Imagination is more important than knowledge.

Albert Einstein

SMALLSAT RELIABILITY: ISSUES AND SOLUTION APPROACHES

Presented by Michael Johnson
Chief Technologist
Applied Engineering and Technology Directorate
NASA Goddard Space Flight Center

Findings derived from public-private collaboration

Pacific Operational Science and Technology Conference
9 March 2017
Finding:
“SmallSat” and “credible science” are consistent.

However...
Expectation: The Mission Will Succeed

Goddard’s mission success performance informs our success posture
- And is inconsistent with historical CubeSat mission success

Successes = 272
Launch Vehicle Failures = 32
Spacecraft Failures = 12

Since 1974:
Successes = 163
Launch Vehicle Failures = 14
Spacecraft Failures = 1

WIRE instrument failure. GSFC bus functioned successfully.
SmallSat Missions: Reliability Challenges

At present, CubeSat components and buses are generally not appropriate for missions where significant risk of failure, or the inability to quantify risk or confidence is unacceptable.


Mission success likelihood is not consistent with most science mission
A statistical analysis of CubeSat on-orbit failure rate derived from

• Non-parametric estimation
• Parametric models
• Developer intuition

Results of a nonparametric reliability estimation with 95% confidence intervals for 1 year in orbit.

Important note: Database is largely populated by single platform mission.
Subsystem contributions to CubeSat failure after ejection (incl. DOA), and 30 days

DOA- dead on arrival

Data derived from CubeSat Failure Database and developer interviews

Ref: Martin Langer, Institute of Astronautics, Technical University of Munich, Reliability of CubeSats – Statistical Data, Developers’ Beliefs and the Way Forward, 2016
Personal experiences tie it all together:

- Dellingr 6U development highlighted
  - Numerous “out of the box” subsystem deficiencies
  - Numerous potential development pitfalls

Raising the Curve
Goddard Team Advances SmallSat Reliability

When a tiger team set out to design, build, integrate, and test a large short-box-sized satellite capable of executing NASA-class science, the group didn’t completely appreciate the challenges it would face. It knows now. And because of the experience, Goddard currently is spearheading initiatives to dramatically improve the reliability of small satellite-based systems and missions.

Although the six-unit, or 6U, Dellingr spacecraft is nearly finished and awaiting launch to the International Space Station in June 2017, it took double the time and more funds than budgeted to build a robust CubeSat mission capable of achieving NASA-quality science.

No one, however, is calling the project a failure. Underscoring a Hard Truth

The experience underscored a hard truth, said Michael Johnson, the chief technologist of Goddard’s Applied Engineering and Technology Directorate, who championed the Dellingr pilot project. “In many cases, our desired level of performance wasn’t there,” he said, referring to many small satellite-related components and subsystems offered by commercial vendors. “The Dellingr team encountered more than a handful of technical challenges with components right out of the box that affected the project’s cost and schedule. This wasn’t a theoretical activity. Some of the systems simply did not meet our expectations.”

Created in 1999 by the California Polytechnic State University primarily as a learning tool, the CubeSat platform has grown in popularity among organizations worldwide mainly because they offer less-expensive access to space. Many CubeSats, however, are notoriously unreliable. They are analogous to the early days of the rocket program, with a mission-failure rate exceeding 40 percent, Johnson explained.

Our strength is our weakness.
CubeSats are in the 1960s
Statistically, overall robustness is analogous to the early days of space flight.

Finding: Reliability must be addressed if SmallSats are to achieve their full potential.
SmallSat attribute advantages must be preserved.
Interagency SmallSat Reliability Initiative launched July 2016

Technical Interchange Meeting convened 14-15 February 2017

One component of a public-private national initiative

Historically, it was understood and accepted that "high risk" and "CubeSat" were largely synonymous; expectations were set accordingly.

Their growing potential utility is driving an interagency effort to improve and quantify CubeSat reliability, and more generally, small satellite mission risk.

Goals-

• Secure industry inputs on initial government thoughts on SmallSat mission classifications and mission assurance approaches
• Establish next steps

Attendees: GSFC, JPL, ARC, NASA HQ, NOAA, Los Alamos, Aerospace Corp, Air Force Research Lab, US Special Ops Command, Innoflight, VAACO, Tyvac, Pericle Communications, Spaceflight Industries, Phase Four, Vulcan Wireless, Univ Michigan, Space Dynamics Lab, Blue Canyon, AAC Microtec, Maryland Aerospace, GeoOptics, others
Finding: Focus on Mission Confidence Levels

High Confidence

• You want a system and execution approach that generates HIGH CONFIDENCE when:
  - It is a single vehicle that has got to work (no opportunity to refly)
  - It is a multi-vehicle system that needs every vehicle to work (no vehicle redundancy, no opportunity for a second launch)

• You can achieve HIGH CONFIDENCE through various combinations of:
  – Part, component, and vehicle redundancy
  – EEE parts selection
  – Design practices and margins
  – Previous flight and system experience; heritage
  – Testing (HW and SW) and requirements verification
  – Spares policy
  – Design iterations (e.g. breadboards, engineering models, Qual units, flight units)
Finding: Focus on Mission Confidence Levels, cont.

Low Confidence

- You could say you have a system and execution approach in which there may be LOW CONFIDENCE when:
  - It is a completely new item (system, component, application, environment....) (aka low TRL)
  - It has not been analyzed or tested
  - Operational environment is unknown (e.g. launch vibe, radiation) or unproven (e.g. first flight of launch vehicle)

- Proceeding with a LOW CONFIDENCE approach or component can be acceptable when:
  - It is a demonstration or prototype
  - It is “inexpensive” and another can be made
  - Re-flight is readily available (fly-fail-fix-fly again)
  - Time scales are “fast”
A Public-Private Initiative
TIM Recommendations

Recommendations

• Reliability Subcommittee should:
  – Capture characteristics of missions / systems for which HIGH CONFIDENCE is expected
  – Capture characteristics of missions systems for which LOW or MEDIUM CONFIDENCE is acceptable
  – Outline priorities for increasing the confidence level of a component, system, or approach

• Proposed output (Guideline Document):
  – Decision criteria for when to use Guidelines as opposed to NASA and other Standards (7120, INST-002...)
    • Some missions, especially NASA deep space, may use CubeSats / SmallSats but effectively still be “Class D” or above (?)
  – Focus on RAPID SPACE
    • Fast, cheap, “failure is acceptable” missions
“SmallSat” and “credible science” are consistent.

However... CubeSat reliability is a barrier to achieving full SmallSat potential.

- The public-private Reliability Initiative targets this challenge
  - Must fix it without diminishing SmallSat advantages
  - Novel approaches are waiting to be discovered or employed
- CubeSat advancement will impact SmallSats
  - SmallSats could be developed using CubeSat components and subsystems, but will not have the CubeSat form factor
- SmallSat advancement will impact large satellites

Disruption is ongoing
Thank you.