gives public users access to information
without authentication. Atop this, a staff portal is provided to the organization staff, which is
only accessible from within the organization, thereby providing another security layer.

Business Logic Layer. The business logic layer is an interface between clients and the
database layer, responsible for implementing business rules. Among other functions, the
business logic layer also manages data creation, data storage, and changes to the data with the
help of object-relational mapping (ORM). Upon receiving a request from the client, the web
server instantiates the relevant objects in the business logic layer, which uses the ORM to send
the processed object to the client. The ORM writes changes to the objects in the RDBMS
tables.

ORM. The ORM in the application provides a mapping mechanism that allows querying of data
from RDBMS using an object-oriented paradigm [90-91]. Modern web applications are well
suited for this technique since they are multi-threaded and are rapidly evolving. ORM also
reduces the code complexity and allows developers to focus on business logic instead of database
interactions. This application uses NHibernate[92]: an ORM solution for Microsoft .NET
platform. NHibernate is a framework used for mapping an object-oriented domain model to
RDBMS and it maps the .NET classes to database tables. It also maps Common Language
Runtime (CLR) data types to SQL data types. The ORM inside a database layer creates a SQL
statement to hydrate the object and passes it to the business logic layer. ORM also flushes the
changes to the RDBMS and commits a transaction. Interactions between the application and
RDBMS are carried out using the ORM. In Figure 21, we provide the information flow between
application components.

Generating Audit Logs
In this section, we show how the application generates an audit log once the user commits a
transaction. To implement auditing, three events provided by nHibernate are used, namely
IPostInsertEventListener, IPostUpdateEventListener, and IPostDeleteEventListener.
IPostInsertEventListener event is triggered once a transient entity is persisted for the first time.

Approved for Public Release; Distribution Unlimited.
48

Each class that requires auditing is marked with Auditable attribute, which is then used to create
audit logs for classes containing this attribute. All mapped properties are then audited by default and
a suppress audit attribute is added to suppress auditing of a target property. Usually, and by default,
all properties are audited. However, in special cases where auditing is not required, the
SuppressAudit attribute is added to the property. In Algorithm 1, we show the process of generating
the audit log when IPostInsertEventListener6 event is triggered.

When an audit entry is created, it contains a session ID (transaction ID), a class name, an event type
(Insert,

Update, or Delete), audit ID, creation date, user ID, URL, and a collection of values for all
properties. The collection of values consists of the old value before the update and the new value
resulting from the update. Moreover, during an update, old and new values are compared. Only if
the two values are different from one another, the change is committed to the audit log. In
Algorithm 2, we outline this procedure of updating audit logs. Currently, these audit logs are saved
inside an RDBMS using two tables, the AuditLog table, and the AuditLogDetail table. Furthermore,
Globally Unique Identifiers(GUID) are used as primary keys in auditlog tables.

Once a change is observed in a class, the ORM’s event handler is invoked. Similarly, the event
handler is also invoked when the change is observed in the “AuditLog” and the
“AuditLogDetail” classes. Lines 2–5 in Algorithm 1 and Algorithm 2, prevent the creation of logs for
Audit Classes. In the absence of this condition, the event logger would fall into an infinite event
loop.The infinite loop can also be prevented by removing the “AuditableAttribute” from the audit
classes. However, we use lines 2–5 as a check to avoid the loop in case a developer adds the attribute
by mistake.
 Once an audit log is generated, the application provides a link to the audit log page from the
primary object. The link allows end users to look at the object history and track any discrepancy
caused by a bug or malicious activity.

Blockchain Integration to Audit Logs

In this section, we will show how audit logs, obtained from our application, are integrated with the
blockchain. So far in our design, we have an application that stores audit logs upon receiving a
transaction. Now, we need to convert the audit log data into a blockchain-compatible format
(blockchain transactions) and construct a distributed peer-to-peer network to replicate the state of the
blockchain over multiple nodes. In our current implementation the audit log is generated using the
ORM, which calls a Representational State Transfer(REST)
Application Programming Interface(API) to store the audit log entry.
 We used the ORM to create audit logs because the ORM acts as the gateway to capture all database
transactions. Therefore, it is efficient to take advantage of ORM events to capture all the database
changes and convert them into a JSON packet for the REST API. Our design is flexible and generic,
and can also be used by other applications that do not use the ORM. Other than the ORM, the
application layer or the data access layer can also be extended to capture the database changes in a
JSON format and invoke the REST API. Moreover, the REST API can also be used by applications
built using a serverless architecture.

Approved for Public Release; Distribution Unlimited.
49

5.3.1 Creating Blockchain Network. In BlockAudit, the network consists of peers that all have the
privilege of accessing the application and creating an audit log. This network is connected in
peer-to-peer model [93] and each peer can connect to all the other peers in the network.
Connecting to a bigger subset of peers is beneficial, because it can avoid unnecessary delays in
receiving critical information.

Table 2. Clear Village’s actual transaction sizes in (bytes) for the three transaction schemes.

Table 3. The description of fields of audit log JSON packet.

Access Control. As mentioned in previous section, access controls may vary across blockchain
application. These applications can be permissionless (open access) or permissioned (selective
access). In permissionless applications, such as Bitcoin, an arbitrary user can download the
Bitcoin Core software and join the network. However, in the private and permissioned
blockchains, an access control mechanism is applied that restricts the participation to only
approved users. Since audit logs consist of sensitive data, therefore, in BlockAudit we use a
permissioned blockchain with access control provisioned to selected users. In permissioned
blockchains, adjusting access control is trivial since any custom membership service can be
used for the access control [94]. To avoid runtime complexities, we do peer screening prior to

Approved for Public Release; Distribution Unlimited.
50

network creation. The peer screening is done based on the IP addresses in which we curate a
list of IP addresses, compile them in executable code, and provide the code to each peer. Upon
executing the code, the peer gets connected to the network.

Additionally, each node is required to keep a copy of the blockchain at their servers and
maintain a persistent connection with their corresponding application server. Persistent
connections are necessary to maintain an up-to-date view of the blockchain in order to process,
validate, and forward transactions, as well as to avoid unwanted forks and partitioning attacks
that may result from an outdated blockchain view.

Listing 1. Blockchain transaction generated after serializing data from the audit log. This
transaction is exchanged among the peers during the application runtime.

Figure 22: Audit generation for a transaction spanning across multiple objects.

5.3.2 Creating Blockchain Transactions. Once the network architecture is laid out, the next

Approved for Public Release; Distribution Unlimited.
51

step is to create blockchain-compatible transactions from the audit log data. For that, we
convert the audit log data to a JavaScript Object Notation(JSON) format [95]. We preferred
JSON over other standard data storage formats such as XML, due to its data structure
compactness and storage flexibility. To obtain a blockchain transaction, we first pass the audit
log data to a function that serializes it to JSON and calls createAudit REST [96] web service to
create the audit log transaction. Each JSON packet is then treated as a blockchain transaction,
and as soon as a node in the network receives a transaction, it broadcasts the packet to the rest
of the network. Nodes can connect to multiple peers to avoid the risk of delayed transactions
due to malicious peer behavior or network latency. In Table 2, we show the average transaction
size from our sample system for October 2018. In Table 3 we describe the purpose network
receives a transaction, it broadcasts the packet to the rest of the network. Nodes can connect to
multiple peers to avoid the risk of delayed transactions due to malicious peer behavior or
network latency. In Table 2, we show the average transaction size from our sample system for
October 2018. In Table 3 we describe the purpose

Figure 23: Audit Entry generation for an object.

of each field in the audit JSON packet and in Listing 1, we show the data structure of the
blockchain transaction that is obtained after serializing data from the audit log.

Log for table/class. The audit event logger can also create a packet for each object in a
transaction. We used this method in the prior work [104] and found that the packet size was
small, however, the number of web service calls for each application transaction was high. For
instance, if a transaction contains 10 classes, it will create 10 web service calls. While 10 calls
can be handled by ORM-based audit logs, they are not optimal for blockchain-based audit logs.
Log for transaction. The audit event logger creates a packet containing all insertions, updates, and
deletions, that span across one or more objects, and sends the packet to BlockAudit as shown in
Figure 22. Since the audit log data is consolidated, therefore, it is hard to search for updates for a
specific class, which is a typical use case. Creating an audit log for a transaction reduces the
number of web service calls and improves efficiency, and this design is more suited to blockchain
based audit logs.

Consensus Protocol
The next phase in the BlockAudit design is the use of a consensus scheme among the peers to
develop their agreement over the sequence of transactions and the state of the blockchain. There
are various consensus algorithms used in blockchains, such as proof-of-work (PoW), proof-of-
stake (PoS), proof-of-knowledge (PoK), Byzantine fault tolerance (BFT), etc. [97-98].

Approved for Public Release; Distribution Unlimited.
52

In Table 3, we compare the popular blockchain consensus algorithms. Notice that PoW and
PoS have high scalability and fault tolerance. More specifically, they can scale beyond 10,000
nodes and can tolerate up to 50% malicious replicas. On the downside, they have low
throughput and high confirmation time [99-100]. In contrast, PBFT has high throughput and
low confirmation time. However, PBFT has low fault tolerance which makes it less suitable for
permisionless settings.

For BlockAudit, we use PBFT consensus algorithm [101-102], which was originally designed
to facilitate the decision-making process in a distributed environment. BlockAudit uses a
permissioned blockchain system [103], in which all network participants are known to one
another, and there is a weaker notion of anonymity. Since our system is primarily a private and
permissioned blockchain, therefore, we are not constrained by high scalability challenges.
Although in the future, we aim to extend our design to a bigger network, however, at the
prototype stage, we are less than 100 peers. Due to high throughput and low latency, naturally,
PBFT is more suited for our design.

In PBFT, the system comprises of a client that issues a request (transaction), and a group of
replicas that execute the request. The primary replica orders transactions and relays them to
other replicas. The transaction is processed in four stages, namely pre-prepare, prepare,
commit, and reply. When the client receives a minimum of 3𝑓𝑓 + 1 responses, 𝑓𝑓 being the
number of faulty replicas, the transaction processed. In Figure 7, we provide an illustration of
PBFT, which we later use to design and calibrate BlockAudit. In Figure 8, we show the
complete design of BlockAudit, where the blockchain is integrated with the serialized JSON
output of the business application.

Table 4. An overview of popular consensus algorithms used in blockchains.

Approved for Public Release; Distribution Unlimited.
53

Figure 24: An overview of PBFT protocol with client issues a request to the primary replica.

F. Blockaudit Analysis

In this section, we analyze various aspects of BlockAudit, including design, complexity, and
security analysis.

A) Design Analysis
In BlockAudit, each peer uses the ORM-based audit log application that is connected to a
database. Once the ORM observes a change, it updates the database and issues a transaction,
and sends it to the primary replica. The primary orders the transaction and broadcasts them to
all the other replicas. Upon receiving the transaction, each replica checks if the transaction is
valid and follows the correct order. The order of the transaction is ensured by the timestamp,
and the ordering rule involves the chronological sequencing of each transaction. In BlockAudit,
the primary preforms transaction sequencing based on the time at which it receives transactions
from the application replica. We use this approach as a security design choice to prevent
malicious replicas from arbitrarily modifying their transaction timestamps. In the following, we
show how transaction sequencing is performed in BlockAudit:

(1) An application generates a transaction at time 𝑡𝑡𝑖𝑖 and the primary receives the transaction
at time 𝑡𝑡𝑗𝑗.

(2) First, the primary checks if the transaction respects the temporal ordering (𝑖𝑖 < 𝑗𝑗 ,∀ 𝑖𝑖 ,𝑗𝑗).
This assumption is valid for any real-world system, since each transaction experiences a
non-zero delay during transmission.

(3) If the primary observes a violation i.e., > 𝑗𝑗 , it assumes that the application replica is
misbehaving. Therefore, the primary discards the transaction.

(4) In the transaction confirmation phase, the active replicas also compare the time at which
they receive a transaction to the time of the transaction generation. This serves as an
additional security measure to ensure that the policy precedence is respected, even when
ignored by the primary.

In BlockAudit, we enforce the ordering of transaction since it is critical in audit log
applications. For instance, consider a case in which 𝑡𝑡𝑡𝑡𝑎𝑎 involves a change made to a class. The
next transaction 𝑡𝑡𝑡𝑡𝑏𝑏 reverses the change made by 𝑡𝑡𝑡𝑡𝑎𝑎, then it is critical to process before 𝑡𝑡𝑡𝑡𝑏𝑏.
Otherwise, the order will be violated and the audit log will reflect a different state of the

Approved for Public Release; Distribution Unlimited.
54

database than the actual.

Figure 25: Complete system architecture of BlockAudit after blockchain is integrated to the

JSON output.

In summary, BlockAudit constitutes of a client (audit log application) that generates
blockchain compatible transaction, a primary replica that receives and orders transactions, and
a group of active replicas that execute PBFT to generate a blockchain-based audit log. In
conventional PBFT, the client is independent of the active replicas that execute the consensus
protocol. In BlockAudit, the client is one of the active replicas that issues the transaction. In the
verification process, the issuer becomes the client and all other replicas act as validators.

Key Takeaways. From the design implementation, we had the following takeaways: (1)
PBFT-based permissioned blockchains are more suitable for audit log applications. (2)
Extending ORM provides an efficient mechanism of converting database transaction to
blockchain compatible transactions. (3) Existing application can seamlessly integrate with
blockchain based audit logs using ORM extension. (4) REST based web services can also be
easily extended to support applications that do not use ORM. (5) JSON format is the de facto
standard for REST API’s, and therefore efficient and suitable for an audit log transaction.

B) Complexity Analysis
A key aspect of PBFT-based blockchain systems is the time and space complexity associated
with the network and the blockchain size. The time complexity partakes the time taken by
replicas to develop consensus on a transaction or a block. The space complexity involves the
storage and the search overhead that compounds due to append-only distributed blockchain
design. In the following, we analyze these aspects of complexity in BlockAudit.

Time Complexity. To achieve consensus over the state of blockchain with 𝑛𝑛 replicas, 𝑛𝑛2 − 𝑛𝑛
messages are exchanged, as shown in Figure 7. Therefore, for each transaction generated
within the system, the overall complexity becomes 𝑂𝑂(𝑛𝑛2). Compared to PoW-based
blockchains, in which the consensus complexity is 𝑂𝑂(𝑛𝑛), PBFT has a high message complexity
which can lead to system overheads and delays. However, we argue that in PoW-based
blockchains systems such as Bitcoin, the total number of active nodes are over 6-8k [63]. In

Approved for Public Release; Distribution Unlimited.
55

comparison, BlockAudit constitutes less than 100 peers. Therefore, it can tolerate this
complexity overhead, keeping in view the other benefits associated with PBFT such as high
throughput.

Space Complexity. The space complexity of the system can be ascribed to the overhead
associated with the storage of blockchains at each peer. One major limitation of replacing the
client-server model with a peer-to-peer blockchains system is that each peer is required to
maintain a copy of blockchain. This leads to a high storage footprint since blockchains are
always growing in size. The size footprint also increases the search complexity for transaction
verification. For instance, when a newly generated transaction is sent to a group of peers for
verification, they validate its authenticity by consulting its history in the blockchain. If the
blockchain size is large, the verification time increases. As such, if the rate of the incoming
transaction is high, then high verification time may lead to processing overhead, thereby
increasing latency and reducing the throughput. In BlockAudit, the space complexity of a
system, complementary to any other blockchain system is 𝑂𝑂(𝑛𝑛).

Key Takeaways. From the complexity analysis, we had the following takeaways: (1) PBFT-
based based blockchains have high message complexity. Therefore, if the network scales
beyond a few hundred nodes, the application may become inefficient. Therefore, we observe a
tradeoff between the message complexity and the network scalability. (2) Generally, the space
complexity of blockchain is high, due to the append-only model. In BlockAudit, the space
complexity is similar to any other blockchain application.

C) Security analysis
An essential component of our work is the defense against the attacks outlined in the threat
model §2.2. In this section, we discuss how BlockAudit defends against the physical access
attack and the remote vulnerability attack. Physical Access Attack. In the physical access
attack if the attacker acquires the credentials of a user, he can make changes to the application
data using the application interface. In this case, his activity will be logged in BlockAudit. Since
the log is kept in the blockchain by the user, the attacker will not be able to remove the traces
of his activity. Therefore, when the attacker’s activity is exposed, auditors will be able to track
the tampered records and take corrective measures to restore data to the correct state.
Moreover, if the attacker is able to get write access to the database, he will be able to change
data in different tables. Since the audit log generation is at the ORM level, therefore, these
changes will not be present in the audit log. This will enable the auditors to detect malicious
activity and take preventive actions.

Remote Vulnerability Attack. In case of a remote vulnerability attack in which the attacker
exploits a bug or vulnerability in the application, the audit log will show the effect of the
changes or errors resulting from the attack. Additionally, the blockchain will also preserve the
tamper-proof state of the audit log prior to the launch of the attack. As a result, the auditor will
be able to compare the audit log and the current data to detect changes made during the attack.
In the absence of the blockchain, if the attacker corrupts the prior state of the audit log, there is
no way auditors can recover from it. However, with BlockAudit, not only the attacks are
detected, but the system state is also recovered. Furthermore, for a successful attack in the
presence of BlockAudit, the attacker will need to corrupt the blockchain maintained by each

Approved for Public Release; Distribution Unlimited.
56

node. Based on the design constructs and security guarantees of blockchains, corrupting
blockchain repositories of a majority of nodes is costly, and therefore infeasible.

 After realizing that BlockAudit is able to defend against the attacks outlined in our threat
model §2.2, there are however few considerations to be made while using PBFT-based
blockchain model. The prior work in this direction does not consider Byzantine behavior
among nodes. In BlockAudit, we consider that peers may behave arbitrarily and create
confusion in the view of other honest peers. Therefore, we want BlockAudit to be robust against
malicious replicas. While other consensus mechanisms such as PoW may withstand up to 50%
of faulty replicas in the system, PBFT, in contrast, has low fault tolerance. In a situation where
there are 𝑓𝑓 faulty replicas, a PBFT-based blockchain system needs to have 3𝑓𝑓 + 1 honest
replicas in order to function smoothly. Roughly speaking, PBFT-based blockchains require
70% nodes to behave honestly in order to avoid disagreements. However, in BlockAudit, we try
to raise the threshold of fault tolerance by making minor adjustments to the security design.

Increasing Fault Tolerance. In a situation where there are 𝑟𝑟 honest replicas in a blockchain
and the attacker is able to position 𝑓𝑓 faulty replicas such that 4𝑓𝑓 + 1 > 𝑓𝑓 + 𝑟𝑟 , then the
attacker will be able to stop transaction verification and may even cause forks. To counter this,
we propose an expected verification time window 𝑊𝑊𝑡𝑡 which will be set by the primary replica
before passing the transaction to the verifying replicas. The primary replica knows the total
number of active replicas in the system and can calculate the total number of messages to be
exchanged until the transaction gets verified. In this case, the total number of messages will be
in the order of
(𝑓𝑓 + 𝑟𝑟)2 − (𝑓𝑓+ 𝑟𝑟). Let 𝑐𝑐 × 𝑡𝑡𝑏𝑏 be the time taken for the transaction confirmation, where 𝑐𝑐 is
an arbitrary constant set by the primary replica. Based on these values, the primary replica can
set an expected time window 𝑊𝑊𝑡𝑡 ≥ 𝑐𝑐 × 𝑡𝑡𝑏𝑏 in which it expects all peers to validate the
transaction and submit their response. Let 𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 be the start time at which the primary replica
initiates the transaction. If by 𝑊𝑊𝑡𝑡 the primary does not receive the expected number of
responses from the replicas, it will abort the verification process and notify the auditor.

Depending on the application’s sensitivity, the primary replica can either set another

optimistic value of 𝑊𝑊′𝑡𝑡, where 𝑊𝑊′𝑡𝑡 ≥ 𝑊𝑊𝑡𝑡 , and repeat the process or it can simply abort the
process and notify the application auditors regarding the malicious activity. We leave that
decision to the audit log application and its sensitivity to malicious activities.

Figure 26: Time taken to reach consensus at different types of audit transaction with varying

transaction rate 𝜆𝜆 (200-6,000 tx/second).

Approved for Public Release; Distribution Unlimited.
57

However, in our experiments, we relax the condition of sensitivity and re-submit the

transaction for another round of verification. We set a new expected verification time window
𝑊𝑊′𝑡𝑡 and wait for the response. Our choice of relaxing the condition of sensitivity is owing to
the unexpected delays in the message propagation; given that our system would run over the
Internet. However, if the primary replica does not receive the approval for the second time, it
aborts the process and notifies the application.

Detecting Malicious Nodes. In BlockAudit, we also enable detection of the malicious nodes
that corrupt the process of transaction verification. For that, we store the identity of the replica
in each iteration of the response. For instance, in the first iteration of 𝑊𝑊𝑡𝑡 , we note the identity
of replicas that send their digitally signed approval for the transaction. Let ℎ be the subset of
replicas that send their response in the first iteration, where ℎ ≤ (𝑓𝑓+ 𝑟𝑟). The primary replica
stores the identities of replicas in ℎ and initiates the second iteration at 𝑡𝑡′𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and waits for
response till 𝑊𝑊′𝑡𝑡. Upon receiving the response in the second iteration, the primary replica
updates ℎ and removes the duplicates. By comparing ℎ with the identity of all the replicas, the
primary replica can find the malicious replicas and request their removal from the verification
process.

It is possible that an adversary, aware of the two-phased approval process, may attempt to

trick the system by sending a response from a subset of malicious peers in each phase of
approval. For instance, the adversary can split his set of malicious replicas in 𝑓𝑓1 and 𝑓𝑓2 , where
𝑓𝑓1 + 𝑓𝑓2 = 𝑓𝑓. In the first phase of approval, the adversary can send a response from 𝑓𝑓1 replicas.
However, the adversary ensures that 3𝑓𝑓1 + 1 ≥ 𝑟𝑟, so that the transaction does not get enough
approvals to be accepted by the primary replica. The primary replica will append 𝑓𝑓1 to its set of
ℎ. In the second iteration, the adversary will incorporate signatures from 𝑓𝑓2 , and the primary
replica will also add them to ℎ. As a result, the primary replica will not be able to detect the
actual number of malicious replicas in the system.

 To counter that, we randomize the two-phase approval process to 𝑣𝑣-phase approval process,
𝑣𝑣 may take any value of the primary replica’s choice. When the transaction fails the first
attempt, the primary replica can either abort or continue the approval process. Continuing from
the above-outlined scenario, if 𝑣𝑣 = 3, then the attacker will either have to include one of 𝑓𝑓1 or
𝑓𝑓2 replicas in the third phase. And if the primary replica iterates one more time, the adversary
will be bounded to include the set of replicas that he did not include in the previous iteration.
As such, the primary replica will notice the incoherence in the response of a few replicas in
each iteration of the approval process, and the adversary will risk exposing his malicious
replicas. Although this procedure ensures high security and the ultimate exposure of adversary
in the process of verification, it is, however, time-consuming and may lead to a transaction
stall. Again, we leave this to the primary replica, which can make decisions that suit the
application requirements.

Key Takeaways. From the security analysis, we had the following takeaways: (1) BlockAudit
counters the con-ventional audit log attacks namely the physical access attack and the remote
vulnerability attack. (2) Additionally, BlockAudit also makes audit logs secure against
Byzantine behavior, tolerating up to 30% malicious replicas. (3) Leveraging the design policies

Approved for Public Release; Distribution Unlimited.
58

in permission settings, BlockAudit is able to detect malicious replicas.

G. Experiment and Evaluation

In this section, we present experiments carried out to evaluate the performance of BlockAudit.
First, we extended the nHibernate ORM to generate a serialized JSON output in the form of
transactions as shown in Listing 1. The transactions are broadcast to the network where a
BlockAudit blockchain instance is configured at each node. For experiments, we used sockets
to set up the network and a NodeJS client to receive JSON transactions.

Simulation Environment. We simulated our blockchain network using a LAN setup at our
research lab. We used 20 machines, each running the Linux OS with Intel Core i5 processor
and a 16MB RAM. Next, we set up a virtual environment at each node to construct a multi-host
network. We assigned port numbers and sockets to each host that acted as a peer. The socket
connections were used to exchange data with peers using IP addresses and port numbers. Each
peer was equipped with a JSON master list that contained the information of all the other
nodes. Data packets of the desired size were generated and broadcast over the network. We
encoded the PBFT protocol in NodeJS and executed it over all the peers. The selection of the
primary replica can be done using any method suitable for the application. In BlockAudit, in
each iteration, we selected the primary in Round-robin manner. To reflect the real-world delays
in our simulation, we manually added a round-trip delay of 100ms in each transaction
broadcast over the network. Finally, once the transaction obtained sufficient approvals, it was
added to the blockchain of the primary replica, and subsequently, all the other replicas.

We evaluate the performance of our system by measuring the latency over the consensus

achieved by peers. We increase the transaction payload size from 2MB to 20MB and the rate of
transaction 𝜆𝜆 from 200 transactions per second to 6,000 transactions per second. By adjusting
these parameters, we monitor the time taken by peers to approve the transaction. Let 𝑡𝑡𝑔𝑔 be the
transaction generation time, and 𝑡𝑡𝑐𝑐 be the time at which it gets approval from all active peers.
In that case, the latency 𝑙𝑙𝑡𝑡 is calculated as the difference between 𝑡𝑡𝑐𝑐 and 𝑡𝑡𝑔𝑔= 𝑡𝑡𝑐𝑐 − 𝑡𝑡𝑔𝑔 , where 𝑡𝑡𝑐𝑐>
𝑡𝑡𝑔𝑔 . We report the simulation results in Figure 26.

Simulation Results. Our results show that irrespective of the payload size, the latency margins
remain negligible as long as the number of peers is less than 30. As the size of the network
grows beyond 30 nodes, the latency factor increases considerably. Furthermore, we also notice
that a sharp increase in latency when the payload size changes from 5–10MB and a negligible
change in latency when the payload size changes from 15–20MB.

We also noticed that as the rate of transaction 𝜆𝜆 increases from 200 transactions per second

to 6,000 transactions per second, the confirmation time for transaction also increases.
Intuitively, this can be attributed to the processing overhead caused by the increasing rate of 𝜆𝜆
at each replica. However, it can be observed from 9(c) that within a network size of 50 peers,
BlockAudit has the capability of processing 1,000 transactions per second, with the payload
size of 10 MB. This payload size is equivalent to 10 blocks in Bitcoin. For the payload size of
1MB, BlockAudit achieves a throughput of 6,000 transactions per second. Considering low
throughput of conventional blockchains (3–7 transactions/second in Bitcoin), BlockAudit

Approved for Public Release; Distribution Unlimited.
59

achieves high throughput. This also justifies our choice of using PBFT as consensus scheme
for our system.

Evaluation parameters obtained from our experiments can be used to define the block size

and the network size, specific to the needs of the application. As part of our future work, we
will use these parameters along with other consensus schemes to find optimum block size and
the average block time for the audit log application. By varying consensus schemes, we will be
able to compare and contrast the performance of various design choices and select the best that
can be used for BlockAudit.

H. Discussion and Future Work

With BlockAudit, we were able to meet our overall objective of securing audit logs using
blockchains. We show with theoretical analysis and simulations that our system is secure and
efficient, and it achieves high throughput(§7) by using the PBFT consensus protocol. In
BlockAudit, audit log transactions were seamlessly generated with minor changes to the
existing system. Moreover, BlockAudit can be plugged into any enterprise business application,
that consumes a REST API to send audit log data as a transaction. In summary, we
successfully extended our application into the blockchain paradigm to harden its security and
increases the overall trust in the application. Our system is robust against the physical access
attack and the remote vulnerability attack.

Limitations. Despite all the promising outcomes, there are, however, two major limitations in
BlockAudit. The first constraint is the high message complexity due to PBFT, and the second is
a high storage footprint due to data redundancy in the blockchain design. Since in PBFT, the
message complexity is high (𝑂𝑂(𝑛𝑛2)), therefore, in adverse network conditions, PBFT may
perform poorly, compared to other consensus protocol [105]. In spite of these limitations
BlockAudit performs within the requirements of our application, and could support PayPal
[105] which processes 170 transactions/second, however, our solution would not be feasible
for Visa which has a transaction rate of 2000 transactions/second [107]. Secondly, audit logs
by design have a high storage footprint, as each transaction in the system has a corresponding
entry in the audit logs. In BlockAudit, the problem is further increased since transactions are
replicated on multiple peers, resulting in high storage overhead.

Keeping in view these limitations, we propose that high message complexity can be resolved

by using other newly proposed consensus algorithms such as Clique [108], that belongs to the
family of Proof-of-Authority consensus protocols. Clique has a message complexity of 𝑂𝑂(𝑛𝑛),
which is considerably lower than PBFT and PoW. Using Clique may allow us to support a
larger number of peers, achieve high throughput, and reduce confirmation delays of
transactions in BlockAudit. However, in Clique, peers run into the risk of multiple views at the
same time. In blockchains, this inconsistency is called a blockchain fork. These forks can lead
to temporary or permanent partitioning in the network. Currently, we are exploring methods of
fork resolution in Clique, and therefore applying it in BlockAudit is part of our future work.

The space complexity can be reduced by adding data retention policy and purging data after

Approved for Public Release; Distribution Unlimited.
60

its fixed retention time. This would optimize the overall size of the blockchain, and lead to less
storage and search complexity. In addition to these two schemes, we also propose two other
optimization strategies to meet the design limitations in BlockAudit.

Another limitation in BlockAudit is the weak link between the application and the audit log.

In the current implementation, if the application itself is compromised, and subsequently the
audit log generation fails, then BlockAudit will not be able to detect the fault at the application.
At present, BlockAudit enables applications to seamlessly integrate with blockchain system and
benefit from it. Therefore,BlockAudit remains agnostic to the application itself and the data
being produced by it. As a result, we observe a trade off between the seamless integration of
audit logs with the application and the enhanced security of the audit log generation interface.
Currently, BlockAudit is designed to facilitate the integration of audit logs with eGovernment
application. In future, we also aim to focus on detection application- level faults in BlockAudit.

The latency is a critical problem in distributed systems, which can be 1) latency due to the

consensus scheme operation, and 2) latency due to network conditions. To minimize latency
due to consensus, we select consensus algorithms, such as PBFT, which is known to provide
low latency and high throughput compared to other popular schemes such as PoW. We note
that such a choice comes at a certain cost: PoW is known to have better security, since it
tolerates up to 50% Byzantine nodes while PBFT tolerates only 30% [109]. Acknowledging
that, and giving latency a higher priority over security, in BlockAudit, we made the consensus
choice to minimize the latency.

The other component of latency is due to the network, which includes transmission and

propagation delays under a certain payload size. In BlockAudit, and as shown in Figure 26, with
a payload of 10MB and a network of 50 replicas, the transaction confirmation experiences a
delay of 6 seconds. In BlockAudit, this is an upper bound on the end-to-end latency, which is
considerably low compared to 600 seconds of delay in Bitcoin. For our Enterprise application,
this delay is tolerable. However, if BlockAudit is to be extended for applications with larger
payloads, we suggest two improvements as the latency increases. First, the communication
medium between applications can be enhanced to support high bandwidth. Second, localities
could be exploited to host applications within the same autonomous system to reduce
propagation delays. Implementing these improvements is a future work.

Optimization. To increase the performance and to keep the audit log tamper-proof, we
propose having two sets of blockchains, namely the recovery blockchain, and the detection
blockchain. In Figure 27 we provide a system overview of this two blockchain system. The
recovery blockchain stores the complete audit log transaction, including details of all data
changes in an application- level transaction. The recovery blockchain can be used to restore
data to its prior state, which would be the state of data before an attack. The recovery
blockchain would

Approved for Public Release; Distribution Unlimited.
61

Figure 27: Audit log block chain detection vs recovery.

require more space, and longer consensus time due to large transaction audit data packets. The
number of peers 𝑘𝑘 in the recovery blockchain can be kept small to ensure immediate consensus
and avoid delays. Since the security of PBFT relies on the faithful execution of the protocol by
at least 70% replicas, therefore for a baseline, the minimum size of the recovery blockchain
must be four nodes considering one malicious replica (𝑘𝑘 ≥ 4).

The detection blockchain can be used to detect audit log tampering only. It will not have the
information to recover the audit log to a correct state before the attack. The business
application will generate a cryptographic hash using the audit transaction. The hash and a
unique transaction identifier will be stored in the blockchain. In the case of data tampering in
the audit log, the newly computed hash will not match the hash stored in an audit log. This will
indicate that the audit log has tampered. Once tampering is detected, application administrators
could use corrective measures to fix the security breach. Atop that, data can could be restored
to the previous state by using database backups. The recovery blockchain which will have 𝐾𝐾𝑑𝑑
peers, where 𝐾𝐾𝑑𝑑 > 2𝐾𝐾 . Therefore, the adversary will have to compromise twice as many nodes
to tamper the system without being detected. This optimization increases security and provides
a second layer of defense.

Despite the existing challenges, BlockAudit is a feasible approach towards blockchain-based
secure audit logs. Extending the capabilities of the prior work, BlockAudit brings the
theoretical foundations into practice and as shown in section 7, it has been deployed and
instrumented in a real blockchain network. Moreover, BlockAudit is also capable of ensuring
operational consistency even in the presence of Byzantine replicas. Therefore, it is a better
candidate for the audit log security and can be applied to eGovernment solutions.

I. Conclusion

We present a blockchain-based audit log system called BlockAudit, that leverages the security
features of blockchain technology to create distributed, append-only, and tamper-proof audit
logs. We highlight the security vulnerabilities in existing audit log applications and propose a
new design that extends NHibernate ORM to create blockchain-driven audit logs. For our
experiment, we used an application provided by ClearVillage inc to generate transactions from

Approved for Public Release; Distribution Unlimited.
62

audit logs, and record them in our custom built blockchain. By design, BlockAudit is agile, plug
and play, and secure against internal and external attacks. In the future, we will extend the
capabilities of BlockAudit by deploying it in a production environment and explore various
performance bottlenecks and optimization techniques.

3.5 Architecting Blockchain for IoBT and its Performance Evaluation

Military technology is ever-evolving to increase the safety and security of soldiers on the
battlefield through integration of IoT solutions. This aims to improve the operational efficiency
of mission-oriented tasks on the battlefield significantly. The state-of-art battlefield networks are
traditionally reliant on centralized communication paradigms, which imposes security and safety
concerns when the battlefield things scale up. Since the centralized architectures suffer from
security issues such as denial of service attacks, and central point of failures, a flexible
architecture that is mobile, resilient, and adaptable for dynamic topologies where the number of
nodes can be unpredictable must be designed. Introducing decentralized platforms for managing
Internet of Battlefield Things (IoBT) could potentially address previous-mentioned security
issues and safety concerns of traditional battlefield networks. Blockchain, a decentralized
customizable platform, can be a useful tool to securely interconnect multiple nodes in an IoBT
environment and securely offer mission-aligned operational capabilities in the battlefield using
the distributed ledger. Such IoBT nodes can be interconnected in a peer-to-peer network that
maintains a distributed ledger in a flexible and dynamic topology. In this section, we integrate
blockchain in the IoBT context to propose a 3-layered architecture and evaluate its performance
with the goal of determining its potential to serve required performance and security needs of
IoBT environment. Using different testing parameters with dynamic topologies, the metric data
would help in suggesting the best parameter set, network configuration, topology, and
blockchain usability views in IoBT. The implementation of a dynamic and asynchronous
topology would help to categorize the frequency and update behavior of the distributed ledger.
We show that a blockchain integrated IoBT platform has heavy dependency on the
characteristics of the underlying network such as topology, link bandwidth, jitter, number of
nodes, nodes’ availability, and other communication configurations. A wide range of values for
these reconfigurable parameters can be used in practical scenarios to find if the simulated values
can meet the IoBT performance needs and how can we tune them up to achieve optimal
performance.

3.5.1 Motivation
Internet of Things (IoT) technologies provide consumers with smart devices and sensors that are
capable of delivering control and information across the Web. Due to their small scale, these
systems are constrained in terms of performance, causing oversight when it comes to security.
For this reason, exploitation of these devices is common and trivial and the result is usually
catastrophic. The Mirai botnet [110] is one of many malware that has infected millions of
devices. In particular, Mirai targeted active telnet services (running inadvertently), by exploiting
weak authentication and default credentials. Devices were compromised and weaponized to
create Distributed Denial of Service (DDoS) attacks that crippled Internet services across the
globe. Compromises on these devices is commonplace due to the lack of vetted security
mechanisms such as those that are found in enterprise networks. Strong encryption, rigorous
security testing, and relevant vulnerability knowledge bases, are lacking on these small scale

Approved for Public Release; Distribution Unlimited.
63

devices. In the military world, soldiers are starting to rely on IoT devices for situational
awareness, navigation, and others to make critical decisions for mission success. In the tactical
environment, these devices and systems must ensure confidentiality, integrity, and availability in
battlefield conditions. Adverse location, limited power, and low bandwidth in decentralized and
mobile topologies are among many of the conditions. Securing communications across IoT and
IoBT systems is difficult, but critical for the warfighter.

The traditional IoBT networks are centralized and thus vulnerable to a single point of failure
attacks, i.e., if the central server gets compromised, all data and operations in the network are
affected [111]. In addition to the architectural demerit, the security issues on these devices and
networks are mostly overlooked due to lack of computing capabilities. Therefore, majority of
applications focus on the mission-related performance of the device instead of security [112,
115]. As the next generation IoBT networks are becoming more decentralized, it important to
adopt a decentralized solution to eliminate the malicious activities involved in the IoBT
infrastructure. The emerging blockchain technology offers a tamper-resistant distributed ledger
platform that can potentially be leveraged to track mission related activities in the battlefield.
Although the blockchain technology was introduced to design cryptocurrencies, its fundamental
properties can be successfully applied to networking and communication fields. Blockchain
leverages a distributed network where each peer maintains a local copy of a distributed ledger
that is immutable. Blockchain technology can be a useful tool because it can assure the integrity
and accountability of all activities through validating transactions [113] by a group of nodes
instead of single administrator. Since blockchain relies on cryptographic primitives, special
considerations must be taken before its implementation in IoBT networks [114, 116]. The state-
of-art blockchain platform suffers from several performance challenges such as scalability issues
in terms of both devices and transactions, latency to validate transactions, and extensive network
overhead required to maintain peer communication. Significant consideration must be taken to
address the impact on transactions throughput and bandwidth overhead; such attributes are
necessary for the dynamic and constrained networks such as military environments.

3.5.2 Next Generation Battlefield Characteristics

The military technology is rapidly evolving as the IoT devices and sensor technology is
providing a major boost in the consumer industry. However, wide adoption of IoT technology
also increases the attack surface of the integrated platform to disrupt the normal activities and
introduce anomalies. There are many different components that make up a battlefield, from the
human capital to the technology that soldiers carry on their person. Although there exist
numerous security issues when considering heterogeneous elements in a battlefield, problems
like network traffic, communication mediums, and node location are often targeted frequently
due to their wide vector of attack. Before we dig deeper into a blockchain- based solution, we
must first explore some of the fundamental reasons for a new system.

Attack space: A battlefield consists of a combination of devices using different communication
mediums to provide up-to-date intelligence on what is occurring on the inaccessible terrain.
Soldiers need to rely on this information to make timely decisions that impact not only the next
move, but potentially the outcome of the mission. The loss and corruption of this information
could be catastrophic, resulting in loss of lives and valuable resources, along with breach to the

Approved for Public Release; Distribution Unlimited.
64

overall security. Attackers aim at stopping information flow by using different attacks, such as
Denial of Service (DoS), data fabrication, spoofing, data manipulation and others as described in
[117]. In many cases, these attacks are carried out by exploiting weaknesses in Internet
protocols, information handling, or simply by volume influx. Mitigation for DoS attacks include
intrusion systems, packet analysis or firewalls, however, the nodes operating in a battlefield may
not have sufficient energy to use these techniques [118]. Thus, availing redundancy in the IoBT
services is very important in order to avoid DoS type of attacks which could happen in the
battlefield through jammers.

Communication: Home users have the convenience of using LTE, Wi-Fi, and Ethernet to remain
consistently connected to web and Internet. The infrastructure in place allows users to move
from one location to the next seamlessly without losing connectivity. For the military scenario,
these mediums typically work for stationary bases or short range missions, but not in cases where
soldiers may travel longer distances on uneven terrain. The current technology in place, such as
mobile subscriber equipment, satellites, long-range radios, and others [119] allow for operations
to continue, but may provide few tactical advantages in current-day missions due to evolved
attacker technology. Army researchers have since invested into a different method of
communication: networks and secure wireless [120]. Ad-hoc networks and true mobility allow
for communications to continue, but they must be partnered with a secure system to function as
required. These networks may still suffer from attacks like signal jamming, but offer high
resiliency and geographic range.

Node location: A critical central component for any network is the topology being used. In most
cases, a network setup will directly affect network traffic, consumption, throughput, and more.
Additionally, the locations of nodes and routers on a network will directly affect the security of a
system. When a router is the central point of communication between all nodes, a very specific
target is identified for attackers. Centralized systems have shown flaws and security gaps,
namely that of high dependency and single point of failure. Redundantly connected systems,
which at their core are decentralized, allow for the mitigation of threats like data corruption, data
loss and service interruptions. These issues may have independent solutions, though they may be
costly. Take for example [121], where an analysis of different attack management platforms for
DoS attacks is presented. Although the solutions are many, they requires a memory intensive
solution that may not be viable in all environments. For communication security, defenses such
as [122] involve adding more nodes into a network that may be used as an early warning system.
Since centralized networks suffer from bigger attack vectors that make it difficult to always
mount a perfect defense, tactical communication architecture is preferred to be decentralized.

Rationale to design blockchain-based IoBT infrastructure:

The massive scale and distributed nature of IoBT devices will create several security and privacy
challenges. Firstly, the underlying IoBT networking and communication infrastructure needs to
be flexible and adaptive to support dynamic military missions. This dynamic change to the
communication infrastructure needs to happen in an autonomous fashion without reliance on
centralized maintenance services. Second, there is a need to ensure the veracity of the
information made available through the IoBT devices. There is a need for building a trusted
platform to ensure the information consumed by the human warfighters is accurate. Finally, the
adversaries can compromise the IoBT devices to impact the mission negatively. There is a need

Approved for Public Release; Distribution Unlimited.
65

for a platform that can balance the tradeoff between resilience and risk of conducting operations
in a decentralized fashion.

Therefore, we focus on developing a Blockchain empowered trusted architecture for IoBT. The
architecture aims to address trust, privacy and security challenges in the IoBT. The architecture
comprises of three layers: battlefield sensing layer, network layer and consensus and service
layer. We provide the design of each of the layers and the accompanying research challenges. To
realize the resilient Blockchain-enabled IoBT platform, the entities that have networking
capability, such as ground vehicles, wearable gadgets, handheld weapons, satellites, unmanned
systems, command & control (C2) base, and so on., need to be tightly coupled together for
establishing communication links among each other. With a priority on the mission related
operations, the physical devices are also essential to maintain the distributed ledger that tracks
the required transactions in the battlefield. The characteristics of transactions may vary
depending on the military applications, for example, secure logistics management through supply
chain tracking, assembly-line provenance, smart C2 surveillance, mission planning and resource
tracking, etc.

3.5.3 Background and Related Research

IoBT is a natural progression for Blockchain-based IoT technology. Just as home users can
benefit from the data collection and monitoring of their home devices, military personnel can
greatly benefit from sensors in the battlefield that provide better situational awareness to them
and to the other military devices that might be acting autonomously. Yushi et al. [123] describes
an early architecture view of a military internet of things (MIoT) system that relies heavily on
server- client type of system, where sensors provide information to the networked servers.
Farooq and and Zhu [124] studied the potential cost in power and resources to have a system that
was not server-client based, but was more a Device-to-Device (D2D) type of interaction. The
Peer-to-Peer (P2P) type of system can provide better robustness in the network because there are
no central servers that are heavily relied upon by the system to operate successfully. The
robustness of a P2P type of IoT system is tested by Abuzanab and Saad [125], where a game
theory model was built and run to better understand how connectivity in a P2P system can be
disrupted by attacks and how strategies to regain connection could maintain a connected and
operational system

Overall, IoBT systems, like IoT systems, are still roughly centralized with a heavy dependence
on management nodes. Abuzainab and Saad [125] and Farooq and Zhu [124] provide some
insight to the benefits of a P2P system as well as the potential cost to keep a system of this type
up and running. The added robustness that can be achieved in a P2P or D2D system appears to
be a valuable point to consider in future IoBT systems because portions of the system are likely
to be attacked. The challenges involved in more P2P IoBT are not really discussed and will
require new protocols and rules that allow the nodes of the system to govern themselves without
the management of central servers. It will also require new strategies to distribute the data shared
among all the participating nodes in an efficient manner that would not suffer from an attack of a
centralized data store.

Approved for Public Release; Distribution Unlimited.
66

The IoBT devices are limited in their ability to deploy sophisticated security mechanisms which
leads to extremely exploitable IoBT networks. Researchers have investigated the security issues
in IoBT. Specifically, the communication and information management challenges in an IoBT
context have been studied [126]. Researchers have proposed an integrated IoT and network-
centric warfare framework to address integrity issues in IoBT [127]. Researchers have proposed
game theoretic approaches to optimize the interconnectivity in IoBT to support dynamic military
missions [128]. However, these efforts do not address the need for a trusted platform for IoBT
that can balance the tradeoff between resilience and risk from adversarial attacks. Given the past
research on IoT is mostly focused on the centralized architecture standpoint, there is a strong
need of decentralized framework for IoBT to serve the purpose of the battlefield environment.

3.5.4 Blockchain-enabled IoBT Architecture

Considering that the network-centric military operations can be audited and tracked using the
distributed ledger system provided by Blockchain, this feature in fact improves the trust-
worthiness of each action or command to execute in real-time. Our proposed architecture to
achieve these goals constitutes the three important layers as shown in Figure 28. The bottom
most layer is called as “Battlefield Sensing layer”, where the sensor- equipped entities gather and
disseminate information about the battlefield and collectively work toward achieving a common
goal. The next upper level layer is the “Network layer”, which is created considering a dynamic
topology among a set of capable military nodes, that will be serving for Blockchain related
operations. The top layer is the “Consensus and Service layer”, which serves the purpose of
defining individual roles and mechanisms to maintain Blockchain consistency. Each layer has
different functionalities and responsibilities, which we briefly describe in the following
subsections.

Approved for Public Release; Distribution Unlimited.
67

Figure 28: Blockchain-enabled IoBT Architecture

a. Battlefield Sensing Layer

Given the technological revolution happening, the characteristics of modern warfare are expected
to similarly evolve and the warfighters would be looking for higher cyber capabilities in the
battlefield to stay ahead of adversaries. So, use of tactical computing resources, networking-
capable sensors, unmanned systems, and wearable devices are of high demand to better
understand such a complex and competitive environment, while facilitating the actors to make
better and faster decisions. With the help of collaborative sensing of the environment and
short/long-range communication technologies, battlefield IoT nodes should be exchanging
mission-specific information with each other. Hence, this battlefield-sensing layer is constituted
of all the military objects that collaboratively operate in the physical warfare space for sensing
and monitoring adversarial activities. Not only environmental sensing, but also monitoring troop
progress, inventory management, and health checkup of individual soldiers is critical to the
success of mission. With this kind of information, necessary assistance can be arranged at the
right time and potentially reduce the chances of mission failure. Consumer devices such as smart
phones, health trackers, autonomous vehicles, and so on come with their own sensing modules
and when they are deployed on a large scale in the battlefield, it can provide military
Intelligence, Surveillance, and Reconnaissance (ISR) capabilities through crowdsensing
techniques [115].

The commercial market for IoT has been introducing plenty of powerful and network-capable
devices built on top of traditional processing hardware (microprocessor and microcontroller).
Additionally, several innovative hardware solutions and multi-core CPU-based computing
architectures are emerging to meet the computationally heavy services and energy efficiency
requirements. Military equipment and soldiers are subjected to carrying a variety of sensors and
actuators that can measure attributes related to locations, speed, health, brightness, temperature,
pressure, electro-chemical and electro-mechanical properties, etc. All the network-capable

Approved for Public Release; Distribution Unlimited.
68

entities in the battlefield may not follow the same standard of communication. Different
mediums and protocols like WiFi, Infrared, Bluetooth, Near-Field Communication (NFC), X10,
cellular networks, and ZigBee. etc., are used to disseminate the sensed data among each other.
Thus, interoperability and protocol standardization are crucial challenges in this layer to achieve
operational efficiency in the IoBT network.

b. Network Layer

The sole purpose of the Network layer is to transmit and capture the network-centric transactions
occurring at the Battlefield-Sensing layer. The common-use cases of IoT, like smart home and
smart city, operate off infrastructure-based connectivity, where the nodes are connected to each
other via a gateway or access point. However, this will be not feasible in the case of the
battlefield because connectivity to cellular networks or any base stations may not be available
throughout the period of operation. Therefore, D2D communication [129] is of top choice for
exchanging information with each other. In such a scenario, the networks created in the
battlefield are weakly connected and volatile in nature, which means the topology may not
sustain longer use. Also, at times the network may get segmented if the military troops need to
be separated from each other to subdivide the mission tasks. Furthermore, the dynamic network
created can be categorized to constrained and unconstrained networks. Devices in the
constrained network may have power, memory, and data rate limitations. In addition, they may
operate in an unlicensed spectrum where interference is high. Thus, the network entities need to
optimally tune their physical transmission-related parameters to maintain the network
connectivity.

Irrespective of the connectivity challenges, the nodes in the network are intended to collect valid
transactions and propagate them toward the closest nodes that participate in Blockchain
consensus. It is not expected that all nodes of the network will be serving as a full node, which
typically stores the complete state of the Blockchain. Rather, a subset of the nodes can be
selected to be full nodes and the rest of them can act as endorsers, who verify the validity of
transactions and endorse them so that the full nodes can trust those transactions. An overlay
network among full nodes can be designed to maintain strong connectivity among them so that
the network layer performance of the framework can be improved. Designing such an overlay
network is feasible in a static network [130]; however, it is challenging in the case of highly

Figure 29: IoT Network Standards and their Trade-offs

Approved for Public Release; Distribution Unlimited.
69

dynamic networks like in the battlefield environment.

The architecture shown in Figure 28 depicts that some military entities (from Battlefield-Sensing
Layer) formulate the core P2P network among each other for maintaining the shared ledger. In
the figure, the nodes are represented as varying sized circles, where the sizes represent the
heterogeneity and resourcefulness of the participating nodes. This means that larger circles
represent a node in the military network that has more resources (computational, storage,
networking capability, energy, etc.). To establish communication between each node, the nodes
are capable of using the existing wired/wireless standards that include: ethernet, WiFi, Bluetooth
(Low Energy), NFC, ZigBee, EnOcean, WiMax, LTE, Cellular, and LoRaWAN, etc. Each of
these standards have their own pros and cons based on their maximum data rate, power
consumption, and coverage radius [131] as shown in the Figure 29. The communication
standards of IoT space are not mature yet in terms of addressing the connectivity issues.

c. Consensus and Service Layer

The role of the Consensus and Service layer is to employ common agreement mechanisms for
accepting the valid set of network-centric operations in the form of transactions that happened in
the Battlefield Sensing layer. At the same time, maintaining the total or partial ordering of the
transactions is important for the future audit purpose. By ingesting the messages in the Network
layer, the nodes in this layer filter as well as check the validity of each transaction, and
eventually inserts them into the system ledger when the majority consensus on the authenticity of
the transactions is achieved. There are a number of consensus protocols proposed from the
distributed system’s point-of-view. Consensus in distributed systems is equivalent to the
Byzantine General’s Problem, which has been studied extensively in the past literature [132,
133]. Such protocols have helped immensely to design fault-tolerant distributed systems such as
distributed storage, P2P sharing, multi-party computation and also cryptocurrency technology.
The communication overhead and tolerance to Byzantine faults in Paxos [134] were its main
demerits, which are addressed by Castro et.al [135] in the work on the practical Byzantine fault-
tolerant (PBFT) model. However, PBFT is not completely decentralized like Paxos because it
requires a round-wise coordinator to impose ordering of transactions and its stability depends on
the fact that it can tolerate f < n/3 Byzantine nodes. Also, the communication delay in the PBFT
is bounded, which makes it a weakly synchronous protocol.

The Proof of Work (PoW) consensus protocol has been adopted in several cryptocurrency
Blockchains that operates using the computing power of the participating nodes. However, it
introduces a tradeoff among consensus convergence, transaction throughput, and security. In
addition, the PoW consensus consumes more energy for repeatedly computing the cryptographic
hash function to mine the blocks. To avoid such constraints, Proof of Stake (PoS) [135,136]
consensus uses the ownership of resources to asynchronously select nodes, who will create
blocks. Hence, a node with a higher amount of assets reserved for consensus will have a higher
chance on an average to create blocks. Alternative consensus mechanisms that are also
considered for the Blockchain, such as Intel’s Proof of Elapsed Time (PoET), and Byzantine
fault tolerant variants. However, none of these consensus models were designed by considering
the distributed and intermittent nature of a battlefield network. Also, the nodes need to serve for
certain important roles for maintaining the common distributed ledger and network of consensus

Approved for Public Release; Distribution Unlimited.
70

participants irrespective of the dynamism in the military network. The necessary roles considered
here are described briefly in the following:

1) Registrar: This particular role is intended to serve for registration and key distribution
purposes, when any newly introduced military component or personnel appears in the battlefield
environment. The registered entities can seamlessly check the identity details of each other to
verify and sign the transactions/blocks. The registrar can keep track of the access policy changes
by querying the policy manager.

2) Policy Manager: In the battlefield environment, the entities have different rankings and so
they might have higher privileges compared to low ranked entities. Hence, it is re- quired to
define and enforce such kinds of policies in the military networks. The role of the policy
manager is to provide an interface to define policies related to Blockchain transactions,
consensus, network connectivity, and privacy aspects. In addition, the block/transaction
validation rules can also be managed through the policy manager, which helps to fine tune the
Blockchain performance.

3) Auditor: This role is created to interrogate and keep an eye on the transactions. The auditor in
the framework collects the network-centric transactions occurring in the military network and
audits them on the fly by using the Blockchain receipts. To maintain the distributed environment,
there can be more than one auditor in the network, which can be achieved by executing a smart
contract that permits a set of tasks to execute as an auditor. The auditor is also responsible for
keeping track of valid transaction blocks and corresponding mission-specific transactions by
tagging with block metadata. The accepted blocks need to be pre-processed by extracting
transactions and metadata information for ordering purpose.

4) Query Server: One or more participants take the role of query server to undertake requests
from military entities, who can validate themselves to be authentic member of the troop. Hence,
the purpose of query server is to validate the requesting party’s identity before responding with
necessary information and also to ensure the responses do not possess any private information.
By distributing the query manager roles to multiple consensus nodes may allow tackling the
scalability issue effectively.

5) System Administrator: The SysAdmin usually acts like a membership manager, which is
responsible for evaluating the necessary requirements of the nodes, who wish to participate in the
Blockchain consensus and take charge of one or more roles as defined here. It also defines
contracts to track participation duration, reliability, and incentives components to engage the
nodes to voluntarily dedicate their resources for offering secure Blockchain services in the
battlefield.

3.5.5 Applications of the Blockchain-based IoBT Architecture

Although blockchain is providing a distributed ledger system that has many needed security
features and functionalities, this could help the much needed security for cyber operations in
military battlefield, such as, auditability of historical information, assurance of data provenance,

Approved for Public Release; Distribution Unlimited.
71

guaranteed variability of integrity violations of historical data, and information tampering
detection. Furthermore, blockchain has both cost effectiveness merits as well as transparency
features, making it an appealing system for military cyber operations as described in the
following cases.

Generation of cyber assets - Blockchain can be used to generate cyber assets that will enable
applications which rely on direct interaction between customers and assets. The Blockchain
system can aid in ensuring the issuance processes, transaction processing, and housing of cyber
assets/identities.

Transfer of ownership of cyber assets - A Blockchain system allows transfer of cyber assets
between owners by leveraging the immutability property of Blockchain so that once a transaction
is committed, it cannot be reversed. Any changes will have to be appended and will not alter an
already validated transaction, thereby ensuring non-reversibility of transfer of ownership.

Transparent and assured data provenance - Every operation on the cyber asset is encoded in the
Blockchain trans- action using a publicly available and immutable ledger. The Blockchain
system ensures that provenance of every operation on the cyber asset is recorded and traceable.

Verifiability and audit - The distributed ledger keeps track of transactions pertaining to creation
and transfer of cyber assets. The tamper-resistant property of the ledger facilitates variability and
audit of operations.

Military cyber operations - Ensuring traceable and tamper-evident accountability and auditability
of C2, logistics, and other critical mission data among international partners is paramount as our
future operations involve the convergence of multiple domains and a heavily contested
cyberspace. Centralized or homogenous information systems and databases must evolve
distributed, disintermediated, and secure capabilities. As such, trust with respect to operations
involving international entities must not be rooted in one single entity. Trust must be
decentralized and built around robust, innovative cryptographic paradigms transcending the
traditional Public Key Infrastructure (PKI) typically used in most homogenous enterprises.

An innovative, distributed trust and identity management mechanism is a crucial for enabling
assured identification, authentication, and authorization in such a way that would further allow
disintermediated accountability and auditability. Emerging Blockchain and distributed ledger
technologies as a whole demonstrates the potential of a truly distributed and disintermediated
mechanism for achieving above needs. The current production application of cryptocurrencies
using public Blockchain has already shown the potential of decentralization to allow customers
to perform monetary transactions seamlessly and maintain the ledger at the same time. The
nuances of disintermediated international partnerships and information exchange involve some
mutually exclusive research and development challenges distinct from the permissionless and
public implementations of Blockchain.

Approved for Public Release; Distribution Unlimited.
72

To evaluate the performance of permissioned blockchain in the battlefield sector we present a
proof of concept that implements the Hyperledger Sawtooth platform [137]. The Sawtooth
consists of three major components: a validator running a consensus protocol called Proof of
Elapsed Time (POET) that is responsible for creating a block of approved transactions, a REST
API which handles communications between clients and data transference through HTTP/JSON,
and a transaction processor which validates and verifies transactions. We select Sawtooth
because it provides a role-based identity manager to enforce data access policies suitable for our
battlefield scenario. With Sawtooth chosen, we aim to test how well this variant can perform in
an IoBT scenario. Military battlefields can be setup with under different constraints and
resources, making a flexible blockchain platform critical. Success can be measured by how many
transactions are performed in the blockchain as well as how many of those transactions are
verified. We conduct our simulations on the Common Open Research Emulator (CORE), a
software used to simulate various types of networks [138]. Evaluations are based on a series of
tests that measure how well Sawtooth would perform under different parameter changes. All
tests include one genesis node and five client nodes. Each simulation presents a different
combination of parameters, changing bandwidth and transaction rate.

Experimental Setup:

Due to the importance of a network setup in military environments, we test using three
topologies: fully connected, mesh, and tree. For reference, each topology can be seen in Figure
30. Each setup can be directly related to a particular military scenario, from command center
setups to battlefield ad-hoc networks.

Figure 30: IoBT Relevant Topologies for Evaluation

Take the following scenario: a six node battlefield is setup with the intent of successful data
reconnaissance under limited resources. Client nodes, which excludes the genesis, actively send
image information to the blockchain for processing. To test this: metadata from an image was
extracted using a Python script, then bundled together as a single transaction for a validator node,
stored until a specified number of validated transactions was reached, then added to the ledger.
Each simulation occurs for 1 hour, under three different bandwidth options: 1 Gbps, 100 Mbps,
and 64 Kbps. A traffic capture was taken for each test, where metric data was separated into two
categories: network maintenance packets and image data packets.

For every bandwidth option and topology pairing, a total of 10 tests were conducted. Each test
changed the rate at which transactions were sent to a validator node in the network. These rates
included 1, 10, 25, 50 and 100 transactions at every 2 and 5 seconds. This yielded a total of 90
tests for analysis.

3.5.6 Performance Measurement and Evaluation

Approved for Public Release; Distribution Unlimited.
73

Ideal scenario of unlimited link bandwidth:

CORE’s term for an unrestricted bandwidth is known as unlimited. However, the performance of
this term is completely dependent on machine hardware. To factor out this dependency, we
compare the unlimited bandwidth to that of 1 Gbps, the highest numerical value available in
CORE. Table I shows the number of transactions sent in a 10 minute period with a rate of 50
transactions at every 2 seconds for all topologies under each bandwidth option.

As seen in the table, there is some deviation between the unlimited option and 1 Gbps. For every
topology, the 1 Gbps was able to successfully deliver 20 to 30% more data packets, and thus
more transactions. This can be attributed to the routing and communication protocols for
unlimited and 1 Gbps. Where the 1 Gbps bandwidth has built in packets delays and optimized
routing, the unlimited does not. For this reason, the testing set we will use in this paper includes
only the three bandwidths specified above.

Table 5. Data packet comparison for “unlimited” and 1 Gbps BW

Full Mesh Tree
Unlimited 93169 77555 55689
1 Gbps 114477 103679 84012

Network Maintenance

Packets captures for each simulation are split into two categories: maintenance and data.
Network maintenance refers to those packets which help maintain constant communication and
operability for the blockchain. Packet types include ARP, MDNS, and TCP acknowledgments.
Using figure 31, data shows that for any topology and transaction rate, under the 1 Gbps and 100
Mbps bandwidth allotment, maintenance packets constitute an approximate 49-51% of the total
capture. However, there is a performance difference between those two topologies, dependent on
bandwidth. With 1 Gbps, the mesh topology in combination with 2 second transactions
consistently used the highest number of packets. With 100 Mbps, the full topology in
combination with 2 second transactions managed to use more packets.

Figure 31: Maintenance packets for 1Gbps, 100Mbps, and 64Kbps simulations.

There are two main reasons for this. In the case of the mesh topology, the combination of
bandwidth and node placement made for an efficient system, where a high level of transactions
were sent and validated. When observing the tree topology, the number of packets rose due to a
buffer constraint contained in Sawtooth’s validation scheme. When too many transactions are

Approved for Public Release; Distribution Unlimited.
74

sent to the buffer and the max value is reached, transactions are lost and thus, the network must
resend packets.

The major outliers for these simulations are those that use the 64 Kbps bandwidth. The first
point, is that the amount of transactions sent is significantly lower, which leads to an assumption
that network maintenance packets would also decrease. However, the maintenance percentages
rose to an average range of 54%-70%. This is due to the bottleneck created by the low
bandwidth. Transactions are lost as the buffer cannot process in time, and thus the network
becomes congested with retransmission of acknowledgments, Sawtooth’s native heartbeat
function, and others. Figure 31 demonstrates the amount of packets needed to maintain network
functionality under a 64 Kbps bandwidth setup.

Total Data Communication

In this section, we look for packets that relate specifically to image metadata transmission or
propagation of the blocks in the chain.

1) Topology: It is evident that node placement and connectivity in these simulations play a
factor. Overall, the full and mesh topologies functioned at very similar rates and performance
peaks. Having 1 Gbps bandwidth allows the mesh topology to perform better than the full
topology, as seen in Figure 31. This is followed by the tree topology, the weakest performer.

Figure 32: Number of total data packets sent in different type of links and topology

When 100 Mbps bandwidth was available, the mesh and full topologies had overlapping results.
Figure 31 shows how for all simulations that send ”x” amount of transactions every 2 seconds,
mesh performs better at certain rates like 10 transactions and 100 transactions, versus the full
topology at all other points. The simulations that send ”x” amount of transactions every 5
seconds show the mesh topology as the most effective choice, with a full topology trailing
closely behind. For all tests under the 1 Gbps and 100 Mbps bandwidth, the tree topology
consistently had the lowest rates of data throughput. This however, is not true for the 64 Kbps
captures. Referring to Figure 31, the tree topology had the highest starting point for simulations
that sent transactions every 2 seconds and in a more common result, the lowest starting point
with simulations that sent transactions every 5 seconds. However, as the rate increased, the
throughput decreased significantly.

2) Bandwidth: There are three major points of focus that the data reflects in Figure 31. First, is
that the highest amount of data throughput is observed under the 1 Gbps bandwidth; the highest
value being around 700K data packets at 100 transactions every 2 seconds. Next, is that for 1
Gbps and 100 Mbps bandwidths, the throughput rose steadily until the 100 transaction marker.
At that point, the tree topology under 100 Mbps had a sharp decline. This coincides perfectly
with the network maintenance seen in the previous subsection, as more network failures caused

Approved for Public Release; Distribution Unlimited.
75

this topology to underperform. Finally, the 64 Kbps captures are highly variable. In some
instances, 1 transaction every 5 seconds was able to out- perform 10 transactions every 2
seconds, as noted by mesh and tree in figure 31 for 64 Kbps. We can attribute this to a
combination of both node instability and network processing failures due to increasing
congestion of transaction validation. Additionally, the number of transactions is significantly
smaller when compared to the two previous bandwidths.

Total Validated transactions - Throughput

After detailing how the topologies and different bandwidths interact, we must also denote the
success rate (i.e., the percentage of successfully validated transactions). This section uses 10
minute tests for all topologies under two bandwidth parameters with an increasing transaction
rate that ranges from 1 to 10,000. To find the success rate of each combination, we take the
number of successfully validated transactions and divide by the total transactions sent between
all nodes. We will denote it as a percentage.

Figure 33: Actual throughput (a) 100 Mbps link (b) 64 Kbps link

1) 100 Mbps Bandwidth: In Figure 32(a), for the full topology, we start with a 100% success
rate, then a small decline as the transaction rate increases. This increase and decrease of success
is consistent, up until 1000 transactions. After this, we observe a stagnant success percentage,
followed by a sharp decline. At 7,500 transactions or more, this topology seizes being effective
with a final success percentage of 38%.

The mesh topology shows a very different rate of decline when compared to the full topology.
We start at 100%, then begin a steady decline as the transactions increase. At 250 transactions, a
small increase in success rate is seen, making it the highest value before a steady decline of
success as transaction rates increase. We end the simulations at a success rate of 40%, just above
the full topology.

As demonstrated by the network maintenance chart in the previous sub-section, the tree topology
success rate is much lower than the rest. The highest success percentage observed was 80% with
transactions in the range of 10 and 250, excluding 100 transactions. This topology always under-
performs when we compare it to the full and mesh, ending the simulations at a 25% success rate.

2) 64 Kbps Bandwidth: Figure 32(b) highlights that when the bandwidth is decreased to 64 Kbps,
the success rate never climbs above 65%. The rate of decline is much more steady in these tests
with a very surprising result: the tree topology is able to have the highest performance marker at
the end of the set of tests. Although the tree topology is highly variable, it is able to end at a
higher success rate due to the combination of network routing, packet delays, and topology
setup. Because much of the routing redundancy is reduced in the tree topology and the network

Approved for Public Release; Distribution Unlimited.
76

packet bottleneck is reduced, the Sawtooth validator queue is able to take more incoming
transactions rather than rejecting them.

For the full topology, the highest success rate is approximately 54% at the lowest transaction rate
possible and 64 Kbps bandwidth. This success rate is observed approximately between 5000 and
7500 transactions when 100 Mbps bandwidth is available. The mesh topology is very much
similar to full, showing an approximate 54% success around 7500 transactions with 100 Mbps of
bandwidth. Between full and mesh, the data shows that the full topology had the highest number
of success data points overall.

The tree topology demonstrates an interesting set of results. Although volatile still, it managed to
end the set of tests with the highest success marker. However, the performance of this topology
is still lower when compared to the full setup. Because it does better than all other topologies
before 100 transactions at 64Kb bandwidth, it is a viable option for a very small subset. An
additional point is that the tree success rate remained somewhat consistent between both
bandwidth values. This mean that if more bandwidth is available, the tree topology will run at a
capped performance peak, with the decay of success extending further out as the bandwidth
grows.

It is worth nothing that neither of the charts show tests reaching a complete lack of transaction
processing. The main cause of non-validation is due to a queue maintained by all validators.
When the queue is full, the transaction is dropped and therefore lost. The logic then follows that
while the queues may always be full, there exists a small percentage that is validated, as noted by
the high transaction rates in both the 100 Mbps and 64 Kbps charts.

Remarks

With the data available, we can conclude several things. First, is that a decentralized network
approach (full and mesh) are the most effective when it comes to a blockchain setup. We are able
to sustain a more efficient system on these platforms. When it comes to the most ideal setup, we
consider two things: data throughput and success of validation. Figure 30 showed that the mesh
topology was able to produce the greatest amount of data packets over a 1 hour time period,
however, the success rate of the mesh topology was lower overall than that of the full topology
for both 100 Mbps and 64 Kbps bandwidth. The ideal setup then becomes a full topology with
the highest success rate demonstrated at 1 and 5,000 transaction(s) every 2 seconds when 100
Mbps bandwidth is available or a full topology between 1 and 250 transactions every 2 seconds
when 64 Kbps bandwidth is present.

Secondly, we are able to conclude that the Hyperledger Sawtooth, although configurable, is
operational when higher resources are available. While we are able to perform tests under small
time constraints, the amount of storage and band- width needed over time is too significant when
we consider the low-resource devices that a soldier may carry. Furthermore, these tests
approximate small military operations. When scaled to a bigger size, there is risk that the
blockchain platform may not provide a 100% operational guarantee to maintain the ledger due to
resource constraints.

Other Factors: There are other testing parameters which can play a significant role in the metric
data produced. In all of these simulations, the nodes are stationary and not moving. Nodes that

Approved for Public Release; Distribution Unlimited.
77

are able to travel in and out of range of a wireless network might significantly alter the data, as
Sawtooth may behave abnormally or respond in a way such that the network would collapse. We
are not changing the number of nodes across the different simulations, which may also present an
interesting side effect to the data.

Additionally, the POET consensus method is one of two different methods that may be utilized
with Sawtooth. In this configuration, we do not observe any form of stale blocks, as the rules
specify a block must be formed once the minimum number of validated transactions is achieved.
This cleans up network propagation where as other consensus methods may not be as efficient.

3.5.7 Concluding Remarks

The ideal and secure communication system for military battlefields requires the synchronization
of resources and protocols. With attackers being always one step ahead, innovative mechanisms
must be devised that allows soldiers to remain effective on the battlefield. We understand that the
traditional centralized networks in battlefields can be costly to maintain and have security
demerits, so a blockchain integrated platform for IoBT can be of potential choice. Therefore, we
proposed a 3-layer blockchain empowered IoBT architecture that can help securing military
cyber operations and mission related data transactions in a tactical environment. Since there are
not enough studies to determine the performance of current state-of-the-art blockchains in IoBT
context, we integrated a permissioned blockchain with a distributed IoBT environment to
achieve necessary security needs and evaluated the network constraints on the blockchain under
various topologies. This deployed system is decentralized in nature and can meet the security
requirements of military operations. The simulations show that a particular permissioned variant
of blockchain is has potential to secure the battlefield network given we allocate more computing
resources in the battlefield. It also shows promise for other similar blockchain implementations
to be applicable. In the future, variety of blockchain platforms can be integrated in the IoBT
testbed to analyze and test the effectiveness as well as readiness of each variant. In addition, the
mechanism to tune the inherent attributes of each variant to meet the specific operational needs
of the tactical environment

4 RESULTS AND DISCUSSIONS

Although the benefits that a Blockchain-enabled IoBT system can offer to plan and execute
military missions are numerous and compelling, several challenges exist and need to be
addressed for successfully realizing the framework. In the following subsections, we
categorically discuss the challenges involved while implementing each layer of the proposed
architecture.

A. Battlefield Sensing Layer Challenges

When a higher number of sensing devices are collectively working in the battlefield, the amount
of Blockchain transactions generated will also be increasingly high. It raises several issues and
bottlenecks for the overall system, which we brief in the following.

Approved for Public Release; Distribution Unlimited.
78

1) Fine/Coarse Grained Sensing: In practice, the physical entities in the battlefield arena may
carry more than sensors/actuators, which have different sensing purposes and more than one
node may have communication capability even if they are tied with the same physical object. In
this situation, the number of data streams to transmit the information increases and thus the
transaction count for a Blockchain network layer grows accordingly. Since adding a block of
transactions into the distributed ledger requires consensus to be achieved, which is a time-
consuming process, it can introduce performance overheads too. Therefore, fine-grained sensing
might improve the accuracy, but the Blockchain infrastructure may not be able to handle such a
large amount of transactions. Hence, multiple sensing streams may need to be aggregated and a
balance between fine, and coarse-grained sensing needs to achieved, which can help in attaining
optimal Blockchain performance.

2) Interoperability: Military equipment and hardware used in the battlefield are typically
manufactured from different vendors and the interoperability between these IoT devices is
overlooked, which plays a major role in producing standardized transactions for the Blockchain
platform. Furthermore, sometimes the high-end military equipment gets some critical parts
replaced upon any damage, thus it may change the identity information of the device and require
following a different standard to operate. Since it is difficult to have all the equipment follow the
same communication standard, the important challenge here is to design a secure interoperable
layer that can be generically used by every network-capable node to create globally-acceptable
Blockchain transactions.

3) Energy Efficiency: Power has a critical role in engaging military equipment to operate well in
harsh situations. Sensing the terrain and physical conditions consumes energy. And, sending the
data to other peers as well as the Blockchain network costs additional power. So, a right balance
on sensing and transmission tasks is required as per the mission needs, and transaction frequency
should be optimally selected for the Blockchain framework to minimize the overall energy cost.

B. Network Layer Challenges

The network layer creates the backbone of our Blockchain-enabled IoBT architecture, where the
transaction gathering, block propagation, and Blockchain service-related communications take
place. Hence, maintaining strong and reliable connectivity is important to avail all the benefits of
Blockchain. The challenges involved in this layer are briefed below.

1) Participants Selection: To have a distributed IoBT platform, it is important to have a
consistent and reliable set of nodes, who can serve to maintain the Blockchain. Traditional IoT
environment has ubiquitous network connectivity with which the nodes can send their data to a
centralized cloud server that will perform the necessary analytics tasks and monitor the
environment accordingly. However, the IoBT devices operate on stringent conditions, such as
low computational capability, lack of network connectivity, low/no energy supply, and so on.
Thus, it is necessary to have a robust selection criteria to select nodes that can keep the
Blockchain network active until a fixed period of time is reached. Also, mechanisms need to be
established to periodically offload the responsibilities of existing nodes to another selected set of
nodes for keeping the network alive until the mission completes.

2) Dynamic Network Topology: Military missions are usually very dynamic in nature, where
battlefield equipment and soldiers always change their locations. Thus, the network created by
them will have both spatial and temporal topology variation. Furthermore, the energy drainage

Approved for Public Release; Distribution Unlimited.
79

on the devices may even segment the network to multiple pieces. Considering these challenges,
the adaptable communication protocols for the distributed ledger technology should be
established to maintain consistency and ordering of transactions in Blockchain.

3) Blockchain Parameter Tuning: The network layer mostly handles the sending and receiving of
transactions and blocks among each node. Given the established tactical network may have a
limited bandwidth, the size of transactions and blocks need to be optimally chosen so that overall
latency in the consensus process can be minimized.

C. Consensus and Service Layer Challenges

Establishing the network of military things is not sufficient unless a robust distributed consensus
mechanism is in place to maintain the Blockchain state. The traditional consensus algorithms
have limitations to adapt in the IoBT environment. Therefore, applicability of different
Blockchain consensus models needs to be investigated and revised appropriately to serve the
needs of a Blockchain-enabled IoBT framework.

1) Choice of Consensus Mechanism: At present, there are a number of consensus schemes
proposed for both public and permissioned Blockchain platforms. Among those, PoW consensus
adopted in the public Blockchain of Bitcoin and Ethereum has scalability constraints that
supports ∼3 and ∼12 transaction per second respectively. However, adoption of public
Blockchain in battlefield zones may not be possible due to lack of connectivity to the Internet.
The Permissioned Blockchains like Hyperledger opt for PBFT consensus that can achieve
significantly higher throughput at low latency. In addition to BFT variants, a number of federated
consensus models such as Stellar [39], Ripple, and Algorand [140] are proposed. Thus, it is
challenging to find the right consensus model that will best work for the IoBT Blockchain, while
considering the energy constraints, sparse connectivity issues, and transaction throughput
requirements. Also, the dynamism of battlefield nodes poses the question of “who will be
responsible to hold the Blockchain data (authenticated transaction data) permanently to make it
available throughout?”

2) Number of Nodes: As the nodes in battlefield enter and exit the network sporadically, the
consensus requires a stable number of nodes to confirm the Blockchain state. If an insufficient
number of nodes operate at the consensus layer, consistency of the Blockchain can be
compromised. Although, fewer consensus participants can improve the transaction throughput, it
may not be secure enough to prevent malicious exploitation of the consensus process.

3) Performance and Privacy Considerations: Traditionally, each node verifies every single
transaction in the Blockchain framework in parallel before the block mining occurs. This
becomes a bottleneck when it comes to improving the scalability and transaction throughput in
any IoT system. In addition to devising lightweight consensus mechanisms, several other
techniques like sharding, off-chain computation, and state channels [141] are considered for
improving the Blockchain performance. However, it will be important to investigate their
usefulness in improving the battlefield-specific Blockchain. In addition, privacy of transactions
is critical to maintain when the ledger is shared among the participating military nodes.

Approved for Public Release; Distribution Unlimited.
80

In this report, the key contributions are a) Blockchain simulator for IoBT environment, b)
Lighweight Blockchain with sharding, c) Techniques for optimizing memory pools against
flooding attacks and framework for characterizing blockchain based systems for accurate
systems.

We present a Blockchain simulator for testing and evaluating consensus algorithms in a realistic
and configurable network layer. This paper introduces and shows a generalized consensus
protocol method that can be used to model various consensus protocols. By observing the ability
for the system to operate in various configurable network topology’s we begin to study under
what conditions the system fails to operate. This can occur when portions of the network do not
allow the peer nodes to quickly message in participation of transactions. The unique
characteristics of the simulator are a general consensus algorithm operating in a realistic and
configurable network environment. The discrete event simulation engine allows to specify the
consensus algorithm operations at faster than real-time fidelity without loss of scalability. In
future work, we plan to implement and calibrate additional consensus algorithms to
accommodate bootstrapping scenarios and evaluate performance in diverse network
configurations. Future work with this model and simulation will include the effects of the
consensus special state using the consenPauseState variable, which will be modeled to get a
better comparative test between different consensus protocols.

We proposed a 3-layer blockchain empowered IoBT architecture that can help securing military
cyber operations and mission related data transactions in a tactical environment. Since there are
not enough studies to determine the performance of current state-of-the-art blockchains in IoBT
context, we integrated a permissioned blockchain with a distributed IoBT environment to
achieve necessary security needs and evaluated the network constraints on the blockchain under
various topologies. This deployed system is decentralized in nature and can meet the security
requirements of military operations. The simulations show that a particular permissioned variant
of blockchain is has potential to secure the battlefield network given we allocate more computing
resources in the battlefield. It also shows promise for other similar blockchain implementations
to be applicable. In the future, variety of blockchain platforms can be integrated in the IoBT
testbed to analyze and test the effectiveness as well as readiness of each variant. In addition, the
mechanism to tune the inherent attributes of each variant to meet the specific operational needs
of the tactical environment

Finally, we developed and presented a simulator, called FastChain, built in NS-3 which simulate s
the battlefield scenarios with military applications which connects tankers, soldiers, and drones
to form IoBT. The simulator uses the sharding enabled blockchain for trustworthy IoBT
operations. Resource constraint IoBT devices form a group to participate in sharding enabled
blockchain for IoBT scenarios. Researchers, educators and policymakers working on IoBT or
similar scenarios can use the FastChain simulator and evaluate their systems.

5 CONCLUSIONS

Approved for Public Release; Distribution Unlimited.
81

[1] Croman, K., C. Decker, I. Eyal, A. E. Gencer, A. Juels, A. Kosba, A. Miller, P. Saxena, E.
Shi, E. Gün Sirer,D. Song, and R. Wattenhofer. 2016. “On Scaling Decentralized
Blockchains”. InFinancial Cryptog-raphy and Data Security, edited by J. Clark, S.
Meiklejohn, P. Y. Ryan, D. Wallach, M. Brenner, andK. Rohloff, pp. 106–125. Berlin,
Heidelberg, Springer Berlin Heidelberg.

[2] Segent, N. 1997. “Performance evaluation of a consensus algorithm with Petri nets”.
InProceedings of theSeventh International Workshop on Petri Nets and Performance
Models, pp. 143–152. IEEE.

[3] Gervais, A., G. O. Karame, K. Wüst, V. Glykantzis, H. Ritzdorf, and S. Capkun. 2016. “On
the security andperformance of proof of work blockchains”. InProceedings of the 2016
ACM SIGSAC conference oncomputer and communications security, pp. 3–16. ACM.

[4] Docker 2018, Aug. “Docker Documentation”. https://docs.docker.com/.
[5] Ongaro, Diego and Ousterhout, John 2013. “In search of an understandable consensus

algorithm (extended version)”.

[6] Shelat and C.H. Shen, “Fast two-party secure computation with minimal assumptions.”
ACM CCS 2013, pp. 523-534, 2013

[7] V. Varghese, S. S. Desai, and M. J. Nene, “Decision Making in the Battlefield-of-Things,”
Wireless Personal Communications, pp. 1–16, 2019.

[8] A. Adebayo, D. B. Rawat, L. Njilla, and C. A. Kamhoua, “Blockchain-enabled
information sharing framework for cybersecurity,” Blockchain for Distributed Systems
Security, p. 143, 2019.

[9] D. B. Rawat, V. Chaudhary, and R. Doku, “Blockchain: Emerging Applications and Use
Cases,” arXiv preprint arXiv:1904.12247, 2019.

[10] D. B. Rawat and K. Z. Ghafoor, Smart Cities Cybersecurity and Privacy. Elsevier,
2018.

[11] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” http://bitcoin.
org/bitcoin. pdf,” 2008.

[12] D. B. Rawat, L. Njilla, K. Kwiat, and C. Kamhoua, “iShare: Blockchain-based privacy-
aware multi-agent information sharing games for cybersecurity,” in 2018 International
Conference on Computing, Networking and Communications (ICNC), pp. 425–431,
2018.

[13] M. Zamani, M. Movahedi, and M. Raykova, “RapidChain: Scaling blockchain via full
sharding,” in Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, pp. 931–948, 2018.

[14] T. Rocket, “Snowflake to Avalanche: A novel metastable
consensus protocol family for cryptocurrencies,” 2018.

[15] https://ipfs.io/ipfs/QmUy4jh5mGNZvLkjies1RWM4YuvJh5o2FYopNPVYwrRVGV.

[16] G. F. Riley and T. R. Henderson, “The ns-3 network simulator,” in Modeling and tools

6 REFERENCES

Approved for Public Release; Distribution Unlimited.
82

https://docs.docker.com/
http://bitcoin/
http://bitcoin/

for network simulation, pp. 15–34, Springer, 2010.
[17] R. Doku, D. B. Rawat, M. Garuba, and L. Njilla, “LightChain: On the Lightweight

Blockchain for Internet-of-Things,” in Proceedings of 2019 IEEE International
Conference on Smart Computing (SMARTCOMP-2019), pp. 444–448, 2019.

[18] Danda B. Rawat, Principle Investigator of FastChain Project and Simulator: URL:
https://sites.google.com/site/fastchain4shardingiobt.

[19] C. Wee, “Audit logs: to keep or not to keep?” in Recent Advances in Intrusion Detection,
1999. [Online]. Available: http://www.raid-symposium.org/ raid99/PAPERS/Wee.pdf

[20] A. Ahmad, M. Saad, M. Bassiouni, and A. Mohaisen, “Towards blockchain-driven, secure
and transparent audit logs,” in International Conference on Mobile and Ubiquitous Systems:
Computing, Networking and Services, MobiQuitous, New York City, NY, USA, 2018, pp. 443–
448. [Online]. Available: https://doi.org/10.1145/3286978.3286985

[21] C. Ringelstein and S. Staab, “DIALOG: distributed auditing logs,” in IEEE International
Conference on Web Services, ICWS, Los Angeles, USA, July 2009, pp. 429–436. [Online].
Available: https://doi.org/10.1109/ICWS.2009.50

[22] A. Ahmad, M. Saad, M. Bassiouni, and A. Mohaisen, “Towards blockchain-driven, secure
and transparent audit logs,” in International Workshop on Distributed Ledger of Things
(DLoT), Nov 2018.

[23] M. Saad and A. Mohaisen, “Towards characterizing blockchain-based cryptocurrencies for
highly-accurate predictions,” in IEEE Conference on Computer Communications Workshops,
INFOCOM Workshops, Honolulu, HI, USA, April 2018, pp. 704–709. [Online]. Availab le :
https://doi.org/10.1109/INFCOMW.2018.8406859

[24] M. Saad, L. Njilla, C. A. Kamhoua, and A. Mohaisen, “Countering selfish mining in
blockchains,” CoRR, vol. abs/1811.09943, 2018. [Online].

Available: http://arxiv.org/abs/1811.09943
[25] G. Nguyen and K. Kim, “A survey about consensus algorithms used in blockchain,” JIPS,

vol. 14, no. 1, pp. 101–128, 2018. [Online]. Available: https://doi.org/10.3745/JIPS.01.0024
[26] ClearVillage, “Clearvillage,” 2018. [Online]. Available: http://www.clearvillageinc.com/
[27] J. L. Boudec and P. Thiran, Network Calculus: A Theory of Deterministic Queuing Systems

for the Internet, ser. Lecture Notes in Computer Science. Springer, 2001, vol. 2050. [Online].
Available: https://doi.org/10.1007/3-540-45318-0

[28] M. Saad, M. T. Thai, and A. Mohaisen, “POSTER: deterring ddos attacks on blockchain-
based cryptocurrencies through mempool optimization,” in Proceedings of Asia Conference
on Computer and Communications Security, ASIACCS, Incheon, Republic of Korea, June
2018, pp. 809–811. [Online].

Available: https://goo.gl/4kgiCM
[29] P. Berenbrink, T. Friedetzky, P. Kling, F. Mallmann-Trenn, L. Nagel, and C. Wastell,

“Self-stabilizing balls & bins in batches,” CoRR, vol. abs/1603.02188, 2016. [Online].
Available: http://arxiv.org/abs/1603.02188

[30] E. Androulaki and et al., “Hyperledger fabric: a distributed operating system for
permissioned blockchains,” in EuroSys Conference, Porto, Portugal, April 2018, pp. 30:1–
30:15. [Online]. Available: http://doi.acm.org/10.1145/3190508.3190538

[31] B. Schneier and J. Kelsey, “Secure audit logs to support computer forensics,” ACM Trans.
Inf. Syst. Secur., vol. 2, no. 2, pp. 159–176, 1999. [Online]. Availab le :
http://doi.acm.org/10.1145/317087.317089

Approved for Public Release; Distribution Unlimited.
83

https://sites.google.com/site/fastchain4shardingiobt
http://www.raid-symposium.org/raid99/PAPERS/Wee.pdf
http://www.raid-symposium.org/raid99/PAPERS/Wee.pdf
https://doi.org/10.1145/3286978.3286985
https://doi.org/10.1109/ICWS.2009.50
https://doi.org/10.1109/INFCOMW.2018.8406859
http://arxiv.org/abs/1811.09943
https://doi.org/10.3745/JIPS.01.0024
http://www.clearvillageinc.com/
https://doi.org/10.1007/3-540-45318-0
https://goo.gl/4kgiCM
http://arxiv.org/abs/1603.02188
http://doi.acm.org/10.1145/3190508.3190538
http://doi.acm.org/10.1145/317087.317089

[32] ——, “Cryptographic support for secure logs on untrusted machines,” in USENIX Security
Symposium, San Antonio, USA, Jan 1998. [Online].

Available: https://www.usenix.org/conference/7th-usenix-security-
symposium/cryptographic-support-secure- logs-untrusted-machines

[33] B. R. Waters, D. Balfanz, G. Durfee, and D.
K. Smetters, “Building an encrypted and searchable audit
log,” in Proceedings of the Network and Distributed System
Security Symposium, NDSS 2004, San Diego, California, USA, 2004.
[Online]. Available:

http://www.isoc.org/isoc/conferences/ndss/04/proceedings/Papers/Waters.pdf
[34] A. A. Yavuz and P. Ning, “BAF: an efficient publicly verifiable secure audit logging

scheme for distributed systems,” in Annual Computer Security Applications Conference,
ACSAC, Honolulu, Hawaii, USA, Dec 2009, pp. 219–228. [Online]. Availab le :
https://doi.org/10.1109/ACSAC.2009.28

[35] D. Ma and G. Tsudik, “A new approach to secure
logging,” TOS, vol. 5, no. 1, pp. 2:1–2:21, 2009.
[Online]. Available: http:

//doi.acm.org/10.1145/1502777.1502779
[36] D. Xu, L. Xiao, L. Sun, and M. Lei, “Game theoretic study on blockchain based secure

edge networks,” in International Conference on Communications in China, ICCC, Qingdao,
China, Oct 2017, pp. 1–5. [Online]. Availab le :
https://doi.org/10.1109/ICCChina.2017.8330529

[37] A. Sutton and R. Samavi, “Blockchain enabled privacy audit logs,” in International
Semantic Web Conference ISWC, Vienna, Austria, Oct 2017, pp. 645–660. [Online].
Available: https://doi.org/10.1007/978-3-319-68288-4 38

[38] L. Castaldo and V. Cinque, “Blockchain-based logging for the cross-border exchange of
ehealth data in europe,” in Security in Computer and Information Sciences, E. Gelenbe, P.
Campegiani, T. Czachorski, S. K. Katsikas, I. Komnios, L. Romano, and D. Tzovaras, Eds.´
Cham: Springer International Publishing, 2018, pp. 46–56.

[39] J. Cucurull and J. Puiggali, “Distributed immutabilization of secure logs,” in International
Workshop on Security and Trust Management STM

Heraklion, Greece, Sept 2016, pp. 122–137. [Online]. Available:
https://doi.org/10.1007/978-3-319-46598-2 9

[40] S. Cha and K. Yeh, “An ISO/IEC 15408-2 compliant security auditing system with
blockchain technology,” in 2018 IEEE Conference on Communications and Network
Security, CNS 2018, Beijing, China, May 30 - June 1, 2018, 2018, pp. 1–2. [Online].
Available: https://doi.org/10.1109/CNS.2018.8433185

[41] J. Chen, S. Yao, Q. Yuan, K. He, S. Ji, and R. Du, “Certchain: Public and effic ient
certificate audit based on blockchain for TLS connections,” in IEEE Conference on Computer
Communications, INFOCOM, Honolulu, HI, USA, April 2018, pp. 2060–2068. [Online].
Available: https://doi.org/10.1109/INFOCOM.2018.8486344

[42] C. Wee, “Audit logs: to keep or not to keep?” in Recent Advances in Intrusion Detection,
1999. [Online]. Available: http://www.raid-symposium.org/raid99/PAPERS/Wee.pdf

[43] W. Olivier and R. von Solms, “The effective utilization of audit logs in information security
management,” in Annual Working Conference on Information Security Management &
Small Systems Security, Sept 1999, pp. 51–62.

Approved for Public Release; Distribution Unlimited.
84

https://www.usenix.org/conference/7th-usenix-security-symposium/cryptographic-support-secure-logs-untrusted-machines
https://www.usenix.org/conference/7th-usenix-security-symposium/cryptographic-support-secure-logs-untrusted-machines
http://www.isoc.org/isoc/conferences/ndss/04/proceedings/Papers/Waters.pdf
https://doi.org/10.1109/ACSAC.2009.28
http://doi.acm.org/10.1145/1502777.1502779
http://doi.acm.org/10.1145/1502777.1502779
https://doi.org/10.1109/ICCChina.2017.8330529
https://doi.org/10.1007/978-3-319-68288-4_38
https://doi.org/10.1007/978-3-319-68288-4_38
https://doi.org/10.1007/978-3-319-46598-2_9
https://doi.org/10.1007/978-3-319-46598-2_9
https://doi.org/10.1109/CNS.2018.8433185
https://doi.org/10.1109/INFOCOM.2018.8486344
http://www.raid-symposium.org/raid99/PAPERS/Wee.pdf

[44] C. Ringelstein and S. Staab, “DIALOG: distributed auditing logs,” in IEEE Internationa l
Conference on Web Services, ICWS, Los Angeles, USA, July 2009, pp. 429–436. [Online].
Available: https://doi.org/10.1109/ICWS.2009.50

[45] G. Baruffaldi and H. Sternberg, “Chains in chains - logic and challenges of blockchains in
supply chains,” in 51st Hawaii International Conference on System Sciences (HICSS), Hilton
Waikoloa Village, Hawaii, USA, Jan 2018. [Online]. Available: http://aisel.aisnet.org/hicss-
51/in/digital_supply_chain/3

[46] K. Fan, Y. Ren, Y. Wang, H. Li, and Y. Yang, “Blockchain-based efficient privacy
preserving and data sharing scheme of content-centric network in 5g,” IET Communications,
vol. 12, no. 5, pp. 527–532, 2018. [Online]. Available: https://doi.org/10.1049/ie t-
com.2017.0619

[47] G. Danezis and S. Meiklejohn, “Centrally banked cryptocurrencies,” in Proceedings of the
2016 Annual Network and Distributed System Security Symposium (NDSS), San Diego, CA,
Feb. 2016. [Online]. Available: http://wp.internetsociety.org/ndss/wp-content/uploads/site s/
25/2017/09/centrally-banked-cryptocurrencies.pdf

[48] L. Mauri, S. Cimato, and E. Damiani, “A comparative analysis of current
cryptocurrencies,” Proceedings of the 4th International Conference on Information Systems
Security and Privacy, ICISSP , Funchal, Madeira - Portugal, Jan. 2018, pp. 127–138.
[Online]. Available: https://doi.org/10.5220/0006648801270138

[49] N. Stifter, A. Judmayer, P. Schindler, A. Zamyatin, and E. R. Weippl, “Agreement with
satoshi - on the formalization of nakamoto consensus,” IACR Cryptology ePrint Archive, vol.
2018, p. 400, 2018. [Online]. Available: https://eprint.iacr.org/2018/400

[50] A. E. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou, “Hawk: The blockchain
model of cryptography and privacy-preserving smart contracts,” in Proceedings of the 37th
IEEE Symposium on Security and Privacy (Oakland), San Jose, CA, May 2016, pp. 839–858.
[Online]. Available: https://doi.org/10.1109/SP.2016.55

[51] K. Bhargavan, A. Delignat-Lavaud, C. Fournet, A. Gollamudi, G. Gonthier, N. Kobeissi,
N. Kulatova, A. Rastogi, T. Sibut-Pinote, N. Swamy, and S. Z. Béguelin, “Formal verifica t ion
of smart contracts: Short paper,” in Proceedings of the 23rd ACM Conference on Computer
and Communications Security (CCS), Vienna, Austria, Oct. 2016, pp. 91–96. [Online].
Available: http://doi.acm.org/10.1145/2993600.2993611

[52] P. K. Sharma, S. Rathore, and J. H. Park, “Distarch-scnet: Blockchain-based distributed
architecture with li-fi communication for a scalable smart city network,” IEEE Consumer
Electronics Magazine, vol. 7, no. 4, pp. 55–64, 2018. [Online]. Availab le :
https://doi.org/10.1109/MCE.2018.2816745

[53] R. Guo, H. Shi, Q. Zhao, and D. Zheng, “Secure attribute-based signature scheme with
multiple authorities for blockchain in electronic health records systems,” IEEE Access, vol.
6, pp. 11 676–11 686, 2018. [Online]. Availab le :
https://doi.org/10.1109/ACCESS.2018.2801266

[54] D. Rakic, “Blockchain technology in healthcare,” in Proceedings of the 4th Internationa l
Conference on Information and Communication Technologies for Ageing Well and e-Health,
Funchal, Madeira, Portugal, March 2018., 2018, pp. 13–20. [Online]. Availab le :
https://doi.org/10.5220/0006531600130020

[55] E. F. Jesus, V. R. L. Chicarino, C. V. N. de Albuquerque, and A. A. de A. Rocha, “A survey
of how to use blockchain to secure internet of things and the stalker attack,” Security and

Approved for Public Release; Distribution Unlimited.
85

https://doi.org/10.1109/ICWS.2009.50
http://aisel.aisnet.org/hicss-51/in/digital_supply_chain/3
http://aisel.aisnet.org/hicss-51/in/digital_supply_chain/3
https://doi.org/10.1049/iet-com.2017.0619
https://doi.org/10.1049/iet-com.2017.0619
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/centrally-banked-crypt
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/centrally-banked-cryptocurrencies.pdf
https://doi.org/10.5220/0006648801270138
https://eprint.iacr.org/2018/400
https://doi.org/10.1109/SP.2016.55
http://doi.acm.org/10.1145/2993600.2993611
https://doi.org/10
https://doi.org/10.1109/ACCESS.2018.2801266
https://doi.org/10.5220/0006531600130020

Communication Networks, vol. 2018, pp. 9 675 050:1–9 675 050:27, 2018. [Online].
Available: https://doi.org/10.1155/2018/9675050

[56] I. Makhdoom, M. Abolhasan, H. Abbas, and W. Ni, “Blockchain’s adoption in iot: The
challenges, and a way forward,” Journal of Network and Computer Applications, vol. 125,
pp. 251 – 279, 2019. [Online]. Available: http://www.sciencedirect.com/science/article/p ii/
S1084804518303473

[57] E. Heilman, F. Baldimtsi, and S. Goldberg, “Blindly signed contracts: Anonymous on-
blockchain and off-blockchain bitcoin transactions,” in Financial Cryptography and Data
Security - International Workshops, BITCOIN, VOTING, and WAHC, Christ Church,
Barbados, Feb 2016,, 2016, pp. 43–60. [Online]. Available: https://doi.org/10.1007/978-3-
662-53357-4_4

[58] G. G. Dagher, P. B. Marella, M. Milojkovic, and J. Mohler, “Broncovote: Secure voting
system using ethereum’s blockchain,” in Proceedings of the 4th International Conference on
Information Systems Security and Privacy, ICISSP, Funchal, Madeira - Portugal, Jan 2018,
pp. 96–107. [Online]. Available: https://doi.org/10.5220/0006609700960107

[59] F. S. Hardwick, R. N. Akram, and K. Markantonakis, “E-voting with blockchain: An e-
voting protocol with decentralisation and voter privacy,” CoRR, vol. abs/1805.10258, 2018.
[Online]. Available: http://arxiv.org/abs/1805.10258

[60] M. M. Eljazzar, M. A. Amr, S. S. Kassem, and M. Ezzat, “Merging supply chain and
blockchain technologies,” Computing Research Repository (CoRR), vol. abs/1804.04149,
2018. [Online]. Available: https://goo.gl/5wMVJS

[61] M. Zhang and Y. Ji, “Blockchain for healthcare records: A data perspective,” PeerJ
PrePrints, vol. 6, p. e26942, 2018. [Online]. Availab le :
https://doi.org/10.7287/peerj.preprints.26942v1

[62] M. Mettler, “Blockchain technology in healthcare: The revolution starts here,” in 18th
IEEE International Conference on e-Health Networking, Applications and Services, Munich,
Germany, Sep 2016, pp. 1–3. [Online]. Availab le :
https://doi.org/10.1109/HealthCom.2016.7749510

[63] A. Ahmad, M. Saad, M. Bassiouni, and A. Mohaisen, “Towards blockchain-driven, secure
and transparent audit logs,” in ACM International Workshop on Distributed Ledger of
Things(DLoT), in conjunction with International Conference on Mobile and Ubiquitous
Systems: Computing, Networking and Services, MobiQuitous, New York City, NY, USA,
Nov 2018, pp. 443–448. [Online]. Available: https://doi.org/10.1145/3286978.3286985

[64] M. Vieira and H. Madeira, “Benchmarking the dependability of different OLTP systems,”
in International Conference on Dependable Systems and Networks (DSN), June 2003, pp.
305–310. [Online]. Available: https://doi.org/10.1109/DSN.2003.1209940

[65] C. Nikolaou, M. Marazakis, and G. Georgiannakis, “Transaction routing for distributed
OLTP systems: Survey and recent results,” Inf. Sci., no. 1&2, pp. 45–82, 1997. [Online].
Available: https://doi.org/10.1016/S0020-0255(96)00173-9

[66] U. Sirin, A. Yasin, and A. Ailamaki, “A methodology for OLTP micro-architectura l
analysis,” in International Workshop on Data Management on New Hardware, DaMoN,
Chicago, IL. ACM, May 2017, pp. 1:1–1:10. [Online]. Availab le :
https://doi.org/10.1145/3076113.3076116

[67] W. Zhao, L. Qiang, H. Zou, A. Zhang, and J. Li, “Privacy-preserving and unforgeab le
searchable encrypted audit logs for cloud storage,” in International Conference on Cyber

Approved for Public Release; Distribution Unlimited.
86

https://doi.org/10.1155/2018/9675050
http://www.sciencedirect.com/science/article/pii/S1084804518303473
http://www.sciencedirect.com/science/article/pi
https://doi.org/10.1007/978-3-662-53357-4_4
https://doi.org/10.1007/978-3-662-53357-4_4
https://doi.org/10.5220/0006609700960107
http://arxiv.org/abs/1805.10258
https://goo.gl/5wMVJS
https://doi.org/10.7287/peerj.preprints.26942v1
https://doi.org/10.1109/HealthCom.2016.7749510
https://doi.org/10.1145/3286978.328698
https://doi.org/10.1109/DSN.2003.1209940
https://doi.org/10.1016/S0020-0255(96)00173-9
https://doi.org/10.1145/3076113.3076116

Security and Cloud Computing, CSCloud, Shanghai, China, M. Qiu, Ed. IEEE, June 2018,
pp. 29–34. [Online]. Available: https://doi.org/10.1109/CSCloud/EdgeCom.2018.00015

[68] G. Hartung, “Secure audit logs with verifiable excerpts,” in The Cryptographers’ Track at
the RSA Conference, San Francisco, CA, USA, ser. Lecture Notes in Computer Science, K.
Sako, Ed., vol. 9610. Springer, Feb 2016, pp. 183–199. [Online]. Availab le :
https://doi.org/10.1007/978-3-319-29485-8_11

[69] K. H. Lee, X. Zhang, and D. Xu, “Loggc: garbage collecting audit log,” in ACM SIGSAC
Conference on Computer and Communications Security CCS, Berlin, Germany, Nov 2013,
pp. 1005–1016. [Online]. Available: http://doi.acm.org/10.1145/2508859.2516731

[70] J. Margulies, “A developer’s guide to audit logging,” IEEE Security & Privacy, vol. 13,
no. 3, pp. 84–86, 2015. [Online]. Available: https://doi.org/10.1109/MSP.2015.50

[71] R. Luh, S. Marschalek, M. Kaiser, H. Janicke, and S. Schrittwieser, “Semantics-aware
detection of targeted attacks: a survey,” J. Computer Virology and Hacking Techniques, vol.
13, no. 1, pp. 47–85, 2017. [Online]. Available: https://doi.org/10.1007/s11416-016-0273-3

[72] B. Schneier and J. Kelsey, “Secure audit logs to support computer forensics,” ACM Trans.
Inf. Syst. Secur, vol. 2, no. 2, pp. 159–176, 1999. [Online]. Available: https://goo.gl/psvN2a

[73] “Cryptographic support for secure logs on untrusted machines,” in USENIX Security
Symposium, San Antonio, USA, Jan 1998. [Online]. Availab le :
https://www.usenix.org/conference/7th-usenix-security-symposium/cryptographic-support-
secure-logs-untrusted-machines

[74] R. Snodgrass, S. S. Yao, and C. Collberg, “Tamper detection in audit logs,” in Proceedings
of the Thirtieth International Conference on Very Large Data Bases, Toronto, Canada, Aug
2004, pp. 504–515. [Online]. Available: http://www.vldb.org/conf/2004/RS13P1.PDF

[75] I. Ray, K. Belyaev, M. Strizhov, D. Mulamba, and M. Rajaram, “Secure logging as a
service—delegating log management to the cloud,” IEEE systems journal, vol. 7, no. 2, pp.
323–334, 2013.

[76] D. Ma and G. Tsudik, “A new approach to secure logging,” TOS, vol. 5, no. 1, pp. 2:1–
2:21, 2009. [Online]. Available: https://doi.org/10.1145/1502777.1502779

[77] A. A. Yavuz, P. Ning, and M. K. Reiter, “BAF and FI-BAF: efficient and publicly
verifiable cryptographic schemes for secure logging in resource-constrained systems,” ACM
Trans. Inf. Syst. Secur., vol. 15, no. 2, pp. 9:1–9:28, 2012. [Online]. Availab le :
https://doi.org/10.1145/2240276.2240280

[78] H. Hyvärinen, M. Risius, and G. Friis, “A blockchain-based approach towards overcoming
financial fraud in public sector services,” Business & Information Systems Engineering, vol.
59, no. 6, pp. 441–456, 2017. [Online]. Available: https://doi.org/10.1007/s12599-017-0502-
4

[79] F. Holotiuk, F. Pisani, and J. Moormann, “The impact of blockchain technology on
business models in the payments industry,” in Towards Thought Leadership in Digita l
Transformation: 13. Internationale Tagung Wirtschaftsinformatik, St.Gallen, Switzerland,
Feb, 2017., 2017. [Online]. Available: http://aisel.aisnet.org/wi2017/track09/paper/6

[80] International Conference on Software Quality, Reliability and Security Companion, QRS
Companion, Lisbon, Portugal. IEEE, 2018. [Online]. Availab le :
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8424928

[81] D. Derler, K. Samelin, D. Slamanig, and C. Striecks, “Fine-grained and controlled
rewriting in blockchains: Chameleon-hashing gone attribute-based,” IACR Cryptology ePrint
Archive, vol. 2019, p. 406, 2019. [Online]. Available: https://eprint.iacr.org/2019/406

Approved for Public Release; Distribution Unlimited.
87

https://doi.org/10.1007/978-3-319-29485-8_11
http://doi.acm.org/10.1145/2508859.2516731
https://doi.org/10.1109/MSP.2015.50
https://doi.org/10.1007/s11416-016-0273-3
https://goo.gl/psvN2a
https://www.usenix.org/conference/7th-usenix-security-symposium/cryptographic-support-secure-logs-untrusted-machines
https://www.usenix.org/conference/7th-usenix-security-symposium/cryptographic-support-secure-logs-untrusted-machines
http://www.vldb.org/conf/20
https://doi.org/10.1145/1502777.1502779
https://doi.org/10.1145/2240276.22402
https://doi.org/10.1007/s12599-017-0502-4
https://doi.org/10.1007/s12599-017-0502-4
http://aisel.aisnet.org/wi2017/track09/paper/6
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8424928
https://eprint.iacr.org/2019/406

[82] A. Shahaab, B. Lidgey, C. Hewage, and I. Khan, “Applicability and appropriateness of
distributed ledgers consensus protocols in public and private sectors: A systematic review,”
IEEE Access, vol. 7, pp. 43 622–43 636, 2019. [Online]. Availab le :
https://doi.org/10.1109/ACCESS.2019.2904181

[83] X. Yi, T. Yang, J. Wu, and K. H. Johansson, “Distributed event-triggered control for global
consensus of multi-agent systems with input saturation,” Automatica, vol. 100, pp. 1–9, 2019.
[Online]. Available: https://doi.org/10.1016/j.automatica.2018.10.032

[84] M. Wang, M. Duan, and J. Zhu, “Research on the security criteria of hash functions in the
blockchain,” in ACM Workshop on Blockchains, Cryptocurrencies, and Contracts, BCC-
AsiaCCS, Incheon, Republic of Korea, S. V. Lokam, S. Ruj, and K. Sakurai, Eds. ACM, June
2018, pp. 47–55. [Online]. Available: https://doi.org/10.1145/3205230.3205238

[85] M. Saad, V. Cook, L. Nguyen, M. T. Thai, and A. Mohaisen, “Partitioning attacks on
bitcoin: Colliding space, time, and logic,” in IEEE International Conference on Distributed
Computing Systems ICDCS, Dallas, Texas, US, July 2019.

[86] S. Bano, A. Sonnino, M. Al-Bassam, S. Azouvi, P. McCorry, S. Meiklejohn, and G.
Danezis, “Consensus in the age of blockchains,” CoRR, vol. abs/1711.03936, 2017. [Online].
Available: http://arxiv.org/abs/1711.03936

[87] . Sutton and R. Samavi, “Blockchain enabled privacy audit logs,” in International Semantic
Web Conference ISWC, Vienna, Austria, Oct 2017, pp. 645–660. [Online]. Availab le :
https://doi.org/10.1007/978-3-319-68288-4_38

[88] L. Castaldo and V. Cinque, “Blockchain-based logging for the cross-border exchange of
ehealth data in europe,” in Security in Computer and Information Sciences, E. Gelenbe, P.
Campegiani, T. Czachórski, S. K. Katsikas, I. Komnios, L. Romano, and D. Tzovaras, Eds.
Cham: Springer International Publishing, 2018, pp. 46–56.

[89] J. Cucurull and J. Puiggali, “Distributed immutabilization of secure logs,” in Internationa l
Workshop on Security and Trust Management STM Heraklion, Greece, Sept 2016, pp. 122–
137. [Online]. Available: https://doi.org/10.1007/978-3-319-46598-2_9

[90] A. Alghamdi, M. S. Owda, and K. A. Crockett, “Natural language interface to relationa l
database (NLI-RDB) through object relational mapping (ORM),” in Advances in
Computational Intelligence Systems - Contributions Presented at the 16th UK Workshop on
Computational Intelligence, Lancaster, UK, ser. Advances in Intelligent Systems and
Computing, P. Angelov, A. E. Gegov, C. Jayne, and Q. Shen, Eds., vol. 513. Springer, Sept
2016, pp. 449–464. [Online]. Available: https://doi.org/10.1007/978-3-319-46562-3_29

[91] H. Bagheri, C. Tang, and K. J. Sullivan, “Automated synthesis and dynamic analysis of
tradeoff spaces for object-relational mapping,” IEEE Trans. Software Eng., vol. 43, no. 2, pp.
145–163, 2017. [Online]. Available: https://doi.org/10.1109/TSE.2016.2587646

[92] N. Community, “Nhibernate,” 2018. [Online]. Available: http://nhibernate.info/
[93] A. J. Ganesh, A. Kermarrec, and L. Massoulié, “Peer-to-peer membership management for

gossip-based protocols,” IEEE Trans. Computers, vol. 52, no. 2, pp. 139–149, 2003. [Online].
Available: https://doi.org/10.1109/TC.2003.1176982

[94] S. Bano, A. Sonnino, M. Al-Bassam, S. Azouvi, P. McCorry, S. Meiklejohn, and G.
Danezis, “SoK: Consensus in the Age of Blockchains,” 2017,
https://arxiv.org/abs/1711.03936.

[95] D. Crockford, “The application/json media type for javascript object notation (JSON),”
RFC, vol. 4627, pp. 1–10, 2006. [Online]. Available: https://doi.org/10.17487/RFC4627

Approved for Public Release; Distribution Unlimited.
88

https://doi.org/10.1109/ACCESS.2019.2904181
https://doi.org/10.1016/j.automatica.2018.10.032
https://doi.org/10.1145/3205230.3205238
http://arxiv.org/abs/1711.03936
https://doi.org/10.1007/978-3-319-68288-4_38
https://doi.org/10.1007/978-3-319-46598-2_9
https://doi.org/10.1007/978-3-319-46562-3_29
https://doi.org/10.1109/TSE.2016.2587646
http://nhibernate.info/
https://doi.org/10.1109/TC.2003.1176982
https://arxiv.org/abs/1711.03936
https://doi.org/10.17487/RFC4627

[96] J. Huai, R. Chen, H. Hon, Y. Liu, W. Ma, A. Tomkins, and X. Zhang, Eds., Proceedings
of the 17th International Conference on World Wide Web, WWW 2008, Beijing, China, April
21-25, 2008. ACM, 2008.

[97] M. Saad and A. Mohaisen, “Towards characterizing blockchain-based cryptocurrencies for
highly-accurate predictions,” in IEEE Conference on Computer Communicat ions
Workshops, April 2018.

[98] G. Nguyen and K. Kim, “A survey about consensus algorithms used in blockchain,” JIPS,
vol. 14, no. 1, pp. 101–128, 2018. [Online]. Available: https://doi.org/10.3745/JIPS.01.0024

[99] K. Croman, C. Decker, I. Eyal, A. E. Gencer, A. Juels, A. E. Kosba, A. Miller, P. Saxena,
E. Shi, E. G. Sirer, D. Song, and R. Wattenhofer, “On scaling decentralized blockchains,” in
International Workshop on Financial Cryptography and Data Security, Christ Church,
Barbados, Feb 2016, pp. 106–125. [Online]. Available: https://doi.org/10.1007/978-3-662-
53357-4_8

[100] M. Vukolic, “The quest for scalable blockchain fabric: Proof-of-work vs. BFT replication, ”
in International Workshop on Open Problems in Network Security - IFIP WG 11.4 , iNetSec,
Zurich, Switzerland, ser. Lecture Notes in Computer Science, J. Camenisch and D. Kesdogan,
Eds., vol. 9591. Springer, Nov 2015, pp. 112–125. [Online]. Availab le :
https://doi.org/10.1007/978-3-319-39028-4_9

[101] H. Sukhwani, J. M. Martínez, X. Chang, K. S. Trivedi, and A. Rindos, “Performance
modeling of PBFT consensus process for permissioned blockchain network (hyperledger
fabric),” in 36th IEEE Symposium on Reliable Distributed Systems, SRDS 2017, Hong Kong,
Hong Kong, September 26-29, 2017, 2017, pp. 253–255. [Online]. Availab le :
https://doi.org/10.1109/SRDS.2017.36

[102] C. Cachin, “Architecture of the hyperledger blockchain fabric,” in Workshop on
Distributed Cryptocurrencies and Consensus Ledgers, vol. 310, 2016.

[103] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis, A. D. Caro, D. Enyeart,
C. Ferris, G. Laventman, Y. Manevich, S. Muralidharan, C. Murthy, B. Nguyen, M. Sethi, G.
Singh, K. Smith, A. Sorniotti, C. Stathakopoulou, M. Vukolic, S. W. Cocco, and J. Yellick,
“Hyperledger fabric: a distributed operating system for permissioned blockchains,” in
EuroSys Conference, Porto, Portugal, April 2018, pp. 30:1–30:15. [Online]. Availab le :
http://doi.acm.org/10.1145/3190508.3190538

[104] M. Apostolaki, A. Zohar, and L. Vanbever, “Hijacking bitcoin: Routing attacks on
cryptocurrencies,” in Proceedings of the 38th IEEE Symposium on Security and Privacy
(Oakland). San Jose, CA: IEEE, May 2017, pp. 375–392. [Online]. Availab le :
https://doi.org/10.1109/SP.2017.29

[105] I. Abraham and D. Malkhi, “The blockchain consensus layer and BFT,” Bulletin of the
EATCS, vol. 123, 2017. [Online]. Availab le :
http://eatcs.org/beatcs/index.php/beatcs/article/view/506

[106] J. Göbel and A. E. Krzesinski, “Increased block size and bitcoin blockchain dynamics,” in
2017 27th International Telecommunication Networks and Applications Conference
(ITNAC). IEEE, 2017, pp. 1–6.

[107] K. Croman, C. Decker, I. Eyal, A. E. Gencer, A. Juels, A. Kosba, A. Miller, P. Saxena, E.
Shi, E. G. Sirer et al., “On scaling decentralized blockchains,” in International Conference on
Financial Cryptography and Data Security. Springer, 2016, pp. 106–125.

Approved for Public Release; Distribution Unlimited.
89

https://doi.org/10.3745/JIPS.01.0024
https://doi.org/10.1007/978-3-662-53357-4_8
https://doi.org/10.1007/978-3-662-53357-4_8
https://doi.org/10.1007/978-3-319-39028-4_9
https://doi.org/10.1109/SRDS.2017.36
http://doi.acm.org/10.1145/3190508.319053
https://doi.org/10.1109/SP.2017.29
http://eatcs.org/beatcs/index.php/beatcs/article/view/506

[108] S. D. Angelis, “Assessing security and performances of consensus algorithms for
permissioned blockchains,” CoRR, vol. abs/1805.03490, 2018. [Online]. Availab le :
http://arxiv.org/abs/1805.03490

[109] S. Bano, A. Sonnino, M. Al-Bassam, S. Azouvi, P. McCorry, S. Meiklejohn, and G.
Danezis, “Consensus in the age of blockchains,” CoRR, vol.

[110] C. Kolias, G. Kambourakis, A. Stavrou, and J. Voas, “DDoS in the IoT: Mirai and other
botnets,” IEEE Computer, vol. 50, no. 7, pp. 80–84, 2017.

[111] M.-H. Maras, “Internet of Things: security and privacy implications,” International Data
Privacy Law, vol. 5, no. 2, pp. 99–104, May 2015. [Online]. Available:
https://academic.oup.com/idpl/article/5/2/99/645234

[112] A. Dey, K. Stuart, and M. E. Tolentino, “Characterizing the impact of topology on iot
stream processing,” in 2018 IEEE 4th World Forum on Internet of Things (WF-IoT), Feb
2018, pp. 505–510.

[113] M. Crosby, “BlockChain Technology: Beyond Bitcoin,” Applied Innovation Review
(AIR), no. 2, p. 16, 2016.

[114] N. Kshetri, “Can blockchain strengthen the internet of things?” IT Professional, vol. 19,
no. 4, pp. 68–72, 2017.

[115] N. Suri, M. Tortonesi, J. Michaelis, P. Budulas, G. Benincasa, S. Russell, C. Stefanelli,
and R. Winkler, “Analyzing the Applicability of Internet of Things to the Battlefield
Environment,” May 2016

[116] D. K. Tosh, S. Shetty, P. Foytik, L. Njilla, and C. A. Kamhoua, “Blockchain-Empowered
Secure Internet -of- Battlefield Things (IoBT) Architecture,” in IEEE Military
Communications Conference (MILCOM), Oct. 2018, pp. 593–598.

[117] G. Padmavathi and D. Shanmugapriya, “A survey of attacks, security mechanisms, and
challenges in wireless sensor networks,” International Journal of Computer Science and
Information Security, vol. 4, no. 1, 2009.

[118] R. Sepe, “Denial of Service Deterrence,” SANS Institute Information Security Reading
Room, p. 25, 2015

[119] P. Sass, “Communications networks for the force xxi digitized battle- field,” Springer US
Mobile Networks and Applications, pp. 139–155, 1999.

[120] “Four future trends In tactical network modernization.”
https://www.army.mil/article/216031/four future trends in tactical network modernization.
Last Accessed: May 31, 2019.

[121] S. Misra, S. K. Dhurandher, A. Rayankula, and D. Agrawal, “Using hon- eynodes for
defense against jamming attacks in wireless infrastructure- based networks,” Computers &
Electrical Engineering, vol. 36, pp. 367– 382, Mar. 2010.

[122] Z. Zheng, S. Xie, H. Dai, X. Chen, and H. Wang, “An Overview of Blockchain
Technology: Architecture, Consensus, and Future Trends,” in 2017 IEEE International
Congress on Big Data (BigData Congress), pp. 557–564, IEEE, June 2017. event-place:
Honolulu, HI, USA.

[123] L. Yushi, J. Fei, and Y. Hui, “Study on application modes of Military Internet of Things
(MIoT),” in Computer Science and Automation Engineering (CSAE), 2012 IEEE
International Conference on, vol. 3, pp. 630–634, IEEE, 2012.

[124] M. J. Farooq and Q. Zhu, “Secure and reconfigurable network design for critical
information dissemination in the internet of battlefield things (iobt),” in IEEE Intl.

Approved for Public Release; Distribution Unlimited.
90

http://arxiv.org/abs/1805.03490
https://academic.oup.com/idpl/article/5/2/99/645234

Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks
(WiOpt), pp. 1–8, 2017.

[125] N. Abuzainab and W. Saad, “Dynamic connectivity game for adversarial internet of
battlefield things systems,” IEEE Internet of Things Journal, 2017.

[126] M. Tortonesi, A. Morelli, M. Govoni, J. Michaelis, N. Suri, C. Stefanelli, and S. Russell,
“Leveraging internet of things within the military network environment x2014; challenges
and solutions,” in 2016 IEEE 3rd World Forum on Internet of Things (WF-IoT), pp. 111–
116, Dec 2016.

[127] P. P. Ray, “Towards an internet of things based architectural framework for defense,” in
2015 International Conference on Control, Instrumentation, Communication and
Computational Technologies (ICCICCT), pp. 411–416, Dec 2015.

[128] A. Sanjab, W. Saad, and T. Basar, “Prospect theory for enhanced cyber- physical security
of drone delivery systems: A network interdiction game,” in IEEE International Conference
on Communications (ICC), pp. 1–6, May 2017.

[129] O. Bello and S. Zeadally, “Intelligent device-to-device communication in the internet of
things,” IEEE Systems Journal, vol. 10, no. 3, pp. 1172–1182, 2016.

[130] C. Law and K.-Y. Siu, “Distributed construction of random expander networks,” in
INFOCOM 2003. Twenty-Second Annual Joint Conference of the IEEE Computer and
Communications. IEEE Societies, vol. 3, pp. 2133–2143, IEEE, 2003.

[131] H. Bauer, M. Patel, and J. Veira, “Internet of Things: Opportunities and challenges for
semiconductor companies.” https: //www.mckinsey.com/industries/semiconductors/our-
insights/internet- of- things- opportunities- and- challenges- for- semiconductor- companies.

[132] L. Lamport, R. Shostak, and M. Pease, “The Byzantine generals problem,” ACM
Transactions on Programming Languages and Systems (TOPLAS), vol. 4, no. 3, pp. 382–
401, 1982.

[133] M. Castro and B. Liskov, “Practical Byzantine fault tolerance and proactive recovery,”
ACM Transactions on Computer Systems (TOCS), vol. 20, no. 4, pp. 398–461, 2002.

[134] L. Lamport et al., “Paxos made simple,” ACM Sigact News, vol. 32, no. 4, pp. 18–25,
2001.

[135] S. King and S. Nadal, “Ppcoin: Peer-to-peer crypto-currency with proof- of-stake,” self-
published paper, August 19, 2012, 2012.

[136] D. Tosh, S. Shetty, P. Foytik, C. Kamhoua, and L. Njilla, “Cloudpos: A proof-of-stake
consensus design for blockchain integrated cloud,” in 2018 IEEE 11th International
Conference on Cloud Computing (CLOUD), pp. 302–309, IEEE, 2018.

[137] “Introduction — Sawtooth v1.1.4 documentation.” https://sawtooth.
hyperledger.org/docs/core/releases/latest/introduction.html#. Last Accessed: May 31, 2019.

[138] J. Ahrenholz, “CORE Documentation.” https://www.nrl.navy.mil/itd/ncs/products/core.
Last Accessed: May 31, 2019.

[139] D. Mazieres, “The stellar consensus protocol: A federated model for internet- level
consensus.” Stellar Development Foundation, 2015.

[140] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich, “Algorand: Scaling
Byzantine agreements for cryptocurrencies,” in Proceedings of the 26th Symposium on
Operating Systems Principles, pp. 51–68, 2017.

[141] K. Croman, C. Decker, I. Eyal, A. E. Gencer, A. Juels, A. Kosba, A. Miller, P. Saxena, E.
Shi, E. G. Sirer, et al., “On scaling decentralized blockchains,” in International Conference
on Financial Cryptography and Data Security, pp. 106–125, Springer, 2016.

Approved for Public Release; Distribution Unlimited.
91

7 LIST OF ACRONYMS

[1] POW – Proof of Work
[2] IoBT – Internet of Battlefield Things
[3] PBFT – Practical Byzantine Fault Tolerance
[4] IoT – Internet of Things
[5] JSON – Javascript Object Notation
[6] ORM – Object Relational Mapping
[7] CORE – Common Open Research Emulator

Approved for Public Release; Distribution Unlimited.
92

	1. EXECUTIVE SUMMARY
	2. INTRODUCTION
	3. METHODS, ASSUMPTIONS AND PROCEDURES
	3.1 Generalized Consensus Blockchain Simulation Platform
	3.1.1 Methodology
	3.1.2 Establishing Discrete Event Simulator
	A) Performance Metrics
	B) Ideal System
	C) Data Collection
	J) Consensus Layer Modeling

	3.1.3 Implementation
	A) Simulation Data Gathering
	B) Network Layer Implementation
	C) Consensus Layer Implementation
	D) Calibration and Simulation Sensitivity

	3.1.4 Results and Discussion
	A) Network Layer Observations
	B) Consensus Layer Observations
	C) Network Topology Generation
	D) Project Integration with Simulation
	E) PCBChain
	F) Integration
	G) Drone MPC

	3.2 FastChain: Lightweight Blockchain with Sharding for Internet of Battlefield-Things in NS-3
	3.2.1 Introduction
	3.2.2 System Model
	3.2.3 Building Blocks of FastChain Simulator
	3.2.4 Analysis and Discussion
	3.2.5 Conclusion

	3.3 Scalable Blockchain Solutions
	3.3.1 Scalable Blockchain Platform for Auditing
	3.3.2 BlockTrail Design
	A. System Architecture

	3.3.3 Blocktrail Analysis
	A. Transaction Processing and Throughput
	B. Complexity Analysis
	C. Security Analysis
	D. Positioning Malicious Replicas
	E. Countering Targeted Attacks

	B. Experiments and Evaluation
	C. Related Work
	D. Conclusion

	c. Secure Blockchain Platform
	A. Introduction
	B. Background and Threat Model
	C. Related Work
	D. Problem Statement
	E. BlockAudit
	F. Blockaudit Analysis
	G. Experiment and Evaluation
	H. Discussion and Future Work
	I. Conclusion

	3.5 Architecting Blockchain for IoBT and its Performance Evaluation
	3.5.1 Motivation
	3.5.2 Next Generation Battlefield Characteristics
	3.5.3 Background and Related Research
	3.5.4 Blockchain-enabled IoBT Architecture
	3.5.5 Applications of the Blockchain-based IoBT Architecture
	3.5.6 Performance Measurement and Evaluation
	3.5.7 Concluding Remarks

	4 RESULTS AND DISCUSSIONS
	5 CONCLUSIONS
	6 REFERENCES
	7 LIST OF ACRONYMS
	Blank Page
	Blank Page

