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INTRODUCTION 

Advances in computer vision and machine learning have demonstrated techniques that can identify 
hazards, classify objects, detect features of interest, and perform many other autonomous tasks in 
cluttered, static scenes. Such techniques are suitable for stationary surveillance systems or for robotic 
vehicles that operate fairly slowly (such as tracked or wheeled vehicles, which typically drive slowly or 
stop in order to perceive their environment) or that operate at long distances from objects in their 
environment (such as unmanned aerial vehicles and quadrotors). These systems cannot perform well (or 
at all) in unknown and highly dynamic scenes. 

Additionally, many mobile robot platforms are severely constrained in size, weight, and power (SWaP). 
Contemporary perception systems are based on very greedy algorithms that are computationally 
demanding. The real-time mobility requirements of these platforms demand that computation be 
performed locally, at the edge. As such, significant power is dedicated to the computation resources that 
exceed the low SWaP needs, therefore, new approaches must be investigated to achieve the needed low 
SWaP and real-time perception capabilities of future mobile robotic systems.  

As the corporate research center for the Navy, the US Naval Research Laboratory (NRL) has a long 
heritage of investigating solutions to the Navy’s need of advancing autonomous robotic systems on the 
battlespace. NRL’s lessons learned from developing aerial, underwater, surface, ground and space robotic 
systems confirms the need of realizing low SWaP real-time perception capabilities on mobile robotic 
systems. This is consistent with the vision detailed in the 2018 National Defense Strategy which states,  

“we cannot expect success fighting tomorrow’s conflicts with yesterday’s weapons or 
equipment…we must invest in modernization of key capabilities…  

The Department will invest broadly in military application of autonomy, artificial 
intelligence, and machine learning…to gain competitive military advantages.”  

As we mature Edge Computing based real-time scene understanding, system autonomy will evolve to 
reduce human labor for system command and control. Thus humans shift from command and control to 
supervising the system.  

OBJECTIVE 

The objective of this work unit was to investigate the application of new brain-inspired neuromorphic 
computing technology and deep/convolutional neural networks (CNN) to develop real-time low SWaP 
scene understanding capabilities for mobile robotic systems. Specifically, we sought understanding of the 
relationships between the perception task, CNN-based algorithms, and the constraints of neuromorphic 
systems and to derive principles of CNN design for neuromorphic architectures. 

___________
Manscript approved May 19, 2020.
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DEVELOPMENTS 

We chose the use case of a small high-speed ground robot that was tasked with providing surveillance of 
an area where only coarse waypoints were provided. The environment was assumed to have significant 
environmental uncertainty between the waypoints. Standard RGB camera data was streamed from the 
ground robot and sent to the IBM TrueNorth neuromorphic processor to be analyzed.  

We investigated a series of CNN-based perception algorithms that were developed for and deploy on to 
the TrueNorth neuromorphic processor. A short description of each algorithm follows. (Details related to 
these algorithms can be found in the papers listed in the Publications Section.) 

ControlNet 

Our initial IBM TrueNorth based CNN classifier enabled reactive behavioral control of a Pioneer robot 
navigating around obstacles as it moved through an area. This was tested in an indoor playpen area as 
shown in Figure 1. This neuromorphic reactive controller successfully identified obstacles and generated 
motor commands to avoid them.  

Figure 1: Pioneer robot and playpen test area for the neuromorphic reactive controller, ControlNet. 

OluNet/TerrainNet 

Our second-generation perception algorithm classified outdoor image patches into one of three classes, 
{concrete, grass, asphalt}. Higher level logic then determined appropriate motor control behavior to keep 
the robot on concrete surfaces. The controller was again deployed to the TrueNorth to control a Pioneer 
robot. Figure 2 illustrates part of the path that the Pioneer followed around the NRL campus using 
OluNet. The controller failed at a few points illustrated in red (i.e. at concrete crossroads and when a 
concrete sidewall was present). However, the robot successfully navigated along the green regions of the 
path. Details of this effort are documents in [Sullivan, February 2019]. 

Figure 2: The path followed by the Pioneer robot using OluNet running on the IBM TrueNorth neuromorphic processor (left). An 
image showing the sub-patches passed to the TrueNorth for classification. The green patches are identified as grass, while the 

blue patch is classified as concrete. 
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Foveated Input to Deep Networks 

Based on our experiences with OluNet/TerrainNet, a biologically inspired foveation approach was 
investigated to reduce the size of the input image to (1) reduce the number of neuromorphic cores 
required and (2) improve the amount of time needed to train.  This was experimentally demonstrated on a 
deep convolutional network suitable to be run on the IBM TrueNorth. Figure 3 illustrates how a 
traditional images can be foviated such that more “attention” or priority is given to the central region of 
the viewing plan. This initial study, documented in [Lawson, 2018], found that the log-polar foviation 
strategy significantly increased the accuracy of the terrain being classified by OluNet.  

Figure 3: Log-polar foviation of an image. 

AriNet 

In an effort to improve upon the OluNet navigation controller, the AriNet controller was developed. This 
network took a different approach. Terrain was now classified as {passable, non-passable}. The 
neuromorphic terrain classifier constituted the “low level” controller and was integrated with a “high 
level” GPS waypoint following controller. Since the GPS waypoints were intentionally defined as very 
course, many obstacles and non-passable terrain was experienced by the low-level controller between the 
waypoints. At a waypoint, the higher level GPS controller would take over and orient the low level 
controller toward the next waypoint. A significant speed increase was observed when the robot was under 
neuromorphic navigation control. Figure 4 illustrates the Packbot robotic system (left) and the path 
around NRL campus (right). Analysis and results of this study are documented in [Sullivan, March 2019] 

Figure 4: Packbot being controlled by AriNet (left), path to be traversed (right) 
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PUBLICATIONS 

W. Lawson, K. Sullivan, C. Bradel, O. Roy, E. Bekele, “Biologically Inspired Foveate Robot Vision”,
Association for the Advancement of Artificial Intelligence (AAAI) Fall Symposia, 2018, Washington,
DC.

K. Sullivan, W. Lawson, J. Hays, “Neuromorphic Computing Used for Terrain Classification in Order to
Guide an Autonomous Robot”, The Third Annual Workshop on Naval Applications of Machine Learning,
11–14 February 2019, San Diego, California.

K. Sullivan, W. Lawson, J. Hays, “Neuromorphic Robot Perception for Autonomous Control”, Neuro
Inspired Computational Elements Workshop, 26–29 March 2019, Albany NY.

TOWARD ONLINE LEARNING 

The developments of ControlNet, OluNet and AriNet revealed the need to be able to continue learning 
online, or, to provide the robot with the ability to recognize when it is in a state that it does not 
confidently know what to do and then to ask for input. Once user input is received, the intent is to update 
the proper learned behaviors online and expand the systems navigation capabilities.  

Much of this work unit was consumed in: (1) get access to both IBM TrueNorth neuromorphic hardware, 
(2) working with IBM and Intel to mature their software support to be able to solve problems of the size
required by mobile robots. All published developments from this work unit are based on the IBM
TrueNorth. This is an online inference-only device, meaning, all learning is carried out offline.

Unlike the IBM TrueNorth, the Inel Loihi neuromorphic processor has online learning cababilities. The 
team has successfully prototyped an initial Intel Loihi-based AriNet (initially developed for the IBM 
TrueNorth) but the current software support does not allow the network to span multiple chips. Therefore, 
the network was decimated down to an unusable size but proved that the Loihi was performing inference. 
Multichip spanning capabilities are yet to come online for NRL to be able to continue this invesigation.  
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SUMMARY OF KEY ISSUES/FINDINGS IN NEUROMORPHIC COMPUTING FROM AN 
APPLICATIONS PERSPECTIVE 

The following includes a summary of key issues, or findings, learned during our developments in this 
work unit. This summary clearly illustrates that the Neuromorphic Computing community still has a 
number of challenges ahead before it will be more broadly adopted. These issues/findings include: 
• Current neuromorphic hardware:

o Does not allow for large/complex networks
o Is very limited in types of network layers (doesn’t support common layers such as LSTM,

skip connections, etc.)
• General availability of neuromorphic hardware is still in question

o Are any of the current research-grade chips going to be productized and generally available in
a year? In three years? This is still a high-risk factor.

• Sensor-to-chip-to-actuator I/O performance improvements are needed
o Current technology has unacceptably poor latency and bandwidth for many robotic

applications
• Algorithmic needs include:

o Advancements in unsupervised/meta online learning
o Advancements that enable engineered online learning systems to be verifiably safe

• What is the temporal relationship of I/O data to encoding (e.g. is there a needed “presentation” time
when simulating spiking neural networks (SNN))

• Low SWAP neuromorphic technology needs to be developed to expand out to the periphery
o Too much power-hungry electronics are still required for a deployed neuromorphic system

“in the wild”.
o Advancements in neuromorphic sensors (beyond DVS cameras) are needed, for example:

strain-gauges, angle encoders, rate gyros, accelerometers, touch sensors, etc… Some work is
being investigated for analog-to-digital and digital-to-analog converters to produce/consume
spikes directly (similar in spirit to the DVS sensor). This would help produce lower SWAP
periphery electronics.

• The neuromorphic community:
o Requires specialized knowledge and is at risk to be able to transition to the larger Machine

Learning and Robotics communities who do not have this specialize knowledge
o Is struggling to define an undisputed advantage of applying neuromorphic computation over

other low SWAP Von Neumann solutions.
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ROBUST ARTIFICIAL INTELLIGENCE FOR NEUROROBOTICS (RAI-NR 2019) 
WORKSHOP 

RAI-NR 2019 (https://blogs.ed.ac.uk/rai-nr/) was held on 26-28 August 2019 at the University of 
Edinburgh, Scotland. This event was a direct outgrowth of this Work Unit (IT015-09-41-1G25) and was 
seed funded by codes 8200 and 5500 from NRL through the Collaborative Science Program (CSP) of 
ONR-G (UK office).  

RAI-NR 2019 explored issues of reliability, safety and resource efficiency in the context of how emerging 
neural network and other neuromorphic technologies could address these requirements in realistic 
applications.   

The proceedings of the workshop will appear in a special issue of the Frontiers Journal of Neurorobotics 
(https://www.frontiersin.org/research-topics/11012/robust-artificial-intelligence-for-neurorobotics) of 
which the NRL research team associated with Work Unit (IT015-09-41-1G25) are guest content editors. 

CONCLUSION 

A number of key issues have been itemized in this report reflecting the current state-of-the-art in regards 
to that application of neuromorphic processing technology to mobile robotic perception tasks. This 
technology is still very immature but shows promise if the recorded limitations can be overcome. If 
realized, high performance low-SWaP processing can be realized. DoD mobile robotic systems are in 
great need of a high performance low-SWaP processing and therefore it is recommended that further 
research in this area continue. 

https://blogs.ed.ac.uk/rai-nr/
https://www.frontiersin.org/research-topics/11012/robust-artificial-intelligence-for-neurorobotics
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