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1. Introduction

The problem of determining the electrical conductivity of a computational “mixed
cell” is a challenging one. The result may be strongly affected by the morphol-
ogy (distribution and granularity) of the constituents within the mixed cell, which
nonetheless must be, at a certain level, assumed. The study of conductivity is closely
linked with that of connectivity, since any pathway across a cell that hopes to con-
duct must, in fact, be connected. To this end, in ARL-TR-8899,1 the point-to-point
connectivity of various network lattices were studied as metaphors for the connec-
tivity across a computational cell containing both conducting and insulating mate-
rial. The result, when the conductor was distributed randomly across the network,
was that connectivity exhibits a threshold behavior, as seen in Fig. 1 for a 4×4 net-
work.
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Fig. 1 For a) the given 4×4 network, b) is the likelihood of $-to-- network connectivity �,
expressed as a function of either the local conduction probability 5 or the global conducting
fraction 5̂ of the network links

The implication of Fig. 1 is that, if the fraction of conductors in the network is
below the threshold (approximately 65% for this type of network), the likelihood
of connectivity is quite small. In fact, below a 20% conducting fraction, the 4×4
network provides zero likelihood of connectivity. Beyond the 65% threshold, the
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likelihood becomes very large. Such a result is in line with conclusions from perco-
lation theory.2 Our goal in this report is to use that connectivity result to formulate
a statement on the electrical conductivity of a mixed cell containing an arbitrary
number of species, each with its own value of conductivity. Because of the assump-
tions employed in ARL-TR-8899, we are limited to an analysis in which the species
composing the mixed cell (regardless of their concentration) are considered to be
randomly distributed throughout the cell.

It is said that “current takes the path of least resistance”. This can be restated as
“current takes the path of greatest conductance”. It is on this underlying principle
that we build the model for mixed-cell conductivity presented in this report—when
considering electrical pathways across the mixed cell, it is the most conductive
pathways that govern the flow of current across the cell. Put another way, if an
electron has the choice of two paths across the cell, it will choose the one that is
most conductive.

2. Modeling Conductivity of a Mixed Cell

The � ( 5̂ ) threshold curve of Fig. 1 provides the statistical backbone on which we
develop relations to express the conductivity of a mixed cell. The function � ( 5̂ )
represents the probability of establishing a connected circuit between opposite cor-
ners of a network (in this case, a 4×4 square network of linked nodes), given the
fraction 5̂ of conducting linkages in the network. The numerical values for the � ( 5̂ )
data in Fig. 1 are presented in Table 13 of ARL-TR-8899.1

While, technically, the � ( 5̂ ) function represents the likelihood of corner-to-corner
connectivity across the network, we treat the function as isotropic. In this way, it
may be taken to represent the likelihood of point-to-point connectivity between any
two arbitrary points across the breadth of the mixed cell.

Let us start heuristically in trying to establish a viable method for calculating the
cross-cell conductivity. Consider the simplest of mixed cells, with = = 2 species.
Let the conductivity of species 1 exceed that of species 2 (i.e., ^1 > ^2). Designate
the volume fractions of the species by E 9 , which are constrained by continuity:∑=
9=1 E 9 = 1. The value � (E1) represents the likelihood of establishing connectivity

between two arbitrary edge points that lie across the breadth of the cell, utilizing a
pathway composed solely of species 1. Statistically, therefore, for a cell with a large
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number of pathways across it, � (E1) represents the expected fraction of pathways
composed solely of species 1.

Those pathways that are not composed solely of species 1 must either be composed
solely of species 2 or a combination of species 1 and 2 (we use the symbol ∩ to
denote these combination or “series” pathways, as in 1∩2). Since ^1 > ^2, the con-
ductivity of the 1∩2 pathways will be greater than those of the species-2 pathways.
It is here that we rely on our underlying principle that current will take the path of
greatest conductance—thus, the 1∩2 pathways will always take conductive prece-
dence over species-2 pathways.

With only two species present, � (E1 + E2) ≡ 1, which is to say that, if both (non-
insulating*) species can be traversed, there is a 100% chance of establishing connec-
tivity across the cell. Therefore, we conclude that, while the fraction � (E1) of the
pathways will be composed solely of species 1, all remaining 1 − � (E1) pathways
will be 1∩2 pathways.†

The conductance � of a single-element circuit is defined as � = ^�/;, where � is
the cross-sectional area of the element, ; is the path length across the element, and
^ is the electrical conductivity of the element. We consider each pathway across our
mixed cell as a circuit element. We note that for our idealized network composed
of linkages, the cross section � of all pathways is the same.

While the pathlength ; of individual pathways can vary depending on how much
meandering occurs in the route across the cell, many of the connected pathway
realizations are of comparable length. For example, ARL-TR-8899 reported1 that
the 4×4 grid of Fig. 1 has 184 unique pathways from corner to corner. Of those,
20 are six links long, 36 require eight links, 48 require ten and twelve links each,
and 32 require fourteen links. However, the longer pathways are less probable. So,
while it may be a stretch to assume that all pathlengths are of equal length ;, our

*For the computational models of interest to us, all material species possess some nonzero level
of conductivity.

†Note that we are not saying species-2 pathways do not exist; they have a likelihood of occur-
rence of � (E2). Rather, we are saying that any current traveling from point � to � along a species-2
pathway will always detour into species 1 at every opportunity, even if temporarily. Thus, species-2
pathways play no role in determining the overall conductance of a 1∪2 mixture, for which ^1 > ^2.
The assumption of random distribution of species throughout the cell allows us to discount the hypo-
thetical counter-example where a single node of species-1 material is embedded within a species-2
matrix.
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calculations are greatly simplified by making this assumption nonetheless, leading
to � ∝ ^.

While the conductivity of pathways composed solely of species 1 or 2 are simply
^1 or ^2, respectively, a 1∩2 network pathway can be thought of as a series circuit
in which species-1 linkages are E1/E2 times as likely to appear as those of species 2
(thus, ;1/;2 = E1/E2). The conductivity for these 1∩2 pathways can be derived from
the equation for series conductance, 1/� =

∑=
9=1 1/� 9 , as

^1∩2 =
E1 + E2
E1
^1
+ E2
^2

. (1)

For the case of = = 2 species, it will be the case that E1 + E2 ≡ 1.

We now have, for all relevant varieties of pathways (1 and 1∩2), both the conduc-
tivities (^1 and ^1∩2) as well as the fractions of the overall pathway count they rep-
resent (� (E1) and 1 − � (E1)). These pathways operate in parallel and thus the rule
for parallel conductance applies, in which � =

∑=
9=1�8, leading to the conclusion

that, for a mixture of two species,

^ = ^1∪2 = � (E1)^1 +
[
� (E1 + E2) − � (E1)

]
^1∩2 (^1 > ^2) , (2)

where the notation 1∪2 refers to the set of all parallel pathways of conduction that
incorporate species 1 and 2—namely, those that solely employ species 1 or 2, as
well as those that simultaneously incorporate both species 1 and 2 (that is to say,
{1∪2} = {1, 2, 1∩2}). For a two-species mixture, � (E1 + E2) ≡ 1. Introducing the
notation

�1∪2 = � (E1 + E2) , (3)

we may write Eq. 2 more compactly as

^ = ^1∪2 = �1^1 +
[
�1∪2 − �1

]
^1∩2 (^1 > ^2)

This result for ^1∪2 is plotted in Fig. 2, for three initial values of ^1/^2, with � ( 5̂ )
provided as a reference. This figure exhibits all the desired properties:

• when E1 = 0, ^ = ^2,

• when E2 = 0, ^ = ^1,
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• the behavior of ^1∪2 is monotonic as the volume fraction ratio is changed,

• 3^/3E1 → 0 in the vicinity of E1 → 1 (implying that the introduction of small
quantities of species 2 are conductively bypassed),

• the trend (shape) in ^ (conductivity) is similar to the trend in � (connectivity),
and

• as ^2 → 0 (i.e., insulating), the behavior of ^ approaches that of �, such that
3^/3E1 → 0 in the vicinity of E1 → 0, if and only if ^2 � ^1.
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Fig. 2 The net conductivity ^1∪2 of a two-species mixed cell, as a function of the volume fraction
E1, for different ratios of ^2/^1, in both a) linear and b) semilog scales. Reference curve, � ( 5̂ ),
provided for comparison.

It is imperative to understand that one of the principal approximations, in what
has been presented to this point, is the assumption that all 1∩2 pathways (those
involving species 1 and 2 in series) are characteristically identical. This is true not
only of the estimate for pathlength, from which we infer � ∝ ^, but also for the
uniformity of ratio ;1/;2 that is taken to apply to all 1∩2 pathways, which allows a
uniform value of ^1∩2 to be calculated.
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The Tyranny of Geometric Combinations

It has been said, “In theory, theory and practice are the same. In practice, they
are not.”3 When there are multiple species that occupy a mixed cell, one should, in

theory, consider all the possible conductive pathways across the cell. Unfortunately,
this approach necessarily entails a method that incorporates the combinations of
those species (including the partial combinations).

When there are three species, pathways will come in a greater number of vari-
eties, composed of the following material combinations: 1, 2, 3, 1∩2, 2∩3, 1∩3,
and 1∩2∩3—seven pathway types in total. For four species: 1, 2, 3, 4, 1∩2, 1∩3,
1∩4, 2∩3, 2∩4, 3∩4, 1∩2∩3, 1∩2∩4, 1∩3∩4, 2∩3∩4, and 1∩2∩3∩4—15 pathway
varieties total. We deduce that for = species in a cell, there are 2= − 1 unique mate-
rial combinations that make up the pathway varieties. As the number of mixed-cell
species grows, the pathway combinations can quickly become unmanageable.

In the mixed cell previously considered, composed of two species, there are com-
binatorically three pathway types: 1, 2, and 1∩2. However, on the basis of heuristic
argument, we were able to eliminate species-2 pathway types from consideration.
Therefore, in practice, we would like to avoid any procedure that requires the full
combinatorial enumeration of all possible pathways, even if the resulting practice
involves a further measure of approximation.

3. Approximately Modeling Conductivity of a Mixed Cell

To aid the algorithm that we now propose, when considering an arbitrary number
of material species in a mixed cell, we choose to order the species from greatest
conductivity to least conductivity, in the manner of Fig. 3.

At the risk of sacrificing some accuracy, we propose an approach to avoid the ne-
cessity of exhaustively considering all the material combinations that can compose
a given pathway.

For the hypothetical situation summarized in Fig. 3, the preferred path of conduc-
tion (that of least resistance) would traverse those pathways composed solely of
species 1, the most conductive material. The conductivity of those pathways is sim-
ply ^1. However, the overall fraction of such pathways, � (E1) = �1, may be quite
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Fig. 3 An expression of the conductivities ^ 9 and volume fractions E 9 of the species within
a given mixed cell, where the species have been organized in the order of most conductive
(species 1) to least conductive (species = = 4)

small, especially if the volume fraction E1 of that constituent is below the proba-
bilistic threshold value alluded to in Fig. 1b.

The next most conductive pathway sets across the cell will generally be those com-
posed solely of species 1 and 2 in series (i.e., the 1∩2 pathways, which we know
will always be more conductive than the species-2 pathways). The approximation
proposed here is to neglect the possibilities by which the 1∩3 pathway conductivity
equals or exceeds that of 1∩2, even as ^3 ≤ ^2.*

With this approximation in place, the number of pathway types to be considered for
a mixed cell of = species reduces from 2= − 1 to merely =. For = = 3, the viable
pathways are now 1, 1∩2, and 1∩2∩3; the 1∩3 inversion, if it exists, is essentially
subsumed into the 1∩2∩3 pathways. For = = 4, the viable pathways become 1, 1∩2,
1∩2∩3, and 1∩2∩3∩4.

*There can exist situations when ^3 = ^2, for which both 1∩2 and 1∩3 pathways are conduc-
tively uniform and thus equally viable in reality, but for which the current method will still prefer
the 1∩2 pathways.

Likewise, when E3 < E2 and ^3 ≈ ^2 − Y, the 1∩3 pathways can result in a larger value of
conductivity than 1∩2 pathways (and are thus electrically preferable). However, because E3 must be
small for this inversion to arise, the net fraction of 1∩3 pathways will likewise be small (taking a
value of �1∪3 − �1), so that [we hope] the error introduced by ignoring this unusual inversion will
be negligible.

See the Appendix for more discussion of conductively uniform as well as inverted pathways.
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The net conductivity for 1∩2 pathways can be directly obtained from Eq. 1; how-
ever, note that the difference in the current application of Eq. 1 is that, when = > 2,
E1 + E2 < 1. The conductivity associated with pathways that traverse species 1
through 9 can be generalized (for all 9 > 0) as

^1∩···∩ 9 =

9∑
8=1
E8

9∑
8=1

E8

^8

. (4)

As with Eq. 1, the generalized Eq. 4 follows directly from the basic definitions of
series conductance �, in which 1/�series =

∑
1/�8, where � = ^�/;.

To formulate the net conductivity for the multi-species mixture, not only is the
conductivity needed for each of the pathway types (available via Eq. 4), but the
fraction of the overall conducting pathways that each type comprises is needed, as
well.

With the simplification afforded by our approximation that prohibits inversions,
these fractions become straightforward to calculate:

�1∩···∩ 9 = �1∪···∪ 9 − �1∪···∪ 9−1 , (5)

where Eq. 3 may be generalized as

�1∪···∪ 9 = �
(∑ 9

8=1 E8

)
. (6)

These different sets of pathways across the cell coexist as parallel circuits. There-
fore, the conductance that arises from the sum of the connectable pathways is ob-
tained by adding the conductances of all the pathways (i.e., �parallel =

∑
�8). In

assuming that each pathway is of comparable pathlength and cross-sectional area,
we deduce that the conductivity is likewise derived as a weighted sum of the path-
way conductivities. The mixed-cell conductivity ^ can thus be generalized across a
mixed cell of = species as

^ = ^1∪···∪= =
=∑
9=1

�1∩···∩ 9 ^1∩···∩ 9 . (7)
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The set of equations (Eqs. 4–7) represent the approximate model put forth here
for the electrical conductivity of mixed computational cells, where the statistically
based � ( 5̂ ) function is provided from a suitable external source, such as that in
Fig. 1.

This model embodies characteristics of both series and parallel circuitry. The con-
ductivity of individual pathways, ^1∩···∩ 9 , defined in Eq. 4 and employed in Eq. 7,
is derived for conduction through a series of material species peculiar to that path-
way. Nonetheless, the summation in Eq. 7 represents the parallel nature of the con-
ductivity circuit, in which different conductive pathways contribute to the overall
conductance across the mixed cell.

4. Example with Three Species

To demonstrate the results of this model, when there exist more than two species of
material within the mixed cell, we consider the following problem as an example.
There are three species, with the following respective conductivities (ordered from
largest to smallest), as shown in Table 1. We use the approach provided by Eqs. 4–7
to estimate the electrical conductivity of this material set for various combinations
of E1, E2, and E3.

Table 1 Conductivities of three material species in mixed cell for the sample problem

9 ^ 9

1 1.0
2 0.6
3 0.01

We present the resulting conductivity “map” in Fig. 4. This figure is similar to that
shown previously for two species in Fig. 2, in that the net electrical conductivity, ^,
is presented as a function of species-1 volume fraction E1. However, to account for
the extra species in Fig. 4, we present multiple curves, parameterized such that each
colored curve corresponds to a fixed value of E2 (taking on E2 values of 0, 0.2, 0.4,
0.6, and 0.8; the value of E2 = 1, not shown, would result in a single point solution
at (0, 0.6) on the graph). The black curves in Fig. 4 correspond to the extremum
cases, wherein E2 = 0 and E3 = 0, respectively. The slight overlap (rather than
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asymptote) of the colored curves with the extremum, E3 = 0, is an artifact related to
the topic of conductive inversion, discussed in the Appendix.

Whereas, in Fig. 2, we deduce that E2 = 1 − E1, we have, in the case of Fig. 4, that
E3 = 1 − E1 − E2. In both cases, these are statements of =-species continuity.
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Fig. 4 Example conductivity map, with three material species, of conductivities 1.0, 0.6, and
0.01, respectively

5. Conclusion

In this report, we presented a model to estimate the net conductivity of a mixed
computational cell. An important basis for the model is the function � ( 5̂ ), the prob-
abilistic likelihood of achieving point-to-point connectivity across a finite network
of conductors and insulators, which is used as a metaphor for a mixed cell. This
function, which was detailed in ARL-TR-8899,1 is presently used to provide the
weights assigned to the conductivities of various electrical-pathway configurations.

For each relevant pathway configuration (defined by the material species that com-
pose it), the model estimates the local conductivity as well as the fraction of the
total pathways constituted by the particular configuration. The material species that
constitute a given pathway configuration are taken to represent a set of series elec-
trical pathways, whereas the pathways of each different material configuration are
assumed to operate in parallel with the other configurations.
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The model does entail assumptions:

• A mixed cell is treated as a metaphorically equivalent electrical network (in-
trinsic to the use of the � ( 5̂ ) function1).

• The underlying connectivity function, � ( 5̂ ), is assumed to be spatially isotrop-
ic.

• The various electrical pathways across the network are nominally treated as
having identical pathlength, even though we know this to be not strictly true.

• Current chooses pathways of least resistance.

• All 1∩ . . .∩ 9 pathways (pathways including each of the species 1 through 9)
are uniformly conductive, which allows the solution to be expressed in terms of
series, rather than integrals.

• If two species in a mixed-cell possess identical conductivity, they are nonethe-
less treated distinctly, rather than combined as a single pseudo-species (see the
discussion of conductive uniformity in the Appendix).

• In a matrix of high-conductivity material, a pathway containing a small frac-
tion of low-conductivity inclusion will never take conductive preference over
a pathway with a larger fraction of moderately conductive material (see the
discussion of conductive inversion in the Appendix).

The model, under these assumptions, constitutes a set of four algebraic equations
(Eqs. 4–7), used to estimate the net conductivity of the mixed cell. In these equa-
tions, properties of the species within the mixed cell are weighted and summed to
achieve the net result. The model is formulated to simultaneously exhibit properties
of both series (multi-material pathways) and parallel circuits (different pathways
for different material combinations).

The behavior of the model is in accordance with expectations, in that it limits to the
proper values with expected slopes as material concentrations vary; monotonically
varies with material concentrations; and follows the behavior of the � ( 5̂ ) function
for the case of a two-species mixture, in which one of the species approaches the
behavior of a perfect insulator. It is the author’s hope that the model may provide
some utility for computational methods requiring the calculation of electrical con-
ductivity in mixed computational cells.
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A.1 Conductive Uniformity

By conductive uniformity, we refer to the situation where two species in a mixed
cell share the same value of conductivity. For discussion, let us say that species
2 and 3 in a mixed cell share a common conductivity, even though they may be
different materials. Logically, this would indicate that, after species-1 pathways,
the next most preferable should really be 1∩(2∪3) pathways rather than separate
1∩2 or 1∩3 pathways.

Because the method adopted forces the consideration of separate 1∩2 and 1∩3 path-
ways, the answer will differ from that in which species 2 and 3 act in concert. Con-
sider an example containing four species, in which species 2 and 3 share the same
conductivity, as shown in Table A-1.

Table A-1 Example mixed cell to demonstrate the effect of conductive uniformity

8 E8 ^8

1 0.4 1.0
2 0.3 0.8
3 0.1 0.8
4 0.2 0.1

versus

8 E8 ^8

1 0.4 1.0
2∪3 0.4 0.8

4 0.2 0.1

The report proposes an algorithm in which the conductively uniform species are
treated separately, as shown in Table A-2. By comparison, one could argue that the
proper way to treat the situation is to treat the conductively uniform species as a
joint species, such as that shown in Table A-3.

Table A-2 Net conductivity using the proposed algorithm, in the presence of a conductively
uniform species

9
9∑
8=1
E8 �1∪···∪ 9 �1∩···∩ 9 ^1∩···∩ 9 ^1∪···∪ 9

Eq. 6 Eq. 5 Eq. 4 Eq. 7

1 0.40000 0.02345 0.02345 1.00000 0.02345
2 0.70000 0.72258 0.69913 0.90323 0.65493
3 0.80000 0.91198 0.18940 0.88889 0.82328
4 1.00000 1.00000 0.08802 0.34483 0.85363

Table A-3 Net conductivity when conductively uniform species (2 and 3) combine pathways

9
9∑
8=1
E8 �1∪···∪ 9 �1∩···∩ 9 ^1∩···∩ 9 ^1∪···∪ 9

Eq. 6 Eq. 5 Eq. 4 Eq. 7

1 0.40000 0.02345 0.02345 1.00000 0.02345
2∪3 0.80000 0.91198 0.88853 0.88889 0.81326

4 1.00000 1.00000 0.08802 0.34483 0.84361
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The right-most column, labeled ^1∪···∪ 9 , associated with Eq. 7, represents the partial
accumulations of conductivity from each of the different pathways, culminating
in the total conductivity, boxed in the final row entry. Most of the conductivity is
accumulated from the pathway whose

∑
E8 passes the conductivity threshold of

Fig. 1 (approximately,
∑
E8 = 0.65). As can be seen from Tables A-2 and A-3, the

net conductivity using the two different approaches gave the nearly identical results
of 0.85 and 0.84, respectively. This result is supportive toward a claim of suitability
for the approach proposed in the report.

A.2 Conductive Inversions

The method proposed in this report orders = viable pathways of electrical conduc-
tion, denoted as 1, 1∩2, . . . , 1∩ · · · ∩=, containing = species that have been pre-
ordered from highest to lowest conductivity. This will result in pathways that are
also ordered from most to least conductive (which is the goal). However, if one
considers pathways composed of all possible species combinations (of which there
are 2= − 1, rather than the = employed by the proposed method), there can arise
situations in which a conductively preferable pathway is not chosen by the pro-
posed method. We refer to these unexpectedly preferable pathways as “conductive
inversions”.

Consider, for example, the mixed-cell distribution described in Table A-4. While the
individual species, 1–4, are numbered in order of decreasing conductivity, we can
show that, because of the low volume fraction of species 3, the 1∩3 pathway will
actually be conductively preferable to the 1∩2 pathway. This “inversion” is ignored
by the proposed method of this report. Yet, we wish to understand the extent of the
difference when accounting for versus ignoring the inversion in the calculation of
electrical conductivity.

Table A-4 Example mixed cell to demonstrate the effect of conductive inversion

8 E8 ^8

1 0.4 1.00
2 0.3 0.80
3 0.1 0.75
4 0.2 0.10
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If we use the approach proposed in this report, we ignore the inversion and calculate
the cell’s net conductivity using Eqs. 4–7. The result of that approach is shown in
Table A-5. The predicted conductivity of the mixed cell, using the proposed method,
is 0.852.

Table A-5 Net conductivity using the present algorithm, which ignores the presence of con-
ductive inversion

9
9∑
8=1
E8 �1∪···∪ 9 �1∩···∩ 9 ^1∩···∩ 9 ^1∪···∪ 9

Eq. 6 Eq. 5 Eq. 4 Eq. 7

1 0.40000 0.02345 0.02345 1.00000 0.02345
2 0.70000 0.72258 0.69913 0.90323 0.65493
3 0.80000 0.91198 0.18940 0.88073 0.82174
4 1.00000 1.00000 0.08802 0.34483 0.85200

On the other hand, if we wish to account for the inversion, a different procedure is
required. We must first tabulate all 24 − 1 = 15 pathway combinations and order
them in rank of decreasing conductivity, as shown in Table A-6. Then, a number of
pathways can be excluded on the basis that the species that compose them would
instead be incorporated into more conductive (preferred) alternatives. For example,
species 2 is subsumed into 1∩2 pathways, rather than simple species-2 pathways.
Likewise, 2∩3 pathways are preferentially incorporated as 1∩2∩3 pathways.

Table A-6 Net conductivity accounting for the presence of conductive inversion

{�} ∑
8∈�

E8 �∪� �∩� ^∩� ^∪�

1 0.40000 0.02345 0.02345 1.00000 0.02345
Inversion→ 1,3 0.50000 0.12720 0.10375 0.93750 0.12072

1,2 0.70000 0.72258 0.69913 0.90323 0.75219
1,2,3 0.80000 0.91198 0.08565 0.88073 0.82763

2 0.30000 0.00162 — 0.80000 12 preferred
2,3 0.40000 0.02345 — 0.78689 123 preferred

3 0.10000 0.00000 — 0.75000 123 preferred
1,2,3,4 1.00000 1.00000 0.08802 0.34384 0.85789

1,2,4 0.90000 0.98612 — 0.32432 1234 preferred
1,3,4 0.70000 0.72258 — 0.27632 1234 preferred

1,4 0.60000 0.40098 — 0.25000 1234 preferred
2,3,4 0.60000 0.40098 — 0.23920 1234 preferred

2,4 0.50000 0.12720 — 0.21053 1234 preferred
3,4 0.30000 0.00162 — 0.14063 1234 preferred

4 0.20000 0.00000 — 0.10000 1234 preferred
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Once these exclusions are made, the ordered set of pathways that remain are the
conductive pathways that constitute the mixed cell. In our example, there is a 1∩3
inversion with a higher conductivity than either 1∩2 or 1∩2∩3 pathways. Any
percentage of paths arising for the 1∩3 inversion (�1∩3) are essentially borrowed
from the available reservoir of 1∪2∪3 paths. Thus, in comparison to Table A-5, the
fraction of 1∩2∩3 paths (0.18940) is diminished by the value of 1∩3 inversions
(0.10375), leaving only a fraction of 0.08802 1∩2∩3 pathways in the allocation of
Table A-6.

Despite the presence of this inversion, the net result on the calculated conductivity,
when accounting for the inversion, is quite small, raising the conductivity from
0.852 to only 0.858. This result is, again, supportive toward a claim of suitability
for the approach proposed in the report.

A proper resolution would involve integrations in E, rather than summations in E8,
in Eqs. 4–7. It would follow along the lines of

^∪ =

∫ 1

0
^∩ 3� =

∫ 1

0
^∩(E)

3�

3E
3E .

However, such an approach would defeat the simplicity required to achieve an al-
gebraic mixed-cell conductivity model. The result is that we are forced to accept
some approximation brought about by assuming pathway uniformity (e.g., wherein
we assume that all 1∩ . . .∩ 9 pathways are uniformly conductive, in the manner of
Eq. 4).
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